2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/module.h>
31 #include <linux/kexec.h>
32 #include <linux/debugfs.h>
33 #include <linux/irq.h>
39 #include <asm/processor.h>
42 #include <asm/kdump.h>
44 #include <asm/system.h>
46 #include <asm/pgtable.h>
48 #include <asm/iommu.h>
49 #include <asm/btext.h>
50 #include <asm/sections.h>
51 #include <asm/machdep.h>
52 #include <asm/pSeries_reconfig.h>
53 #include <asm/pci-bridge.h>
54 #include <asm/kexec.h>
57 #define DBG(fmt...) printk(KERN_ERR fmt)
63 static int __initdata dt_root_addr_cells;
64 static int __initdata dt_root_size_cells;
67 int __initdata iommu_is_off;
68 int __initdata iommu_force_on;
69 unsigned long tce_alloc_start, tce_alloc_end;
75 static struct boot_param_header *initial_boot_params __initdata;
77 struct boot_param_header *initial_boot_params;
80 static struct device_node *allnodes = NULL;
82 /* use when traversing tree through the allnext, child, sibling,
83 * or parent members of struct device_node.
85 static DEFINE_RWLOCK(devtree_lock);
87 /* export that to outside world */
88 struct device_node *of_chosen;
90 static inline char *find_flat_dt_string(u32 offset)
92 return ((char *)initial_boot_params) +
93 initial_boot_params->off_dt_strings + offset;
97 * This function is used to scan the flattened device-tree, it is
98 * used to extract the memory informations at boot before we can
101 int __init of_scan_flat_dt(int (*it)(unsigned long node,
102 const char *uname, int depth,
106 unsigned long p = ((unsigned long)initial_boot_params) +
107 initial_boot_params->off_dt_struct;
112 u32 tag = *((u32 *)p);
116 if (tag == OF_DT_END_NODE) {
120 if (tag == OF_DT_NOP)
122 if (tag == OF_DT_END)
124 if (tag == OF_DT_PROP) {
125 u32 sz = *((u32 *)p);
127 if (initial_boot_params->version < 0x10)
128 p = _ALIGN(p, sz >= 8 ? 8 : 4);
133 if (tag != OF_DT_BEGIN_NODE) {
134 printk(KERN_WARNING "Invalid tag %x scanning flattened"
135 " device tree !\n", tag);
140 p = _ALIGN(p + strlen(pathp) + 1, 4);
141 if ((*pathp) == '/') {
143 for (lp = NULL, np = pathp; *np; np++)
149 rc = it(p, pathp, depth, data);
157 unsigned long __init of_get_flat_dt_root(void)
159 unsigned long p = ((unsigned long)initial_boot_params) +
160 initial_boot_params->off_dt_struct;
162 while(*((u32 *)p) == OF_DT_NOP)
164 BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
166 return _ALIGN(p + strlen((char *)p) + 1, 4);
170 * This function can be used within scan_flattened_dt callback to get
171 * access to properties
173 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
176 unsigned long p = node;
179 u32 tag = *((u32 *)p);
184 if (tag == OF_DT_NOP)
186 if (tag != OF_DT_PROP)
190 noff = *((u32 *)(p + 4));
192 if (initial_boot_params->version < 0x10)
193 p = _ALIGN(p, sz >= 8 ? 8 : 4);
195 nstr = find_flat_dt_string(noff);
197 printk(KERN_WARNING "Can't find property index"
201 if (strcmp(name, nstr) == 0) {
211 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
214 unsigned long cplen, l;
216 cp = of_get_flat_dt_prop(node, "compatible", &cplen);
220 if (strncasecmp(cp, compat, strlen(compat)) == 0)
230 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
235 *mem = _ALIGN(*mem, align);
242 static unsigned long __init unflatten_dt_node(unsigned long mem,
244 struct device_node *dad,
245 struct device_node ***allnextpp,
246 unsigned long fpsize)
248 struct device_node *np;
249 struct property *pp, **prev_pp = NULL;
252 unsigned int l, allocl;
256 tag = *((u32 *)(*p));
257 if (tag != OF_DT_BEGIN_NODE) {
258 printk("Weird tag at start of node: %x\n", tag);
263 l = allocl = strlen(pathp) + 1;
264 *p = _ALIGN(*p + l, 4);
266 /* version 0x10 has a more compact unit name here instead of the full
267 * path. we accumulate the full path size using "fpsize", we'll rebuild
268 * it later. We detect this because the first character of the name is
271 if ((*pathp) != '/') {
274 /* root node: special case. fpsize accounts for path
275 * plus terminating zero. root node only has '/', so
276 * fpsize should be 2, but we want to avoid the first
277 * level nodes to have two '/' so we use fpsize 1 here
282 /* account for '/' and path size minus terminal 0
291 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
292 __alignof__(struct device_node));
294 memset(np, 0, sizeof(*np));
295 np->full_name = ((char*)np) + sizeof(struct device_node);
297 char *p = np->full_name;
298 /* rebuild full path for new format */
299 if (dad && dad->parent) {
300 strcpy(p, dad->full_name);
302 if ((strlen(p) + l + 1) != allocl) {
303 DBG("%s: p: %d, l: %d, a: %d\n",
304 pathp, (int)strlen(p), l, allocl);
312 memcpy(np->full_name, pathp, l);
313 prev_pp = &np->properties;
315 *allnextpp = &np->allnext;
318 /* we temporarily use the next field as `last_child'*/
322 dad->next->sibling = np;
325 kref_init(&np->kref);
331 tag = *((u32 *)(*p));
332 if (tag == OF_DT_NOP) {
336 if (tag != OF_DT_PROP)
340 noff = *((u32 *)((*p) + 4));
342 if (initial_boot_params->version < 0x10)
343 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
345 pname = find_flat_dt_string(noff);
347 printk("Can't find property name in list !\n");
350 if (strcmp(pname, "name") == 0)
352 l = strlen(pname) + 1;
353 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
354 __alignof__(struct property));
356 if (strcmp(pname, "linux,phandle") == 0) {
357 np->node = *((u32 *)*p);
358 if (np->linux_phandle == 0)
359 np->linux_phandle = np->node;
361 if (strcmp(pname, "ibm,phandle") == 0)
362 np->linux_phandle = *((u32 *)*p);
365 pp->value = (void *)*p;
369 *p = _ALIGN((*p) + sz, 4);
371 /* with version 0x10 we may not have the name property, recreate
372 * it here from the unit name if absent
375 char *p = pathp, *ps = pathp, *pa = NULL;
388 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
389 __alignof__(struct property));
393 pp->value = (unsigned char *)(pp + 1);
396 memcpy(pp->value, ps, sz - 1);
397 ((char *)pp->value)[sz - 1] = 0;
398 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
403 np->name = get_property(np, "name", NULL);
404 np->type = get_property(np, "device_type", NULL);
411 while (tag == OF_DT_BEGIN_NODE) {
412 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
413 tag = *((u32 *)(*p));
415 if (tag != OF_DT_END_NODE) {
416 printk("Weird tag at end of node: %x\n", tag);
423 static int __init early_parse_mem(char *p)
428 memory_limit = PAGE_ALIGN(memparse(p, &p));
429 DBG("memory limit = 0x%lx\n", memory_limit);
433 early_param("mem", early_parse_mem);
436 * The device tree may be allocated below our memory limit, or inside the
437 * crash kernel region for kdump. If so, move it out now.
439 static void move_device_tree(void)
441 unsigned long start, size;
444 DBG("-> move_device_tree\n");
446 start = __pa(initial_boot_params);
447 size = initial_boot_params->totalsize;
449 if ((memory_limit && (start + size) > memory_limit) ||
450 overlaps_crashkernel(start, size)) {
451 p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
452 memcpy(p, initial_boot_params, size);
453 initial_boot_params = (struct boot_param_header *)p;
454 DBG("Moved device tree to 0x%p\n", p);
457 DBG("<- move_device_tree\n");
461 * unflattens the device-tree passed by the firmware, creating the
462 * tree of struct device_node. It also fills the "name" and "type"
463 * pointers of the nodes so the normal device-tree walking functions
464 * can be used (this used to be done by finish_device_tree)
466 void __init unflatten_device_tree(void)
468 unsigned long start, mem, size;
469 struct device_node **allnextp = &allnodes;
471 DBG(" -> unflatten_device_tree()\n");
473 /* First pass, scan for size */
474 start = ((unsigned long)initial_boot_params) +
475 initial_boot_params->off_dt_struct;
476 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
477 size = (size | 3) + 1;
479 DBG(" size is %lx, allocating...\n", size);
481 /* Allocate memory for the expanded device tree */
482 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
483 mem = (unsigned long) __va(mem);
485 ((u32 *)mem)[size / 4] = 0xdeadbeef;
487 DBG(" unflattening %lx...\n", mem);
489 /* Second pass, do actual unflattening */
490 start = ((unsigned long)initial_boot_params) +
491 initial_boot_params->off_dt_struct;
492 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
493 if (*((u32 *)start) != OF_DT_END)
494 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
495 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
496 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
497 ((u32 *)mem)[size / 4] );
500 /* Get pointer to OF "/chosen" node for use everywhere */
501 of_chosen = of_find_node_by_path("/chosen");
502 if (of_chosen == NULL)
503 of_chosen = of_find_node_by_path("/chosen@0");
505 DBG(" <- unflatten_device_tree()\n");
509 * ibm,pa-features is a per-cpu property that contains a string of
510 * attribute descriptors, each of which has a 2 byte header plus up
511 * to 254 bytes worth of processor attribute bits. First header
512 * byte specifies the number of bytes following the header.
513 * Second header byte is an "attribute-specifier" type, of which
514 * zero is the only currently-defined value.
515 * Implementation: Pass in the byte and bit offset for the feature
516 * that we are interested in. The function will return -1 if the
517 * pa-features property is missing, or a 1/0 to indicate if the feature
518 * is supported/not supported. Note that the bit numbers are
519 * big-endian to match the definition in PAPR.
521 static struct ibm_pa_feature {
522 unsigned long cpu_features; /* CPU_FTR_xxx bit */
523 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
524 unsigned char pabyte; /* byte number in ibm,pa-features */
525 unsigned char pabit; /* bit number (big-endian) */
526 unsigned char invert; /* if 1, pa bit set => clear feature */
527 } ibm_pa_features[] __initdata = {
528 {0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
529 {0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
530 {CPU_FTR_SLB, 0, 0, 2, 0},
531 {CPU_FTR_CTRL, 0, 0, 3, 0},
532 {CPU_FTR_NOEXECUTE, 0, 0, 6, 0},
533 {CPU_FTR_NODSISRALIGN, 0, 1, 1, 1},
535 /* put this back once we know how to test if firmware does 64k IO */
536 {CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
538 {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
541 static void __init scan_features(unsigned long node, unsigned char *ftrs,
542 unsigned long tablelen,
543 struct ibm_pa_feature *fp,
544 unsigned long ft_size)
546 unsigned long i, len, bit;
548 /* find descriptor with type == 0 */
554 return; /* descriptor 0 not found */
561 /* loop over bits we know about */
562 for (i = 0; i < ft_size; ++i, ++fp) {
563 if (fp->pabyte >= ftrs[0])
565 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
566 if (bit ^ fp->invert) {
567 cur_cpu_spec->cpu_features |= fp->cpu_features;
568 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
570 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
571 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
576 static void __init check_cpu_pa_features(unsigned long node)
578 unsigned char *pa_ftrs;
579 unsigned long tablelen;
581 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
585 scan_features(node, pa_ftrs, tablelen,
586 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
589 static struct feature_property {
592 unsigned long cpu_feature;
593 unsigned long cpu_user_ftr;
594 } feature_properties[] __initdata = {
595 #ifdef CONFIG_ALTIVEC
596 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
597 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
598 #endif /* CONFIG_ALTIVEC */
600 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
601 {"ibm,purr", 1, CPU_FTR_PURR, 0},
602 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
603 #endif /* CONFIG_PPC64 */
606 static void __init check_cpu_feature_properties(unsigned long node)
609 struct feature_property *fp = feature_properties;
612 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
613 prop = of_get_flat_dt_prop(node, fp->name, NULL);
614 if (prop && *prop >= fp->min_value) {
615 cur_cpu_spec->cpu_features |= fp->cpu_feature;
616 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
621 static int __init early_init_dt_scan_cpus(unsigned long node,
622 const char *uname, int depth,
625 static int logical_cpuid = 0;
626 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
633 /* We are scanning "cpu" nodes only */
634 if (type == NULL || strcmp(type, "cpu") != 0)
637 /* Get physical cpuid */
638 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
640 nthreads = len / sizeof(int);
642 intserv = of_get_flat_dt_prop(node, "reg", NULL);
647 * Now see if any of these threads match our boot cpu.
648 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
650 for (i = 0; i < nthreads; i++) {
652 * version 2 of the kexec param format adds the phys cpuid of
655 if (initial_boot_params && initial_boot_params->version >= 2) {
657 initial_boot_params->boot_cpuid_phys) {
663 * Check if it's the boot-cpu, set it's hw index now,
664 * unfortunately this format did not support booting
665 * off secondary threads.
667 if (of_get_flat_dt_prop(node,
668 "linux,boot-cpu", NULL) != NULL) {
675 /* logical cpu id is always 0 on UP kernels */
681 DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
683 boot_cpuid = logical_cpuid;
684 set_hard_smp_processor_id(boot_cpuid, intserv[i]);
687 * PAPR defines "logical" PVR values for cpus that
688 * meet various levels of the architecture:
689 * 0x0f000001 Architecture version 2.04
690 * 0x0f000002 Architecture version 2.05
691 * If the cpu-version property in the cpu node contains
692 * such a value, we call identify_cpu again with the
693 * logical PVR value in order to use the cpu feature
694 * bits appropriate for the architecture level.
696 * A POWER6 partition in "POWER6 architected" mode
697 * uses the 0x0f000002 PVR value; in POWER5+ mode
698 * it uses 0x0f000001.
700 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
701 if (prop && (*prop & 0xff000000) == 0x0f000000)
702 identify_cpu(0, *prop);
705 check_cpu_feature_properties(node);
706 check_cpu_pa_features(node);
708 #ifdef CONFIG_PPC_PSERIES
710 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
712 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
718 static int __init early_init_dt_scan_chosen(unsigned long node,
719 const char *uname, int depth, void *data)
721 unsigned long *lprop;
725 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
728 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
732 /* check if iommu is forced on or off */
733 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
735 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
739 /* mem=x on the command line is the preferred mechanism */
740 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
742 memory_limit = *lprop;
745 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
747 tce_alloc_start = *lprop;
748 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
750 tce_alloc_end = *lprop;
754 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
756 crashk_res.start = *lprop;
758 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
760 crashk_res.end = crashk_res.start + *lprop - 1;
763 /* Retreive command line */
764 p = of_get_flat_dt_prop(node, "bootargs", &l);
765 if (p != NULL && l > 0)
766 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
768 #ifdef CONFIG_CMDLINE
769 if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
770 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
771 #endif /* CONFIG_CMDLINE */
773 DBG("Command line is: %s\n", cmd_line);
779 static int __init early_init_dt_scan_root(unsigned long node,
780 const char *uname, int depth, void *data)
787 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
788 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
789 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
791 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
792 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
793 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
799 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
804 return of_read_ulong(p, s);
807 #ifdef CONFIG_PPC_PSERIES
809 * Interpret the ibm,dynamic-memory property in the
810 * /ibm,dynamic-reconfiguration-memory node.
811 * This contains a list of memory blocks along with NUMA affinity
814 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
818 unsigned long base, size, lmb_size, flags;
820 ls = (cell_t *)of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
821 if (ls == NULL || l < dt_root_size_cells * sizeof(cell_t))
823 lmb_size = dt_mem_next_cell(dt_root_size_cells, &ls);
825 dm = (cell_t *)of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
826 if (dm == NULL || l < sizeof(cell_t))
829 n = *dm++; /* number of entries */
830 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(cell_t))
833 for (; n != 0; --n) {
834 base = dt_mem_next_cell(dt_root_addr_cells, &dm);
836 /* skip DRC index, pad, assoc. list index, flags */
838 /* skip this block if the reserved bit is set in flags (0x80)
839 or if the block is not assigned to this partition (0x8) */
840 if ((flags & 0x80) || !(flags & 0x8))
844 if (base >= 0x80000000ul)
846 if ((base + size) > 0x80000000ul)
847 size = 0x80000000ul - base;
855 #define early_init_dt_scan_drconf_memory(node) 0
856 #endif /* CONFIG_PPC_PSERIES */
858 static int __init early_init_dt_scan_memory(unsigned long node,
859 const char *uname, int depth, void *data)
861 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
865 /* Look for the ibm,dynamic-reconfiguration-memory node */
867 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
868 return early_init_dt_scan_drconf_memory(node);
870 /* We are scanning "memory" nodes only */
873 * The longtrail doesn't have a device_type on the
874 * /memory node, so look for the node called /memory@0.
876 if (depth != 1 || strcmp(uname, "memory@0") != 0)
878 } else if (strcmp(type, "memory") != 0)
881 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
883 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
887 endp = reg + (l / sizeof(cell_t));
889 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
890 uname, l, reg[0], reg[1], reg[2], reg[3]);
892 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
893 unsigned long base, size;
895 base = dt_mem_next_cell(dt_root_addr_cells, ®);
896 size = dt_mem_next_cell(dt_root_size_cells, ®);
900 DBG(" - %lx , %lx\n", base, size);
903 if (base >= 0x80000000ul)
905 if ((base + size) > 0x80000000ul)
906 size = 0x80000000ul - base;
914 static void __init early_reserve_mem(void)
918 unsigned long self_base;
919 unsigned long self_size;
921 reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
922 initial_boot_params->off_mem_rsvmap);
924 /* before we do anything, lets reserve the dt blob */
925 self_base = __pa((unsigned long)initial_boot_params);
926 self_size = initial_boot_params->totalsize;
927 lmb_reserve(self_base, self_size);
931 * Handle the case where we might be booting from an old kexec
932 * image that setup the mem_rsvmap as pairs of 32-bit values
934 if (*reserve_map > 0xffffffffull) {
935 u32 base_32, size_32;
936 u32 *reserve_map_32 = (u32 *)reserve_map;
939 base_32 = *(reserve_map_32++);
940 size_32 = *(reserve_map_32++);
943 /* skip if the reservation is for the blob */
944 if (base_32 == self_base && size_32 == self_size)
946 DBG("reserving: %x -> %x\n", base_32, size_32);
947 lmb_reserve(base_32, size_32);
953 base = *(reserve_map++);
954 size = *(reserve_map++);
957 /* skip if the reservation is for the blob */
958 if (base == self_base && size == self_size)
960 DBG("reserving: %llx -> %llx\n", base, size);
961 lmb_reserve(base, size);
965 DBG("memory reserved, lmbs :\n");
970 void __init early_init_devtree(void *params)
972 DBG(" -> early_init_devtree()\n");
974 /* Setup flat device-tree pointer */
975 initial_boot_params = params;
977 #ifdef CONFIG_PPC_RTAS
978 /* Some machines might need RTAS info for debugging, grab it now. */
979 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
982 /* Retrieve various informations from the /chosen node of the
983 * device-tree, including the platform type, initrd location and
984 * size, TCE reserve, and more ...
986 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
988 /* Scan memory nodes and rebuild LMBs */
990 of_scan_flat_dt(early_init_dt_scan_root, NULL);
991 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
993 /* Save command line for /proc/cmdline and then parse parameters */
994 strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
997 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
998 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
999 reserve_kdump_trampoline();
1000 reserve_crashkernel();
1001 early_reserve_mem();
1003 lmb_enforce_memory_limit(memory_limit);
1006 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1008 /* We may need to relocate the flat tree, do it now.
1009 * FIXME .. and the initrd too? */
1012 DBG("Scanning CPUs ...\n");
1014 /* Retreive CPU related informations from the flat tree
1015 * (altivec support, boot CPU ID, ...)
1017 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1019 DBG(" <- early_init_devtree()\n");
1025 prom_n_addr_cells(struct device_node* np)
1031 ip = get_property(np, "#address-cells", NULL);
1034 } while (np->parent);
1035 /* No #address-cells property for the root node, default to 1 */
1038 EXPORT_SYMBOL(prom_n_addr_cells);
1041 prom_n_size_cells(struct device_node* np)
1047 ip = get_property(np, "#size-cells", NULL);
1050 } while (np->parent);
1051 /* No #size-cells property for the root node, default to 1 */
1054 EXPORT_SYMBOL(prom_n_size_cells);
1057 * Construct and return a list of the device_nodes with a given name.
1059 struct device_node *find_devices(const char *name)
1061 struct device_node *head, **prevp, *np;
1064 for (np = allnodes; np != 0; np = np->allnext) {
1065 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1073 EXPORT_SYMBOL(find_devices);
1076 * Construct and return a list of the device_nodes with a given type.
1078 struct device_node *find_type_devices(const char *type)
1080 struct device_node *head, **prevp, *np;
1083 for (np = allnodes; np != 0; np = np->allnext) {
1084 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1092 EXPORT_SYMBOL(find_type_devices);
1095 * Returns all nodes linked together
1097 struct device_node *find_all_nodes(void)
1099 struct device_node *head, **prevp, *np;
1102 for (np = allnodes; np != 0; np = np->allnext) {
1109 EXPORT_SYMBOL(find_all_nodes);
1111 /** Checks if the given "compat" string matches one of the strings in
1112 * the device's "compatible" property
1114 int device_is_compatible(const struct device_node *device, const char *compat)
1119 cp = get_property(device, "compatible", &cplen);
1123 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1132 EXPORT_SYMBOL(device_is_compatible);
1136 * Indicates whether the root node has a given value in its
1137 * compatible property.
1139 int machine_is_compatible(const char *compat)
1141 struct device_node *root;
1144 root = of_find_node_by_path("/");
1146 rc = device_is_compatible(root, compat);
1151 EXPORT_SYMBOL(machine_is_compatible);
1154 * Construct and return a list of the device_nodes with a given type
1155 * and compatible property.
1157 struct device_node *find_compatible_devices(const char *type,
1160 struct device_node *head, **prevp, *np;
1163 for (np = allnodes; np != 0; np = np->allnext) {
1165 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1167 if (device_is_compatible(np, compat)) {
1175 EXPORT_SYMBOL(find_compatible_devices);
1178 * Find the device_node with a given full_name.
1180 struct device_node *find_path_device(const char *path)
1182 struct device_node *np;
1184 for (np = allnodes; np != 0; np = np->allnext)
1185 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1189 EXPORT_SYMBOL(find_path_device);
1193 * New implementation of the OF "find" APIs, return a refcounted
1194 * object, call of_node_put() when done. The device tree and list
1195 * are protected by a rw_lock.
1197 * Note that property management will need some locking as well,
1198 * this isn't dealt with yet.
1203 * of_find_node_by_name - Find a node by its "name" property
1204 * @from: The node to start searching from or NULL, the node
1205 * you pass will not be searched, only the next one
1206 * will; typically, you pass what the previous call
1207 * returned. of_node_put() will be called on it
1208 * @name: The name string to match against
1210 * Returns a node pointer with refcount incremented, use
1211 * of_node_put() on it when done.
1213 struct device_node *of_find_node_by_name(struct device_node *from,
1216 struct device_node *np;
1218 read_lock(&devtree_lock);
1219 np = from ? from->allnext : allnodes;
1220 for (; np != NULL; np = np->allnext)
1221 if (np->name != NULL && strcasecmp(np->name, name) == 0
1225 read_unlock(&devtree_lock);
1228 EXPORT_SYMBOL(of_find_node_by_name);
1231 * of_find_node_by_type - Find a node by its "device_type" property
1232 * @from: The node to start searching from or NULL, the node
1233 * you pass will not be searched, only the next one
1234 * will; typically, you pass what the previous call
1235 * returned. of_node_put() will be called on it
1236 * @name: The type string to match against
1238 * Returns a node pointer with refcount incremented, use
1239 * of_node_put() on it when done.
1241 struct device_node *of_find_node_by_type(struct device_node *from,
1244 struct device_node *np;
1246 read_lock(&devtree_lock);
1247 np = from ? from->allnext : allnodes;
1248 for (; np != 0; np = np->allnext)
1249 if (np->type != 0 && strcasecmp(np->type, type) == 0
1253 read_unlock(&devtree_lock);
1256 EXPORT_SYMBOL(of_find_node_by_type);
1259 * of_find_compatible_node - Find a node based on type and one of the
1260 * tokens in its "compatible" property
1261 * @from: The node to start searching from or NULL, the node
1262 * you pass will not be searched, only the next one
1263 * will; typically, you pass what the previous call
1264 * returned. of_node_put() will be called on it
1265 * @type: The type string to match "device_type" or NULL to ignore
1266 * @compatible: The string to match to one of the tokens in the device
1267 * "compatible" list.
1269 * Returns a node pointer with refcount incremented, use
1270 * of_node_put() on it when done.
1272 struct device_node *of_find_compatible_node(struct device_node *from,
1273 const char *type, const char *compatible)
1275 struct device_node *np;
1277 read_lock(&devtree_lock);
1278 np = from ? from->allnext : allnodes;
1279 for (; np != 0; np = np->allnext) {
1281 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1283 if (device_is_compatible(np, compatible) && of_node_get(np))
1287 read_unlock(&devtree_lock);
1290 EXPORT_SYMBOL(of_find_compatible_node);
1293 * of_find_node_by_path - Find a node matching a full OF path
1294 * @path: The full path to match
1296 * Returns a node pointer with refcount incremented, use
1297 * of_node_put() on it when done.
1299 struct device_node *of_find_node_by_path(const char *path)
1301 struct device_node *np = allnodes;
1303 read_lock(&devtree_lock);
1304 for (; np != 0; np = np->allnext) {
1305 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1309 read_unlock(&devtree_lock);
1312 EXPORT_SYMBOL(of_find_node_by_path);
1315 * of_find_node_by_phandle - Find a node given a phandle
1316 * @handle: phandle of the node to find
1318 * Returns a node pointer with refcount incremented, use
1319 * of_node_put() on it when done.
1321 struct device_node *of_find_node_by_phandle(phandle handle)
1323 struct device_node *np;
1325 read_lock(&devtree_lock);
1326 for (np = allnodes; np != 0; np = np->allnext)
1327 if (np->linux_phandle == handle)
1330 read_unlock(&devtree_lock);
1333 EXPORT_SYMBOL(of_find_node_by_phandle);
1336 * of_find_all_nodes - Get next node in global list
1337 * @prev: Previous node or NULL to start iteration
1338 * of_node_put() will be called on it
1340 * Returns a node pointer with refcount incremented, use
1341 * of_node_put() on it when done.
1343 struct device_node *of_find_all_nodes(struct device_node *prev)
1345 struct device_node *np;
1347 read_lock(&devtree_lock);
1348 np = prev ? prev->allnext : allnodes;
1349 for (; np != 0; np = np->allnext)
1350 if (of_node_get(np))
1353 read_unlock(&devtree_lock);
1356 EXPORT_SYMBOL(of_find_all_nodes);
1359 * of_get_parent - Get a node's parent if any
1360 * @node: Node to get parent
1362 * Returns a node pointer with refcount incremented, use
1363 * of_node_put() on it when done.
1365 struct device_node *of_get_parent(const struct device_node *node)
1367 struct device_node *np;
1372 read_lock(&devtree_lock);
1373 np = of_node_get(node->parent);
1374 read_unlock(&devtree_lock);
1377 EXPORT_SYMBOL(of_get_parent);
1380 * of_get_next_child - Iterate a node childs
1381 * @node: parent node
1382 * @prev: previous child of the parent node, or NULL to get first
1384 * Returns a node pointer with refcount incremented, use
1385 * of_node_put() on it when done.
1387 struct device_node *of_get_next_child(const struct device_node *node,
1388 struct device_node *prev)
1390 struct device_node *next;
1392 read_lock(&devtree_lock);
1393 next = prev ? prev->sibling : node->child;
1394 for (; next != 0; next = next->sibling)
1395 if (of_node_get(next))
1398 read_unlock(&devtree_lock);
1401 EXPORT_SYMBOL(of_get_next_child);
1404 * of_node_get - Increment refcount of a node
1405 * @node: Node to inc refcount, NULL is supported to
1406 * simplify writing of callers
1410 struct device_node *of_node_get(struct device_node *node)
1413 kref_get(&node->kref);
1416 EXPORT_SYMBOL(of_node_get);
1418 static inline struct device_node * kref_to_device_node(struct kref *kref)
1420 return container_of(kref, struct device_node, kref);
1424 * of_node_release - release a dynamically allocated node
1425 * @kref: kref element of the node to be released
1427 * In of_node_put() this function is passed to kref_put()
1428 * as the destructor.
1430 static void of_node_release(struct kref *kref)
1432 struct device_node *node = kref_to_device_node(kref);
1433 struct property *prop = node->properties;
1435 if (!OF_IS_DYNAMIC(node))
1438 struct property *next = prop->next;
1445 prop = node->deadprops;
1446 node->deadprops = NULL;
1449 kfree(node->full_name);
1455 * of_node_put - Decrement refcount of a node
1456 * @node: Node to dec refcount, NULL is supported to
1457 * simplify writing of callers
1460 void of_node_put(struct device_node *node)
1463 kref_put(&node->kref, of_node_release);
1465 EXPORT_SYMBOL(of_node_put);
1468 * Plug a device node into the tree and global list.
1470 void of_attach_node(struct device_node *np)
1472 write_lock(&devtree_lock);
1473 np->sibling = np->parent->child;
1474 np->allnext = allnodes;
1475 np->parent->child = np;
1477 write_unlock(&devtree_lock);
1481 * "Unplug" a node from the device tree. The caller must hold
1482 * a reference to the node. The memory associated with the node
1483 * is not freed until its refcount goes to zero.
1485 void of_detach_node(const struct device_node *np)
1487 struct device_node *parent;
1489 write_lock(&devtree_lock);
1491 parent = np->parent;
1494 allnodes = np->allnext;
1496 struct device_node *prev;
1497 for (prev = allnodes;
1498 prev->allnext != np;
1499 prev = prev->allnext)
1501 prev->allnext = np->allnext;
1504 if (parent->child == np)
1505 parent->child = np->sibling;
1507 struct device_node *prevsib;
1508 for (prevsib = np->parent->child;
1509 prevsib->sibling != np;
1510 prevsib = prevsib->sibling)
1512 prevsib->sibling = np->sibling;
1515 write_unlock(&devtree_lock);
1518 #ifdef CONFIG_PPC_PSERIES
1520 * Fix up the uninitialized fields in a new device node:
1521 * name, type and pci-specific fields
1524 static int of_finish_dynamic_node(struct device_node *node)
1526 struct device_node *parent = of_get_parent(node);
1528 const phandle *ibm_phandle;
1530 node->name = get_property(node, "name", NULL);
1531 node->type = get_property(node, "device_type", NULL);
1538 /* We don't support that function on PowerMac, at least
1541 if (machine_is(powermac))
1544 /* fix up new node's linux_phandle field */
1545 if ((ibm_phandle = get_property(node, "ibm,phandle", NULL)))
1546 node->linux_phandle = *ibm_phandle;
1549 of_node_put(parent);
1553 static int prom_reconfig_notifier(struct notifier_block *nb,
1554 unsigned long action, void *node)
1559 case PSERIES_RECONFIG_ADD:
1560 err = of_finish_dynamic_node(node);
1562 printk(KERN_ERR "finish_node returned %d\n", err);
1573 static struct notifier_block prom_reconfig_nb = {
1574 .notifier_call = prom_reconfig_notifier,
1575 .priority = 10, /* This one needs to run first */
1578 static int __init prom_reconfig_setup(void)
1580 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1582 __initcall(prom_reconfig_setup);
1585 struct property *of_find_property(const struct device_node *np,
1589 struct property *pp;
1591 read_lock(&devtree_lock);
1592 for (pp = np->properties; pp != 0; pp = pp->next)
1593 if (strcmp(pp->name, name) == 0) {
1598 read_unlock(&devtree_lock);
1604 * Find a property with a given name for a given node
1605 * and return the value.
1607 const void *get_property(const struct device_node *np, const char *name,
1610 struct property *pp = of_find_property(np,name,lenp);
1611 return pp ? pp->value : NULL;
1613 EXPORT_SYMBOL(get_property);
1616 * Add a property to a node
1618 int prom_add_property(struct device_node* np, struct property* prop)
1620 struct property **next;
1623 write_lock(&devtree_lock);
1624 next = &np->properties;
1626 if (strcmp(prop->name, (*next)->name) == 0) {
1627 /* duplicate ! don't insert it */
1628 write_unlock(&devtree_lock);
1631 next = &(*next)->next;
1634 write_unlock(&devtree_lock);
1636 #ifdef CONFIG_PROC_DEVICETREE
1637 /* try to add to proc as well if it was initialized */
1639 proc_device_tree_add_prop(np->pde, prop);
1640 #endif /* CONFIG_PROC_DEVICETREE */
1646 * Remove a property from a node. Note that we don't actually
1647 * remove it, since we have given out who-knows-how-many pointers
1648 * to the data using get-property. Instead we just move the property
1649 * to the "dead properties" list, so it won't be found any more.
1651 int prom_remove_property(struct device_node *np, struct property *prop)
1653 struct property **next;
1656 write_lock(&devtree_lock);
1657 next = &np->properties;
1659 if (*next == prop) {
1660 /* found the node */
1662 prop->next = np->deadprops;
1663 np->deadprops = prop;
1667 next = &(*next)->next;
1669 write_unlock(&devtree_lock);
1674 #ifdef CONFIG_PROC_DEVICETREE
1675 /* try to remove the proc node as well */
1677 proc_device_tree_remove_prop(np->pde, prop);
1678 #endif /* CONFIG_PROC_DEVICETREE */
1684 * Update a property in a node. Note that we don't actually
1685 * remove it, since we have given out who-knows-how-many pointers
1686 * to the data using get-property. Instead we just move the property
1687 * to the "dead properties" list, and add the new property to the
1690 int prom_update_property(struct device_node *np,
1691 struct property *newprop,
1692 struct property *oldprop)
1694 struct property **next;
1697 write_lock(&devtree_lock);
1698 next = &np->properties;
1700 if (*next == oldprop) {
1701 /* found the node */
1702 newprop->next = oldprop->next;
1704 oldprop->next = np->deadprops;
1705 np->deadprops = oldprop;
1709 next = &(*next)->next;
1711 write_unlock(&devtree_lock);
1716 #ifdef CONFIG_PROC_DEVICETREE
1717 /* try to add to proc as well if it was initialized */
1719 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1720 #endif /* CONFIG_PROC_DEVICETREE */
1726 /* Find the device node for a given logical cpu number, also returns the cpu
1727 * local thread number (index in ibm,interrupt-server#s) if relevant and
1728 * asked for (non NULL)
1730 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
1733 struct device_node *np;
1735 hardid = get_hard_smp_processor_id(cpu);
1737 for_each_node_by_type(np, "cpu") {
1739 unsigned int plen, t;
1741 /* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
1742 * fallback to "reg" property and assume no threads
1744 intserv = get_property(np, "ibm,ppc-interrupt-server#s",
1746 if (intserv == NULL) {
1747 const u32 *reg = get_property(np, "reg", NULL);
1750 if (*reg == hardid) {
1756 plen /= sizeof(u32);
1757 for (t = 0; t < plen; t++) {
1758 if (hardid == intserv[t]) {
1768 EXPORT_SYMBOL(of_get_cpu_node);
1771 static struct debugfs_blob_wrapper flat_dt_blob;
1773 static int __init export_flat_device_tree(void)
1777 d = debugfs_create_dir("powerpc", NULL);
1781 flat_dt_blob.data = initial_boot_params;
1782 flat_dt_blob.size = initial_boot_params->totalsize;
1784 d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
1791 __initcall(export_flat_device_tree);