]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/arm/kernel/setup.c
[ARM] 4712/2: Adds functions to read and write IXP4xx "feature" bits
[linux-2.6-omap-h63xx.git] / arch / arm / kernel / setup.c
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/root_dev.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/fs.h>
27 #include <linux/kexec.h>
28
29 #include <asm/cpu.h>
30 #include <asm/elf.h>
31 #include <asm/procinfo.h>
32 #include <asm/setup.h>
33 #include <asm/mach-types.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36
37 #include <asm/mach/arch.h>
38 #include <asm/mach/irq.h>
39 #include <asm/mach/time.h>
40
41 #include "compat.h"
42
43 #ifndef MEM_SIZE
44 #define MEM_SIZE        (16*1024*1024)
45 #endif
46
47 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
48 char fpe_type[8];
49
50 static int __init fpe_setup(char *line)
51 {
52         memcpy(fpe_type, line, 8);
53         return 1;
54 }
55
56 __setup("fpe=", fpe_setup);
57 #endif
58
59 extern void paging_init(struct meminfo *, struct machine_desc *desc);
60 extern void reboot_setup(char *str);
61 extern int root_mountflags;
62 extern void _stext, _text, _etext, __data_start, _edata, _end;
63
64 unsigned int processor_id;
65 EXPORT_SYMBOL(processor_id);
66 unsigned int __machine_arch_type;
67 EXPORT_SYMBOL(__machine_arch_type);
68
69 unsigned int __atags_pointer __initdata;
70
71 unsigned int system_rev;
72 EXPORT_SYMBOL(system_rev);
73
74 unsigned int system_serial_low;
75 EXPORT_SYMBOL(system_serial_low);
76
77 unsigned int system_serial_high;
78 EXPORT_SYMBOL(system_serial_high);
79
80 unsigned int elf_hwcap;
81 EXPORT_SYMBOL(elf_hwcap);
82
83
84 #ifdef MULTI_CPU
85 struct processor processor;
86 #endif
87 #ifdef MULTI_TLB
88 struct cpu_tlb_fns cpu_tlb;
89 #endif
90 #ifdef MULTI_USER
91 struct cpu_user_fns cpu_user;
92 #endif
93 #ifdef MULTI_CACHE
94 struct cpu_cache_fns cpu_cache;
95 #endif
96 #ifdef CONFIG_OUTER_CACHE
97 struct outer_cache_fns outer_cache;
98 #endif
99
100 struct stack {
101         u32 irq[3];
102         u32 abt[3];
103         u32 und[3];
104 } ____cacheline_aligned;
105
106 static struct stack stacks[NR_CPUS];
107
108 char elf_platform[ELF_PLATFORM_SIZE];
109 EXPORT_SYMBOL(elf_platform);
110
111 unsigned long phys_initrd_start __initdata = 0;
112 unsigned long phys_initrd_size __initdata = 0;
113
114 static struct meminfo meminfo __initdata = { 0, };
115 static const char *cpu_name;
116 static const char *machine_name;
117 static char __initdata command_line[COMMAND_LINE_SIZE];
118
119 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
120 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
121 #define ENDIANNESS ((char)endian_test.l)
122
123 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
124
125 /*
126  * Standard memory resources
127  */
128 static struct resource mem_res[] = {
129         {
130                 .name = "Video RAM",
131                 .start = 0,
132                 .end = 0,
133                 .flags = IORESOURCE_MEM
134         },
135         {
136                 .name = "Kernel text",
137                 .start = 0,
138                 .end = 0,
139                 .flags = IORESOURCE_MEM
140         },
141         {
142                 .name = "Kernel data",
143                 .start = 0,
144                 .end = 0,
145                 .flags = IORESOURCE_MEM
146         }
147 };
148
149 #define video_ram   mem_res[0]
150 #define kernel_code mem_res[1]
151 #define kernel_data mem_res[2]
152
153 static struct resource io_res[] = {
154         {
155                 .name = "reserved",
156                 .start = 0x3bc,
157                 .end = 0x3be,
158                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
159         },
160         {
161                 .name = "reserved",
162                 .start = 0x378,
163                 .end = 0x37f,
164                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
165         },
166         {
167                 .name = "reserved",
168                 .start = 0x278,
169                 .end = 0x27f,
170                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
171         }
172 };
173
174 #define lp0 io_res[0]
175 #define lp1 io_res[1]
176 #define lp2 io_res[2]
177
178 static const char *cache_types[16] = {
179         "write-through",
180         "write-back",
181         "write-back",
182         "undefined 3",
183         "undefined 4",
184         "undefined 5",
185         "write-back",
186         "write-back",
187         "undefined 8",
188         "undefined 9",
189         "undefined 10",
190         "undefined 11",
191         "undefined 12",
192         "undefined 13",
193         "write-back",
194         "undefined 15",
195 };
196
197 static const char *cache_clean[16] = {
198         "not required",
199         "read-block",
200         "cp15 c7 ops",
201         "undefined 3",
202         "undefined 4",
203         "undefined 5",
204         "cp15 c7 ops",
205         "cp15 c7 ops",
206         "undefined 8",
207         "undefined 9",
208         "undefined 10",
209         "undefined 11",
210         "undefined 12",
211         "undefined 13",
212         "cp15 c7 ops",
213         "undefined 15",
214 };
215
216 static const char *cache_lockdown[16] = {
217         "not supported",
218         "not supported",
219         "not supported",
220         "undefined 3",
221         "undefined 4",
222         "undefined 5",
223         "format A",
224         "format B",
225         "undefined 8",
226         "undefined 9",
227         "undefined 10",
228         "undefined 11",
229         "undefined 12",
230         "undefined 13",
231         "format C",
232         "undefined 15",
233 };
234
235 static const char *proc_arch[] = {
236         "undefined/unknown",
237         "3",
238         "4",
239         "4T",
240         "5",
241         "5T",
242         "5TE",
243         "5TEJ",
244         "6TEJ",
245         "7",
246         "?(11)",
247         "?(12)",
248         "?(13)",
249         "?(14)",
250         "?(15)",
251         "?(16)",
252         "?(17)",
253 };
254
255 #define CACHE_TYPE(x)   (((x) >> 25) & 15)
256 #define CACHE_S(x)      ((x) & (1 << 24))
257 #define CACHE_DSIZE(x)  (((x) >> 12) & 4095)    /* only if S=1 */
258 #define CACHE_ISIZE(x)  ((x) & 4095)
259
260 #define CACHE_SIZE(y)   (((y) >> 6) & 7)
261 #define CACHE_ASSOC(y)  (((y) >> 3) & 7)
262 #define CACHE_M(y)      ((y) & (1 << 2))
263 #define CACHE_LINE(y)   ((y) & 3)
264
265 static inline void dump_cache(const char *prefix, int cpu, unsigned int cache)
266 {
267         unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0);
268
269         printk("CPU%u: %s: %d bytes, associativity %d, %d byte lines, %d sets\n",
270                 cpu, prefix,
271                 mult << (8 + CACHE_SIZE(cache)),
272                 (mult << CACHE_ASSOC(cache)) >> 1,
273                 8 << CACHE_LINE(cache),
274                 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) -
275                         CACHE_LINE(cache)));
276 }
277
278 static void __init dump_cpu_info(int cpu)
279 {
280         unsigned int info = read_cpuid(CPUID_CACHETYPE);
281
282         if (info != processor_id) {
283                 printk("CPU%u: D %s %s cache\n", cpu, cache_is_vivt() ? "VIVT" : "VIPT",
284                        cache_types[CACHE_TYPE(info)]);
285                 if (CACHE_S(info)) {
286                         dump_cache("I cache", cpu, CACHE_ISIZE(info));
287                         dump_cache("D cache", cpu, CACHE_DSIZE(info));
288                 } else {
289                         dump_cache("cache", cpu, CACHE_ISIZE(info));
290                 }
291         }
292
293         if (arch_is_coherent())
294                 printk("Cache coherency enabled\n");
295 }
296
297 int cpu_architecture(void)
298 {
299         int cpu_arch;
300
301         if ((processor_id & 0x0008f000) == 0) {
302                 cpu_arch = CPU_ARCH_UNKNOWN;
303         } else if ((processor_id & 0x0008f000) == 0x00007000) {
304                 cpu_arch = (processor_id & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
305         } else if ((processor_id & 0x00080000) == 0x00000000) {
306                 cpu_arch = (processor_id >> 16) & 7;
307                 if (cpu_arch)
308                         cpu_arch += CPU_ARCH_ARMv3;
309         } else if ((processor_id & 0x000f0000) == 0x000f0000) {
310                 unsigned int mmfr0;
311
312                 /* Revised CPUID format. Read the Memory Model Feature
313                  * Register 0 and check for VMSAv7 or PMSAv7 */
314                 asm("mrc        p15, 0, %0, c0, c1, 4"
315                     : "=r" (mmfr0));
316                 if ((mmfr0 & 0x0000000f) == 0x00000003 ||
317                     (mmfr0 & 0x000000f0) == 0x00000030)
318                         cpu_arch = CPU_ARCH_ARMv7;
319                 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
320                          (mmfr0 & 0x000000f0) == 0x00000020)
321                         cpu_arch = CPU_ARCH_ARMv6;
322                 else
323                         cpu_arch = CPU_ARCH_UNKNOWN;
324         } else
325                 cpu_arch = CPU_ARCH_UNKNOWN;
326
327         return cpu_arch;
328 }
329
330 /*
331  * These functions re-use the assembly code in head.S, which
332  * already provide the required functionality.
333  */
334 extern struct proc_info_list *lookup_processor_type(unsigned int);
335 extern struct machine_desc *lookup_machine_type(unsigned int);
336
337 static void __init setup_processor(void)
338 {
339         struct proc_info_list *list;
340
341         /*
342          * locate processor in the list of supported processor
343          * types.  The linker builds this table for us from the
344          * entries in arch/arm/mm/proc-*.S
345          */
346         list = lookup_processor_type(processor_id);
347         if (!list) {
348                 printk("CPU configuration botched (ID %08x), unable "
349                        "to continue.\n", processor_id);
350                 while (1);
351         }
352
353         cpu_name = list->cpu_name;
354
355 #ifdef MULTI_CPU
356         processor = *list->proc;
357 #endif
358 #ifdef MULTI_TLB
359         cpu_tlb = *list->tlb;
360 #endif
361 #ifdef MULTI_USER
362         cpu_user = *list->user;
363 #endif
364 #ifdef MULTI_CACHE
365         cpu_cache = *list->cache;
366 #endif
367
368         printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
369                cpu_name, processor_id, (int)processor_id & 15,
370                proc_arch[cpu_architecture()], cr_alignment);
371
372         sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
373         sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
374         elf_hwcap = list->elf_hwcap;
375 #ifndef CONFIG_ARM_THUMB
376         elf_hwcap &= ~HWCAP_THUMB;
377 #endif
378
379         cpu_proc_init();
380 }
381
382 /*
383  * cpu_init - initialise one CPU.
384  *
385  * cpu_init dumps the cache information, initialises SMP specific
386  * information, and sets up the per-CPU stacks.
387  */
388 void cpu_init(void)
389 {
390         unsigned int cpu = smp_processor_id();
391         struct stack *stk = &stacks[cpu];
392
393         if (cpu >= NR_CPUS) {
394                 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
395                 BUG();
396         }
397
398         if (system_state == SYSTEM_BOOTING)
399                 dump_cpu_info(cpu);
400
401         /*
402          * setup stacks for re-entrant exception handlers
403          */
404         __asm__ (
405         "msr    cpsr_c, %1\n\t"
406         "add    sp, %0, %2\n\t"
407         "msr    cpsr_c, %3\n\t"
408         "add    sp, %0, %4\n\t"
409         "msr    cpsr_c, %5\n\t"
410         "add    sp, %0, %6\n\t"
411         "msr    cpsr_c, %7"
412             :
413             : "r" (stk),
414               "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
415               "I" (offsetof(struct stack, irq[0])),
416               "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
417               "I" (offsetof(struct stack, abt[0])),
418               "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
419               "I" (offsetof(struct stack, und[0])),
420               "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
421             : "r14");
422 }
423
424 static struct machine_desc * __init setup_machine(unsigned int nr)
425 {
426         struct machine_desc *list;
427
428         /*
429          * locate machine in the list of supported machines.
430          */
431         list = lookup_machine_type(nr);
432         if (!list) {
433                 printk("Machine configuration botched (nr %d), unable "
434                        "to continue.\n", nr);
435                 while (1);
436         }
437
438         printk("Machine: %s\n", list->name);
439
440         return list;
441 }
442
443 static void __init early_initrd(char **p)
444 {
445         unsigned long start, size;
446
447         start = memparse(*p, p);
448         if (**p == ',') {
449                 size = memparse((*p) + 1, p);
450
451                 phys_initrd_start = start;
452                 phys_initrd_size = size;
453         }
454 }
455 __early_param("initrd=", early_initrd);
456
457 static void __init arm_add_memory(unsigned long start, unsigned long size)
458 {
459         struct membank *bank;
460
461         /*
462          * Ensure that start/size are aligned to a page boundary.
463          * Size is appropriately rounded down, start is rounded up.
464          */
465         size -= start & ~PAGE_MASK;
466
467         bank = &meminfo.bank[meminfo.nr_banks++];
468
469         bank->start = PAGE_ALIGN(start);
470         bank->size  = size & PAGE_MASK;
471         bank->node  = PHYS_TO_NID(start);
472 }
473
474 /*
475  * Pick out the memory size.  We look for mem=size@start,
476  * where start and size are "size[KkMm]"
477  */
478 static void __init early_mem(char **p)
479 {
480         static int usermem __initdata = 0;
481         unsigned long size, start;
482
483         /*
484          * If the user specifies memory size, we
485          * blow away any automatically generated
486          * size.
487          */
488         if (usermem == 0) {
489                 usermem = 1;
490                 meminfo.nr_banks = 0;
491         }
492
493         start = PHYS_OFFSET;
494         size  = memparse(*p, p);
495         if (**p == '@')
496                 start = memparse(*p + 1, p);
497
498         arm_add_memory(start, size);
499 }
500 __early_param("mem=", early_mem);
501
502 /*
503  * Initial parsing of the command line.
504  */
505 static void __init parse_cmdline(char **cmdline_p, char *from)
506 {
507         char c = ' ', *to = command_line;
508         int len = 0;
509
510         for (;;) {
511                 if (c == ' ') {
512                         extern struct early_params __early_begin, __early_end;
513                         struct early_params *p;
514
515                         for (p = &__early_begin; p < &__early_end; p++) {
516                                 int len = strlen(p->arg);
517
518                                 if (memcmp(from, p->arg, len) == 0) {
519                                         if (to != command_line)
520                                                 to -= 1;
521                                         from += len;
522                                         p->fn(&from);
523
524                                         while (*from != ' ' && *from != '\0')
525                                                 from++;
526                                         break;
527                                 }
528                         }
529                 }
530                 c = *from++;
531                 if (!c)
532                         break;
533                 if (COMMAND_LINE_SIZE <= ++len)
534                         break;
535                 *to++ = c;
536         }
537         *to = '\0';
538         *cmdline_p = command_line;
539 }
540
541 static void __init
542 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
543 {
544 #ifdef CONFIG_BLK_DEV_RAM
545         extern int rd_size, rd_image_start, rd_prompt, rd_doload;
546
547         rd_image_start = image_start;
548         rd_prompt = prompt;
549         rd_doload = doload;
550
551         if (rd_sz)
552                 rd_size = rd_sz;
553 #endif
554 }
555
556 static void __init
557 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
558 {
559         struct resource *res;
560         int i;
561
562         kernel_code.start   = virt_to_phys(&_text);
563         kernel_code.end     = virt_to_phys(&_etext - 1);
564         kernel_data.start   = virt_to_phys(&__data_start);
565         kernel_data.end     = virt_to_phys(&_end - 1);
566
567         for (i = 0; i < mi->nr_banks; i++) {
568                 unsigned long virt_start, virt_end;
569
570                 if (mi->bank[i].size == 0)
571                         continue;
572
573                 virt_start = __phys_to_virt(mi->bank[i].start);
574                 virt_end   = virt_start + mi->bank[i].size - 1;
575
576                 res = alloc_bootmem_low(sizeof(*res));
577                 res->name  = "System RAM";
578                 res->start = __virt_to_phys(virt_start);
579                 res->end   = __virt_to_phys(virt_end);
580                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
581
582                 request_resource(&iomem_resource, res);
583
584                 if (kernel_code.start >= res->start &&
585                     kernel_code.end <= res->end)
586                         request_resource(res, &kernel_code);
587                 if (kernel_data.start >= res->start &&
588                     kernel_data.end <= res->end)
589                         request_resource(res, &kernel_data);
590         }
591
592         if (mdesc->video_start) {
593                 video_ram.start = mdesc->video_start;
594                 video_ram.end   = mdesc->video_end;
595                 request_resource(&iomem_resource, &video_ram);
596         }
597
598         /*
599          * Some machines don't have the possibility of ever
600          * possessing lp0, lp1 or lp2
601          */
602         if (mdesc->reserve_lp0)
603                 request_resource(&ioport_resource, &lp0);
604         if (mdesc->reserve_lp1)
605                 request_resource(&ioport_resource, &lp1);
606         if (mdesc->reserve_lp2)
607                 request_resource(&ioport_resource, &lp2);
608 }
609
610 /*
611  *  Tag parsing.
612  *
613  * This is the new way of passing data to the kernel at boot time.  Rather
614  * than passing a fixed inflexible structure to the kernel, we pass a list
615  * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
616  * tag for the list to be recognised (to distinguish the tagged list from
617  * a param_struct).  The list is terminated with a zero-length tag (this tag
618  * is not parsed in any way).
619  */
620 static int __init parse_tag_core(const struct tag *tag)
621 {
622         if (tag->hdr.size > 2) {
623                 if ((tag->u.core.flags & 1) == 0)
624                         root_mountflags &= ~MS_RDONLY;
625                 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
626         }
627         return 0;
628 }
629
630 __tagtable(ATAG_CORE, parse_tag_core);
631
632 static int __init parse_tag_mem32(const struct tag *tag)
633 {
634         if (meminfo.nr_banks >= NR_BANKS) {
635                 printk(KERN_WARNING
636                        "Ignoring memory bank 0x%08x size %dKB\n",
637                         tag->u.mem.start, tag->u.mem.size / 1024);
638                 return -EINVAL;
639         }
640         arm_add_memory(tag->u.mem.start, tag->u.mem.size);
641         return 0;
642 }
643
644 __tagtable(ATAG_MEM, parse_tag_mem32);
645
646 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
647 struct screen_info screen_info = {
648  .orig_video_lines      = 30,
649  .orig_video_cols       = 80,
650  .orig_video_mode       = 0,
651  .orig_video_ega_bx     = 0,
652  .orig_video_isVGA      = 1,
653  .orig_video_points     = 8
654 };
655
656 static int __init parse_tag_videotext(const struct tag *tag)
657 {
658         screen_info.orig_x            = tag->u.videotext.x;
659         screen_info.orig_y            = tag->u.videotext.y;
660         screen_info.orig_video_page   = tag->u.videotext.video_page;
661         screen_info.orig_video_mode   = tag->u.videotext.video_mode;
662         screen_info.orig_video_cols   = tag->u.videotext.video_cols;
663         screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
664         screen_info.orig_video_lines  = tag->u.videotext.video_lines;
665         screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
666         screen_info.orig_video_points = tag->u.videotext.video_points;
667         return 0;
668 }
669
670 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
671 #endif
672
673 static int __init parse_tag_ramdisk(const struct tag *tag)
674 {
675         setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
676                       (tag->u.ramdisk.flags & 2) == 0,
677                       tag->u.ramdisk.start, tag->u.ramdisk.size);
678         return 0;
679 }
680
681 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
682
683 static int __init parse_tag_initrd(const struct tag *tag)
684 {
685         printk(KERN_WARNING "ATAG_INITRD is deprecated; "
686                 "please update your bootloader.\n");
687         phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
688         phys_initrd_size = tag->u.initrd.size;
689         return 0;
690 }
691
692 __tagtable(ATAG_INITRD, parse_tag_initrd);
693
694 static int __init parse_tag_initrd2(const struct tag *tag)
695 {
696         phys_initrd_start = tag->u.initrd.start;
697         phys_initrd_size = tag->u.initrd.size;
698         return 0;
699 }
700
701 __tagtable(ATAG_INITRD2, parse_tag_initrd2);
702
703 static int __init parse_tag_serialnr(const struct tag *tag)
704 {
705         system_serial_low = tag->u.serialnr.low;
706         system_serial_high = tag->u.serialnr.high;
707         return 0;
708 }
709
710 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
711
712 static int __init parse_tag_revision(const struct tag *tag)
713 {
714         system_rev = tag->u.revision.rev;
715         return 0;
716 }
717
718 __tagtable(ATAG_REVISION, parse_tag_revision);
719
720 static int __init parse_tag_cmdline(const struct tag *tag)
721 {
722         strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
723         return 0;
724 }
725
726 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
727
728 /*
729  * Scan the tag table for this tag, and call its parse function.
730  * The tag table is built by the linker from all the __tagtable
731  * declarations.
732  */
733 static int __init parse_tag(const struct tag *tag)
734 {
735         extern struct tagtable __tagtable_begin, __tagtable_end;
736         struct tagtable *t;
737
738         for (t = &__tagtable_begin; t < &__tagtable_end; t++)
739                 if (tag->hdr.tag == t->tag) {
740                         t->parse(tag);
741                         break;
742                 }
743
744         return t < &__tagtable_end;
745 }
746
747 /*
748  * Parse all tags in the list, checking both the global and architecture
749  * specific tag tables.
750  */
751 static void __init parse_tags(const struct tag *t)
752 {
753         for (; t->hdr.size; t = tag_next(t))
754                 if (!parse_tag(t))
755                         printk(KERN_WARNING
756                                 "Ignoring unrecognised tag 0x%08x\n",
757                                 t->hdr.tag);
758 }
759
760 /*
761  * This holds our defaults.
762  */
763 static struct init_tags {
764         struct tag_header hdr1;
765         struct tag_core   core;
766         struct tag_header hdr2;
767         struct tag_mem32  mem;
768         struct tag_header hdr3;
769 } init_tags __initdata = {
770         { tag_size(tag_core), ATAG_CORE },
771         { 1, PAGE_SIZE, 0xff },
772         { tag_size(tag_mem32), ATAG_MEM },
773         { MEM_SIZE, PHYS_OFFSET },
774         { 0, ATAG_NONE }
775 };
776
777 static void (*init_machine)(void) __initdata;
778
779 static int __init customize_machine(void)
780 {
781         /* customizes platform devices, or adds new ones */
782         if (init_machine)
783                 init_machine();
784         return 0;
785 }
786 arch_initcall(customize_machine);
787
788 #ifdef CONFIG_KEXEC
789
790 /* Physical addr of where the boot params should be for this machine */
791 extern unsigned long kexec_boot_params_address;
792
793 /* Physical addr of the buffer into which the boot params are copied */
794 extern unsigned long kexec_boot_params_copy;
795
796 /* Pointer to the boot params buffer, for manipulation and display */
797 unsigned long kexec_boot_params;
798 EXPORT_SYMBOL(kexec_boot_params);
799
800 /* The buffer itself - make sure it is sized correctly */
801 static unsigned long kexec_boot_params_buf[(KEXEC_BOOT_PARAMS_SIZE + 3) / 4];
802
803 #endif
804
805 void __init setup_arch(char **cmdline_p)
806 {
807         struct tag *tags = (struct tag *)&init_tags;
808         struct machine_desc *mdesc;
809         char *from = default_command_line;
810
811         setup_processor();
812         mdesc = setup_machine(machine_arch_type);
813         machine_name = mdesc->name;
814
815         if (mdesc->soft_reboot)
816                 reboot_setup("s");
817
818         if (__atags_pointer)
819                 tags = phys_to_virt(__atags_pointer);
820         else if (mdesc->boot_params)
821                 tags = phys_to_virt(mdesc->boot_params);
822
823 #ifdef CONFIG_KEXEC
824         kexec_boot_params_copy = virt_to_phys(kexec_boot_params_buf);
825         kexec_boot_params = (unsigned long)kexec_boot_params_buf;
826         if (__atags_pointer) {
827                 kexec_boot_params_address = __atags_pointer;
828                 memcpy((void *)kexec_boot_params, tags, KEXEC_BOOT_PARAMS_SIZE);
829         } else if (mdesc->boot_params) {
830                 kexec_boot_params_address = mdesc->boot_params;
831                 memcpy((void *)kexec_boot_params, tags, KEXEC_BOOT_PARAMS_SIZE);
832         }
833 #endif
834
835         /*
836          * If we have the old style parameters, convert them to
837          * a tag list.
838          */
839         if (tags->hdr.tag != ATAG_CORE)
840                 convert_to_tag_list(tags);
841         if (tags->hdr.tag != ATAG_CORE)
842                 tags = (struct tag *)&init_tags;
843
844         if (mdesc->fixup)
845                 mdesc->fixup(mdesc, tags, &from, &meminfo);
846
847         if (tags->hdr.tag == ATAG_CORE) {
848                 if (meminfo.nr_banks != 0)
849                         squash_mem_tags(tags);
850                 parse_tags(tags);
851         }
852
853         init_mm.start_code = (unsigned long) &_text;
854         init_mm.end_code   = (unsigned long) &_etext;
855         init_mm.end_data   = (unsigned long) &_edata;
856         init_mm.brk        = (unsigned long) &_end;
857
858         memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
859         boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
860         parse_cmdline(cmdline_p, from);
861         paging_init(&meminfo, mdesc);
862         request_standard_resources(&meminfo, mdesc);
863
864 #ifdef CONFIG_SMP
865         smp_init_cpus();
866 #endif
867
868         cpu_init();
869
870         /*
871          * Set up various architecture-specific pointers
872          */
873         init_arch_irq = mdesc->init_irq;
874         system_timer = mdesc->timer;
875         init_machine = mdesc->init_machine;
876
877 #ifdef CONFIG_VT
878 #if defined(CONFIG_VGA_CONSOLE)
879         conswitchp = &vga_con;
880 #elif defined(CONFIG_DUMMY_CONSOLE)
881         conswitchp = &dummy_con;
882 #endif
883 #endif
884 }
885
886
887 static int __init topology_init(void)
888 {
889         int cpu;
890
891         for_each_possible_cpu(cpu) {
892                 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
893                 cpuinfo->cpu.hotpluggable = 1;
894                 register_cpu(&cpuinfo->cpu, cpu);
895         }
896
897         return 0;
898 }
899
900 subsys_initcall(topology_init);
901
902 static const char *hwcap_str[] = {
903         "swp",
904         "half",
905         "thumb",
906         "26bit",
907         "fastmult",
908         "fpa",
909         "vfp",
910         "edsp",
911         "java",
912         "iwmmxt",
913         "crunch",
914         NULL
915 };
916
917 static void
918 c_show_cache(struct seq_file *m, const char *type, unsigned int cache)
919 {
920         unsigned int mult = 2 + (CACHE_M(cache) ? 1 : 0);
921
922         seq_printf(m, "%s size\t\t: %d\n"
923                       "%s assoc\t\t: %d\n"
924                       "%s line length\t: %d\n"
925                       "%s sets\t\t: %d\n",
926                 type, mult << (8 + CACHE_SIZE(cache)),
927                 type, (mult << CACHE_ASSOC(cache)) >> 1,
928                 type, 8 << CACHE_LINE(cache),
929                 type, 1 << (6 + CACHE_SIZE(cache) - CACHE_ASSOC(cache) -
930                             CACHE_LINE(cache)));
931 }
932
933 static int c_show(struct seq_file *m, void *v)
934 {
935         int i;
936
937         seq_printf(m, "Processor\t: %s rev %d (%s)\n",
938                    cpu_name, (int)processor_id & 15, elf_platform);
939
940 #if defined(CONFIG_SMP)
941         for_each_online_cpu(i) {
942                 /*
943                  * glibc reads /proc/cpuinfo to determine the number of
944                  * online processors, looking for lines beginning with
945                  * "processor".  Give glibc what it expects.
946                  */
947                 seq_printf(m, "processor\t: %d\n", i);
948                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
949                            per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
950                            (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
951         }
952 #else /* CONFIG_SMP */
953         seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
954                    loops_per_jiffy / (500000/HZ),
955                    (loops_per_jiffy / (5000/HZ)) % 100);
956 #endif
957
958         /* dump out the processor features */
959         seq_puts(m, "Features\t: ");
960
961         for (i = 0; hwcap_str[i]; i++)
962                 if (elf_hwcap & (1 << i))
963                         seq_printf(m, "%s ", hwcap_str[i]);
964
965         seq_printf(m, "\nCPU implementer\t: 0x%02x\n", processor_id >> 24);
966         seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
967
968         if ((processor_id & 0x0008f000) == 0x00000000) {
969                 /* pre-ARM7 */
970                 seq_printf(m, "CPU part\t: %07x\n", processor_id >> 4);
971         } else {
972                 if ((processor_id & 0x0008f000) == 0x00007000) {
973                         /* ARM7 */
974                         seq_printf(m, "CPU variant\t: 0x%02x\n",
975                                    (processor_id >> 16) & 127);
976                 } else {
977                         /* post-ARM7 */
978                         seq_printf(m, "CPU variant\t: 0x%x\n",
979                                    (processor_id >> 20) & 15);
980                 }
981                 seq_printf(m, "CPU part\t: 0x%03x\n",
982                            (processor_id >> 4) & 0xfff);
983         }
984         seq_printf(m, "CPU revision\t: %d\n", processor_id & 15);
985
986         {
987                 unsigned int cache_info = read_cpuid(CPUID_CACHETYPE);
988                 if (cache_info != processor_id) {
989                         seq_printf(m, "Cache type\t: %s\n"
990                                       "Cache clean\t: %s\n"
991                                       "Cache lockdown\t: %s\n"
992                                       "Cache format\t: %s\n",
993                                    cache_types[CACHE_TYPE(cache_info)],
994                                    cache_clean[CACHE_TYPE(cache_info)],
995                                    cache_lockdown[CACHE_TYPE(cache_info)],
996                                    CACHE_S(cache_info) ? "Harvard" : "Unified");
997
998                         if (CACHE_S(cache_info)) {
999                                 c_show_cache(m, "I", CACHE_ISIZE(cache_info));
1000                                 c_show_cache(m, "D", CACHE_DSIZE(cache_info));
1001                         } else {
1002                                 c_show_cache(m, "Cache", CACHE_ISIZE(cache_info));
1003                         }
1004                 }
1005         }
1006
1007         seq_puts(m, "\n");
1008
1009         seq_printf(m, "Hardware\t: %s\n", machine_name);
1010         seq_printf(m, "Revision\t: %04x\n", system_rev);
1011         seq_printf(m, "Serial\t\t: %08x%08x\n",
1012                    system_serial_high, system_serial_low);
1013
1014         return 0;
1015 }
1016
1017 static void *c_start(struct seq_file *m, loff_t *pos)
1018 {
1019         return *pos < 1 ? (void *)1 : NULL;
1020 }
1021
1022 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1023 {
1024         ++*pos;
1025         return NULL;
1026 }
1027
1028 static void c_stop(struct seq_file *m, void *v)
1029 {
1030 }
1031
1032 struct seq_operations cpuinfo_op = {
1033         .start  = c_start,
1034         .next   = c_next,
1035         .stop   = c_stop,
1036         .show   = c_show
1037 };