]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/powerpc/platforms/cell/spufs/switch.c
[POWERPC] spufs: try to route SPU interrupts to local node
[linux-2.6-omap-h63xx.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spufs.h"
53
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56
57 #if 0
58 #define POLL_WHILE_TRUE(_c) {                           \
59     do {                                                \
60     } while (_c);                                       \
61   }
62 #else
63 #define RELAX_SPIN_COUNT                                1000
64 #define POLL_WHILE_TRUE(_c) {                           \
65     do {                                                \
66         int _i;                                         \
67         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68             cpu_relax();                                \
69         }                                               \
70         if (unlikely(_c)) yield();                      \
71         else break;                                     \
72     } while (_c);                                       \
73   }
74 #endif                          /* debug */
75
76 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
77
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80         /* Save, Step 1:
81          * Restore, Step 1:
82          *    Acquire SPU-specific mutual exclusion lock.
83          *    TBD.
84          */
85 }
86
87 static inline void release_spu_lock(struct spu *spu)
88 {
89         /* Restore, Step 76:
90          *    Release SPU-specific mutual exclusion lock.
91          *    TBD.
92          */
93 }
94
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97         struct spu_problem __iomem *prob = spu->problem;
98         u32 isolate_state;
99
100         /* Save, Step 2:
101          * Save, Step 6:
102          *     If SPU_Status[E,L,IS] any field is '1', this
103          *     SPU is in isolate state and cannot be context
104          *     saved at this time.
105          */
106         isolate_state = SPU_STATUS_ISOLATED_STATE |
107             SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113         /* Save, Step 3:
114          * Restore, Step 2:
115          *     Save INT_Mask_class0 in CSA.
116          *     Write INT_MASK_class0 with value of 0.
117          *     Save INT_Mask_class1 in CSA.
118          *     Write INT_MASK_class1 with value of 0.
119          *     Save INT_Mask_class2 in CSA.
120          *     Write INT_MASK_class2 with value of 0.
121          *     Synchronize all three interrupts to be sure
122          *     we no longer execute a handler on another CPU.
123          */
124         spin_lock_irq(&spu->register_lock);
125         if (csa) {
126                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129         }
130         spu_int_mask_set(spu, 0, 0ul);
131         spu_int_mask_set(spu, 1, 0ul);
132         spu_int_mask_set(spu, 2, 0ul);
133         eieio();
134         spin_unlock_irq(&spu->register_lock);
135
136         /*
137          * This flag needs to be set before calling synchronize_irq so
138          * that the update will be visible to the relevant handlers
139          * via a simple load.
140          */
141         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142         synchronize_irq(spu->irqs[0]);
143         synchronize_irq(spu->irqs[1]);
144         synchronize_irq(spu->irqs[2]);
145 }
146
147 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
148 {
149         /* Save, Step 4:
150          * Restore, Step 25.
151          *    Set a software watchdog timer, which specifies the
152          *    maximum allowable time for a context save sequence.
153          *
154          *    For present, this implementation will not set a global
155          *    watchdog timer, as virtualization & variable system load
156          *    may cause unpredictable execution times.
157          */
158 }
159
160 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
161 {
162         /* Save, Step 5:
163          * Restore, Step 3:
164          *     Inhibit user-space access (if provided) to this
165          *     SPU by unmapping the virtual pages assigned to
166          *     the SPU memory-mapped I/O (MMIO) for problem
167          *     state. TBD.
168          */
169 }
170
171 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
172 {
173         /* Save, Step 7:
174          * Restore, Step 5:
175          *     Set a software context switch pending flag.
176          *     Done above in Step 3 - disable_interrupts().
177          */
178 }
179
180 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
181 {
182         struct spu_priv2 __iomem *priv2 = spu->priv2;
183
184         /* Save, Step 8:
185          *     Suspend DMA and save MFC_CNTL.
186          */
187         switch (in_be64(&priv2->mfc_control_RW) &
188                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
189         case MFC_CNTL_SUSPEND_IN_PROGRESS:
190                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192                                  MFC_CNTL_SUSPEND_COMPLETE);
193                 /* fall through */
194         case MFC_CNTL_SUSPEND_COMPLETE:
195                 if (csa)
196                         csa->priv2.mfc_control_RW =
197                                 in_be64(&priv2->mfc_control_RW) |
198                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
199                 break;
200         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
201                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
202                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
203                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
204                                  MFC_CNTL_SUSPEND_COMPLETE);
205                 if (csa)
206                         csa->priv2.mfc_control_RW =
207                                 in_be64(&priv2->mfc_control_RW) &
208                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE &
209                                 ~MFC_CNTL_SUSPEND_MASK;
210                 break;
211         }
212 }
213
214 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
215 {
216         struct spu_problem __iomem *prob = spu->problem;
217
218         /* Save, Step 9:
219          *     Save SPU_Runcntl in the CSA.  This value contains
220          *     the "Application Desired State".
221          */
222         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
223 }
224
225 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
226 {
227         /* Save, Step 10:
228          *     Save MFC_SR1 in the CSA.
229          */
230         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
231 }
232
233 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
234 {
235         struct spu_problem __iomem *prob = spu->problem;
236
237         /* Save, Step 11:
238          *     Read SPU_Status[R], and save to CSA.
239          */
240         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
241                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
242         } else {
243                 u32 stopped;
244
245                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
246                 eieio();
247                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
248                                 SPU_STATUS_RUNNING);
249                 stopped =
250                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
251                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
252                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
253                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
254                 else
255                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
256         }
257 }
258
259 static inline void save_mfc_stopped_status(struct spu_state *csa,
260                 struct spu *spu)
261 {
262         struct spu_priv2 __iomem *priv2 = spu->priv2;
263         const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
264                         MFC_CNTL_DMA_QUEUES_EMPTY;
265
266         /* Save, Step 12:
267          *     Read MFC_CNTL[Ds].  Update saved copy of
268          *     CSA.MFC_CNTL[Ds].
269          *
270          * update: do the same with MFC_CNTL[Q].
271          */
272         csa->priv2.mfc_control_RW &= ~mask;
273         csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
274 }
275
276 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
277 {
278         struct spu_priv2 __iomem *priv2 = spu->priv2;
279
280         /* Save, Step 13:
281          *     Write MFC_CNTL[Dh] set to a '1' to halt
282          *     the decrementer.
283          */
284         out_be64(&priv2->mfc_control_RW,
285                  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
286         eieio();
287 }
288
289 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
290 {
291         /* Save, Step 14:
292          *    Read PPE Timebase High and Timebase low registers
293          *    and save in CSA.  TBD.
294          */
295         csa->suspend_time = get_cycles();
296 }
297
298 static inline void remove_other_spu_access(struct spu_state *csa,
299                                            struct spu *spu)
300 {
301         /* Save, Step 15:
302          *     Remove other SPU access to this SPU by unmapping
303          *     this SPU's pages from their address space.  TBD.
304          */
305 }
306
307 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
308 {
309         struct spu_problem __iomem *prob = spu->problem;
310
311         /* Save, Step 16:
312          * Restore, Step 11.
313          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
314          *     for a value of 0.
315          */
316         out_be64(&prob->spc_mssync_RW, 1UL);
317         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
318 }
319
320 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
321 {
322         /* Save, Step 17:
323          * Restore, Step 12.
324          * Restore, Step 48.
325          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
326          *     Then issue a PPE sync instruction.
327          */
328         spu_tlb_invalidate(spu);
329         mb();
330 }
331
332 static inline void handle_pending_interrupts(struct spu_state *csa,
333                                              struct spu *spu)
334 {
335         /* Save, Step 18:
336          *     Handle any pending interrupts from this SPU
337          *     here.  This is OS or hypervisor specific.  One
338          *     option is to re-enable interrupts to handle any
339          *     pending interrupts, with the interrupt handlers
340          *     recognizing the software Context Switch Pending
341          *     flag, to ensure the SPU execution or MFC command
342          *     queue is not restarted.  TBD.
343          */
344 }
345
346 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
347 {
348         struct spu_priv2 __iomem *priv2 = spu->priv2;
349         int i;
350
351         /* Save, Step 19:
352          *     If MFC_Cntl[Se]=0 then save
353          *     MFC command queues.
354          */
355         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
356                 for (i = 0; i < 8; i++) {
357                         csa->priv2.puq[i].mfc_cq_data0_RW =
358                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
359                         csa->priv2.puq[i].mfc_cq_data1_RW =
360                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
361                         csa->priv2.puq[i].mfc_cq_data2_RW =
362                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
363                         csa->priv2.puq[i].mfc_cq_data3_RW =
364                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
365                 }
366                 for (i = 0; i < 16; i++) {
367                         csa->priv2.spuq[i].mfc_cq_data0_RW =
368                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
369                         csa->priv2.spuq[i].mfc_cq_data1_RW =
370                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
371                         csa->priv2.spuq[i].mfc_cq_data2_RW =
372                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
373                         csa->priv2.spuq[i].mfc_cq_data3_RW =
374                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
375                 }
376         }
377 }
378
379 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
380 {
381         struct spu_problem __iomem *prob = spu->problem;
382
383         /* Save, Step 20:
384          *     Save the PPU_QueryMask register
385          *     in the CSA.
386          */
387         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
388 }
389
390 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
391 {
392         struct spu_problem __iomem *prob = spu->problem;
393
394         /* Save, Step 21:
395          *     Save the PPU_QueryType register
396          *     in the CSA.
397          */
398         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
399 }
400
401 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
402 {
403         struct spu_problem __iomem *prob = spu->problem;
404
405         /* Save the Prxy_TagStatus register in the CSA.
406          *
407          * It is unnecessary to restore dma_tagstatus_R, however,
408          * dma_tagstatus_R in the CSA is accessed via backing_ops, so
409          * we must save it.
410          */
411         csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
412 }
413
414 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
415 {
416         struct spu_priv2 __iomem *priv2 = spu->priv2;
417
418         /* Save, Step 22:
419          *     Save the MFC_CSR_TSQ register
420          *     in the LSCSA.
421          */
422         csa->priv2.spu_tag_status_query_RW =
423             in_be64(&priv2->spu_tag_status_query_RW);
424 }
425
426 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
427 {
428         struct spu_priv2 __iomem *priv2 = spu->priv2;
429
430         /* Save, Step 23:
431          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
432          *     registers in the CSA.
433          */
434         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
435         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
436 }
437
438 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
439 {
440         struct spu_priv2 __iomem *priv2 = spu->priv2;
441
442         /* Save, Step 24:
443          *     Save the MFC_CSR_ATO register in
444          *     the CSA.
445          */
446         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
447 }
448
449 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
450 {
451         /* Save, Step 25:
452          *     Save the MFC_TCLASS_ID register in
453          *     the CSA.
454          */
455         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
456 }
457
458 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
459 {
460         /* Save, Step 26:
461          * Restore, Step 23.
462          *     Write the MFC_TCLASS_ID register with
463          *     the value 0x10000000.
464          */
465         spu_mfc_tclass_id_set(spu, 0x10000000);
466         eieio();
467 }
468
469 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
470 {
471         struct spu_priv2 __iomem *priv2 = spu->priv2;
472
473         /* Save, Step 27:
474          * Restore, Step 14.
475          *     Write MFC_CNTL[Pc]=1 (purge queue).
476          */
477         out_be64(&priv2->mfc_control_RW,
478                         MFC_CNTL_PURGE_DMA_REQUEST |
479                         MFC_CNTL_SUSPEND_MASK);
480         eieio();
481 }
482
483 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
484 {
485         struct spu_priv2 __iomem *priv2 = spu->priv2;
486
487         /* Save, Step 28:
488          *     Poll MFC_CNTL[Ps] until value '11' is read
489          *     (purge complete).
490          */
491         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
492                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
493                          MFC_CNTL_PURGE_DMA_COMPLETE);
494 }
495
496 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
497 {
498         /* Save, Step 30:
499          * Restore, Step 18:
500          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
501          *     MFC_SR1[TL,R,Pr,T] set correctly for the
502          *     OS specific environment.
503          *
504          *     Implementation note: The SPU-side code
505          *     for save/restore is privileged, so the
506          *     MFC_SR1[Pr] bit is not set.
507          *
508          */
509         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
510                               MFC_STATE1_RELOCATE_MASK |
511                               MFC_STATE1_BUS_TLBIE_MASK));
512 }
513
514 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
515 {
516         struct spu_problem __iomem *prob = spu->problem;
517
518         /* Save, Step 31:
519          *     Save SPU_NPC in the CSA.
520          */
521         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
522 }
523
524 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
525 {
526         struct spu_priv2 __iomem *priv2 = spu->priv2;
527
528         /* Save, Step 32:
529          *     Save SPU_PrivCntl in the CSA.
530          */
531         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
532 }
533
534 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
535 {
536         struct spu_priv2 __iomem *priv2 = spu->priv2;
537
538         /* Save, Step 33:
539          * Restore, Step 16:
540          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
541          */
542         out_be64(&priv2->spu_privcntl_RW, 0UL);
543         eieio();
544 }
545
546 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
547 {
548         struct spu_priv2 __iomem *priv2 = spu->priv2;
549
550         /* Save, Step 34:
551          *     Save SPU_LSLR in the CSA.
552          */
553         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
554 }
555
556 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
557 {
558         struct spu_priv2 __iomem *priv2 = spu->priv2;
559
560         /* Save, Step 35:
561          * Restore, Step 17.
562          *     Reset SPU_LSLR.
563          */
564         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
565         eieio();
566 }
567
568 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
569 {
570         struct spu_priv2 __iomem *priv2 = spu->priv2;
571
572         /* Save, Step 36:
573          *     Save SPU_Cfg in the CSA.
574          */
575         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
576 }
577
578 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
579 {
580         /* Save, Step 37:
581          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
582          *     Not performed by this implementation.
583          */
584 }
585
586 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
587 {
588         /* Save, Step 38:
589          *     Save RA_GROUP_ID register and the
590          *     RA_ENABLE reigster in the CSA.
591          */
592         csa->priv1.resource_allocation_groupID_RW =
593                 spu_resource_allocation_groupID_get(spu);
594         csa->priv1.resource_allocation_enable_RW =
595                 spu_resource_allocation_enable_get(spu);
596 }
597
598 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
599 {
600         struct spu_problem __iomem *prob = spu->problem;
601
602         /* Save, Step 39:
603          *     Save MB_Stat register in the CSA.
604          */
605         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
606 }
607
608 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
609 {
610         struct spu_problem __iomem *prob = spu->problem;
611
612         /* Save, Step 40:
613          *     Save the PPU_MB register in the CSA.
614          */
615         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
616 }
617
618 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
619 {
620         struct spu_priv2 __iomem *priv2 = spu->priv2;
621
622         /* Save, Step 41:
623          *     Save the PPUINT_MB register in the CSA.
624          */
625         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
626 }
627
628 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
629 {
630         struct spu_priv2 __iomem *priv2 = spu->priv2;
631         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
632         int i;
633
634         /* Save, Step 42:
635          */
636
637         /* Save CH 1, without channel count */
638         out_be64(&priv2->spu_chnlcntptr_RW, 1);
639         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
640
641         /* Save the following CH: [0,3,4,24,25,27] */
642         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
643                 idx = ch_indices[i];
644                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
645                 eieio();
646                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
647                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
648                 out_be64(&priv2->spu_chnldata_RW, 0UL);
649                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
650                 eieio();
651         }
652 }
653
654 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
655 {
656         struct spu_priv2 __iomem *priv2 = spu->priv2;
657         int i;
658
659         /* Save, Step 43:
660          *     Save SPU Read Mailbox Channel.
661          */
662         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
663         eieio();
664         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
665         for (i = 0; i < 4; i++) {
666                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
667         }
668         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
669         eieio();
670 }
671
672 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
673 {
674         struct spu_priv2 __iomem *priv2 = spu->priv2;
675
676         /* Save, Step 44:
677          *     Save MFC_CMD Channel.
678          */
679         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
680         eieio();
681         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
682         eieio();
683 }
684
685 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
686 {
687         struct spu_priv2 __iomem *priv2 = spu->priv2;
688         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
689         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
690         u64 idx;
691         int i;
692
693         /* Save, Step 45:
694          *     Reset the following CH: [21, 23, 28, 30]
695          */
696         for (i = 0; i < 4; i++) {
697                 idx = ch_indices[i];
698                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
699                 eieio();
700                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
701                 eieio();
702         }
703 }
704
705 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
706 {
707         struct spu_priv2 __iomem *priv2 = spu->priv2;
708
709         /* Save, Step 46:
710          * Restore, Step 25.
711          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
712          */
713         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
714 }
715
716 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
717                 unsigned int *code, int code_size)
718 {
719         /* Save, Step 47:
720          * Restore, Step 30.
721          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
722          *     register, then initialize SLB_VSID and SLB_ESID
723          *     to provide access to SPU context save code and
724          *     LSCSA.
725          *
726          *     This implementation places both the context
727          *     switch code and LSCSA in kernel address space.
728          *
729          *     Further this implementation assumes that the
730          *     MFC_SR1[R]=1 (in other words, assume that
731          *     translation is desired by OS environment).
732          */
733         spu_invalidate_slbs(spu);
734         spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
735 }
736
737 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
738 {
739         /* Save, Step 48:
740          * Restore, Step 23.
741          *     Change the software context switch pending flag
742          *     to context switch active.
743          *
744          *     This implementation does not uses a switch active flag.
745          */
746         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
747         mb();
748 }
749
750 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
751 {
752         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
753             CLASS1_ENABLE_STORAGE_FAULT_INTR;
754
755         /* Save, Step 49:
756          * Restore, Step 22:
757          *     Reset and then enable interrupts, as
758          *     needed by OS.
759          *
760          *     This implementation enables only class1
761          *     (translation) interrupts.
762          */
763         spin_lock_irq(&spu->register_lock);
764         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
765         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
766         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
767         spu_int_mask_set(spu, 0, 0ul);
768         spu_int_mask_set(spu, 1, class1_mask);
769         spu_int_mask_set(spu, 2, 0ul);
770         spin_unlock_irq(&spu->register_lock);
771 }
772
773 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
774                                unsigned int ls_offset, unsigned int size,
775                                unsigned int tag, unsigned int rclass,
776                                unsigned int cmd)
777 {
778         struct spu_problem __iomem *prob = spu->problem;
779         union mfc_tag_size_class_cmd command;
780         unsigned int transfer_size;
781         volatile unsigned int status = 0x0;
782
783         while (size > 0) {
784                 transfer_size =
785                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
786                 command.u.mfc_size = transfer_size;
787                 command.u.mfc_tag = tag;
788                 command.u.mfc_rclassid = rclass;
789                 command.u.mfc_cmd = cmd;
790                 do {
791                         out_be32(&prob->mfc_lsa_W, ls_offset);
792                         out_be64(&prob->mfc_ea_W, ea);
793                         out_be64(&prob->mfc_union_W.all64, command.all64);
794                         status =
795                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
796                         if (unlikely(status & 0x2)) {
797                                 cpu_relax();
798                         }
799                 } while (status & 0x3);
800                 size -= transfer_size;
801                 ea += transfer_size;
802                 ls_offset += transfer_size;
803         }
804         return 0;
805 }
806
807 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
808 {
809         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
810         unsigned int ls_offset = 0x0;
811         unsigned int size = 16384;
812         unsigned int tag = 0;
813         unsigned int rclass = 0;
814         unsigned int cmd = MFC_PUT_CMD;
815
816         /* Save, Step 50:
817          *     Issue a DMA command to copy the first 16K bytes
818          *     of local storage to the CSA.
819          */
820         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
821 }
822
823 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
824 {
825         struct spu_problem __iomem *prob = spu->problem;
826
827         /* Save, Step 51:
828          * Restore, Step 31.
829          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
830          *     point address of context save code in local
831          *     storage.
832          *
833          *     This implementation uses SPU-side save/restore
834          *     programs with entry points at LSA of 0.
835          */
836         out_be32(&prob->spu_npc_RW, 0);
837         eieio();
838 }
839
840 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
841 {
842         struct spu_problem __iomem *prob = spu->problem;
843         union {
844                 u64 ull;
845                 u32 ui[2];
846         } addr64;
847
848         /* Save, Step 52:
849          * Restore, Step 32:
850          *    Write SPU_Sig_Notify_1 register with upper 32-bits
851          *    of the CSA.LSCSA effective address.
852          */
853         addr64.ull = (u64) csa->lscsa;
854         out_be32(&prob->signal_notify1, addr64.ui[0]);
855         eieio();
856 }
857
858 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
859 {
860         struct spu_problem __iomem *prob = spu->problem;
861         union {
862                 u64 ull;
863                 u32 ui[2];
864         } addr64;
865
866         /* Save, Step 53:
867          * Restore, Step 33:
868          *    Write SPU_Sig_Notify_2 register with lower 32-bits
869          *    of the CSA.LSCSA effective address.
870          */
871         addr64.ull = (u64) csa->lscsa;
872         out_be32(&prob->signal_notify2, addr64.ui[1]);
873         eieio();
874 }
875
876 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
877 {
878         unsigned long addr = (unsigned long)&spu_save_code[0];
879         unsigned int ls_offset = 0x0;
880         unsigned int size = sizeof(spu_save_code);
881         unsigned int tag = 0;
882         unsigned int rclass = 0;
883         unsigned int cmd = MFC_GETFS_CMD;
884
885         /* Save, Step 54:
886          *     Issue a DMA command to copy context save code
887          *     to local storage and start SPU.
888          */
889         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
890 }
891
892 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
893 {
894         struct spu_problem __iomem *prob = spu->problem;
895
896         /* Save, Step 55:
897          * Restore, Step 38.
898          *     Write PPU_QueryMask=1 (enable Tag Group 0)
899          *     and issue eieio instruction.
900          */
901         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
902         eieio();
903 }
904
905 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
906 {
907         struct spu_problem __iomem *prob = spu->problem;
908         u32 mask = MFC_TAGID_TO_TAGMASK(0);
909         unsigned long flags;
910
911         /* Save, Step 56:
912          * Restore, Step 39.
913          * Restore, Step 39.
914          * Restore, Step 46.
915          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
916          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
917          *     Complete Interrupt.  Write INT_Stat_Class0 or
918          *     INT_Stat_Class2 with value of 'handled'.
919          */
920         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
921
922         local_irq_save(flags);
923         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
924         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
925         local_irq_restore(flags);
926 }
927
928 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
929 {
930         struct spu_problem __iomem *prob = spu->problem;
931         unsigned long flags;
932
933         /* Save, Step 57:
934          * Restore, Step 40.
935          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
936          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
937          *     or INT_Stat_class2 with value of handled.
938          */
939         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
940
941         local_irq_save(flags);
942         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
943         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
944         local_irq_restore(flags);
945 }
946
947 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
948 {
949         struct spu_problem __iomem *prob = spu->problem;
950         u32 complete;
951
952         /* Save, Step 54:
953          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
954          *     context save succeeded, otherwise context save
955          *     failed.
956          */
957         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
958                     SPU_STATUS_STOPPED_BY_STOP);
959         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
960 }
961
962 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
963 {
964         /* Restore, Step 4:
965          *    If required, notify the "using application" that
966          *    the SPU task has been terminated.  TBD.
967          */
968 }
969
970 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
971                 struct spu *spu)
972 {
973         struct spu_priv2 __iomem *priv2 = spu->priv2;
974
975         /* Restore, Step 7:
976          *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
977          *     the queue and halt the decrementer.
978          */
979         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
980                  MFC_CNTL_DECREMENTER_HALTED);
981         eieio();
982 }
983
984 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
985                                              struct spu *spu)
986 {
987         struct spu_priv2 __iomem *priv2 = spu->priv2;
988
989         /* Restore, Step 8:
990          * Restore, Step 47.
991          *     Poll MFC_CNTL[Ss] until 11 is returned.
992          */
993         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
994                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
995                          MFC_CNTL_SUSPEND_COMPLETE);
996 }
997
998 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
999 {
1000         struct spu_problem __iomem *prob = spu->problem;
1001
1002         /* Restore, Step 9:
1003          *    If SPU_Status[R]=1, stop SPU execution
1004          *    and wait for stop to complete.
1005          *
1006          *    Returns       1 if SPU_Status[R]=1 on entry.
1007          *                  0 otherwise
1008          */
1009         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1010                 if (in_be32(&prob->spu_status_R) &
1011                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1012                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1013                                         SPU_STATUS_RUNNING);
1014                 }
1015                 if ((in_be32(&prob->spu_status_R) &
1016                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1017                     || (in_be32(&prob->spu_status_R) &
1018                         SPU_STATUS_ISOLATED_STATE)) {
1019                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1020                         eieio();
1021                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1022                                         SPU_STATUS_RUNNING);
1023                         out_be32(&prob->spu_runcntl_RW, 0x2);
1024                         eieio();
1025                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1026                                         SPU_STATUS_RUNNING);
1027                 }
1028                 if (in_be32(&prob->spu_status_R) &
1029                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1030                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1031                         eieio();
1032                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1033                                         SPU_STATUS_RUNNING);
1034                 }
1035                 return 1;
1036         }
1037         return 0;
1038 }
1039
1040 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1041 {
1042         struct spu_problem __iomem *prob = spu->problem;
1043
1044         /* Restore, Step 10:
1045          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1046          *    release SPU from isolate state.
1047          */
1048         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1049                 if (in_be32(&prob->spu_status_R) &
1050                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1051                         spu_mfc_sr1_set(spu,
1052                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1053                         eieio();
1054                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1055                         eieio();
1056                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1057                                         SPU_STATUS_RUNNING);
1058                 }
1059                 if ((in_be32(&prob->spu_status_R) &
1060                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1061                     || (in_be32(&prob->spu_status_R) &
1062                         SPU_STATUS_ISOLATED_STATE)) {
1063                         spu_mfc_sr1_set(spu,
1064                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1065                         eieio();
1066                         out_be32(&prob->spu_runcntl_RW, 0x2);
1067                         eieio();
1068                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1069                                         SPU_STATUS_RUNNING);
1070                 }
1071         }
1072 }
1073
1074 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1075 {
1076         struct spu_priv2 __iomem *priv2 = spu->priv2;
1077         u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1078         u64 idx;
1079         int i;
1080
1081         /* Restore, Step 20:
1082          */
1083
1084         /* Reset CH 1 */
1085         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1086         out_be64(&priv2->spu_chnldata_RW, 0UL);
1087
1088         /* Reset the following CH: [0,3,4,24,25,27] */
1089         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1090                 idx = ch_indices[i];
1091                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1092                 eieio();
1093                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1094                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1095                 eieio();
1096         }
1097 }
1098
1099 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1100 {
1101         struct spu_priv2 __iomem *priv2 = spu->priv2;
1102         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1103         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1104         u64 idx;
1105         int i;
1106
1107         /* Restore, Step 21:
1108          *     Reset the following CH: [21, 23, 28, 29, 30]
1109          */
1110         for (i = 0; i < 5; i++) {
1111                 idx = ch_indices[i];
1112                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1113                 eieio();
1114                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1115                 eieio();
1116         }
1117 }
1118
1119 static inline void setup_spu_status_part1(struct spu_state *csa,
1120                                           struct spu *spu)
1121 {
1122         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1123         u32 status_I = SPU_STATUS_INVALID_INSTR;
1124         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1125         u32 status_S = SPU_STATUS_SINGLE_STEP;
1126         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1127         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1128         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1129         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1130         u32 status_code;
1131
1132         /* Restore, Step 27:
1133          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1134          *     instruction sequence to the end of the SPU based restore
1135          *     code (after the "context restored" stop and signal) to
1136          *     restore the correct SPU status.
1137          *
1138          *     NOTE: Rather than modifying the SPU executable, we
1139          *     instead add a new 'stopped_status' field to the
1140          *     LSCSA.  The SPU-side restore reads this field and
1141          *     takes the appropriate action when exiting.
1142          */
1143
1144         status_code =
1145             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1146         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1147
1148                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1149                  * by Stop and Signal instruction, followed by 'br -4'.
1150                  *
1151                  */
1152                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1153                 csa->lscsa->stopped_status.slot[1] = status_code;
1154
1155         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1156
1157                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1158                  * by Stop and Signal instruction, followed by
1159                  * 'br -4'.
1160                  */
1161                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1162                 csa->lscsa->stopped_status.slot[1] = status_code;
1163
1164         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1165
1166                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1167                  * followed by 'br -4'.
1168                  */
1169                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1170                 csa->lscsa->stopped_status.slot[1] = status_code;
1171
1172         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1173
1174                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1175                  * by 'br -4'.
1176                  */
1177                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1178                 csa->lscsa->stopped_status.slot[1] = status_code;
1179
1180         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1181
1182                 /* SPU_Status[P]=1 - Stop and Signal instruction
1183                  * followed by 'br -4'.
1184                  */
1185                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1186                 csa->lscsa->stopped_status.slot[1] = status_code;
1187
1188         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1189
1190                 /* SPU_Status[H]=1 - Halt Conditional, followed
1191                  * by 'br -4'.
1192                  */
1193                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1194
1195         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1196
1197                 /* SPU_Status[S]=1 - Two nop instructions.
1198                  */
1199                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1200
1201         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1202
1203                 /* SPU_Status[I]=1 - Illegal instruction followed
1204                  * by 'br -4'.
1205                  */
1206                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1207
1208         }
1209 }
1210
1211 static inline void setup_spu_status_part2(struct spu_state *csa,
1212                                           struct spu *spu)
1213 {
1214         u32 mask;
1215
1216         /* Restore, Step 28:
1217          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1218          *     add a 'br *' instruction to the end of
1219          *     the SPU based restore code.
1220          *
1221          *     NOTE: Rather than modifying the SPU executable, we
1222          *     instead add a new 'stopped_status' field to the
1223          *     LSCSA.  The SPU-side restore reads this field and
1224          *     takes the appropriate action when exiting.
1225          */
1226         mask = SPU_STATUS_INVALID_INSTR |
1227             SPU_STATUS_SINGLE_STEP |
1228             SPU_STATUS_STOPPED_BY_HALT |
1229             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1230         if (!(csa->prob.spu_status_R & mask)) {
1231                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1232         }
1233 }
1234
1235 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1236 {
1237         /* Restore, Step 29:
1238          *     Restore RA_GROUP_ID register and the
1239          *     RA_ENABLE reigster from the CSA.
1240          */
1241         spu_resource_allocation_groupID_set(spu,
1242                         csa->priv1.resource_allocation_groupID_RW);
1243         spu_resource_allocation_enable_set(spu,
1244                         csa->priv1.resource_allocation_enable_RW);
1245 }
1246
1247 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1248 {
1249         unsigned long addr = (unsigned long)&spu_restore_code[0];
1250         unsigned int ls_offset = 0x0;
1251         unsigned int size = sizeof(spu_restore_code);
1252         unsigned int tag = 0;
1253         unsigned int rclass = 0;
1254         unsigned int cmd = MFC_GETFS_CMD;
1255
1256         /* Restore, Step 37:
1257          *     Issue MFC DMA command to copy context
1258          *     restore code to local storage.
1259          */
1260         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1261 }
1262
1263 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1264 {
1265         /* Restore, Step 34:
1266          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1267          *     running) then adjust decrementer, set
1268          *     decrementer running status in LSCSA,
1269          *     and set decrementer "wrapped" status
1270          *     in LSCSA.
1271          */
1272         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1273                 cycles_t resume_time = get_cycles();
1274                 cycles_t delta_time = resume_time - csa->suspend_time;
1275
1276                 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1277                 if (csa->lscsa->decr.slot[0] < delta_time) {
1278                         csa->lscsa->decr_status.slot[0] |=
1279                                  SPU_DECR_STATUS_WRAPPED;
1280                 }
1281
1282                 csa->lscsa->decr.slot[0] -= delta_time;
1283         } else {
1284                 csa->lscsa->decr_status.slot[0] = 0;
1285         }
1286 }
1287
1288 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1289 {
1290         /* Restore, Step 35:
1291          *     Copy the CSA.PU_MB data into the LSCSA.
1292          */
1293         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1294 }
1295
1296 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1297 {
1298         /* Restore, Step 36:
1299          *     Copy the CSA.PUINT_MB data into the LSCSA.
1300          */
1301         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1302 }
1303
1304 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1305 {
1306         struct spu_problem __iomem *prob = spu->problem;
1307         u32 complete;
1308
1309         /* Restore, Step 40:
1310          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1311          *     context restore succeeded, otherwise context restore
1312          *     failed.
1313          */
1314         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1315                     SPU_STATUS_STOPPED_BY_STOP);
1316         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1317 }
1318
1319 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1320 {
1321         struct spu_priv2 __iomem *priv2 = spu->priv2;
1322
1323         /* Restore, Step 41:
1324          *     Restore SPU_PrivCntl from the CSA.
1325          */
1326         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1327         eieio();
1328 }
1329
1330 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1331 {
1332         struct spu_problem __iomem *prob = spu->problem;
1333         u32 mask;
1334
1335         /* Restore, Step 42:
1336          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1337          *     restore the error or single step state.
1338          */
1339         mask = SPU_STATUS_INVALID_INSTR |
1340             SPU_STATUS_SINGLE_STEP |
1341             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1342         if (csa->prob.spu_status_R & mask) {
1343                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1344                 eieio();
1345                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1346                                 SPU_STATUS_RUNNING);
1347         }
1348 }
1349
1350 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1351 {
1352         struct spu_problem __iomem *prob = spu->problem;
1353         u32 mask;
1354
1355         /* Restore, Step 43:
1356          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1357          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1358          *     then write '00' to SPU_RunCntl[R0R1] and wait
1359          *     for SPU_Status[R]=0.
1360          */
1361         mask = SPU_STATUS_INVALID_INSTR |
1362             SPU_STATUS_SINGLE_STEP |
1363             SPU_STATUS_STOPPED_BY_HALT |
1364             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1365         if (!(csa->prob.spu_status_R & mask)) {
1366                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1367                 eieio();
1368                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1369                                  SPU_STATUS_RUNNING);
1370                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1371                 eieio();
1372                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1373                                 SPU_STATUS_RUNNING);
1374         }
1375 }
1376
1377 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1378 {
1379         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1380         unsigned int ls_offset = 0x0;
1381         unsigned int size = 16384;
1382         unsigned int tag = 0;
1383         unsigned int rclass = 0;
1384         unsigned int cmd = MFC_GET_CMD;
1385
1386         /* Restore, Step 44:
1387          *     Issue a DMA command to restore the first
1388          *     16kb of local storage from CSA.
1389          */
1390         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1391 }
1392
1393 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1394 {
1395         struct spu_priv2 __iomem *priv2 = spu->priv2;
1396
1397         /* Restore, Step 47.
1398          *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1399          *     the queue.
1400          */
1401         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1402         eieio();
1403 }
1404
1405 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1406 {
1407         /* Restore, Step 49:
1408          *     Write INT_MASK_class0 with value of 0.
1409          *     Write INT_MASK_class1 with value of 0.
1410          *     Write INT_MASK_class2 with value of 0.
1411          *     Write INT_STAT_class0 with value of -1.
1412          *     Write INT_STAT_class1 with value of -1.
1413          *     Write INT_STAT_class2 with value of -1.
1414          */
1415         spin_lock_irq(&spu->register_lock);
1416         spu_int_mask_set(spu, 0, 0ul);
1417         spu_int_mask_set(spu, 1, 0ul);
1418         spu_int_mask_set(spu, 2, 0ul);
1419         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1420         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1421         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1422         spin_unlock_irq(&spu->register_lock);
1423 }
1424
1425 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1426 {
1427         struct spu_priv2 __iomem *priv2 = spu->priv2;
1428         int i;
1429
1430         /* Restore, Step 50:
1431          *     If MFC_Cntl[Se]!=0 then restore
1432          *     MFC command queues.
1433          */
1434         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1435                 for (i = 0; i < 8; i++) {
1436                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1437                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1438                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1439                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1440                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1441                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1442                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1443                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1444                 }
1445                 for (i = 0; i < 16; i++) {
1446                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1447                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1448                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1449                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1450                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1451                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1452                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1453                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1454                 }
1455         }
1456         eieio();
1457 }
1458
1459 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1460 {
1461         struct spu_problem __iomem *prob = spu->problem;
1462
1463         /* Restore, Step 51:
1464          *     Restore the PPU_QueryMask register from CSA.
1465          */
1466         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1467         eieio();
1468 }
1469
1470 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1471 {
1472         struct spu_problem __iomem *prob = spu->problem;
1473
1474         /* Restore, Step 52:
1475          *     Restore the PPU_QueryType register from CSA.
1476          */
1477         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1478         eieio();
1479 }
1480
1481 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1482 {
1483         struct spu_priv2 __iomem *priv2 = spu->priv2;
1484
1485         /* Restore, Step 53:
1486          *     Restore the MFC_CSR_TSQ register from CSA.
1487          */
1488         out_be64(&priv2->spu_tag_status_query_RW,
1489                  csa->priv2.spu_tag_status_query_RW);
1490         eieio();
1491 }
1492
1493 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1494 {
1495         struct spu_priv2 __iomem *priv2 = spu->priv2;
1496
1497         /* Restore, Step 54:
1498          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1499          *     registers from CSA.
1500          */
1501         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1502         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1503         eieio();
1504 }
1505
1506 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1507 {
1508         struct spu_priv2 __iomem *priv2 = spu->priv2;
1509
1510         /* Restore, Step 55:
1511          *     Restore the MFC_CSR_ATO register from CSA.
1512          */
1513         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1514 }
1515
1516 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1517 {
1518         /* Restore, Step 56:
1519          *     Restore the MFC_TCLASS_ID register from CSA.
1520          */
1521         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1522         eieio();
1523 }
1524
1525 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1526 {
1527         u64 ch0_cnt, ch0_data;
1528         u64 ch1_data;
1529
1530         /* Restore, Step 57:
1531          *    Set the Lock Line Reservation Lost Event by:
1532          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1533          *      2. If CSA.SPU_Channel_0_Count=0 and
1534          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1535          *         CSA.SPU_Event_Status[Lr]=0 then set
1536          *         CSA.SPU_Event_Status_Count=1.
1537          */
1538         ch0_cnt = csa->spu_chnlcnt_RW[0];
1539         ch0_data = csa->spu_chnldata_RW[0];
1540         ch1_data = csa->spu_chnldata_RW[1];
1541         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1542         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1543             (ch1_data & MFC_LLR_LOST_EVENT)) {
1544                 csa->spu_chnlcnt_RW[0] = 1;
1545         }
1546 }
1547
1548 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1549 {
1550         /* Restore, Step 58:
1551          *     If the status of the CSA software decrementer
1552          *     "wrapped" flag is set, OR in a '1' to
1553          *     CSA.SPU_Event_Status[Tm].
1554          */
1555         if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1556                 return;
1557
1558         if ((csa->spu_chnlcnt_RW[0] == 0) &&
1559             (csa->spu_chnldata_RW[1] & 0x20) &&
1560             !(csa->spu_chnldata_RW[0] & 0x20))
1561                 csa->spu_chnlcnt_RW[0] = 1;
1562
1563         csa->spu_chnldata_RW[0] |= 0x20;
1564 }
1565
1566 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1567 {
1568         struct spu_priv2 __iomem *priv2 = spu->priv2;
1569         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1570         int i;
1571
1572         /* Restore, Step 59:
1573          *      Restore the following CH: [0,3,4,24,25,27]
1574          */
1575         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1576                 idx = ch_indices[i];
1577                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1578                 eieio();
1579                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1580                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1581                 eieio();
1582         }
1583 }
1584
1585 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1586 {
1587         struct spu_priv2 __iomem *priv2 = spu->priv2;
1588         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1589         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1590         u64 idx;
1591         int i;
1592
1593         /* Restore, Step 60:
1594          *     Restore the following CH: [9,21,23].
1595          */
1596         ch_counts[0] = 1UL;
1597         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1598         ch_counts[2] = 1UL;
1599         for (i = 0; i < 3; i++) {
1600                 idx = ch_indices[i];
1601                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1602                 eieio();
1603                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1604                 eieio();
1605         }
1606 }
1607
1608 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1609 {
1610         struct spu_priv2 __iomem *priv2 = spu->priv2;
1611
1612         /* Restore, Step 61:
1613          *     Restore the SPU_LSLR register from CSA.
1614          */
1615         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1616         eieio();
1617 }
1618
1619 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1620 {
1621         struct spu_priv2 __iomem *priv2 = spu->priv2;
1622
1623         /* Restore, Step 62:
1624          *     Restore the SPU_Cfg register from CSA.
1625          */
1626         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1627         eieio();
1628 }
1629
1630 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1631 {
1632         /* Restore, Step 63:
1633          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1634          *     Not performed by this implementation.
1635          */
1636 }
1637
1638 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1639 {
1640         struct spu_problem __iomem *prob = spu->problem;
1641
1642         /* Restore, Step 64:
1643          *     Restore SPU_NPC from CSA.
1644          */
1645         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1646         eieio();
1647 }
1648
1649 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1650 {
1651         struct spu_priv2 __iomem *priv2 = spu->priv2;
1652         int i;
1653
1654         /* Restore, Step 65:
1655          *     Restore MFC_RdSPU_MB from CSA.
1656          */
1657         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1658         eieio();
1659         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1660         for (i = 0; i < 4; i++) {
1661                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1662         }
1663         eieio();
1664 }
1665
1666 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1667 {
1668         struct spu_problem __iomem *prob = spu->problem;
1669         u32 dummy = 0;
1670
1671         /* Restore, Step 66:
1672          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1673          *     read from the PPU_MB register.
1674          */
1675         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1676                 dummy = in_be32(&prob->pu_mb_R);
1677                 eieio();
1678         }
1679 }
1680
1681 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1682 {
1683         struct spu_priv2 __iomem *priv2 = spu->priv2;
1684         u64 dummy = 0UL;
1685
1686         /* Restore, Step 66:
1687          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1688          *     read from the PPUINT_MB register.
1689          */
1690         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1691                 dummy = in_be64(&priv2->puint_mb_R);
1692                 eieio();
1693                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1694                 eieio();
1695         }
1696 }
1697
1698 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1699 {
1700         /* Restore, Step 69:
1701          *     Restore the MFC_SR1 register from CSA.
1702          */
1703         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1704         eieio();
1705 }
1706
1707 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1708 {
1709         struct spu_context *ctx = spu->ctx;
1710
1711         spu_cpu_affinity_set(spu, ctx->last_ran);
1712 }
1713
1714 static inline void restore_other_spu_access(struct spu_state *csa,
1715                                             struct spu *spu)
1716 {
1717         /* Restore, Step 70:
1718          *     Restore other SPU mappings to this SPU. TBD.
1719          */
1720 }
1721
1722 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1723 {
1724         struct spu_problem __iomem *prob = spu->problem;
1725
1726         /* Restore, Step 71:
1727          *     If CSA.SPU_Status[R]=1 then write
1728          *     SPU_RunCntl[R0R1]='01'.
1729          */
1730         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1731                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1732                 eieio();
1733         }
1734 }
1735
1736 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1737 {
1738         struct spu_priv2 __iomem *priv2 = spu->priv2;
1739
1740         /* Restore, Step 72:
1741          *    Restore the MFC_CNTL register for the CSA.
1742          */
1743         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1744         eieio();
1745         /*
1746          * FIXME: this is to restart a DMA that we were processing
1747          *        before the save. better remember the fault information
1748          *        in the csa instead.
1749          */
1750         if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1751                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1752                 eieio();
1753         }
1754 }
1755
1756 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1757 {
1758         /* Restore, Step 73:
1759          *     Enable user-space access (if provided) to this
1760          *     SPU by mapping the virtual pages assigned to
1761          *     the SPU memory-mapped I/O (MMIO) for problem
1762          *     state. TBD.
1763          */
1764 }
1765
1766 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1767 {
1768         /* Restore, Step 74:
1769          *     Reset the "context switch active" flag.
1770          *     Not performed by this implementation.
1771          */
1772 }
1773
1774 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1775 {
1776         /* Restore, Step 75:
1777          *     Re-enable SPU interrupts.
1778          */
1779         spin_lock_irq(&spu->register_lock);
1780         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1781         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1782         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1783         spin_unlock_irq(&spu->register_lock);
1784 }
1785
1786 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1787 {
1788         /*
1789          * Combined steps 2-18 of SPU context save sequence, which
1790          * quiesce the SPU state (disable SPU execution, MFC command
1791          * queues, decrementer, SPU interrupts, etc.).
1792          *
1793          * Returns      0 on success.
1794          *              2 if failed step 2.
1795          *              6 if failed step 6.
1796          */
1797
1798         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1799                 return 2;
1800         }
1801         disable_interrupts(prev, spu);          /* Step 3. */
1802         set_watchdog_timer(prev, spu);          /* Step 4. */
1803         inhibit_user_access(prev, spu);         /* Step 5. */
1804         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1805                 return 6;
1806         }
1807         set_switch_pending(prev, spu);          /* Step 7. */
1808         save_mfc_cntl(prev, spu);               /* Step 8. */
1809         save_spu_runcntl(prev, spu);            /* Step 9. */
1810         save_mfc_sr1(prev, spu);                /* Step 10. */
1811         save_spu_status(prev, spu);             /* Step 11. */
1812         save_mfc_stopped_status(prev, spu);     /* Step 12. */
1813         halt_mfc_decr(prev, spu);               /* Step 13. */
1814         save_timebase(prev, spu);               /* Step 14. */
1815         remove_other_spu_access(prev, spu);     /* Step 15. */
1816         do_mfc_mssync(prev, spu);               /* Step 16. */
1817         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1818         handle_pending_interrupts(prev, spu);   /* Step 18. */
1819
1820         return 0;
1821 }
1822
1823 static void save_csa(struct spu_state *prev, struct spu *spu)
1824 {
1825         /*
1826          * Combine steps 19-44 of SPU context save sequence, which
1827          * save regions of the privileged & problem state areas.
1828          */
1829
1830         save_mfc_queues(prev, spu);     /* Step 19. */
1831         save_ppu_querymask(prev, spu);  /* Step 20. */
1832         save_ppu_querytype(prev, spu);  /* Step 21. */
1833         save_ppu_tagstatus(prev, spu);  /* NEW.     */
1834         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1835         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1836         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1837         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1838         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1839         save_mfc_cmd(prev, spu);        /* Step 26a - moved from 44. */
1840         purge_mfc_queue(prev, spu);     /* Step 27. */
1841         wait_purge_complete(prev, spu); /* Step 28. */
1842         setup_mfc_sr1(prev, spu);       /* Step 30. */
1843         save_spu_npc(prev, spu);        /* Step 31. */
1844         save_spu_privcntl(prev, spu);   /* Step 32. */
1845         reset_spu_privcntl(prev, spu);  /* Step 33. */
1846         save_spu_lslr(prev, spu);       /* Step 34. */
1847         reset_spu_lslr(prev, spu);      /* Step 35. */
1848         save_spu_cfg(prev, spu);        /* Step 36. */
1849         save_pm_trace(prev, spu);       /* Step 37. */
1850         save_mfc_rag(prev, spu);        /* Step 38. */
1851         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1852         save_ppu_mb(prev, spu);         /* Step 40. */
1853         save_ppuint_mb(prev, spu);      /* Step 41. */
1854         save_ch_part1(prev, spu);       /* Step 42. */
1855         save_spu_mb(prev, spu);         /* Step 43. */
1856         reset_ch(prev, spu);            /* Step 45. */
1857 }
1858
1859 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1860 {
1861         /*
1862          * Perform steps 46-57 of SPU context save sequence,
1863          * which save regions of the local store and register
1864          * file.
1865          */
1866
1867         resume_mfc_queue(prev, spu);    /* Step 46. */
1868         /* Step 47. */
1869         setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1870         set_switch_active(prev, spu);   /* Step 48. */
1871         enable_interrupts(prev, spu);   /* Step 49. */
1872         save_ls_16kb(prev, spu);        /* Step 50. */
1873         set_spu_npc(prev, spu);         /* Step 51. */
1874         set_signot1(prev, spu);         /* Step 52. */
1875         set_signot2(prev, spu);         /* Step 53. */
1876         send_save_code(prev, spu);      /* Step 54. */
1877         set_ppu_querymask(prev, spu);   /* Step 55. */
1878         wait_tag_complete(prev, spu);   /* Step 56. */
1879         wait_spu_stopped(prev, spu);    /* Step 57. */
1880 }
1881
1882 static void force_spu_isolate_exit(struct spu *spu)
1883 {
1884         struct spu_problem __iomem *prob = spu->problem;
1885         struct spu_priv2 __iomem *priv2 = spu->priv2;
1886
1887         /* Stop SPE execution and wait for completion. */
1888         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1889         iobarrier_rw();
1890         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1891
1892         /* Restart SPE master runcntl. */
1893         spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1894         iobarrier_w();
1895
1896         /* Initiate isolate exit request and wait for completion. */
1897         out_be64(&priv2->spu_privcntl_RW, 4LL);
1898         iobarrier_w();
1899         out_be32(&prob->spu_runcntl_RW, 2);
1900         iobarrier_rw();
1901         POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1902                                 & SPU_STATUS_STOPPED_BY_STOP));
1903
1904         /* Reset load request to normal. */
1905         out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1906         iobarrier_w();
1907 }
1908
1909 /**
1910  * stop_spu_isolate
1911  *      Check SPU run-control state and force isolated
1912  *      exit function as necessary.
1913  */
1914 static void stop_spu_isolate(struct spu *spu)
1915 {
1916         struct spu_problem __iomem *prob = spu->problem;
1917
1918         if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1919                 /* The SPU is in isolated state; the only way
1920                  * to get it out is to perform an isolated
1921                  * exit (clean) operation.
1922                  */
1923                 force_spu_isolate_exit(spu);
1924         }
1925 }
1926
1927 static void harvest(struct spu_state *prev, struct spu *spu)
1928 {
1929         /*
1930          * Perform steps 2-25 of SPU context restore sequence,
1931          * which resets an SPU either after a failed save, or
1932          * when using SPU for first time.
1933          */
1934
1935         disable_interrupts(prev, spu);          /* Step 2.  */
1936         inhibit_user_access(prev, spu);         /* Step 3.  */
1937         terminate_spu_app(prev, spu);           /* Step 4.  */
1938         set_switch_pending(prev, spu);          /* Step 5.  */
1939         stop_spu_isolate(spu);                  /* NEW.     */
1940         remove_other_spu_access(prev, spu);     /* Step 6.  */
1941         suspend_mfc_and_halt_decr(prev, spu);   /* Step 7.  */
1942         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1943         if (!suspend_spe(prev, spu))            /* Step 9.  */
1944                 clear_spu_status(prev, spu);    /* Step 10. */
1945         do_mfc_mssync(prev, spu);               /* Step 11. */
1946         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1947         handle_pending_interrupts(prev, spu);   /* Step 13. */
1948         purge_mfc_queue(prev, spu);             /* Step 14. */
1949         wait_purge_complete(prev, spu);         /* Step 15. */
1950         reset_spu_privcntl(prev, spu);          /* Step 16. */
1951         reset_spu_lslr(prev, spu);              /* Step 17. */
1952         setup_mfc_sr1(prev, spu);               /* Step 18. */
1953         spu_invalidate_slbs(spu);               /* Step 19. */
1954         reset_ch_part1(prev, spu);              /* Step 20. */
1955         reset_ch_part2(prev, spu);              /* Step 21. */
1956         enable_interrupts(prev, spu);           /* Step 22. */
1957         set_switch_active(prev, spu);           /* Step 23. */
1958         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1959         resume_mfc_queue(prev, spu);            /* Step 25. */
1960 }
1961
1962 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1963 {
1964         /*
1965          * Perform steps 26-40 of SPU context restore sequence,
1966          * which restores regions of the local store and register
1967          * file.
1968          */
1969
1970         set_watchdog_timer(next, spu);          /* Step 26. */
1971         setup_spu_status_part1(next, spu);      /* Step 27. */
1972         setup_spu_status_part2(next, spu);      /* Step 28. */
1973         restore_mfc_rag(next, spu);             /* Step 29. */
1974         /* Step 30. */
1975         setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1976         set_spu_npc(next, spu);                 /* Step 31. */
1977         set_signot1(next, spu);                 /* Step 32. */
1978         set_signot2(next, spu);                 /* Step 33. */
1979         setup_decr(next, spu);                  /* Step 34. */
1980         setup_ppu_mb(next, spu);                /* Step 35. */
1981         setup_ppuint_mb(next, spu);             /* Step 36. */
1982         send_restore_code(next, spu);           /* Step 37. */
1983         set_ppu_querymask(next, spu);           /* Step 38. */
1984         wait_tag_complete(next, spu);           /* Step 39. */
1985         wait_spu_stopped(next, spu);            /* Step 40. */
1986 }
1987
1988 static void restore_csa(struct spu_state *next, struct spu *spu)
1989 {
1990         /*
1991          * Combine steps 41-76 of SPU context restore sequence, which
1992          * restore regions of the privileged & problem state areas.
1993          */
1994
1995         restore_spu_privcntl(next, spu);        /* Step 41. */
1996         restore_status_part1(next, spu);        /* Step 42. */
1997         restore_status_part2(next, spu);        /* Step 43. */
1998         restore_ls_16kb(next, spu);             /* Step 44. */
1999         wait_tag_complete(next, spu);           /* Step 45. */
2000         suspend_mfc(next, spu);                 /* Step 46. */
2001         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
2002         issue_mfc_tlbie(next, spu);             /* Step 48. */
2003         clear_interrupts(next, spu);            /* Step 49. */
2004         restore_mfc_queues(next, spu);          /* Step 50. */
2005         restore_ppu_querymask(next, spu);       /* Step 51. */
2006         restore_ppu_querytype(next, spu);       /* Step 52. */
2007         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
2008         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
2009         restore_mfc_csr_ato(next, spu);         /* Step 55. */
2010         restore_mfc_tclass_id(next, spu);       /* Step 56. */
2011         set_llr_event(next, spu);               /* Step 57. */
2012         restore_decr_wrapped(next, spu);        /* Step 58. */
2013         restore_ch_part1(next, spu);            /* Step 59. */
2014         restore_ch_part2(next, spu);            /* Step 60. */
2015         restore_spu_lslr(next, spu);            /* Step 61. */
2016         restore_spu_cfg(next, spu);             /* Step 62. */
2017         restore_pm_trace(next, spu);            /* Step 63. */
2018         restore_spu_npc(next, spu);             /* Step 64. */
2019         restore_spu_mb(next, spu);              /* Step 65. */
2020         check_ppu_mb_stat(next, spu);           /* Step 66. */
2021         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2022         spu_invalidate_slbs(spu);               /* Modified Step 68. */
2023         restore_mfc_sr1(next, spu);             /* Step 69. */
2024         set_int_route(next, spu);               /* NEW      */
2025         restore_other_spu_access(next, spu);    /* Step 70. */
2026         restore_spu_runcntl(next, spu);         /* Step 71. */
2027         restore_mfc_cntl(next, spu);            /* Step 72. */
2028         enable_user_access(next, spu);          /* Step 73. */
2029         reset_switch_active(next, spu);         /* Step 74. */
2030         reenable_interrupts(next, spu);         /* Step 75. */
2031 }
2032
2033 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2034 {
2035         int rc;
2036
2037         /*
2038          * SPU context save can be broken into three phases:
2039          *
2040          *     (a) quiesce [steps 2-16].
2041          *     (b) save of CSA, performed by PPE [steps 17-42]
2042          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2043          *
2044          * Returns      0 on success.
2045          *              2,6 if failed to quiece SPU
2046          *              53 if SPU-side of save failed.
2047          */
2048
2049         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2050         switch (rc) {
2051         default:
2052         case 2:
2053         case 6:
2054                 harvest(prev, spu);
2055                 return rc;
2056                 break;
2057         case 0:
2058                 break;
2059         }
2060         save_csa(prev, spu);                    /* Steps 17-43. */
2061         save_lscsa(prev, spu);                  /* Steps 44-53. */
2062         return check_save_status(prev, spu);    /* Step 54.     */
2063 }
2064
2065 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2066 {
2067         int rc;
2068
2069         /*
2070          * SPU context restore can be broken into three phases:
2071          *
2072          *    (a) harvest (or reset) SPU [steps 2-24].
2073          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2074          *    (c) restore CSA [steps 41-76], performed by PPE.
2075          *
2076          * The 'harvest' step is not performed here, but rather
2077          * as needed below.
2078          */
2079
2080         restore_lscsa(next, spu);               /* Steps 24-39. */
2081         rc = check_restore_status(next, spu);   /* Step 40.     */
2082         switch (rc) {
2083         default:
2084                 /* Failed. Return now. */
2085                 return rc;
2086                 break;
2087         case 0:
2088                 /* Fall through to next step. */
2089                 break;
2090         }
2091         restore_csa(next, spu);
2092
2093         return 0;
2094 }
2095
2096 /**
2097  * spu_save - SPU context save, with locking.
2098  * @prev: pointer to SPU context save area, to be saved.
2099  * @spu: pointer to SPU iomem structure.
2100  *
2101  * Acquire locks, perform the save operation then return.
2102  */
2103 int spu_save(struct spu_state *prev, struct spu *spu)
2104 {
2105         int rc;
2106
2107         acquire_spu_lock(spu);          /* Step 1.     */
2108         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2109         release_spu_lock(spu);
2110         if (rc != 0 && rc != 2 && rc != 6) {
2111                 panic("%s failed on SPU[%d], rc=%d.\n",
2112                       __func__, spu->number, rc);
2113         }
2114         return 0;
2115 }
2116 EXPORT_SYMBOL_GPL(spu_save);
2117
2118 /**
2119  * spu_restore - SPU context restore, with harvest and locking.
2120  * @new: pointer to SPU context save area, to be restored.
2121  * @spu: pointer to SPU iomem structure.
2122  *
2123  * Perform harvest + restore, as we may not be coming
2124  * from a previous successful save operation, and the
2125  * hardware state is unknown.
2126  */
2127 int spu_restore(struct spu_state *new, struct spu *spu)
2128 {
2129         int rc;
2130
2131         acquire_spu_lock(spu);
2132         harvest(NULL, spu);
2133         spu->slb_replace = 0;
2134         rc = __do_spu_restore(new, spu);
2135         release_spu_lock(spu);
2136         if (rc) {
2137                 panic("%s failed on SPU[%d] rc=%d.\n",
2138                        __func__, spu->number, rc);
2139         }
2140         return rc;
2141 }
2142 EXPORT_SYMBOL_GPL(spu_restore);
2143
2144 static void init_prob(struct spu_state *csa)
2145 {
2146         csa->spu_chnlcnt_RW[9] = 1;
2147         csa->spu_chnlcnt_RW[21] = 16;
2148         csa->spu_chnlcnt_RW[23] = 1;
2149         csa->spu_chnlcnt_RW[28] = 1;
2150         csa->spu_chnlcnt_RW[30] = 1;
2151         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2152         csa->prob.mb_stat_R = 0x000400;
2153 }
2154
2155 static void init_priv1(struct spu_state *csa)
2156 {
2157         /* Enable decode, relocate, tlbie response, master runcntl. */
2158         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2159             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2160             MFC_STATE1_PROBLEM_STATE_MASK |
2161             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2162
2163         /* Enable OS-specific set of interrupts. */
2164         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2165             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2166             CLASS0_ENABLE_SPU_ERROR_INTR;
2167         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2168             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2169         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2170             CLASS2_ENABLE_SPU_HALT_INTR |
2171             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2172 }
2173
2174 static void init_priv2(struct spu_state *csa)
2175 {
2176         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2177         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2178             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2179             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2180 }
2181
2182 /**
2183  * spu_alloc_csa - allocate and initialize an SPU context save area.
2184  *
2185  * Allocate and initialize the contents of an SPU context save area.
2186  * This includes enabling address translation, interrupt masks, etc.,
2187  * as appropriate for the given OS environment.
2188  *
2189  * Note that storage for the 'lscsa' is allocated separately,
2190  * as it is by far the largest of the context save regions,
2191  * and may need to be pinned or otherwise specially aligned.
2192  */
2193 int spu_init_csa(struct spu_state *csa)
2194 {
2195         int rc;
2196
2197         if (!csa)
2198                 return -EINVAL;
2199         memset(csa, 0, sizeof(struct spu_state));
2200
2201         rc = spu_alloc_lscsa(csa);
2202         if (rc)
2203                 return rc;
2204
2205         spin_lock_init(&csa->register_lock);
2206
2207         init_prob(csa);
2208         init_priv1(csa);
2209         init_priv2(csa);
2210
2211         return 0;
2212 }
2213
2214 void spu_fini_csa(struct spu_state *csa)
2215 {
2216         spu_free_lscsa(csa);
2217 }