]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/kernel/smp.c
[SPARC64]: Add some hypervisor tlb_type checks.
[linux-2.6-omap-h63xx.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!!  --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
52
53 void smp_info(struct seq_file *m)
54 {
55         int i;
56         
57         seq_printf(m, "State:\n");
58         for (i = 0; i < NR_CPUS; i++) {
59                 if (cpu_online(i))
60                         seq_printf(m,
61                                    "CPU%d:\t\tonline\n", i);
62         }
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67         int i;
68         
69         for (i = 0; i < NR_CPUS; i++)
70                 if (cpu_online(i))
71                         seq_printf(m,
72                                    "Cpu%dBogo\t: %lu.%02lu\n"
73                                    "Cpu%dClkTck\t: %016lx\n",
74                                    i, cpu_data(i).udelay_val / (500000/HZ),
75                                    (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76                                    i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81         int cpu_node;
82
83         /* multiplier and counter set by
84            smp_setup_percpu_timer()  */
85         cpu_data(id).udelay_val                 = loops_per_jiffy;
86
87         cpu_find_by_mid(id, &cpu_node);
88         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89                                                      "clock-frequency", 0);
90
91         cpu_data(id).idle_volume                = 1;
92
93         cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
94                                                       16 * 1024);
95         cpu_data(id).dcache_line_size =
96                 prom_getintdefault(cpu_node, "dcache-line-size", 32);
97         cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
98                                                       16 * 1024);
99         cpu_data(id).icache_line_size =
100                 prom_getintdefault(cpu_node, "icache-line-size", 32);
101         cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
102                                                       4 * 1024 * 1024);
103         cpu_data(id).ecache_line_size =
104                 prom_getintdefault(cpu_node, "ecache-line-size", 64);
105         printk("CPU[%d]: Caches "
106                "D[sz(%d):line_sz(%d)] "
107                "I[sz(%d):line_sz(%d)] "
108                "E[sz(%d):line_sz(%d)]\n",
109                id,
110                cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
111                cpu_data(id).icache_size, cpu_data(id).icache_line_size,
112                cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
113 }
114
115 static void smp_setup_percpu_timer(void);
116
117 static volatile unsigned long callin_flag = 0;
118
119 void __init smp_callin(void)
120 {
121         int cpuid = hard_smp_processor_id();
122
123         __local_per_cpu_offset = __per_cpu_offset(cpuid);
124
125         __flush_tlb_all();
126
127         smp_setup_percpu_timer();
128
129         if (cheetah_pcache_forced_on)
130                 cheetah_enable_pcache();
131
132         local_irq_enable();
133
134         calibrate_delay();
135         smp_store_cpu_info(cpuid);
136         callin_flag = 1;
137         __asm__ __volatile__("membar #Sync\n\t"
138                              "flush  %%g6" : : : "memory");
139
140         /* Clear this or we will die instantly when we
141          * schedule back to this idler...
142          */
143         current_thread_info()->new_child = 0;
144
145         /* Attach to the address space of init_task. */
146         atomic_inc(&init_mm.mm_count);
147         current->active_mm = &init_mm;
148
149         while (!cpu_isset(cpuid, smp_commenced_mask))
150                 rmb();
151
152         cpu_set(cpuid, cpu_online_map);
153
154         /* idle thread is expected to have preempt disabled */
155         preempt_disable();
156 }
157
158 void cpu_panic(void)
159 {
160         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
161         panic("SMP bolixed\n");
162 }
163
164 static unsigned long current_tick_offset __read_mostly;
165
166 /* This tick register synchronization scheme is taken entirely from
167  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
168  *
169  * The only change I've made is to rework it so that the master
170  * initiates the synchonization instead of the slave. -DaveM
171  */
172
173 #define MASTER  0
174 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
175
176 #define NUM_ROUNDS      64      /* magic value */
177 #define NUM_ITERS       5       /* likewise */
178
179 static DEFINE_SPINLOCK(itc_sync_lock);
180 static unsigned long go[SLAVE + 1];
181
182 #define DEBUG_TICK_SYNC 0
183
184 static inline long get_delta (long *rt, long *master)
185 {
186         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
187         unsigned long tcenter, t0, t1, tm;
188         unsigned long i;
189
190         for (i = 0; i < NUM_ITERS; i++) {
191                 t0 = tick_ops->get_tick();
192                 go[MASTER] = 1;
193                 membar_storeload();
194                 while (!(tm = go[SLAVE]))
195                         rmb();
196                 go[SLAVE] = 0;
197                 wmb();
198                 t1 = tick_ops->get_tick();
199
200                 if (t1 - t0 < best_t1 - best_t0)
201                         best_t0 = t0, best_t1 = t1, best_tm = tm;
202         }
203
204         *rt = best_t1 - best_t0;
205         *master = best_tm - best_t0;
206
207         /* average best_t0 and best_t1 without overflow: */
208         tcenter = (best_t0/2 + best_t1/2);
209         if (best_t0 % 2 + best_t1 % 2 == 2)
210                 tcenter++;
211         return tcenter - best_tm;
212 }
213
214 void smp_synchronize_tick_client(void)
215 {
216         long i, delta, adj, adjust_latency = 0, done = 0;
217         unsigned long flags, rt, master_time_stamp, bound;
218 #if DEBUG_TICK_SYNC
219         struct {
220                 long rt;        /* roundtrip time */
221                 long master;    /* master's timestamp */
222                 long diff;      /* difference between midpoint and master's timestamp */
223                 long lat;       /* estimate of itc adjustment latency */
224         } t[NUM_ROUNDS];
225 #endif
226
227         go[MASTER] = 1;
228
229         while (go[MASTER])
230                 rmb();
231
232         local_irq_save(flags);
233         {
234                 for (i = 0; i < NUM_ROUNDS; i++) {
235                         delta = get_delta(&rt, &master_time_stamp);
236                         if (delta == 0) {
237                                 done = 1;       /* let's lock on to this... */
238                                 bound = rt;
239                         }
240
241                         if (!done) {
242                                 if (i > 0) {
243                                         adjust_latency += -delta;
244                                         adj = -delta + adjust_latency/4;
245                                 } else
246                                         adj = -delta;
247
248                                 tick_ops->add_tick(adj, current_tick_offset);
249                         }
250 #if DEBUG_TICK_SYNC
251                         t[i].rt = rt;
252                         t[i].master = master_time_stamp;
253                         t[i].diff = delta;
254                         t[i].lat = adjust_latency/4;
255 #endif
256                 }
257         }
258         local_irq_restore(flags);
259
260 #if DEBUG_TICK_SYNC
261         for (i = 0; i < NUM_ROUNDS; i++)
262                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
263                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
264 #endif
265
266         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
267                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
268 }
269
270 static void smp_start_sync_tick_client(int cpu);
271
272 static void smp_synchronize_one_tick(int cpu)
273 {
274         unsigned long flags, i;
275
276         go[MASTER] = 0;
277
278         smp_start_sync_tick_client(cpu);
279
280         /* wait for client to be ready */
281         while (!go[MASTER])
282                 rmb();
283
284         /* now let the client proceed into his loop */
285         go[MASTER] = 0;
286         membar_storeload();
287
288         spin_lock_irqsave(&itc_sync_lock, flags);
289         {
290                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
291                         while (!go[MASTER])
292                                 rmb();
293                         go[MASTER] = 0;
294                         wmb();
295                         go[SLAVE] = tick_ops->get_tick();
296                         membar_storeload();
297                 }
298         }
299         spin_unlock_irqrestore(&itc_sync_lock, flags);
300 }
301
302 extern unsigned long sparc64_cpu_startup;
303
304 /* The OBP cpu startup callback truncates the 3rd arg cookie to
305  * 32-bits (I think) so to be safe we have it read the pointer
306  * contained here so we work on >4GB machines. -DaveM
307  */
308 static struct thread_info *cpu_new_thread = NULL;
309
310 static int __devinit smp_boot_one_cpu(unsigned int cpu)
311 {
312         unsigned long entry =
313                 (unsigned long)(&sparc64_cpu_startup);
314         unsigned long cookie =
315                 (unsigned long)(&cpu_new_thread);
316         struct task_struct *p;
317         int timeout, ret, cpu_node;
318
319         p = fork_idle(cpu);
320         callin_flag = 0;
321         cpu_new_thread = task_thread_info(p);
322         cpu_set(cpu, cpu_callout_map);
323
324         cpu_find_by_mid(cpu, &cpu_node);
325         prom_startcpu(cpu_node, entry, cookie);
326
327         for (timeout = 0; timeout < 5000000; timeout++) {
328                 if (callin_flag)
329                         break;
330                 udelay(100);
331         }
332         if (callin_flag) {
333                 ret = 0;
334         } else {
335                 printk("Processor %d is stuck.\n", cpu);
336                 cpu_clear(cpu, cpu_callout_map);
337                 ret = -ENODEV;
338         }
339         cpu_new_thread = NULL;
340
341         return ret;
342 }
343
344 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
345 {
346         u64 result, target;
347         int stuck, tmp;
348
349         if (this_is_starfire) {
350                 /* map to real upaid */
351                 cpu = (((cpu & 0x3c) << 1) |
352                         ((cpu & 0x40) >> 4) |
353                         (cpu & 0x3));
354         }
355
356         target = (cpu << 14) | 0x70;
357 again:
358         /* Ok, this is the real Spitfire Errata #54.
359          * One must read back from a UDB internal register
360          * after writes to the UDB interrupt dispatch, but
361          * before the membar Sync for that write.
362          * So we use the high UDB control register (ASI 0x7f,
363          * ADDR 0x20) for the dummy read. -DaveM
364          */
365         tmp = 0x40;
366         __asm__ __volatile__(
367         "wrpr   %1, %2, %%pstate\n\t"
368         "stxa   %4, [%0] %3\n\t"
369         "stxa   %5, [%0+%8] %3\n\t"
370         "add    %0, %8, %0\n\t"
371         "stxa   %6, [%0+%8] %3\n\t"
372         "membar #Sync\n\t"
373         "stxa   %%g0, [%7] %3\n\t"
374         "membar #Sync\n\t"
375         "mov    0x20, %%g1\n\t"
376         "ldxa   [%%g1] 0x7f, %%g0\n\t"
377         "membar #Sync"
378         : "=r" (tmp)
379         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
380           "r" (data0), "r" (data1), "r" (data2), "r" (target),
381           "r" (0x10), "0" (tmp)
382         : "g1");
383
384         /* NOTE: PSTATE_IE is still clear. */
385         stuck = 100000;
386         do {
387                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
388                         : "=r" (result)
389                         : "i" (ASI_INTR_DISPATCH_STAT));
390                 if (result == 0) {
391                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
392                                              : : "r" (pstate));
393                         return;
394                 }
395                 stuck -= 1;
396                 if (stuck == 0)
397                         break;
398         } while (result & 0x1);
399         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
400                              : : "r" (pstate));
401         if (stuck == 0) {
402                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
403                        smp_processor_id(), result);
404         } else {
405                 udelay(2);
406                 goto again;
407         }
408 }
409
410 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
411 {
412         u64 pstate;
413         int i;
414
415         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
416         for_each_cpu_mask(i, mask)
417                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
418 }
419
420 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
421  * packet, but we have no use for that.  However we do take advantage of
422  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
423  */
424 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
425 {
426         u64 pstate, ver;
427         int nack_busy_id, is_jbus;
428
429         if (cpus_empty(mask))
430                 return;
431
432         /* Unfortunately, someone at Sun had the brilliant idea to make the
433          * busy/nack fields hard-coded by ITID number for this Ultra-III
434          * derivative processor.
435          */
436         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
437         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
438                    (ver >> 32) == __SERRANO_ID);
439
440         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
441
442 retry:
443         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
444                              : : "r" (pstate), "i" (PSTATE_IE));
445
446         /* Setup the dispatch data registers. */
447         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
448                              "stxa      %1, [%4] %6\n\t"
449                              "stxa      %2, [%5] %6\n\t"
450                              "membar    #Sync\n\t"
451                              : /* no outputs */
452                              : "r" (data0), "r" (data1), "r" (data2),
453                                "r" (0x40), "r" (0x50), "r" (0x60),
454                                "i" (ASI_INTR_W));
455
456         nack_busy_id = 0;
457         {
458                 int i;
459
460                 for_each_cpu_mask(i, mask) {
461                         u64 target = (i << 14) | 0x70;
462
463                         if (!is_jbus)
464                                 target |= (nack_busy_id << 24);
465                         __asm__ __volatile__(
466                                 "stxa   %%g0, [%0] %1\n\t"
467                                 "membar #Sync\n\t"
468                                 : /* no outputs */
469                                 : "r" (target), "i" (ASI_INTR_W));
470                         nack_busy_id++;
471                 }
472         }
473
474         /* Now, poll for completion. */
475         {
476                 u64 dispatch_stat;
477                 long stuck;
478
479                 stuck = 100000 * nack_busy_id;
480                 do {
481                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
482                                              : "=r" (dispatch_stat)
483                                              : "i" (ASI_INTR_DISPATCH_STAT));
484                         if (dispatch_stat == 0UL) {
485                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
486                                                      : : "r" (pstate));
487                                 return;
488                         }
489                         if (!--stuck)
490                                 break;
491                 } while (dispatch_stat & 0x5555555555555555UL);
492
493                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
494                                      : : "r" (pstate));
495
496                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
497                         /* Busy bits will not clear, continue instead
498                          * of freezing up on this cpu.
499                          */
500                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
501                                smp_processor_id(), dispatch_stat);
502                 } else {
503                         int i, this_busy_nack = 0;
504
505                         /* Delay some random time with interrupts enabled
506                          * to prevent deadlock.
507                          */
508                         udelay(2 * nack_busy_id);
509
510                         /* Clear out the mask bits for cpus which did not
511                          * NACK us.
512                          */
513                         for_each_cpu_mask(i, mask) {
514                                 u64 check_mask;
515
516                                 if (is_jbus)
517                                         check_mask = (0x2UL << (2*i));
518                                 else
519                                         check_mask = (0x2UL <<
520                                                       this_busy_nack);
521                                 if ((dispatch_stat & check_mask) == 0)
522                                         cpu_clear(i, mask);
523                                 this_busy_nack += 2;
524                         }
525
526                         goto retry;
527                 }
528         }
529 }
530
531 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
532 {
533         /* XXX implement me */
534 }
535
536 /* Send cross call to all processors mentioned in MASK
537  * except self.
538  */
539 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
540 {
541         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
542         int this_cpu = get_cpu();
543
544         cpus_and(mask, mask, cpu_online_map);
545         cpu_clear(this_cpu, mask);
546
547         if (tlb_type == spitfire)
548                 spitfire_xcall_deliver(data0, data1, data2, mask);
549         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
550                 cheetah_xcall_deliver(data0, data1, data2, mask);
551         else
552                 hypervisor_xcall_deliver(data0, data1, data2, mask);
553         /* NOTE: Caller runs local copy on master. */
554
555         put_cpu();
556 }
557
558 extern unsigned long xcall_sync_tick;
559
560 static void smp_start_sync_tick_client(int cpu)
561 {
562         cpumask_t mask = cpumask_of_cpu(cpu);
563
564         smp_cross_call_masked(&xcall_sync_tick,
565                               0, 0, 0, mask);
566 }
567
568 /* Send cross call to all processors except self. */
569 #define smp_cross_call(func, ctx, data1, data2) \
570         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
571
572 struct call_data_struct {
573         void (*func) (void *info);
574         void *info;
575         atomic_t finished;
576         int wait;
577 };
578
579 static DEFINE_SPINLOCK(call_lock);
580 static struct call_data_struct *call_data;
581
582 extern unsigned long xcall_call_function;
583
584 /*
585  * You must not call this function with disabled interrupts or from a
586  * hardware interrupt handler or from a bottom half handler.
587  */
588 static int smp_call_function_mask(void (*func)(void *info), void *info,
589                                   int nonatomic, int wait, cpumask_t mask)
590 {
591         struct call_data_struct data;
592         int cpus = cpus_weight(mask) - 1;
593         long timeout;
594
595         if (!cpus)
596                 return 0;
597
598         /* Can deadlock when called with interrupts disabled */
599         WARN_ON(irqs_disabled());
600
601         data.func = func;
602         data.info = info;
603         atomic_set(&data.finished, 0);
604         data.wait = wait;
605
606         spin_lock(&call_lock);
607
608         call_data = &data;
609
610         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
611
612         /* 
613          * Wait for other cpus to complete function or at
614          * least snap the call data.
615          */
616         timeout = 1000000;
617         while (atomic_read(&data.finished) != cpus) {
618                 if (--timeout <= 0)
619                         goto out_timeout;
620                 barrier();
621                 udelay(1);
622         }
623
624         spin_unlock(&call_lock);
625
626         return 0;
627
628 out_timeout:
629         spin_unlock(&call_lock);
630         printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
631                (long) num_online_cpus() - 1L,
632                (long) atomic_read(&data.finished));
633         return 0;
634 }
635
636 int smp_call_function(void (*func)(void *info), void *info,
637                       int nonatomic, int wait)
638 {
639         return smp_call_function_mask(func, info, nonatomic, wait,
640                                       cpu_online_map);
641 }
642
643 void smp_call_function_client(int irq, struct pt_regs *regs)
644 {
645         void (*func) (void *info) = call_data->func;
646         void *info = call_data->info;
647
648         clear_softint(1 << irq);
649         if (call_data->wait) {
650                 /* let initiator proceed only after completion */
651                 func(info);
652                 atomic_inc(&call_data->finished);
653         } else {
654                 /* let initiator proceed after getting data */
655                 atomic_inc(&call_data->finished);
656                 func(info);
657         }
658 }
659
660 static void tsb_sync(void *info)
661 {
662         struct mm_struct *mm = info;
663
664         if (current->active_mm == mm)
665                 tsb_context_switch(mm);
666 }
667
668 void smp_tsb_sync(struct mm_struct *mm)
669 {
670         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
671 }
672
673 extern unsigned long xcall_flush_tlb_mm;
674 extern unsigned long xcall_flush_tlb_pending;
675 extern unsigned long xcall_flush_tlb_kernel_range;
676 extern unsigned long xcall_report_regs;
677 extern unsigned long xcall_receive_signal;
678
679 #ifdef DCACHE_ALIASING_POSSIBLE
680 extern unsigned long xcall_flush_dcache_page_cheetah;
681 #endif
682 extern unsigned long xcall_flush_dcache_page_spitfire;
683
684 #ifdef CONFIG_DEBUG_DCFLUSH
685 extern atomic_t dcpage_flushes;
686 extern atomic_t dcpage_flushes_xcall;
687 #endif
688
689 static __inline__ void __local_flush_dcache_page(struct page *page)
690 {
691 #ifdef DCACHE_ALIASING_POSSIBLE
692         __flush_dcache_page(page_address(page),
693                             ((tlb_type == spitfire) &&
694                              page_mapping(page) != NULL));
695 #else
696         if (page_mapping(page) != NULL &&
697             tlb_type == spitfire)
698                 __flush_icache_page(__pa(page_address(page)));
699 #endif
700 }
701
702 void smp_flush_dcache_page_impl(struct page *page, int cpu)
703 {
704         cpumask_t mask = cpumask_of_cpu(cpu);
705         int this_cpu;
706
707         if (tlb_type == hypervisor)
708                 return;
709
710 #ifdef CONFIG_DEBUG_DCFLUSH
711         atomic_inc(&dcpage_flushes);
712 #endif
713
714         this_cpu = get_cpu();
715
716         if (cpu == this_cpu) {
717                 __local_flush_dcache_page(page);
718         } else if (cpu_online(cpu)) {
719                 void *pg_addr = page_address(page);
720                 u64 data0;
721
722                 if (tlb_type == spitfire) {
723                         data0 =
724                                 ((u64)&xcall_flush_dcache_page_spitfire);
725                         if (page_mapping(page) != NULL)
726                                 data0 |= ((u64)1 << 32);
727                         spitfire_xcall_deliver(data0,
728                                                __pa(pg_addr),
729                                                (u64) pg_addr,
730                                                mask);
731                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
732 #ifdef DCACHE_ALIASING_POSSIBLE
733                         data0 =
734                                 ((u64)&xcall_flush_dcache_page_cheetah);
735                         cheetah_xcall_deliver(data0,
736                                               __pa(pg_addr),
737                                               0, mask);
738 #endif
739                 }
740 #ifdef CONFIG_DEBUG_DCFLUSH
741                 atomic_inc(&dcpage_flushes_xcall);
742 #endif
743         }
744
745         put_cpu();
746 }
747
748 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
749 {
750         void *pg_addr = page_address(page);
751         cpumask_t mask = cpu_online_map;
752         u64 data0;
753         int this_cpu;
754
755         if (tlb_type == hypervisor)
756                 return;
757
758         this_cpu = get_cpu();
759
760         cpu_clear(this_cpu, mask);
761
762 #ifdef CONFIG_DEBUG_DCFLUSH
763         atomic_inc(&dcpage_flushes);
764 #endif
765         if (cpus_empty(mask))
766                 goto flush_self;
767         if (tlb_type == spitfire) {
768                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
769                 if (page_mapping(page) != NULL)
770                         data0 |= ((u64)1 << 32);
771                 spitfire_xcall_deliver(data0,
772                                        __pa(pg_addr),
773                                        (u64) pg_addr,
774                                        mask);
775         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
776 #ifdef DCACHE_ALIASING_POSSIBLE
777                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
778                 cheetah_xcall_deliver(data0,
779                                       __pa(pg_addr),
780                                       0, mask);
781 #endif
782         }
783 #ifdef CONFIG_DEBUG_DCFLUSH
784         atomic_inc(&dcpage_flushes_xcall);
785 #endif
786  flush_self:
787         __local_flush_dcache_page(page);
788
789         put_cpu();
790 }
791
792 void smp_receive_signal(int cpu)
793 {
794         cpumask_t mask = cpumask_of_cpu(cpu);
795
796         if (cpu_online(cpu)) {
797                 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
798
799                 if (tlb_type == spitfire)
800                         spitfire_xcall_deliver(data0, 0, 0, mask);
801                 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
802                         cheetah_xcall_deliver(data0, 0, 0, mask);
803                 else if (tlb_type == hypervisor)
804                         hypervisor_xcall_deliver(data0, 0, 0, mask);
805         }
806 }
807
808 void smp_receive_signal_client(int irq, struct pt_regs *regs)
809 {
810         /* Just return, rtrap takes care of the rest. */
811         clear_softint(1 << irq);
812 }
813
814 void smp_report_regs(void)
815 {
816         smp_cross_call(&xcall_report_regs, 0, 0, 0);
817 }
818
819 /* We know that the window frames of the user have been flushed
820  * to the stack before we get here because all callers of us
821  * are flush_tlb_*() routines, and these run after flush_cache_*()
822  * which performs the flushw.
823  *
824  * The SMP TLB coherency scheme we use works as follows:
825  *
826  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
827  *    space has (potentially) executed on, this is the heuristic
828  *    we use to avoid doing cross calls.
829  *
830  *    Also, for flushing from kswapd and also for clones, we
831  *    use cpu_vm_mask as the list of cpus to make run the TLB.
832  *
833  * 2) TLB context numbers are shared globally across all processors
834  *    in the system, this allows us to play several games to avoid
835  *    cross calls.
836  *
837  *    One invariant is that when a cpu switches to a process, and
838  *    that processes tsk->active_mm->cpu_vm_mask does not have the
839  *    current cpu's bit set, that tlb context is flushed locally.
840  *
841  *    If the address space is non-shared (ie. mm->count == 1) we avoid
842  *    cross calls when we want to flush the currently running process's
843  *    tlb state.  This is done by clearing all cpu bits except the current
844  *    processor's in current->active_mm->cpu_vm_mask and performing the
845  *    flush locally only.  This will force any subsequent cpus which run
846  *    this task to flush the context from the local tlb if the process
847  *    migrates to another cpu (again).
848  *
849  * 3) For shared address spaces (threads) and swapping we bite the
850  *    bullet for most cases and perform the cross call (but only to
851  *    the cpus listed in cpu_vm_mask).
852  *
853  *    The performance gain from "optimizing" away the cross call for threads is
854  *    questionable (in theory the big win for threads is the massive sharing of
855  *    address space state across processors).
856  */
857
858 /* This currently is only used by the hugetlb arch pre-fault
859  * hook on UltraSPARC-III+ and later when changing the pagesize
860  * bits of the context register for an address space.
861  */
862 void smp_flush_tlb_mm(struct mm_struct *mm)
863 {
864         u32 ctx = CTX_HWBITS(mm->context);
865         int cpu = get_cpu();
866
867         if (atomic_read(&mm->mm_users) == 1) {
868                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
869                 goto local_flush_and_out;
870         }
871
872         smp_cross_call_masked(&xcall_flush_tlb_mm,
873                               ctx, 0, 0,
874                               mm->cpu_vm_mask);
875
876 local_flush_and_out:
877         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
878
879         put_cpu();
880 }
881
882 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
883 {
884         u32 ctx = CTX_HWBITS(mm->context);
885         int cpu = get_cpu();
886
887         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
888                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
889         else
890                 smp_cross_call_masked(&xcall_flush_tlb_pending,
891                                       ctx, nr, (unsigned long) vaddrs,
892                                       mm->cpu_vm_mask);
893
894         __flush_tlb_pending(ctx, nr, vaddrs);
895
896         put_cpu();
897 }
898
899 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
900 {
901         start &= PAGE_MASK;
902         end    = PAGE_ALIGN(end);
903         if (start != end) {
904                 smp_cross_call(&xcall_flush_tlb_kernel_range,
905                                0, start, end);
906
907                 __flush_tlb_kernel_range(start, end);
908         }
909 }
910
911 /* CPU capture. */
912 /* #define CAPTURE_DEBUG */
913 extern unsigned long xcall_capture;
914
915 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
916 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
917 static unsigned long penguins_are_doing_time;
918
919 void smp_capture(void)
920 {
921         int result = atomic_add_ret(1, &smp_capture_depth);
922
923         if (result == 1) {
924                 int ncpus = num_online_cpus();
925
926 #ifdef CAPTURE_DEBUG
927                 printk("CPU[%d]: Sending penguins to jail...",
928                        smp_processor_id());
929 #endif
930                 penguins_are_doing_time = 1;
931                 membar_storestore_loadstore();
932                 atomic_inc(&smp_capture_registry);
933                 smp_cross_call(&xcall_capture, 0, 0, 0);
934                 while (atomic_read(&smp_capture_registry) != ncpus)
935                         rmb();
936 #ifdef CAPTURE_DEBUG
937                 printk("done\n");
938 #endif
939         }
940 }
941
942 void smp_release(void)
943 {
944         if (atomic_dec_and_test(&smp_capture_depth)) {
945 #ifdef CAPTURE_DEBUG
946                 printk("CPU[%d]: Giving pardon to "
947                        "imprisoned penguins\n",
948                        smp_processor_id());
949 #endif
950                 penguins_are_doing_time = 0;
951                 membar_storeload_storestore();
952                 atomic_dec(&smp_capture_registry);
953         }
954 }
955
956 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
957  * can service tlb flush xcalls...
958  */
959 extern void prom_world(int);
960
961 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
962 {
963         clear_softint(1 << irq);
964
965         preempt_disable();
966
967         __asm__ __volatile__("flushw");
968         prom_world(1);
969         atomic_inc(&smp_capture_registry);
970         membar_storeload_storestore();
971         while (penguins_are_doing_time)
972                 rmb();
973         atomic_dec(&smp_capture_registry);
974         prom_world(0);
975
976         preempt_enable();
977 }
978
979 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
980 #define prof_counter(__cpu)             cpu_data(__cpu).counter
981
982 void smp_percpu_timer_interrupt(struct pt_regs *regs)
983 {
984         unsigned long compare, tick, pstate;
985         int cpu = smp_processor_id();
986         int user = user_mode(regs);
987
988         /*
989          * Check for level 14 softint.
990          */
991         {
992                 unsigned long tick_mask = tick_ops->softint_mask;
993
994                 if (!(get_softint() & tick_mask)) {
995                         extern void handler_irq(int, struct pt_regs *);
996
997                         handler_irq(14, regs);
998                         return;
999                 }
1000                 clear_softint(tick_mask);
1001         }
1002
1003         do {
1004                 profile_tick(CPU_PROFILING, regs);
1005                 if (!--prof_counter(cpu)) {
1006                         irq_enter();
1007
1008                         if (cpu == boot_cpu_id) {
1009                                 kstat_this_cpu.irqs[0]++;
1010                                 timer_tick_interrupt(regs);
1011                         }
1012
1013                         update_process_times(user);
1014
1015                         irq_exit();
1016
1017                         prof_counter(cpu) = prof_multiplier(cpu);
1018                 }
1019
1020                 /* Guarantee that the following sequences execute
1021                  * uninterrupted.
1022                  */
1023                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1024                                      "wrpr      %0, %1, %%pstate"
1025                                      : "=r" (pstate)
1026                                      : "i" (PSTATE_IE));
1027
1028                 compare = tick_ops->add_compare(current_tick_offset);
1029                 tick = tick_ops->get_tick();
1030
1031                 /* Restore PSTATE_IE. */
1032                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1033                                      : /* no outputs */
1034                                      : "r" (pstate));
1035         } while (time_after_eq(tick, compare));
1036 }
1037
1038 static void __init smp_setup_percpu_timer(void)
1039 {
1040         int cpu = smp_processor_id();
1041         unsigned long pstate;
1042
1043         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1044
1045         /* Guarantee that the following sequences execute
1046          * uninterrupted.
1047          */
1048         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1049                              "wrpr      %0, %1, %%pstate"
1050                              : "=r" (pstate)
1051                              : "i" (PSTATE_IE));
1052
1053         tick_ops->init_tick(current_tick_offset);
1054
1055         /* Restore PSTATE_IE. */
1056         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1057                              : /* no outputs */
1058                              : "r" (pstate));
1059 }
1060
1061 void __init smp_tick_init(void)
1062 {
1063         boot_cpu_id = hard_smp_processor_id();
1064         current_tick_offset = timer_tick_offset;
1065
1066         cpu_set(boot_cpu_id, cpu_online_map);
1067         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1068 }
1069
1070 /* /proc/profile writes can call this, don't __init it please. */
1071 static DEFINE_SPINLOCK(prof_setup_lock);
1072
1073 int setup_profiling_timer(unsigned int multiplier)
1074 {
1075         unsigned long flags;
1076         int i;
1077
1078         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1079                 return -EINVAL;
1080
1081         spin_lock_irqsave(&prof_setup_lock, flags);
1082         for (i = 0; i < NR_CPUS; i++)
1083                 prof_multiplier(i) = multiplier;
1084         current_tick_offset = (timer_tick_offset / multiplier);
1085         spin_unlock_irqrestore(&prof_setup_lock, flags);
1086
1087         return 0;
1088 }
1089
1090 /* Constrain the number of cpus to max_cpus.  */
1091 void __init smp_prepare_cpus(unsigned int max_cpus)
1092 {
1093         if (num_possible_cpus() > max_cpus) {
1094                 int instance, mid;
1095
1096                 instance = 0;
1097                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1098                         if (mid != boot_cpu_id) {
1099                                 cpu_clear(mid, phys_cpu_present_map);
1100                                 if (num_possible_cpus() <= max_cpus)
1101                                         break;
1102                         }
1103                         instance++;
1104                 }
1105         }
1106
1107         smp_store_cpu_info(boot_cpu_id);
1108 }
1109
1110 /* Set this up early so that things like the scheduler can init
1111  * properly.  We use the same cpu mask for both the present and
1112  * possible cpu map.
1113  */
1114 void __init smp_setup_cpu_possible_map(void)
1115 {
1116         int instance, mid;
1117
1118         instance = 0;
1119         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1120                 if (mid < NR_CPUS)
1121                         cpu_set(mid, phys_cpu_present_map);
1122                 instance++;
1123         }
1124 }
1125
1126 void __devinit smp_prepare_boot_cpu(void)
1127 {
1128         int cpu = hard_smp_processor_id();
1129
1130         if (cpu >= NR_CPUS) {
1131                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1132                 prom_halt();
1133         }
1134
1135         current_thread_info()->cpu = cpu;
1136         __local_per_cpu_offset = __per_cpu_offset(cpu);
1137
1138         cpu_set(smp_processor_id(), cpu_online_map);
1139         cpu_set(smp_processor_id(), phys_cpu_present_map);
1140 }
1141
1142 int __devinit __cpu_up(unsigned int cpu)
1143 {
1144         int ret = smp_boot_one_cpu(cpu);
1145
1146         if (!ret) {
1147                 cpu_set(cpu, smp_commenced_mask);
1148                 while (!cpu_isset(cpu, cpu_online_map))
1149                         mb();
1150                 if (!cpu_isset(cpu, cpu_online_map)) {
1151                         ret = -ENODEV;
1152                 } else {
1153                         smp_synchronize_one_tick(cpu);
1154                 }
1155         }
1156         return ret;
1157 }
1158
1159 void __init smp_cpus_done(unsigned int max_cpus)
1160 {
1161         unsigned long bogosum = 0;
1162         int i;
1163
1164         for (i = 0; i < NR_CPUS; i++) {
1165                 if (cpu_online(i))
1166                         bogosum += cpu_data(i).udelay_val;
1167         }
1168         printk("Total of %ld processors activated "
1169                "(%lu.%02lu BogoMIPS).\n",
1170                (long) num_online_cpus(),
1171                bogosum/(500000/HZ),
1172                (bogosum/(5000/HZ))%100);
1173 }
1174
1175 void smp_send_reschedule(int cpu)
1176 {
1177         smp_receive_signal(cpu);
1178 }
1179
1180 /* This is a nop because we capture all other cpus
1181  * anyways when making the PROM active.
1182  */
1183 void smp_send_stop(void)
1184 {
1185 }
1186
1187 unsigned long __per_cpu_base __read_mostly;
1188 unsigned long __per_cpu_shift __read_mostly;
1189
1190 EXPORT_SYMBOL(__per_cpu_base);
1191 EXPORT_SYMBOL(__per_cpu_shift);
1192
1193 void __init setup_per_cpu_areas(void)
1194 {
1195         unsigned long goal, size, i;
1196         char *ptr;
1197
1198         /* Copy section for each CPU (we discard the original) */
1199         goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1200 #ifdef CONFIG_MODULES
1201         if (goal < PERCPU_ENOUGH_ROOM)
1202                 goal = PERCPU_ENOUGH_ROOM;
1203 #endif
1204         __per_cpu_shift = 0;
1205         for (size = 1UL; size < goal; size <<= 1UL)
1206                 __per_cpu_shift++;
1207
1208         ptr = alloc_bootmem(size * NR_CPUS);
1209
1210         __per_cpu_base = ptr - __per_cpu_start;
1211
1212         for (i = 0; i < NR_CPUS; i++, ptr += size)
1213                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1214 }