]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/kernel/smp.c
[SPARC64]: Kill sun4v_register_fault_status() on SMP.
[linux-2.6-omap-h63xx.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!!  --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
52
53 void smp_info(struct seq_file *m)
54 {
55         int i;
56         
57         seq_printf(m, "State:\n");
58         for (i = 0; i < NR_CPUS; i++) {
59                 if (cpu_online(i))
60                         seq_printf(m,
61                                    "CPU%d:\t\tonline\n", i);
62         }
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67         int i;
68         
69         for (i = 0; i < NR_CPUS; i++)
70                 if (cpu_online(i))
71                         seq_printf(m,
72                                    "Cpu%dBogo\t: %lu.%02lu\n"
73                                    "Cpu%dClkTck\t: %016lx\n",
74                                    i, cpu_data(i).udelay_val / (500000/HZ),
75                                    (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76                                    i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81         int cpu_node;
82
83         /* multiplier and counter set by
84            smp_setup_percpu_timer()  */
85         cpu_data(id).udelay_val                 = loops_per_jiffy;
86
87         cpu_find_by_mid(id, &cpu_node);
88         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89                                                      "clock-frequency", 0);
90
91         cpu_data(id).idle_volume                = 1;
92
93         cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
94                                                       16 * 1024);
95         cpu_data(id).dcache_line_size =
96                 prom_getintdefault(cpu_node, "dcache-line-size", 32);
97         cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
98                                                       16 * 1024);
99         cpu_data(id).icache_line_size =
100                 prom_getintdefault(cpu_node, "icache-line-size", 32);
101         cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
102                                                       4 * 1024 * 1024);
103         cpu_data(id).ecache_line_size =
104                 prom_getintdefault(cpu_node, "ecache-line-size", 64);
105         printk("CPU[%d]: Caches "
106                "D[sz(%d):line_sz(%d)] "
107                "I[sz(%d):line_sz(%d)] "
108                "E[sz(%d):line_sz(%d)]\n",
109                id,
110                cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
111                cpu_data(id).icache_size, cpu_data(id).icache_line_size,
112                cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
113 }
114
115 static void smp_setup_percpu_timer(void);
116
117 static volatile unsigned long callin_flag = 0;
118
119 void __init smp_callin(void)
120 {
121         int cpuid = hard_smp_processor_id();
122
123         __local_per_cpu_offset = __per_cpu_offset(cpuid);
124
125         if (tlb_type == hypervisor)
126                 sun4v_ktsb_register();
127
128         __flush_tlb_all();
129
130         smp_setup_percpu_timer();
131
132         if (cheetah_pcache_forced_on)
133                 cheetah_enable_pcache();
134
135         local_irq_enable();
136
137         calibrate_delay();
138         smp_store_cpu_info(cpuid);
139         callin_flag = 1;
140         __asm__ __volatile__("membar #Sync\n\t"
141                              "flush  %%g6" : : : "memory");
142
143         /* Clear this or we will die instantly when we
144          * schedule back to this idler...
145          */
146         current_thread_info()->new_child = 0;
147
148         /* Attach to the address space of init_task. */
149         atomic_inc(&init_mm.mm_count);
150         current->active_mm = &init_mm;
151
152         while (!cpu_isset(cpuid, smp_commenced_mask))
153                 rmb();
154
155         cpu_set(cpuid, cpu_online_map);
156
157         /* idle thread is expected to have preempt disabled */
158         preempt_disable();
159 }
160
161 void cpu_panic(void)
162 {
163         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
164         panic("SMP bolixed\n");
165 }
166
167 static unsigned long current_tick_offset __read_mostly;
168
169 /* This tick register synchronization scheme is taken entirely from
170  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
171  *
172  * The only change I've made is to rework it so that the master
173  * initiates the synchonization instead of the slave. -DaveM
174  */
175
176 #define MASTER  0
177 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
178
179 #define NUM_ROUNDS      64      /* magic value */
180 #define NUM_ITERS       5       /* likewise */
181
182 static DEFINE_SPINLOCK(itc_sync_lock);
183 static unsigned long go[SLAVE + 1];
184
185 #define DEBUG_TICK_SYNC 0
186
187 static inline long get_delta (long *rt, long *master)
188 {
189         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
190         unsigned long tcenter, t0, t1, tm;
191         unsigned long i;
192
193         for (i = 0; i < NUM_ITERS; i++) {
194                 t0 = tick_ops->get_tick();
195                 go[MASTER] = 1;
196                 membar_storeload();
197                 while (!(tm = go[SLAVE]))
198                         rmb();
199                 go[SLAVE] = 0;
200                 wmb();
201                 t1 = tick_ops->get_tick();
202
203                 if (t1 - t0 < best_t1 - best_t0)
204                         best_t0 = t0, best_t1 = t1, best_tm = tm;
205         }
206
207         *rt = best_t1 - best_t0;
208         *master = best_tm - best_t0;
209
210         /* average best_t0 and best_t1 without overflow: */
211         tcenter = (best_t0/2 + best_t1/2);
212         if (best_t0 % 2 + best_t1 % 2 == 2)
213                 tcenter++;
214         return tcenter - best_tm;
215 }
216
217 void smp_synchronize_tick_client(void)
218 {
219         long i, delta, adj, adjust_latency = 0, done = 0;
220         unsigned long flags, rt, master_time_stamp, bound;
221 #if DEBUG_TICK_SYNC
222         struct {
223                 long rt;        /* roundtrip time */
224                 long master;    /* master's timestamp */
225                 long diff;      /* difference between midpoint and master's timestamp */
226                 long lat;       /* estimate of itc adjustment latency */
227         } t[NUM_ROUNDS];
228 #endif
229
230         go[MASTER] = 1;
231
232         while (go[MASTER])
233                 rmb();
234
235         local_irq_save(flags);
236         {
237                 for (i = 0; i < NUM_ROUNDS; i++) {
238                         delta = get_delta(&rt, &master_time_stamp);
239                         if (delta == 0) {
240                                 done = 1;       /* let's lock on to this... */
241                                 bound = rt;
242                         }
243
244                         if (!done) {
245                                 if (i > 0) {
246                                         adjust_latency += -delta;
247                                         adj = -delta + adjust_latency/4;
248                                 } else
249                                         adj = -delta;
250
251                                 tick_ops->add_tick(adj, current_tick_offset);
252                         }
253 #if DEBUG_TICK_SYNC
254                         t[i].rt = rt;
255                         t[i].master = master_time_stamp;
256                         t[i].diff = delta;
257                         t[i].lat = adjust_latency/4;
258 #endif
259                 }
260         }
261         local_irq_restore(flags);
262
263 #if DEBUG_TICK_SYNC
264         for (i = 0; i < NUM_ROUNDS; i++)
265                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
266                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
267 #endif
268
269         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
270                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
271 }
272
273 static void smp_start_sync_tick_client(int cpu);
274
275 static void smp_synchronize_one_tick(int cpu)
276 {
277         unsigned long flags, i;
278
279         go[MASTER] = 0;
280
281         smp_start_sync_tick_client(cpu);
282
283         /* wait for client to be ready */
284         while (!go[MASTER])
285                 rmb();
286
287         /* now let the client proceed into his loop */
288         go[MASTER] = 0;
289         membar_storeload();
290
291         spin_lock_irqsave(&itc_sync_lock, flags);
292         {
293                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
294                         while (!go[MASTER])
295                                 rmb();
296                         go[MASTER] = 0;
297                         wmb();
298                         go[SLAVE] = tick_ops->get_tick();
299                         membar_storeload();
300                 }
301         }
302         spin_unlock_irqrestore(&itc_sync_lock, flags);
303 }
304
305 extern unsigned long sparc64_cpu_startup;
306
307 /* The OBP cpu startup callback truncates the 3rd arg cookie to
308  * 32-bits (I think) so to be safe we have it read the pointer
309  * contained here so we work on >4GB machines. -DaveM
310  */
311 static struct thread_info *cpu_new_thread = NULL;
312
313 static int __devinit smp_boot_one_cpu(unsigned int cpu)
314 {
315         unsigned long entry =
316                 (unsigned long)(&sparc64_cpu_startup);
317         unsigned long cookie =
318                 (unsigned long)(&cpu_new_thread);
319         struct task_struct *p;
320         int timeout, ret, cpu_node;
321
322         p = fork_idle(cpu);
323         callin_flag = 0;
324         cpu_new_thread = task_thread_info(p);
325         cpu_set(cpu, cpu_callout_map);
326
327         cpu_find_by_mid(cpu, &cpu_node);
328         prom_startcpu(cpu_node, entry, cookie);
329
330         for (timeout = 0; timeout < 5000000; timeout++) {
331                 if (callin_flag)
332                         break;
333                 udelay(100);
334         }
335         if (callin_flag) {
336                 ret = 0;
337         } else {
338                 printk("Processor %d is stuck.\n", cpu);
339                 cpu_clear(cpu, cpu_callout_map);
340                 ret = -ENODEV;
341         }
342         cpu_new_thread = NULL;
343
344         return ret;
345 }
346
347 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
348 {
349         u64 result, target;
350         int stuck, tmp;
351
352         if (this_is_starfire) {
353                 /* map to real upaid */
354                 cpu = (((cpu & 0x3c) << 1) |
355                         ((cpu & 0x40) >> 4) |
356                         (cpu & 0x3));
357         }
358
359         target = (cpu << 14) | 0x70;
360 again:
361         /* Ok, this is the real Spitfire Errata #54.
362          * One must read back from a UDB internal register
363          * after writes to the UDB interrupt dispatch, but
364          * before the membar Sync for that write.
365          * So we use the high UDB control register (ASI 0x7f,
366          * ADDR 0x20) for the dummy read. -DaveM
367          */
368         tmp = 0x40;
369         __asm__ __volatile__(
370         "wrpr   %1, %2, %%pstate\n\t"
371         "stxa   %4, [%0] %3\n\t"
372         "stxa   %5, [%0+%8] %3\n\t"
373         "add    %0, %8, %0\n\t"
374         "stxa   %6, [%0+%8] %3\n\t"
375         "membar #Sync\n\t"
376         "stxa   %%g0, [%7] %3\n\t"
377         "membar #Sync\n\t"
378         "mov    0x20, %%g1\n\t"
379         "ldxa   [%%g1] 0x7f, %%g0\n\t"
380         "membar #Sync"
381         : "=r" (tmp)
382         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
383           "r" (data0), "r" (data1), "r" (data2), "r" (target),
384           "r" (0x10), "0" (tmp)
385         : "g1");
386
387         /* NOTE: PSTATE_IE is still clear. */
388         stuck = 100000;
389         do {
390                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
391                         : "=r" (result)
392                         : "i" (ASI_INTR_DISPATCH_STAT));
393                 if (result == 0) {
394                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
395                                              : : "r" (pstate));
396                         return;
397                 }
398                 stuck -= 1;
399                 if (stuck == 0)
400                         break;
401         } while (result & 0x1);
402         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
403                              : : "r" (pstate));
404         if (stuck == 0) {
405                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
406                        smp_processor_id(), result);
407         } else {
408                 udelay(2);
409                 goto again;
410         }
411 }
412
413 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
414 {
415         u64 pstate;
416         int i;
417
418         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
419         for_each_cpu_mask(i, mask)
420                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
421 }
422
423 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
424  * packet, but we have no use for that.  However we do take advantage of
425  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
426  */
427 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
428 {
429         u64 pstate, ver;
430         int nack_busy_id, is_jbus;
431
432         if (cpus_empty(mask))
433                 return;
434
435         /* Unfortunately, someone at Sun had the brilliant idea to make the
436          * busy/nack fields hard-coded by ITID number for this Ultra-III
437          * derivative processor.
438          */
439         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
440         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
441                    (ver >> 32) == __SERRANO_ID);
442
443         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
444
445 retry:
446         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
447                              : : "r" (pstate), "i" (PSTATE_IE));
448
449         /* Setup the dispatch data registers. */
450         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
451                              "stxa      %1, [%4] %6\n\t"
452                              "stxa      %2, [%5] %6\n\t"
453                              "membar    #Sync\n\t"
454                              : /* no outputs */
455                              : "r" (data0), "r" (data1), "r" (data2),
456                                "r" (0x40), "r" (0x50), "r" (0x60),
457                                "i" (ASI_INTR_W));
458
459         nack_busy_id = 0;
460         {
461                 int i;
462
463                 for_each_cpu_mask(i, mask) {
464                         u64 target = (i << 14) | 0x70;
465
466                         if (!is_jbus)
467                                 target |= (nack_busy_id << 24);
468                         __asm__ __volatile__(
469                                 "stxa   %%g0, [%0] %1\n\t"
470                                 "membar #Sync\n\t"
471                                 : /* no outputs */
472                                 : "r" (target), "i" (ASI_INTR_W));
473                         nack_busy_id++;
474                 }
475         }
476
477         /* Now, poll for completion. */
478         {
479                 u64 dispatch_stat;
480                 long stuck;
481
482                 stuck = 100000 * nack_busy_id;
483                 do {
484                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
485                                              : "=r" (dispatch_stat)
486                                              : "i" (ASI_INTR_DISPATCH_STAT));
487                         if (dispatch_stat == 0UL) {
488                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
489                                                      : : "r" (pstate));
490                                 return;
491                         }
492                         if (!--stuck)
493                                 break;
494                 } while (dispatch_stat & 0x5555555555555555UL);
495
496                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
497                                      : : "r" (pstate));
498
499                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
500                         /* Busy bits will not clear, continue instead
501                          * of freezing up on this cpu.
502                          */
503                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
504                                smp_processor_id(), dispatch_stat);
505                 } else {
506                         int i, this_busy_nack = 0;
507
508                         /* Delay some random time with interrupts enabled
509                          * to prevent deadlock.
510                          */
511                         udelay(2 * nack_busy_id);
512
513                         /* Clear out the mask bits for cpus which did not
514                          * NACK us.
515                          */
516                         for_each_cpu_mask(i, mask) {
517                                 u64 check_mask;
518
519                                 if (is_jbus)
520                                         check_mask = (0x2UL << (2*i));
521                                 else
522                                         check_mask = (0x2UL <<
523                                                       this_busy_nack);
524                                 if ((dispatch_stat & check_mask) == 0)
525                                         cpu_clear(i, mask);
526                                 this_busy_nack += 2;
527                         }
528
529                         goto retry;
530                 }
531         }
532 }
533
534 #if 0
535 /* Multi-cpu list version.  */
536 static int init_cpu_list(u16 *list, cpumask_t mask)
537 {
538         int i, cnt;
539
540         cnt = 0;
541         for_each_cpu_mask(i, mask)
542                 list[cnt++] = i;
543
544         return cnt;
545 }
546
547 static int update_cpu_list(u16 *list, int orig_cnt, cpumask_t mask)
548 {
549         int i;
550
551         for (i = 0; i < orig_cnt; i++) {
552                 if (list[i] == 0xffff)
553                         cpu_clear(i, mask);
554         }
555
556         return init_cpu_list(list, mask);
557 }
558
559 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
560 {
561         int this_cpu = get_cpu();
562         struct trap_per_cpu *tb = &trap_block[this_cpu];
563         u64 *mondo = __va(tb->cpu_mondo_block_pa);
564         u16 *cpu_list = __va(tb->cpu_list_pa);
565         int cnt, retries;
566
567         mondo[0] = data0;
568         mondo[1] = data1;
569         mondo[2] = data2;
570         wmb();
571
572         retries = 0;
573         cnt = init_cpu_list(cpu_list, mask);
574         do {
575                 register unsigned long func __asm__("%o5");
576                 register unsigned long arg0 __asm__("%o0");
577                 register unsigned long arg1 __asm__("%o1");
578                 register unsigned long arg2 __asm__("%o2");
579
580                 func = HV_FAST_CPU_MONDO_SEND;
581                 arg0 = cnt;
582                 arg1 = tb->cpu_list_pa;
583                 arg2 = tb->cpu_mondo_block_pa;
584
585                 __asm__ __volatile__("ta        %8"
586                                      : "=&r" (func), "=&r" (arg0),
587                                        "=&r" (arg1), "=&r" (arg2)
588                                      : "0" (func), "1" (arg0),
589                                        "2" (arg1), "3" (arg2),
590                                        "i" (HV_FAST_TRAP)
591                                      : "memory");
592                 if (likely(arg0 == HV_EOK))
593                         break;
594
595                 if (unlikely(++retries > 100)) {
596                         printk("CPU[%d]: sun4v mondo error %lu\n",
597                                this_cpu, func);
598                         break;
599                 }
600
601                 cnt = update_cpu_list(cpu_list, cnt, mask);
602
603                 udelay(2 * cnt);
604         } while (1);
605
606         put_cpu();
607 }
608 #else
609 /* Single-cpu list version.  */
610 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
611 {
612         int this_cpu = get_cpu();
613         struct trap_per_cpu *tb = &trap_block[this_cpu];
614         u64 *mondo = __va(tb->cpu_mondo_block_pa);
615         u16 *cpu_list = __va(tb->cpu_list_pa);
616         int i;
617
618         mondo[0] = data0;
619         mondo[1] = data1;
620         mondo[2] = data2;
621         wmb();
622
623         for_each_cpu_mask(i, mask) {
624                 int retries = 0;
625
626                 do {
627                         register unsigned long func __asm__("%o5");
628                         register unsigned long arg0 __asm__("%o0");
629                         register unsigned long arg1 __asm__("%o1");
630                         register unsigned long arg2 __asm__("%o2");
631
632                         cpu_list[0] = i;
633                         func = HV_FAST_CPU_MONDO_SEND;
634                         arg0 = 1;
635                         arg1 = tb->cpu_list_pa;
636                         arg2 = tb->cpu_mondo_block_pa;
637
638                         __asm__ __volatile__("ta        %8"
639                                              : "=&r" (func), "=&r" (arg0),
640                                                "=&r" (arg1), "=&r" (arg2)
641                                              : "0" (func), "1" (arg0),
642                                                "2" (arg1), "3" (arg2),
643                                                "i" (HV_FAST_TRAP)
644                                              : "memory");
645                         if (likely(arg0 == HV_EOK))
646                                 break;
647
648                         if (unlikely(++retries > 100)) {
649                                 printk("CPU[%d]: sun4v mondo error %lu\n",
650                                        this_cpu, func);
651                                 break;
652                         }
653
654                         udelay(2 * i);
655                 } while (1);
656         }
657
658         put_cpu();
659 }
660 #endif
661
662 /* Send cross call to all processors mentioned in MASK
663  * except self.
664  */
665 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
666 {
667         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
668         int this_cpu = get_cpu();
669
670         cpus_and(mask, mask, cpu_online_map);
671         cpu_clear(this_cpu, mask);
672
673         if (tlb_type == spitfire)
674                 spitfire_xcall_deliver(data0, data1, data2, mask);
675         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
676                 cheetah_xcall_deliver(data0, data1, data2, mask);
677         else
678                 hypervisor_xcall_deliver(data0, data1, data2, mask);
679         /* NOTE: Caller runs local copy on master. */
680
681         put_cpu();
682 }
683
684 extern unsigned long xcall_sync_tick;
685
686 static void smp_start_sync_tick_client(int cpu)
687 {
688         cpumask_t mask = cpumask_of_cpu(cpu);
689
690         smp_cross_call_masked(&xcall_sync_tick,
691                               0, 0, 0, mask);
692 }
693
694 /* Send cross call to all processors except self. */
695 #define smp_cross_call(func, ctx, data1, data2) \
696         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
697
698 struct call_data_struct {
699         void (*func) (void *info);
700         void *info;
701         atomic_t finished;
702         int wait;
703 };
704
705 static DEFINE_SPINLOCK(call_lock);
706 static struct call_data_struct *call_data;
707
708 extern unsigned long xcall_call_function;
709
710 /*
711  * You must not call this function with disabled interrupts or from a
712  * hardware interrupt handler or from a bottom half handler.
713  */
714 static int smp_call_function_mask(void (*func)(void *info), void *info,
715                                   int nonatomic, int wait, cpumask_t mask)
716 {
717         struct call_data_struct data;
718         int cpus = cpus_weight(mask) - 1;
719         long timeout;
720
721         if (!cpus)
722                 return 0;
723
724         /* Can deadlock when called with interrupts disabled */
725         WARN_ON(irqs_disabled());
726
727         data.func = func;
728         data.info = info;
729         atomic_set(&data.finished, 0);
730         data.wait = wait;
731
732         spin_lock(&call_lock);
733
734         call_data = &data;
735
736         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
737
738         /* 
739          * Wait for other cpus to complete function or at
740          * least snap the call data.
741          */
742         timeout = 1000000;
743         while (atomic_read(&data.finished) != cpus) {
744                 if (--timeout <= 0)
745                         goto out_timeout;
746                 barrier();
747                 udelay(1);
748         }
749
750         spin_unlock(&call_lock);
751
752         return 0;
753
754 out_timeout:
755         spin_unlock(&call_lock);
756         printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
757                (long) num_online_cpus() - 1L,
758                (long) atomic_read(&data.finished));
759         return 0;
760 }
761
762 int smp_call_function(void (*func)(void *info), void *info,
763                       int nonatomic, int wait)
764 {
765         return smp_call_function_mask(func, info, nonatomic, wait,
766                                       cpu_online_map);
767 }
768
769 void smp_call_function_client(int irq, struct pt_regs *regs)
770 {
771         void (*func) (void *info) = call_data->func;
772         void *info = call_data->info;
773
774         clear_softint(1 << irq);
775         if (call_data->wait) {
776                 /* let initiator proceed only after completion */
777                 func(info);
778                 atomic_inc(&call_data->finished);
779         } else {
780                 /* let initiator proceed after getting data */
781                 atomic_inc(&call_data->finished);
782                 func(info);
783         }
784 }
785
786 static void tsb_sync(void *info)
787 {
788         struct mm_struct *mm = info;
789
790         if (current->active_mm == mm)
791                 tsb_context_switch(mm);
792 }
793
794 void smp_tsb_sync(struct mm_struct *mm)
795 {
796         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
797 }
798
799 extern unsigned long xcall_flush_tlb_mm;
800 extern unsigned long xcall_flush_tlb_pending;
801 extern unsigned long xcall_flush_tlb_kernel_range;
802 extern unsigned long xcall_report_regs;
803 extern unsigned long xcall_receive_signal;
804
805 #ifdef DCACHE_ALIASING_POSSIBLE
806 extern unsigned long xcall_flush_dcache_page_cheetah;
807 #endif
808 extern unsigned long xcall_flush_dcache_page_spitfire;
809
810 #ifdef CONFIG_DEBUG_DCFLUSH
811 extern atomic_t dcpage_flushes;
812 extern atomic_t dcpage_flushes_xcall;
813 #endif
814
815 static __inline__ void __local_flush_dcache_page(struct page *page)
816 {
817 #ifdef DCACHE_ALIASING_POSSIBLE
818         __flush_dcache_page(page_address(page),
819                             ((tlb_type == spitfire) &&
820                              page_mapping(page) != NULL));
821 #else
822         if (page_mapping(page) != NULL &&
823             tlb_type == spitfire)
824                 __flush_icache_page(__pa(page_address(page)));
825 #endif
826 }
827
828 void smp_flush_dcache_page_impl(struct page *page, int cpu)
829 {
830         cpumask_t mask = cpumask_of_cpu(cpu);
831         int this_cpu;
832
833         if (tlb_type == hypervisor)
834                 return;
835
836 #ifdef CONFIG_DEBUG_DCFLUSH
837         atomic_inc(&dcpage_flushes);
838 #endif
839
840         this_cpu = get_cpu();
841
842         if (cpu == this_cpu) {
843                 __local_flush_dcache_page(page);
844         } else if (cpu_online(cpu)) {
845                 void *pg_addr = page_address(page);
846                 u64 data0;
847
848                 if (tlb_type == spitfire) {
849                         data0 =
850                                 ((u64)&xcall_flush_dcache_page_spitfire);
851                         if (page_mapping(page) != NULL)
852                                 data0 |= ((u64)1 << 32);
853                         spitfire_xcall_deliver(data0,
854                                                __pa(pg_addr),
855                                                (u64) pg_addr,
856                                                mask);
857                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
858 #ifdef DCACHE_ALIASING_POSSIBLE
859                         data0 =
860                                 ((u64)&xcall_flush_dcache_page_cheetah);
861                         cheetah_xcall_deliver(data0,
862                                               __pa(pg_addr),
863                                               0, mask);
864 #endif
865                 }
866 #ifdef CONFIG_DEBUG_DCFLUSH
867                 atomic_inc(&dcpage_flushes_xcall);
868 #endif
869         }
870
871         put_cpu();
872 }
873
874 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
875 {
876         void *pg_addr = page_address(page);
877         cpumask_t mask = cpu_online_map;
878         u64 data0;
879         int this_cpu;
880
881         if (tlb_type == hypervisor)
882                 return;
883
884         this_cpu = get_cpu();
885
886         cpu_clear(this_cpu, mask);
887
888 #ifdef CONFIG_DEBUG_DCFLUSH
889         atomic_inc(&dcpage_flushes);
890 #endif
891         if (cpus_empty(mask))
892                 goto flush_self;
893         if (tlb_type == spitfire) {
894                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
895                 if (page_mapping(page) != NULL)
896                         data0 |= ((u64)1 << 32);
897                 spitfire_xcall_deliver(data0,
898                                        __pa(pg_addr),
899                                        (u64) pg_addr,
900                                        mask);
901         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
902 #ifdef DCACHE_ALIASING_POSSIBLE
903                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
904                 cheetah_xcall_deliver(data0,
905                                       __pa(pg_addr),
906                                       0, mask);
907 #endif
908         }
909 #ifdef CONFIG_DEBUG_DCFLUSH
910         atomic_inc(&dcpage_flushes_xcall);
911 #endif
912  flush_self:
913         __local_flush_dcache_page(page);
914
915         put_cpu();
916 }
917
918 void smp_receive_signal(int cpu)
919 {
920         cpumask_t mask = cpumask_of_cpu(cpu);
921
922         if (cpu_online(cpu)) {
923                 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
924
925                 if (tlb_type == spitfire)
926                         spitfire_xcall_deliver(data0, 0, 0, mask);
927                 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
928                         cheetah_xcall_deliver(data0, 0, 0, mask);
929                 else if (tlb_type == hypervisor)
930                         hypervisor_xcall_deliver(data0, 0, 0, mask);
931         }
932 }
933
934 void smp_receive_signal_client(int irq, struct pt_regs *regs)
935 {
936         /* Just return, rtrap takes care of the rest. */
937         clear_softint(1 << irq);
938 }
939
940 void smp_report_regs(void)
941 {
942         smp_cross_call(&xcall_report_regs, 0, 0, 0);
943 }
944
945 /* We know that the window frames of the user have been flushed
946  * to the stack before we get here because all callers of us
947  * are flush_tlb_*() routines, and these run after flush_cache_*()
948  * which performs the flushw.
949  *
950  * The SMP TLB coherency scheme we use works as follows:
951  *
952  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
953  *    space has (potentially) executed on, this is the heuristic
954  *    we use to avoid doing cross calls.
955  *
956  *    Also, for flushing from kswapd and also for clones, we
957  *    use cpu_vm_mask as the list of cpus to make run the TLB.
958  *
959  * 2) TLB context numbers are shared globally across all processors
960  *    in the system, this allows us to play several games to avoid
961  *    cross calls.
962  *
963  *    One invariant is that when a cpu switches to a process, and
964  *    that processes tsk->active_mm->cpu_vm_mask does not have the
965  *    current cpu's bit set, that tlb context is flushed locally.
966  *
967  *    If the address space is non-shared (ie. mm->count == 1) we avoid
968  *    cross calls when we want to flush the currently running process's
969  *    tlb state.  This is done by clearing all cpu bits except the current
970  *    processor's in current->active_mm->cpu_vm_mask and performing the
971  *    flush locally only.  This will force any subsequent cpus which run
972  *    this task to flush the context from the local tlb if the process
973  *    migrates to another cpu (again).
974  *
975  * 3) For shared address spaces (threads) and swapping we bite the
976  *    bullet for most cases and perform the cross call (but only to
977  *    the cpus listed in cpu_vm_mask).
978  *
979  *    The performance gain from "optimizing" away the cross call for threads is
980  *    questionable (in theory the big win for threads is the massive sharing of
981  *    address space state across processors).
982  */
983
984 /* This currently is only used by the hugetlb arch pre-fault
985  * hook on UltraSPARC-III+ and later when changing the pagesize
986  * bits of the context register for an address space.
987  */
988 void smp_flush_tlb_mm(struct mm_struct *mm)
989 {
990         u32 ctx = CTX_HWBITS(mm->context);
991         int cpu = get_cpu();
992
993         if (atomic_read(&mm->mm_users) == 1) {
994                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
995                 goto local_flush_and_out;
996         }
997
998         smp_cross_call_masked(&xcall_flush_tlb_mm,
999                               ctx, 0, 0,
1000                               mm->cpu_vm_mask);
1001
1002 local_flush_and_out:
1003         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1004
1005         put_cpu();
1006 }
1007
1008 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1009 {
1010         u32 ctx = CTX_HWBITS(mm->context);
1011         int cpu = get_cpu();
1012
1013         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1014                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1015         else
1016                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1017                                       ctx, nr, (unsigned long) vaddrs,
1018                                       mm->cpu_vm_mask);
1019
1020         __flush_tlb_pending(ctx, nr, vaddrs);
1021
1022         put_cpu();
1023 }
1024
1025 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1026 {
1027         start &= PAGE_MASK;
1028         end    = PAGE_ALIGN(end);
1029         if (start != end) {
1030                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1031                                0, start, end);
1032
1033                 __flush_tlb_kernel_range(start, end);
1034         }
1035 }
1036
1037 /* CPU capture. */
1038 /* #define CAPTURE_DEBUG */
1039 extern unsigned long xcall_capture;
1040
1041 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1042 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1043 static unsigned long penguins_are_doing_time;
1044
1045 void smp_capture(void)
1046 {
1047         int result = atomic_add_ret(1, &smp_capture_depth);
1048
1049         if (result == 1) {
1050                 int ncpus = num_online_cpus();
1051
1052 #ifdef CAPTURE_DEBUG
1053                 printk("CPU[%d]: Sending penguins to jail...",
1054                        smp_processor_id());
1055 #endif
1056                 penguins_are_doing_time = 1;
1057                 membar_storestore_loadstore();
1058                 atomic_inc(&smp_capture_registry);
1059                 smp_cross_call(&xcall_capture, 0, 0, 0);
1060                 while (atomic_read(&smp_capture_registry) != ncpus)
1061                         rmb();
1062 #ifdef CAPTURE_DEBUG
1063                 printk("done\n");
1064 #endif
1065         }
1066 }
1067
1068 void smp_release(void)
1069 {
1070         if (atomic_dec_and_test(&smp_capture_depth)) {
1071 #ifdef CAPTURE_DEBUG
1072                 printk("CPU[%d]: Giving pardon to "
1073                        "imprisoned penguins\n",
1074                        smp_processor_id());
1075 #endif
1076                 penguins_are_doing_time = 0;
1077                 membar_storeload_storestore();
1078                 atomic_dec(&smp_capture_registry);
1079         }
1080 }
1081
1082 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1083  * can service tlb flush xcalls...
1084  */
1085 extern void prom_world(int);
1086
1087 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1088 {
1089         clear_softint(1 << irq);
1090
1091         preempt_disable();
1092
1093         __asm__ __volatile__("flushw");
1094         prom_world(1);
1095         atomic_inc(&smp_capture_registry);
1096         membar_storeload_storestore();
1097         while (penguins_are_doing_time)
1098                 rmb();
1099         atomic_dec(&smp_capture_registry);
1100         prom_world(0);
1101
1102         preempt_enable();
1103 }
1104
1105 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
1106 #define prof_counter(__cpu)             cpu_data(__cpu).counter
1107
1108 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1109 {
1110         unsigned long compare, tick, pstate;
1111         int cpu = smp_processor_id();
1112         int user = user_mode(regs);
1113
1114         /*
1115          * Check for level 14 softint.
1116          */
1117         {
1118                 unsigned long tick_mask = tick_ops->softint_mask;
1119
1120                 if (!(get_softint() & tick_mask)) {
1121                         extern void handler_irq(int, struct pt_regs *);
1122
1123                         handler_irq(14, regs);
1124                         return;
1125                 }
1126                 clear_softint(tick_mask);
1127         }
1128
1129         do {
1130                 profile_tick(CPU_PROFILING, regs);
1131                 if (!--prof_counter(cpu)) {
1132                         irq_enter();
1133
1134                         if (cpu == boot_cpu_id) {
1135                                 kstat_this_cpu.irqs[0]++;
1136                                 timer_tick_interrupt(regs);
1137                         }
1138
1139                         update_process_times(user);
1140
1141                         irq_exit();
1142
1143                         prof_counter(cpu) = prof_multiplier(cpu);
1144                 }
1145
1146                 /* Guarantee that the following sequences execute
1147                  * uninterrupted.
1148                  */
1149                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1150                                      "wrpr      %0, %1, %%pstate"
1151                                      : "=r" (pstate)
1152                                      : "i" (PSTATE_IE));
1153
1154                 compare = tick_ops->add_compare(current_tick_offset);
1155                 tick = tick_ops->get_tick();
1156
1157                 /* Restore PSTATE_IE. */
1158                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1159                                      : /* no outputs */
1160                                      : "r" (pstate));
1161         } while (time_after_eq(tick, compare));
1162 }
1163
1164 static void __init smp_setup_percpu_timer(void)
1165 {
1166         int cpu = smp_processor_id();
1167         unsigned long pstate;
1168
1169         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1170
1171         /* Guarantee that the following sequences execute
1172          * uninterrupted.
1173          */
1174         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1175                              "wrpr      %0, %1, %%pstate"
1176                              : "=r" (pstate)
1177                              : "i" (PSTATE_IE));
1178
1179         tick_ops->init_tick(current_tick_offset);
1180
1181         /* Restore PSTATE_IE. */
1182         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1183                              : /* no outputs */
1184                              : "r" (pstate));
1185 }
1186
1187 void __init smp_tick_init(void)
1188 {
1189         boot_cpu_id = hard_smp_processor_id();
1190         current_tick_offset = timer_tick_offset;
1191
1192         cpu_set(boot_cpu_id, cpu_online_map);
1193         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1194 }
1195
1196 /* /proc/profile writes can call this, don't __init it please. */
1197 static DEFINE_SPINLOCK(prof_setup_lock);
1198
1199 int setup_profiling_timer(unsigned int multiplier)
1200 {
1201         unsigned long flags;
1202         int i;
1203
1204         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1205                 return -EINVAL;
1206
1207         spin_lock_irqsave(&prof_setup_lock, flags);
1208         for (i = 0; i < NR_CPUS; i++)
1209                 prof_multiplier(i) = multiplier;
1210         current_tick_offset = (timer_tick_offset / multiplier);
1211         spin_unlock_irqrestore(&prof_setup_lock, flags);
1212
1213         return 0;
1214 }
1215
1216 /* Constrain the number of cpus to max_cpus.  */
1217 void __init smp_prepare_cpus(unsigned int max_cpus)
1218 {
1219         if (num_possible_cpus() > max_cpus) {
1220                 int instance, mid;
1221
1222                 instance = 0;
1223                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1224                         if (mid != boot_cpu_id) {
1225                                 cpu_clear(mid, phys_cpu_present_map);
1226                                 if (num_possible_cpus() <= max_cpus)
1227                                         break;
1228                         }
1229                         instance++;
1230                 }
1231         }
1232
1233         smp_store_cpu_info(boot_cpu_id);
1234 }
1235
1236 /* Set this up early so that things like the scheduler can init
1237  * properly.  We use the same cpu mask for both the present and
1238  * possible cpu map.
1239  */
1240 void __init smp_setup_cpu_possible_map(void)
1241 {
1242         int instance, mid;
1243
1244         instance = 0;
1245         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1246                 if (mid < NR_CPUS)
1247                         cpu_set(mid, phys_cpu_present_map);
1248                 instance++;
1249         }
1250 }
1251
1252 void __devinit smp_prepare_boot_cpu(void)
1253 {
1254         int cpu = hard_smp_processor_id();
1255
1256         if (cpu >= NR_CPUS) {
1257                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1258                 prom_halt();
1259         }
1260
1261         current_thread_info()->cpu = cpu;
1262         __local_per_cpu_offset = __per_cpu_offset(cpu);
1263
1264         cpu_set(smp_processor_id(), cpu_online_map);
1265         cpu_set(smp_processor_id(), phys_cpu_present_map);
1266 }
1267
1268 int __devinit __cpu_up(unsigned int cpu)
1269 {
1270         int ret = smp_boot_one_cpu(cpu);
1271
1272         if (!ret) {
1273                 cpu_set(cpu, smp_commenced_mask);
1274                 while (!cpu_isset(cpu, cpu_online_map))
1275                         mb();
1276                 if (!cpu_isset(cpu, cpu_online_map)) {
1277                         ret = -ENODEV;
1278                 } else {
1279                         /* On SUN4V, writes to %tick and %stick are
1280                          * not allowed.
1281                          */
1282                         if (tlb_type != hypervisor)
1283                                 smp_synchronize_one_tick(cpu);
1284                 }
1285         }
1286         return ret;
1287 }
1288
1289 void __init smp_cpus_done(unsigned int max_cpus)
1290 {
1291         unsigned long bogosum = 0;
1292         int i;
1293
1294         for (i = 0; i < NR_CPUS; i++) {
1295                 if (cpu_online(i))
1296                         bogosum += cpu_data(i).udelay_val;
1297         }
1298         printk("Total of %ld processors activated "
1299                "(%lu.%02lu BogoMIPS).\n",
1300                (long) num_online_cpus(),
1301                bogosum/(500000/HZ),
1302                (bogosum/(5000/HZ))%100);
1303 }
1304
1305 void smp_send_reschedule(int cpu)
1306 {
1307         smp_receive_signal(cpu);
1308 }
1309
1310 /* This is a nop because we capture all other cpus
1311  * anyways when making the PROM active.
1312  */
1313 void smp_send_stop(void)
1314 {
1315 }
1316
1317 unsigned long __per_cpu_base __read_mostly;
1318 unsigned long __per_cpu_shift __read_mostly;
1319
1320 EXPORT_SYMBOL(__per_cpu_base);
1321 EXPORT_SYMBOL(__per_cpu_shift);
1322
1323 void __init setup_per_cpu_areas(void)
1324 {
1325         unsigned long goal, size, i;
1326         char *ptr;
1327
1328         /* Copy section for each CPU (we discard the original) */
1329         goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1330 #ifdef CONFIG_MODULES
1331         if (goal < PERCPU_ENOUGH_ROOM)
1332                 goal = PERCPU_ENOUGH_ROOM;
1333 #endif
1334         __per_cpu_shift = 0;
1335         for (size = 1UL; size < goal; size <<= 1UL)
1336                 __per_cpu_shift++;
1337
1338         ptr = alloc_bootmem(size * NR_CPUS);
1339
1340         __per_cpu_base = ptr - __per_cpu_start;
1341
1342         for (i = 0; i < NR_CPUS; i++, ptr += size)
1343                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1344 }