]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/arm/mach-sa1100/cpu-sa1110.c
[ARM] 5191/1: ARM: remove CVS keywords
[linux-2.6-omap-h63xx.git] / arch / arm / mach-sa1100 / cpu-sa1110.c
1 /*
2  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Note: there are two erratas that apply to the SA1110 here:
11  *  7 - SDRAM auto-power-up failure (rev A0)
12  * 13 - Corruption of internal register reads/writes following
13  *      SDRAM reads (rev A0, B0, B1)
14  *
15  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
16  *
17  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
18  */
19 #include <linux/moduleparam.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26
27 #include <mach/hardware.h>
28 #include <asm/mach-types.h>
29 #include <asm/io.h>
30 #include <asm/system.h>
31
32 #include "generic.h"
33
34 #undef DEBUG
35
36 static struct cpufreq_driver sa1110_driver;
37
38 struct sdram_params {
39         const char name[16];
40         u_char  rows;           /* bits                          */
41         u_char  cas_latency;    /* cycles                        */
42         u_char  tck;            /* clock cycle time (ns)         */
43         u_char  trcd;           /* activate to r/w (ns)          */
44         u_char  trp;            /* precharge to activate (ns)    */
45         u_char  twr;            /* write recovery time (ns)      */
46         u_short refresh;        /* refresh time for array (us)   */
47 };
48
49 struct sdram_info {
50         u_int   mdcnfg;
51         u_int   mdrefr;
52         u_int   mdcas[3];
53 };
54
55 static struct sdram_params sdram_tbl[] __initdata = {
56         {       /* Toshiba TC59SM716 CL2 */
57                 .name           = "TC59SM716-CL2",
58                 .rows           = 12,
59                 .tck            = 10,
60                 .trcd           = 20,
61                 .trp            = 20,
62                 .twr            = 10,
63                 .refresh        = 64000,
64                 .cas_latency    = 2,
65         }, {    /* Toshiba TC59SM716 CL3 */
66                 .name           = "TC59SM716-CL3",
67                 .rows           = 12,
68                 .tck            = 8,
69                 .trcd           = 20,
70                 .trp            = 20,
71                 .twr            = 8,
72                 .refresh        = 64000,
73                 .cas_latency    = 3,
74         }, {    /* Samsung K4S641632D TC75 */
75                 .name           = "K4S641632D",
76                 .rows           = 14,
77                 .tck            = 9,
78                 .trcd           = 27,
79                 .trp            = 20,
80                 .twr            = 9,
81                 .refresh        = 64000,
82                 .cas_latency    = 3,
83         }, {    /* Samsung K4S281632B-1H */
84                 .name           = "K4S281632B-1H",
85                 .rows           = 12,
86                 .tck            = 10,
87                 .trp            = 20,
88                 .twr            = 10,
89                 .refresh        = 64000,
90                 .cas_latency    = 3,
91         }, {    /* Samsung KM416S4030CT */
92                 .name           = "KM416S4030CT",
93                 .rows           = 13,
94                 .tck            = 8,
95                 .trcd           = 24,   /* 3 CLKs */
96                 .trp            = 24,   /* 3 CLKs */
97                 .twr            = 16,   /* Trdl: 2 CLKs */
98                 .refresh        = 64000,
99                 .cas_latency    = 3,
100         }, {    /* Winbond W982516AH75L CL3 */
101                 .name           = "W982516AH75L",
102                 .rows           = 16,
103                 .tck            = 8,
104                 .trcd           = 20,
105                 .trp            = 20,
106                 .twr            = 8,
107                 .refresh        = 64000,
108                 .cas_latency    = 3,
109         },
110 };
111
112 static struct sdram_params sdram_params;
113
114 /*
115  * Given a period in ns and frequency in khz, calculate the number of
116  * cycles of frequency in period.  Note that we round up to the next
117  * cycle, even if we are only slightly over.
118  */
119 static inline u_int ns_to_cycles(u_int ns, u_int khz)
120 {
121         return (ns * khz + 999999) / 1000000;
122 }
123
124 /*
125  * Create the MDCAS register bit pattern.
126  */
127 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
128 {
129         u_int shift;
130
131         rcd = 2 * rcd - 1;
132         shift = delayed + 1 + rcd;
133
134         mdcas[0]  = (1 << rcd) - 1;
135         mdcas[0] |= 0x55555555 << shift;
136         mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
137 }
138
139 static void
140 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
141                        struct sdram_params *sdram)
142 {
143         u_int mem_khz, sd_khz, trp, twr;
144
145         mem_khz = cpu_khz / 2;
146         sd_khz = mem_khz;
147
148         /*
149          * If SDCLK would invalidate the SDRAM timings,
150          * run SDCLK at half speed.
151          *
152          * CPU steppings prior to B2 must either run the memory at
153          * half speed or use delayed read latching (errata 13).
154          */
155         if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
156             (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
157                 sd_khz /= 2;
158
159         sd->mdcnfg = MDCNFG & 0x007f007f;
160
161         twr = ns_to_cycles(sdram->twr, mem_khz);
162
163         /* trp should always be >1 */
164         trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
165         if (trp < 1)
166                 trp = 1;
167
168         sd->mdcnfg |= trp << 8;
169         sd->mdcnfg |= trp << 24;
170         sd->mdcnfg |= sdram->cas_latency << 12;
171         sd->mdcnfg |= sdram->cas_latency << 28;
172         sd->mdcnfg |= twr << 14;
173         sd->mdcnfg |= twr << 30;
174
175         sd->mdrefr = MDREFR & 0xffbffff0;
176         sd->mdrefr |= 7;
177
178         if (sd_khz != mem_khz)
179                 sd->mdrefr |= MDREFR_K1DB2;
180
181         /* initial number of '1's in MDCAS + 1 */
182         set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz));
183
184 #ifdef DEBUG
185         printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
186                 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]);
187 #endif
188 }
189
190 /*
191  * Set the SDRAM refresh rate.
192  */
193 static inline void sdram_set_refresh(u_int dri)
194 {
195         MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
196         (void) MDREFR;
197 }
198
199 /*
200  * Update the refresh period.  We do this such that we always refresh
201  * the SDRAMs within their permissible period.  The refresh period is
202  * always a multiple of the memory clock (fixed at cpu_clock / 2).
203  *
204  * FIXME: we don't currently take account of burst accesses here,
205  * but neither do Intels DM nor Angel.
206  */
207 static void
208 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
209 {
210         u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
211         u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
212
213 #ifdef DEBUG
214         mdelay(250);
215         printk("new dri value = %d\n", dri);
216 #endif
217
218         sdram_set_refresh(dri);
219 }
220
221 /*
222  * Ok, set the CPU frequency.  
223  */
224 static int sa1110_target(struct cpufreq_policy *policy,
225                          unsigned int target_freq,
226                          unsigned int relation)
227 {
228         struct sdram_params *sdram = &sdram_params;
229         struct cpufreq_freqs freqs;
230         struct sdram_info sd;
231         unsigned long flags;
232         unsigned int ppcr, unused;
233
234         switch(relation){
235         case CPUFREQ_RELATION_L:
236                 ppcr = sa11x0_freq_to_ppcr(target_freq);
237                 if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
238                         ppcr--;
239                 break;
240         case CPUFREQ_RELATION_H:
241                 ppcr = sa11x0_freq_to_ppcr(target_freq);
242                 if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
243                     (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
244                         ppcr--;
245                 break;
246         default:
247                 return -EINVAL;
248         }
249
250         freqs.old = sa11x0_getspeed(0);
251         freqs.new = sa11x0_ppcr_to_freq(ppcr);
252         freqs.cpu = 0;
253
254         sdram_calculate_timing(&sd, freqs.new, sdram);
255
256 #if 0
257         /*
258          * These values are wrong according to the SA1110 documentation
259          * and errata, but they seem to work.  Need to get a storage
260          * scope on to the SDRAM signals to work out why.
261          */
262         if (policy->max < 147500) {
263                 sd.mdrefr |= MDREFR_K1DB2;
264                 sd.mdcas[0] = 0xaaaaaa7f;
265         } else {
266                 sd.mdrefr &= ~MDREFR_K1DB2;
267                 sd.mdcas[0] = 0xaaaaaa9f;
268         }
269         sd.mdcas[1] = 0xaaaaaaaa;
270         sd.mdcas[2] = 0xaaaaaaaa;
271 #endif
272
273         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
274
275         /*
276          * The clock could be going away for some time.  Set the SDRAMs
277          * to refresh rapidly (every 64 memory clock cycles).  To get
278          * through the whole array, we need to wait 262144 mclk cycles.
279          * We wait 20ms to be safe.
280          */
281         sdram_set_refresh(2);
282         if (!irqs_disabled()) {
283                 msleep(20);
284         } else {
285                 mdelay(20);
286         }
287
288         /*
289          * Reprogram the DRAM timings with interrupts disabled, and
290          * ensure that we are doing this within a complete cache line.
291          * This means that we won't access SDRAM for the duration of
292          * the programming.
293          */
294         local_irq_save(flags);
295         asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
296         udelay(10);
297         __asm__ __volatile__("                                  \n\
298                 b       2f                                      \n\
299                 .align  5                                       \n\
300 1:              str     %3, [%1, #0]            @ MDCNFG        \n\
301                 str     %4, [%1, #28]           @ MDREFR        \n\
302                 str     %5, [%1, #4]            @ MDCAS0        \n\
303                 str     %6, [%1, #8]            @ MDCAS1        \n\
304                 str     %7, [%1, #12]           @ MDCAS2        \n\
305                 str     %8, [%2, #0]            @ PPCR          \n\
306                 ldr     %0, [%1, #0]                            \n\
307                 b       3f                                      \n\
308 2:              b       1b                                      \n\
309 3:              nop                                             \n\
310                 nop"
311                 : "=&r" (unused)
312                 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
313                   "r" (sd.mdrefr), "r" (sd.mdcas[0]),
314                   "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
315         local_irq_restore(flags);
316
317         /*
318          * Now, return the SDRAM refresh back to normal.
319          */
320         sdram_update_refresh(freqs.new, sdram);
321
322         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
323
324         return 0;
325 }
326
327 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
328 {
329         if (policy->cpu != 0)
330                 return -EINVAL;
331         policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
332         policy->cpuinfo.min_freq = 59000;
333         policy->cpuinfo.max_freq = 287000;
334         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
335         return 0;
336 }
337
338 static struct cpufreq_driver sa1110_driver = {
339         .flags          = CPUFREQ_STICKY,
340         .verify         = sa11x0_verify_speed,
341         .target         = sa1110_target,
342         .get            = sa11x0_getspeed,
343         .init           = sa1110_cpu_init,
344         .name           = "sa1110",
345 };
346
347 static struct sdram_params *sa1110_find_sdram(const char *name)
348 {
349         struct sdram_params *sdram;
350
351         for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); sdram++)
352                 if (strcmp(name, sdram->name) == 0)
353                         return sdram;
354
355         return NULL;
356 }
357
358 static char sdram_name[16];
359
360 static int __init sa1110_clk_init(void)
361 {
362         struct sdram_params *sdram;
363         const char *name = sdram_name;
364
365         if (!name[0]) {
366                 if (machine_is_assabet())
367                         name = "TC59SM716-CL3";
368
369                 if (machine_is_pt_system3())
370                         name = "K4S641632D";
371
372                 if (machine_is_h3100())
373                         name = "KM416S4030CT";
374                 if (machine_is_jornada720())
375                         name = "K4S281632B-1H";
376         }
377
378         sdram = sa1110_find_sdram(name);
379         if (sdram) {
380                 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
381                         " twr: %d refresh: %d cas_latency: %d\n",
382                         sdram->tck, sdram->trcd, sdram->trp,
383                         sdram->twr, sdram->refresh, sdram->cas_latency);
384
385                 memcpy(&sdram_params, sdram, sizeof(sdram_params));
386
387                 return cpufreq_register_driver(&sa1110_driver);
388         }
389
390         return 0;
391 }
392
393 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
394 arch_initcall(sa1110_clk_init);