3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
30 #include <asm/eeh_event.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
77 #define EEH_MAX_FAILS 100000
80 static int ibm_set_eeh_option;
81 static int ibm_set_slot_reset;
82 static int ibm_read_slot_reset_state;
83 static int ibm_read_slot_reset_state2;
84 static int ibm_slot_error_detail;
85 static int ibm_get_config_addr_info;
86 static int ibm_configure_bridge;
88 int eeh_subsystem_enabled;
89 EXPORT_SYMBOL(eeh_subsystem_enabled);
91 /* Lock to avoid races due to multiple reports of an error */
92 static DEFINE_SPINLOCK(confirm_error_lock);
94 /* Buffer for reporting slot-error-detail rtas calls */
95 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
96 static DEFINE_SPINLOCK(slot_errbuf_lock);
97 static int eeh_error_buf_size;
99 /* System monitoring statistics */
100 static DEFINE_PER_CPU(unsigned long, no_device);
101 static DEFINE_PER_CPU(unsigned long, no_dn);
102 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
103 static DEFINE_PER_CPU(unsigned long, ignored_check);
104 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
105 static DEFINE_PER_CPU(unsigned long, false_positives);
106 static DEFINE_PER_CPU(unsigned long, ignored_failures);
107 static DEFINE_PER_CPU(unsigned long, slot_resets);
109 /* --------------------------------------------------------------- */
110 /* Below lies the EEH event infrastructure */
112 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
118 /* Log the error with the rtas logger */
119 spin_lock_irqsave(&slot_errbuf_lock, flags);
120 memset(slot_errbuf, 0, eeh_error_buf_size);
122 /* Use PE configuration address, if present */
123 config_addr = pdn->eeh_config_addr;
124 if (pdn->eeh_pe_config_addr)
125 config_addr = pdn->eeh_pe_config_addr;
127 rc = rtas_call(ibm_slot_error_detail,
128 8, 1, NULL, config_addr,
129 BUID_HI(pdn->phb->buid),
130 BUID_LO(pdn->phb->buid), NULL, 0,
131 virt_to_phys(slot_errbuf),
136 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
137 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
141 * read_slot_reset_state - Read the reset state of a device node's slot
142 * @dn: device node to read
143 * @rets: array to return results in
145 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
150 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
151 token = ibm_read_slot_reset_state2;
154 token = ibm_read_slot_reset_state;
155 rets[2] = 0; /* fake PE Unavailable info */
159 /* Use PE configuration address, if present */
160 config_addr = pdn->eeh_config_addr;
161 if (pdn->eeh_pe_config_addr)
162 config_addr = pdn->eeh_pe_config_addr;
164 return rtas_call(token, 3, outputs, rets, config_addr,
165 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
169 * eeh_token_to_phys - convert EEH address token to phys address
170 * @token i/o token, should be address in the form 0xA....
172 static inline unsigned long eeh_token_to_phys(unsigned long token)
177 ptep = find_linux_pte(init_mm.pgd, token);
180 pa = pte_pfn(*ptep) << PAGE_SHIFT;
182 return pa | (token & (PAGE_SIZE-1));
186 * Return the "partitionable endpoint" (pe) under which this device lies
188 struct device_node * find_device_pe(struct device_node *dn)
190 while ((dn->parent) && PCI_DN(dn->parent) &&
191 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
197 /** Mark all devices that are peers of this device as failed.
198 * Mark the device driver too, so that it can see the failure
199 * immediately; this is critical, since some drivers poll
200 * status registers in interrupts ... If a driver is polling,
201 * and the slot is frozen, then the driver can deadlock in
202 * an interrupt context, which is bad.
205 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
209 PCI_DN(dn)->eeh_mode |= mode_flag;
211 /* Mark the pci device driver too */
212 struct pci_dev *dev = PCI_DN(dn)->pcidev;
213 if (dev && dev->driver)
214 dev->error_state = pci_channel_io_frozen;
217 __eeh_mark_slot (dn->child, mode_flag);
223 void eeh_mark_slot (struct device_node *dn, int mode_flag)
225 dn = find_device_pe (dn);
227 /* Back up one, since config addrs might be shared */
228 if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
231 PCI_DN(dn)->eeh_mode |= mode_flag;
232 __eeh_mark_slot (dn->child, mode_flag);
235 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
239 PCI_DN(dn)->eeh_mode &= ~mode_flag;
240 PCI_DN(dn)->eeh_check_count = 0;
242 __eeh_clear_slot (dn->child, mode_flag);
248 void eeh_clear_slot (struct device_node *dn, int mode_flag)
251 spin_lock_irqsave(&confirm_error_lock, flags);
253 dn = find_device_pe (dn);
255 /* Back up one, since config addrs might be shared */
256 if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
259 PCI_DN(dn)->eeh_mode &= ~mode_flag;
260 PCI_DN(dn)->eeh_check_count = 0;
261 __eeh_clear_slot (dn->child, mode_flag);
262 spin_unlock_irqrestore(&confirm_error_lock, flags);
266 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
268 * @dev pci device, if known
270 * Check for an EEH failure for the given device node. Call this
271 * routine if the result of a read was all 0xff's and you want to
272 * find out if this is due to an EEH slot freeze. This routine
273 * will query firmware for the EEH status.
275 * Returns 0 if there has not been an EEH error; otherwise returns
276 * a non-zero value and queues up a slot isolation event notification.
278 * It is safe to call this routine in an interrupt context.
280 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
286 enum pci_channel_state state;
289 __get_cpu_var(total_mmio_ffs)++;
291 if (!eeh_subsystem_enabled)
295 __get_cpu_var(no_dn)++;
300 /* Access to IO BARs might get this far and still not want checking. */
301 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
302 pdn->eeh_mode & EEH_MODE_NOCHECK) {
303 __get_cpu_var(ignored_check)++;
305 printk ("EEH:ignored check (%x) for %s %s\n",
306 pdn->eeh_mode, pci_name (dev), dn->full_name);
311 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
312 __get_cpu_var(no_cfg_addr)++;
316 /* If we already have a pending isolation event for this
317 * slot, we know it's bad already, we don't need to check.
318 * Do this checking under a lock; as multiple PCI devices
319 * in one slot might report errors simultaneously, and we
320 * only want one error recovery routine running.
322 spin_lock_irqsave(&confirm_error_lock, flags);
324 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
325 pdn->eeh_check_count ++;
326 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
327 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
328 pdn->eeh_check_count);
331 /* re-read the slot reset state */
332 if (read_slot_reset_state(pdn, rets) != 0)
333 rets[0] = -1; /* reset state unknown */
335 /* If we are here, then we hit an infinite loop. Stop. */
336 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
342 * Now test for an EEH failure. This is VERY expensive.
343 * Note that the eeh_config_addr may be a parent device
344 * in the case of a device behind a bridge, or it may be
345 * function zero of a multi-function device.
346 * In any case they must share a common PHB.
348 ret = read_slot_reset_state(pdn, rets);
350 /* If the call to firmware failed, punt */
352 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
354 __get_cpu_var(false_positives)++;
359 /* If EEH is not supported on this device, punt. */
361 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
363 __get_cpu_var(false_positives)++;
368 /* If not the kind of error we know about, punt. */
369 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
370 __get_cpu_var(false_positives)++;
375 /* Note that config-io to empty slots may fail;
376 * we recognize empty because they don't have children. */
377 if ((rets[0] == 5) && (dn->child == NULL)) {
378 __get_cpu_var(false_positives)++;
383 __get_cpu_var(slot_resets)++;
385 /* Avoid repeated reports of this failure, including problems
386 * with other functions on this device, and functions under
388 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
389 spin_unlock_irqrestore(&confirm_error_lock, flags);
391 state = pci_channel_io_normal;
392 if ((rets[0] == 2) || (rets[0] == 4))
393 state = pci_channel_io_frozen;
395 state = pci_channel_io_perm_failure;
396 eeh_send_failure_event (dn, dev, state, rets[2]);
398 /* Most EEH events are due to device driver bugs. Having
399 * a stack trace will help the device-driver authors figure
400 * out what happened. So print that out. */
401 if (rets[0] != 5) dump_stack();
405 spin_unlock_irqrestore(&confirm_error_lock, flags);
409 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
412 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
413 * @token i/o token, should be address in the form 0xA....
414 * @val value, should be all 1's (XXX why do we need this arg??)
416 * Check for an EEH failure at the given token address. Call this
417 * routine if the result of a read was all 0xff's and you want to
418 * find out if this is due to an EEH slot freeze event. This routine
419 * will query firmware for the EEH status.
421 * Note this routine is safe to call in an interrupt context.
423 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
427 struct device_node *dn;
429 /* Finding the phys addr + pci device; this is pretty quick. */
430 addr = eeh_token_to_phys((unsigned long __force) token);
431 dev = pci_get_device_by_addr(addr);
433 __get_cpu_var(no_device)++;
437 dn = pci_device_to_OF_node(dev);
438 eeh_dn_check_failure (dn, dev);
444 EXPORT_SYMBOL(eeh_check_failure);
446 /* ------------------------------------------------------------- */
447 /* The code below deals with error recovery */
449 /** Return negative value if a permanent error, else return
450 * a number of milliseconds to wait until the PCI slot is
454 eeh_slot_availability(struct pci_dn *pdn)
459 rc = read_slot_reset_state(pdn, rets);
463 if (rets[1] == 0) return -1; /* EEH is not supported */
464 if (rets[0] == 0) return 0; /* Oll Korrect */
466 if (rets[2] == 0) return -1; /* permanently unavailable */
467 return rets[2]; /* number of millisecs to wait */
472 printk (KERN_ERR "EEH: Slot unavailable: rc=%d, rets=%d %d %d\n",
473 rc, rets[0], rets[1], rets[2]);
477 /** rtas_pci_slot_reset raises/lowers the pci #RST line
478 * state: 1/0 to raise/lower the #RST
480 * Clear the EEH-frozen condition on a slot. This routine
481 * asserts the PCI #RST line if the 'state' argument is '1',
482 * and drops the #RST line if 'state is '0'. This routine is
483 * safe to call in an interrupt context.
488 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
496 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
497 pdn->node->full_name);
501 /* Use PE configuration address, if present */
502 config_addr = pdn->eeh_config_addr;
503 if (pdn->eeh_pe_config_addr)
504 config_addr = pdn->eeh_pe_config_addr;
506 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
508 BUID_HI(pdn->phb->buid),
509 BUID_LO(pdn->phb->buid),
512 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
513 rc, state, pdn->node->full_name);
518 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
519 * dn -- device node to be reset.
521 * Return 0 if success, else a non-zero value.
525 rtas_set_slot_reset(struct pci_dn *pdn)
529 rtas_pci_slot_reset (pdn, 1);
531 /* The PCI bus requires that the reset be held high for at least
532 * a 100 milliseconds. We wait a bit longer 'just in case'. */
534 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
535 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
537 /* We might get hit with another EEH freeze as soon as the
538 * pci slot reset line is dropped. Make sure we don't miss
539 * these, and clear the flag now. */
540 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
542 rtas_pci_slot_reset (pdn, 0);
544 /* After a PCI slot has been reset, the PCI Express spec requires
545 * a 1.5 second idle time for the bus to stabilize, before starting
547 #define PCI_BUS_SETTLE_TIME_MSEC 1800
548 msleep (PCI_BUS_SETTLE_TIME_MSEC);
550 /* Now double check with the firmware to make sure the device is
551 * ready to be used; if not, wait for recovery. */
552 for (i=0; i<10; i++) {
553 rc = eeh_slot_availability (pdn);
555 printk (KERN_ERR "EEH: failed (%d) to reset slot %s\n", rc, pdn->node->full_name);
564 rc = eeh_slot_availability (pdn);
566 printk (KERN_ERR "EEH: timeout resetting slot %s\n", pdn->node->full_name);
571 /* ------------------------------------------------------- */
572 /** Save and restore of PCI BARs
574 * Although firmware will set up BARs during boot, it doesn't
575 * set up device BAR's after a device reset, although it will,
576 * if requested, set up bridge configuration. Thus, we need to
577 * configure the PCI devices ourselves.
581 * __restore_bars - Restore the Base Address Registers
582 * Loads the PCI configuration space base address registers,
583 * the expansion ROM base address, the latency timer, and etc.
584 * from the saved values in the device node.
586 static inline void __restore_bars (struct pci_dn *pdn)
590 if (NULL==pdn->phb) return;
591 for (i=4; i<10; i++) {
592 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
595 /* 12 == Expansion ROM Address */
596 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
598 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
599 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
601 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
602 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
604 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
605 SAVED_BYTE(PCI_LATENCY_TIMER));
607 /* max latency, min grant, interrupt pin and line */
608 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
612 * eeh_restore_bars - restore the PCI config space info
614 * This routine performs a recursive walk to the children
615 * of this device as well.
617 void eeh_restore_bars(struct pci_dn *pdn)
619 struct device_node *dn;
623 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && (!pdn->eeh_is_bridge))
624 __restore_bars (pdn);
626 dn = pdn->node->child;
628 eeh_restore_bars (PCI_DN(dn));
634 * eeh_save_bars - save device bars
636 * Save the values of the device bars. Unlike the restore
637 * routine, this routine is *not* recursive. This is because
638 * PCI devices are added individuallly; but, for the restore,
639 * an entire slot is reset at a time.
641 void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
648 for (i = 0; i < 16; i++)
649 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
651 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
652 pdn->eeh_is_bridge = 1;
656 rtas_configure_bridge(struct pci_dn *pdn)
661 /* Use PE configuration address, if present */
662 config_addr = pdn->eeh_config_addr;
663 if (pdn->eeh_pe_config_addr)
664 config_addr = pdn->eeh_pe_config_addr;
666 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
668 BUID_HI(pdn->phb->buid),
669 BUID_LO(pdn->phb->buid));
671 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
672 rc, pdn->node->full_name);
676 /* ------------------------------------------------------------- */
677 /* The code below deals with enabling EEH for devices during the
678 * early boot sequence. EEH must be enabled before any PCI probing
684 struct eeh_early_enable_info {
685 unsigned int buid_hi;
686 unsigned int buid_lo;
689 /* Enable eeh for the given device node. */
690 static void *early_enable_eeh(struct device_node *dn, void *data)
692 struct eeh_early_enable_info *info = data;
694 char *status = get_property(dn, "status", NULL);
695 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
696 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
697 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
700 struct pci_dn *pdn = PCI_DN(dn);
703 pdn->eeh_check_count = 0;
704 pdn->eeh_freeze_count = 0;
706 if (status && strcmp(status, "ok") != 0)
707 return NULL; /* ignore devices with bad status */
709 /* Ignore bad nodes. */
710 if (!class_code || !vendor_id || !device_id)
713 /* There is nothing to check on PCI to ISA bridges */
714 if (dn->type && !strcmp(dn->type, "isa")) {
715 pdn->eeh_mode |= EEH_MODE_NOCHECK;
720 * Now decide if we are going to "Disable" EEH checking
721 * for this device. We still run with the EEH hardware active,
722 * but we won't be checking for ff's. This means a driver
723 * could return bad data (very bad!), an interrupt handler could
724 * hang waiting on status bits that won't change, etc.
725 * But there are a few cases like display devices that make sense.
727 enable = 1; /* i.e. we will do checking */
729 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
734 pdn->eeh_mode |= EEH_MODE_NOCHECK;
736 /* Ok... see if this device supports EEH. Some do, some don't,
737 * and the only way to find out is to check each and every one. */
738 regs = (u32 *)get_property(dn, "reg", NULL);
740 /* First register entry is addr (00BBSS00) */
741 /* Try to enable eeh */
742 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
743 regs[0], info->buid_hi, info->buid_lo,
747 eeh_subsystem_enabled = 1;
748 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
749 pdn->eeh_config_addr = regs[0];
751 /* If the newer, better, ibm,get-config-addr-info is supported,
752 * then use that instead. */
753 pdn->eeh_pe_config_addr = 0;
754 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
755 unsigned int rets[2];
756 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
757 pdn->eeh_config_addr,
758 info->buid_hi, info->buid_lo,
761 pdn->eeh_pe_config_addr = rets[0];
764 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
765 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
769 /* This device doesn't support EEH, but it may have an
770 * EEH parent, in which case we mark it as supported. */
771 if (dn->parent && PCI_DN(dn->parent)
772 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
773 /* Parent supports EEH. */
774 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
775 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
780 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
788 * Initialize EEH by trying to enable it for all of the adapters in the system.
789 * As a side effect we can determine here if eeh is supported at all.
790 * Note that we leave EEH on so failed config cycles won't cause a machine
791 * check. If a user turns off EEH for a particular adapter they are really
792 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
793 * grant access to a slot if EEH isn't enabled, and so we always enable
794 * EEH for all slots/all devices.
796 * The eeh-force-off option disables EEH checking globally, for all slots.
797 * Even if force-off is set, the EEH hardware is still enabled, so that
798 * newer systems can boot.
800 void __init eeh_init(void)
802 struct device_node *phb, *np;
803 struct eeh_early_enable_info info;
805 spin_lock_init(&confirm_error_lock);
806 spin_lock_init(&slot_errbuf_lock);
808 np = of_find_node_by_path("/rtas");
812 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
813 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
814 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
815 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
816 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
817 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
818 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
820 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
823 eeh_error_buf_size = rtas_token("rtas-error-log-max");
824 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
825 eeh_error_buf_size = 1024;
827 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
828 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
829 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
830 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
833 /* Enable EEH for all adapters. Note that eeh requires buid's */
834 for (phb = of_find_node_by_name(NULL, "pci"); phb;
835 phb = of_find_node_by_name(phb, "pci")) {
838 buid = get_phb_buid(phb);
839 if (buid == 0 || PCI_DN(phb) == NULL)
842 info.buid_lo = BUID_LO(buid);
843 info.buid_hi = BUID_HI(buid);
844 traverse_pci_devices(phb, early_enable_eeh, &info);
847 if (eeh_subsystem_enabled)
848 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
850 printk(KERN_WARNING "EEH: No capable adapters found\n");
854 * eeh_add_device_early - enable EEH for the indicated device_node
855 * @dn: device node for which to set up EEH
857 * This routine must be used to perform EEH initialization for PCI
858 * devices that were added after system boot (e.g. hotplug, dlpar).
859 * This routine must be called before any i/o is performed to the
860 * adapter (inluding any config-space i/o).
861 * Whether this actually enables EEH or not for this device depends
862 * on the CEC architecture, type of the device, on earlier boot
863 * command-line arguments & etc.
865 void eeh_add_device_early(struct device_node *dn)
867 struct pci_controller *phb;
868 struct eeh_early_enable_info info;
870 if (!dn || !PCI_DN(dn))
872 phb = PCI_DN(dn)->phb;
874 /* USB Bus children of PCI devices will not have BUID's */
875 if (NULL == phb || 0 == phb->buid)
878 info.buid_hi = BUID_HI(phb->buid);
879 info.buid_lo = BUID_LO(phb->buid);
880 early_enable_eeh(dn, &info);
882 EXPORT_SYMBOL_GPL(eeh_add_device_early);
884 void eeh_add_device_tree_early(struct device_node *dn)
886 struct device_node *sib;
887 for (sib = dn->child; sib; sib = sib->sibling)
888 eeh_add_device_tree_early(sib);
889 eeh_add_device_early(dn);
891 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
894 * eeh_add_device_late - perform EEH initialization for the indicated pci device
895 * @dev: pci device for which to set up EEH
897 * This routine must be used to complete EEH initialization for PCI
898 * devices that were added after system boot (e.g. hotplug, dlpar).
900 void eeh_add_device_late(struct pci_dev *dev)
902 struct device_node *dn;
905 if (!dev || !eeh_subsystem_enabled)
909 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
913 dn = pci_device_to_OF_node(dev);
917 pci_addr_cache_insert_device (dev);
918 eeh_save_bars(dev, pdn);
920 EXPORT_SYMBOL_GPL(eeh_add_device_late);
923 * eeh_remove_device - undo EEH setup for the indicated pci device
924 * @dev: pci device to be removed
926 * This routine should be when a device is removed from a running
927 * system (e.g. by hotplug or dlpar).
929 void eeh_remove_device(struct pci_dev *dev)
931 struct device_node *dn;
932 if (!dev || !eeh_subsystem_enabled)
935 /* Unregister the device with the EEH/PCI address search system */
937 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
939 pci_addr_cache_remove_device(dev);
941 dn = pci_device_to_OF_node(dev);
942 PCI_DN(dn)->pcidev = NULL;
945 EXPORT_SYMBOL_GPL(eeh_remove_device);
947 void eeh_remove_bus_device(struct pci_dev *dev)
949 eeh_remove_device(dev);
950 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
951 struct pci_bus *bus = dev->subordinate;
952 struct list_head *ln;
955 for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
956 struct pci_dev *pdev = pci_dev_b(ln);
958 eeh_remove_bus_device(pdev);
962 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
964 static int proc_eeh_show(struct seq_file *m, void *v)
967 unsigned long ffs = 0, positives = 0, failures = 0;
968 unsigned long resets = 0;
969 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
972 ffs += per_cpu(total_mmio_ffs, cpu);
973 positives += per_cpu(false_positives, cpu);
974 failures += per_cpu(ignored_failures, cpu);
975 resets += per_cpu(slot_resets, cpu);
976 no_dev += per_cpu(no_device, cpu);
977 no_dn += per_cpu(no_dn, cpu);
978 no_cfg += per_cpu(no_cfg_addr, cpu);
979 no_check += per_cpu(ignored_check, cpu);
982 if (0 == eeh_subsystem_enabled) {
983 seq_printf(m, "EEH Subsystem is globally disabled\n");
984 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
986 seq_printf(m, "EEH Subsystem is enabled\n");
989 "no device node=%ld\n"
990 "no config address=%ld\n"
991 "check not wanted=%ld\n"
992 "eeh_total_mmio_ffs=%ld\n"
993 "eeh_false_positives=%ld\n"
994 "eeh_ignored_failures=%ld\n"
995 "eeh_slot_resets=%ld\n",
996 no_dev, no_dn, no_cfg, no_check,
997 ffs, positives, failures, resets);
1003 static int proc_eeh_open(struct inode *inode, struct file *file)
1005 return single_open(file, proc_eeh_show, NULL);
1008 static struct file_operations proc_eeh_operations = {
1009 .open = proc_eeh_open,
1011 .llseek = seq_lseek,
1012 .release = single_release,
1015 static int __init eeh_init_proc(void)
1017 struct proc_dir_entry *e;
1019 if (platform_is_pseries()) {
1020 e = create_proc_entry("ppc64/eeh", 0, NULL);
1022 e->proc_fops = &proc_eeh_operations;
1027 __initcall(eeh_init_proc);