]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
Merge branch 'e1000-fixes' of git://198.78.49.142/~jbrandeb/linux-2.6
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/config.h>
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/slab.h>
18 #include <linux/initrd.h>
19 #include <linux/swap.h>
20 #include <linux/pagemap.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45
46 extern void device_scan(void);
47
48 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
49 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
50 #define KPTE_BITMAP_BYTES       \
51         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
52
53 unsigned long kern_linear_pte_xor[2] __read_mostly;
54
55 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
56  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
57  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
58  */
59 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
60
61 /* A special kernel TSB for 4MB and 256MB linear mappings.  */
62 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
63
64 #define MAX_BANKS       32
65
66 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
67 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
68 static int pavail_ents __initdata;
69 static int pavail_rescan_ents __initdata;
70
71 static int cmp_p64(const void *a, const void *b)
72 {
73         const struct linux_prom64_registers *x = a, *y = b;
74
75         if (x->phys_addr > y->phys_addr)
76                 return 1;
77         if (x->phys_addr < y->phys_addr)
78                 return -1;
79         return 0;
80 }
81
82 static void __init read_obp_memory(const char *property,
83                                    struct linux_prom64_registers *regs,
84                                    int *num_ents)
85 {
86         int node = prom_finddevice("/memory");
87         int prop_size = prom_getproplen(node, property);
88         int ents, ret, i;
89
90         ents = prop_size / sizeof(struct linux_prom64_registers);
91         if (ents > MAX_BANKS) {
92                 prom_printf("The machine has more %s property entries than "
93                             "this kernel can support (%d).\n",
94                             property, MAX_BANKS);
95                 prom_halt();
96         }
97
98         ret = prom_getproperty(node, property, (char *) regs, prop_size);
99         if (ret == -1) {
100                 prom_printf("Couldn't get %s property from /memory.\n");
101                 prom_halt();
102         }
103
104         *num_ents = ents;
105
106         /* Sanitize what we got from the firmware, by page aligning
107          * everything.
108          */
109         for (i = 0; i < ents; i++) {
110                 unsigned long base, size;
111
112                 base = regs[i].phys_addr;
113                 size = regs[i].reg_size;
114
115                 size &= PAGE_MASK;
116                 if (base & ~PAGE_MASK) {
117                         unsigned long new_base = PAGE_ALIGN(base);
118
119                         size -= new_base - base;
120                         if ((long) size < 0L)
121                                 size = 0UL;
122                         base = new_base;
123                 }
124                 regs[i].phys_addr = base;
125                 regs[i].reg_size = size;
126         }
127         sort(regs, ents, sizeof(struct linux_prom64_registers),
128              cmp_p64, NULL);
129 }
130
131 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
132
133 /* Kernel physical address base and size in bytes.  */
134 unsigned long kern_base __read_mostly;
135 unsigned long kern_size __read_mostly;
136
137 /* get_new_mmu_context() uses "cache + 1".  */
138 DEFINE_SPINLOCK(ctx_alloc_lock);
139 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
140 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
141 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
142
143 /* References to special section boundaries */
144 extern char  _start[], _end[];
145
146 /* Initial ramdisk setup */
147 extern unsigned long sparc_ramdisk_image64;
148 extern unsigned int sparc_ramdisk_image;
149 extern unsigned int sparc_ramdisk_size;
150
151 struct page *mem_map_zero __read_mostly;
152
153 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
154
155 unsigned long sparc64_kern_pri_context __read_mostly;
156 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
157 unsigned long sparc64_kern_sec_context __read_mostly;
158
159 int bigkernel = 0;
160
161 kmem_cache_t *pgtable_cache __read_mostly;
162
163 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
164 {
165         clear_page(addr);
166 }
167
168 extern void tsb_cache_init(void);
169
170 void pgtable_cache_init(void)
171 {
172         pgtable_cache = kmem_cache_create("pgtable_cache",
173                                           PAGE_SIZE, PAGE_SIZE,
174                                           SLAB_HWCACHE_ALIGN |
175                                           SLAB_MUST_HWCACHE_ALIGN,
176                                           zero_ctor,
177                                           NULL);
178         if (!pgtable_cache) {
179                 prom_printf("Could not create pgtable_cache\n");
180                 prom_halt();
181         }
182         tsb_cache_init();
183 }
184
185 #ifdef CONFIG_DEBUG_DCFLUSH
186 atomic_t dcpage_flushes = ATOMIC_INIT(0);
187 #ifdef CONFIG_SMP
188 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
189 #endif
190 #endif
191
192 inline void flush_dcache_page_impl(struct page *page)
193 {
194         BUG_ON(tlb_type == hypervisor);
195 #ifdef CONFIG_DEBUG_DCFLUSH
196         atomic_inc(&dcpage_flushes);
197 #endif
198
199 #ifdef DCACHE_ALIASING_POSSIBLE
200         __flush_dcache_page(page_address(page),
201                             ((tlb_type == spitfire) &&
202                              page_mapping(page) != NULL));
203 #else
204         if (page_mapping(page) != NULL &&
205             tlb_type == spitfire)
206                 __flush_icache_page(__pa(page_address(page)));
207 #endif
208 }
209
210 #define PG_dcache_dirty         PG_arch_1
211 #define PG_dcache_cpu_shift     24UL
212 #define PG_dcache_cpu_mask      (256UL - 1UL)
213
214 #if NR_CPUS > 256
215 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
216 #endif
217
218 #define dcache_dirty_cpu(page) \
219         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
220
221 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
222 {
223         unsigned long mask = this_cpu;
224         unsigned long non_cpu_bits;
225
226         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
227         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
228
229         __asm__ __volatile__("1:\n\t"
230                              "ldx       [%2], %%g7\n\t"
231                              "and       %%g7, %1, %%g1\n\t"
232                              "or        %%g1, %0, %%g1\n\t"
233                              "casx      [%2], %%g7, %%g1\n\t"
234                              "cmp       %%g7, %%g1\n\t"
235                              "membar    #StoreLoad | #StoreStore\n\t"
236                              "bne,pn    %%xcc, 1b\n\t"
237                              " nop"
238                              : /* no outputs */
239                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
240                              : "g1", "g7");
241 }
242
243 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
244 {
245         unsigned long mask = (1UL << PG_dcache_dirty);
246
247         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
248                              "1:\n\t"
249                              "ldx       [%2], %%g7\n\t"
250                              "srlx      %%g7, %4, %%g1\n\t"
251                              "and       %%g1, %3, %%g1\n\t"
252                              "cmp       %%g1, %0\n\t"
253                              "bne,pn    %%icc, 2f\n\t"
254                              " andn     %%g7, %1, %%g1\n\t"
255                              "casx      [%2], %%g7, %%g1\n\t"
256                              "cmp       %%g7, %%g1\n\t"
257                              "membar    #StoreLoad | #StoreStore\n\t"
258                              "bne,pn    %%xcc, 1b\n\t"
259                              " nop\n"
260                              "2:"
261                              : /* no outputs */
262                              : "r" (cpu), "r" (mask), "r" (&page->flags),
263                                "i" (PG_dcache_cpu_mask),
264                                "i" (PG_dcache_cpu_shift)
265                              : "g1", "g7");
266 }
267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270         unsigned long tsb_addr = (unsigned long) ent;
271
272         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273                 tsb_addr = __pa(tsb_addr);
274
275         __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 unsigned long _PAGE_SZBITS __read_mostly;
280
281 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
282 {
283         struct mm_struct *mm;
284         struct tsb *tsb;
285         unsigned long tag, flags;
286
287         if (tlb_type != hypervisor) {
288                 unsigned long pfn = pte_pfn(pte);
289                 unsigned long pg_flags;
290                 struct page *page;
291
292                 if (pfn_valid(pfn) &&
293                     (page = pfn_to_page(pfn), page_mapping(page)) &&
294                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
295                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
296                                    PG_dcache_cpu_mask);
297                         int this_cpu = get_cpu();
298
299                         /* This is just to optimize away some function calls
300                          * in the SMP case.
301                          */
302                         if (cpu == this_cpu)
303                                 flush_dcache_page_impl(page);
304                         else
305                                 smp_flush_dcache_page_impl(page, cpu);
306
307                         clear_dcache_dirty_cpu(page, cpu);
308
309                         put_cpu();
310                 }
311         }
312
313         mm = vma->vm_mm;
314
315         spin_lock_irqsave(&mm->context.lock, flags);
316
317         tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
318                                (mm->context.tsb_nentries - 1UL)];
319         tag = (address >> 22UL);
320         tsb_insert(tsb, tag, pte_val(pte));
321
322         spin_unlock_irqrestore(&mm->context.lock, flags);
323 }
324
325 void flush_dcache_page(struct page *page)
326 {
327         struct address_space *mapping;
328         int this_cpu;
329
330         if (tlb_type == hypervisor)
331                 return;
332
333         /* Do not bother with the expensive D-cache flush if it
334          * is merely the zero page.  The 'bigcore' testcase in GDB
335          * causes this case to run millions of times.
336          */
337         if (page == ZERO_PAGE(0))
338                 return;
339
340         this_cpu = get_cpu();
341
342         mapping = page_mapping(page);
343         if (mapping && !mapping_mapped(mapping)) {
344                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
345                 if (dirty) {
346                         int dirty_cpu = dcache_dirty_cpu(page);
347
348                         if (dirty_cpu == this_cpu)
349                                 goto out;
350                         smp_flush_dcache_page_impl(page, dirty_cpu);
351                 }
352                 set_dcache_dirty(page, this_cpu);
353         } else {
354                 /* We could delay the flush for the !page_mapping
355                  * case too.  But that case is for exec env/arg
356                  * pages and those are %99 certainly going to get
357                  * faulted into the tlb (and thus flushed) anyways.
358                  */
359                 flush_dcache_page_impl(page);
360         }
361
362 out:
363         put_cpu();
364 }
365
366 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
367 {
368         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
369         if (tlb_type == spitfire) {
370                 unsigned long kaddr;
371
372                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
373                         __flush_icache_page(__get_phys(kaddr));
374         }
375 }
376
377 void show_mem(void)
378 {
379         printk("Mem-info:\n");
380         show_free_areas();
381         printk("Free swap:       %6ldkB\n",
382                nr_swap_pages << (PAGE_SHIFT-10));
383         printk("%ld pages of RAM\n", num_physpages);
384         printk("%d free pages\n", nr_free_pages());
385 }
386
387 void mmu_info(struct seq_file *m)
388 {
389         if (tlb_type == cheetah)
390                 seq_printf(m, "MMU Type\t: Cheetah\n");
391         else if (tlb_type == cheetah_plus)
392                 seq_printf(m, "MMU Type\t: Cheetah+\n");
393         else if (tlb_type == spitfire)
394                 seq_printf(m, "MMU Type\t: Spitfire\n");
395         else if (tlb_type == hypervisor)
396                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
397         else
398                 seq_printf(m, "MMU Type\t: ???\n");
399
400 #ifdef CONFIG_DEBUG_DCFLUSH
401         seq_printf(m, "DCPageFlushes\t: %d\n",
402                    atomic_read(&dcpage_flushes));
403 #ifdef CONFIG_SMP
404         seq_printf(m, "DCPageFlushesXC\t: %d\n",
405                    atomic_read(&dcpage_flushes_xcall));
406 #endif /* CONFIG_SMP */
407 #endif /* CONFIG_DEBUG_DCFLUSH */
408 }
409
410 struct linux_prom_translation {
411         unsigned long virt;
412         unsigned long size;
413         unsigned long data;
414 };
415
416 /* Exported for kernel TLB miss handling in ktlb.S */
417 struct linux_prom_translation prom_trans[512] __read_mostly;
418 unsigned int prom_trans_ents __read_mostly;
419
420 /* Exported for SMP bootup purposes. */
421 unsigned long kern_locked_tte_data;
422
423 /* The obp translations are saved based on 8k pagesize, since obp can
424  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
425  * HI_OBP_ADDRESS range are handled in ktlb.S.
426  */
427 static inline int in_obp_range(unsigned long vaddr)
428 {
429         return (vaddr >= LOW_OBP_ADDRESS &&
430                 vaddr < HI_OBP_ADDRESS);
431 }
432
433 static int cmp_ptrans(const void *a, const void *b)
434 {
435         const struct linux_prom_translation *x = a, *y = b;
436
437         if (x->virt > y->virt)
438                 return 1;
439         if (x->virt < y->virt)
440                 return -1;
441         return 0;
442 }
443
444 /* Read OBP translations property into 'prom_trans[]'.  */
445 static void __init read_obp_translations(void)
446 {
447         int n, node, ents, first, last, i;
448
449         node = prom_finddevice("/virtual-memory");
450         n = prom_getproplen(node, "translations");
451         if (unlikely(n == 0 || n == -1)) {
452                 prom_printf("prom_mappings: Couldn't get size.\n");
453                 prom_halt();
454         }
455         if (unlikely(n > sizeof(prom_trans))) {
456                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
457                 prom_halt();
458         }
459
460         if ((n = prom_getproperty(node, "translations",
461                                   (char *)&prom_trans[0],
462                                   sizeof(prom_trans))) == -1) {
463                 prom_printf("prom_mappings: Couldn't get property.\n");
464                 prom_halt();
465         }
466
467         n = n / sizeof(struct linux_prom_translation);
468
469         ents = n;
470
471         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
472              cmp_ptrans, NULL);
473
474         /* Now kick out all the non-OBP entries.  */
475         for (i = 0; i < ents; i++) {
476                 if (in_obp_range(prom_trans[i].virt))
477                         break;
478         }
479         first = i;
480         for (; i < ents; i++) {
481                 if (!in_obp_range(prom_trans[i].virt))
482                         break;
483         }
484         last = i;
485
486         for (i = 0; i < (last - first); i++) {
487                 struct linux_prom_translation *src = &prom_trans[i + first];
488                 struct linux_prom_translation *dest = &prom_trans[i];
489
490                 *dest = *src;
491         }
492         for (; i < ents; i++) {
493                 struct linux_prom_translation *dest = &prom_trans[i];
494                 dest->virt = dest->size = dest->data = 0x0UL;
495         }
496
497         prom_trans_ents = last - first;
498
499         if (tlb_type == spitfire) {
500                 /* Clear diag TTE bits. */
501                 for (i = 0; i < prom_trans_ents; i++)
502                         prom_trans[i].data &= ~0x0003fe0000000000UL;
503         }
504 }
505
506 static void __init hypervisor_tlb_lock(unsigned long vaddr,
507                                        unsigned long pte,
508                                        unsigned long mmu)
509 {
510         register unsigned long func asm("%o5");
511         register unsigned long arg0 asm("%o0");
512         register unsigned long arg1 asm("%o1");
513         register unsigned long arg2 asm("%o2");
514         register unsigned long arg3 asm("%o3");
515
516         func = HV_FAST_MMU_MAP_PERM_ADDR;
517         arg0 = vaddr;
518         arg1 = 0;
519         arg2 = pte;
520         arg3 = mmu;
521         __asm__ __volatile__("ta        0x80"
522                              : "=&r" (func), "=&r" (arg0),
523                                "=&r" (arg1), "=&r" (arg2),
524                                "=&r" (arg3)
525                              : "0" (func), "1" (arg0), "2" (arg1),
526                                "3" (arg2), "4" (arg3));
527         if (arg0 != 0) {
528                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
529                             "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
530                 prom_halt();
531         }
532 }
533
534 static unsigned long kern_large_tte(unsigned long paddr);
535
536 static void __init remap_kernel(void)
537 {
538         unsigned long phys_page, tte_vaddr, tte_data;
539         int tlb_ent = sparc64_highest_locked_tlbent();
540
541         tte_vaddr = (unsigned long) KERNBASE;
542         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
543         tte_data = kern_large_tte(phys_page);
544
545         kern_locked_tte_data = tte_data;
546
547         /* Now lock us into the TLBs via Hypervisor or OBP. */
548         if (tlb_type == hypervisor) {
549                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550                 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
551                 if (bigkernel) {
552                         tte_vaddr += 0x400000;
553                         tte_data += 0x400000;
554                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
555                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
556                 }
557         } else {
558                 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
559                 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
560                 if (bigkernel) {
561                         tlb_ent -= 1;
562                         prom_dtlb_load(tlb_ent,
563                                        tte_data + 0x400000, 
564                                        tte_vaddr + 0x400000);
565                         prom_itlb_load(tlb_ent,
566                                        tte_data + 0x400000, 
567                                        tte_vaddr + 0x400000);
568                 }
569                 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
570         }
571         if (tlb_type == cheetah_plus) {
572                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
573                                             CTX_CHEETAH_PLUS_NUC);
574                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
575                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
576         }
577 }
578
579
580 static void __init inherit_prom_mappings(void)
581 {
582         read_obp_translations();
583
584         /* Now fixup OBP's idea about where we really are mapped. */
585         prom_printf("Remapping the kernel... ");
586         remap_kernel();
587         prom_printf("done.\n");
588 }
589
590 void prom_world(int enter)
591 {
592         if (!enter)
593                 set_fs((mm_segment_t) { get_thread_current_ds() });
594
595         __asm__ __volatile__("flushw");
596 }
597
598 #ifdef DCACHE_ALIASING_POSSIBLE
599 void __flush_dcache_range(unsigned long start, unsigned long end)
600 {
601         unsigned long va;
602
603         if (tlb_type == spitfire) {
604                 int n = 0;
605
606                 for (va = start; va < end; va += 32) {
607                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
608                         if (++n >= 512)
609                                 break;
610                 }
611         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
612                 start = __pa(start);
613                 end = __pa(end);
614                 for (va = start; va < end; va += 32)
615                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
616                                              "membar #Sync"
617                                              : /* no outputs */
618                                              : "r" (va),
619                                                "i" (ASI_DCACHE_INVALIDATE));
620         }
621 }
622 #endif /* DCACHE_ALIASING_POSSIBLE */
623
624 /* Caller does TLB context flushing on local CPU if necessary.
625  * The caller also ensures that CTX_VALID(mm->context) is false.
626  *
627  * We must be careful about boundary cases so that we never
628  * let the user have CTX 0 (nucleus) or we ever use a CTX
629  * version of zero (and thus NO_CONTEXT would not be caught
630  * by version mis-match tests in mmu_context.h).
631  *
632  * Always invoked with interrupts disabled.
633  */
634 void get_new_mmu_context(struct mm_struct *mm)
635 {
636         unsigned long ctx, new_ctx;
637         unsigned long orig_pgsz_bits;
638         unsigned long flags;
639         int new_version;
640
641         spin_lock_irqsave(&ctx_alloc_lock, flags);
642         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
643         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
644         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
645         new_version = 0;
646         if (new_ctx >= (1 << CTX_NR_BITS)) {
647                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
648                 if (new_ctx >= ctx) {
649                         int i;
650                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
651                                 CTX_FIRST_VERSION;
652                         if (new_ctx == 1)
653                                 new_ctx = CTX_FIRST_VERSION;
654
655                         /* Don't call memset, for 16 entries that's just
656                          * plain silly...
657                          */
658                         mmu_context_bmap[0] = 3;
659                         mmu_context_bmap[1] = 0;
660                         mmu_context_bmap[2] = 0;
661                         mmu_context_bmap[3] = 0;
662                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
663                                 mmu_context_bmap[i + 0] = 0;
664                                 mmu_context_bmap[i + 1] = 0;
665                                 mmu_context_bmap[i + 2] = 0;
666                                 mmu_context_bmap[i + 3] = 0;
667                         }
668                         new_version = 1;
669                         goto out;
670                 }
671         }
672         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
673         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
674 out:
675         tlb_context_cache = new_ctx;
676         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
677         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
678
679         if (unlikely(new_version))
680                 smp_new_mmu_context_version();
681 }
682
683 void sparc_ultra_dump_itlb(void)
684 {
685         int slot;
686
687         if (tlb_type == spitfire) {
688                 printk ("Contents of itlb: ");
689                 for (slot = 0; slot < 14; slot++) printk ("    ");
690                 printk ("%2x:%016lx,%016lx\n",
691                         0,
692                         spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
693                 for (slot = 1; slot < 64; slot+=3) {
694                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
695                                 slot,
696                                 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
697                                 slot+1,
698                                 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
699                                 slot+2,
700                                 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
701                 }
702         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
703                 printk ("Contents of itlb0:\n");
704                 for (slot = 0; slot < 16; slot+=2) {
705                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
706                                 slot,
707                                 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
708                                 slot+1,
709                                 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
710                 }
711                 printk ("Contents of itlb2:\n");
712                 for (slot = 0; slot < 128; slot+=2) {
713                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
714                                 slot,
715                                 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
716                                 slot+1,
717                                 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
718                 }
719         }
720 }
721
722 void sparc_ultra_dump_dtlb(void)
723 {
724         int slot;
725
726         if (tlb_type == spitfire) {
727                 printk ("Contents of dtlb: ");
728                 for (slot = 0; slot < 14; slot++) printk ("    ");
729                 printk ("%2x:%016lx,%016lx\n", 0,
730                         spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
731                 for (slot = 1; slot < 64; slot+=3) {
732                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n", 
733                                 slot,
734                                 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
735                                 slot+1,
736                                 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
737                                 slot+2,
738                                 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
739                 }
740         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
741                 printk ("Contents of dtlb0:\n");
742                 for (slot = 0; slot < 16; slot+=2) {
743                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
744                                 slot,
745                                 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
746                                 slot+1,
747                                 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
748                 }
749                 printk ("Contents of dtlb2:\n");
750                 for (slot = 0; slot < 512; slot+=2) {
751                         printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
752                                 slot,
753                                 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
754                                 slot+1,
755                                 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
756                 }
757                 if (tlb_type == cheetah_plus) {
758                         printk ("Contents of dtlb3:\n");
759                         for (slot = 0; slot < 512; slot+=2) {
760                                 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
761                                         slot,
762                                         cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
763                                         slot+1,
764                                         cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
765                         }
766                 }
767         }
768 }
769
770 extern unsigned long cmdline_memory_size;
771
772 /* Find a free area for the bootmem map, avoiding the kernel image
773  * and the initial ramdisk.
774  */
775 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
776                                                unsigned long end_pfn)
777 {
778         unsigned long avoid_start, avoid_end, bootmap_size;
779         int i;
780
781         bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
782         bootmap_size = ALIGN(bootmap_size, sizeof(long));
783
784         avoid_start = avoid_end = 0;
785 #ifdef CONFIG_BLK_DEV_INITRD
786         avoid_start = initrd_start;
787         avoid_end = PAGE_ALIGN(initrd_end);
788 #endif
789
790 #ifdef CONFIG_DEBUG_BOOTMEM
791         prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
792                     kern_base, PAGE_ALIGN(kern_base + kern_size),
793                     avoid_start, avoid_end);
794 #endif
795         for (i = 0; i < pavail_ents; i++) {
796                 unsigned long start, end;
797
798                 start = pavail[i].phys_addr;
799                 end = start + pavail[i].reg_size;
800
801                 while (start < end) {
802                         if (start >= kern_base &&
803                             start < PAGE_ALIGN(kern_base + kern_size)) {
804                                 start = PAGE_ALIGN(kern_base + kern_size);
805                                 continue;
806                         }
807                         if (start >= avoid_start && start < avoid_end) {
808                                 start = avoid_end;
809                                 continue;
810                         }
811
812                         if ((end - start) < bootmap_size)
813                                 break;
814
815                         if (start < kern_base &&
816                             (start + bootmap_size) > kern_base) {
817                                 start = PAGE_ALIGN(kern_base + kern_size);
818                                 continue;
819                         }
820
821                         if (start < avoid_start &&
822                             (start + bootmap_size) > avoid_start) {
823                                 start = avoid_end;
824                                 continue;
825                         }
826
827                         /* OK, it doesn't overlap anything, use it.  */
828 #ifdef CONFIG_DEBUG_BOOTMEM
829                         prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
830                                     start >> PAGE_SHIFT, start);
831 #endif
832                         return start >> PAGE_SHIFT;
833                 }
834         }
835
836         prom_printf("Cannot find free area for bootmap, aborting.\n");
837         prom_halt();
838 }
839
840 static unsigned long __init bootmem_init(unsigned long *pages_avail,
841                                          unsigned long phys_base)
842 {
843         unsigned long bootmap_size, end_pfn;
844         unsigned long end_of_phys_memory = 0UL;
845         unsigned long bootmap_pfn, bytes_avail, size;
846         int i;
847
848 #ifdef CONFIG_DEBUG_BOOTMEM
849         prom_printf("bootmem_init: Scan pavail, ");
850 #endif
851
852         bytes_avail = 0UL;
853         for (i = 0; i < pavail_ents; i++) {
854                 end_of_phys_memory = pavail[i].phys_addr +
855                         pavail[i].reg_size;
856                 bytes_avail += pavail[i].reg_size;
857                 if (cmdline_memory_size) {
858                         if (bytes_avail > cmdline_memory_size) {
859                                 unsigned long slack = bytes_avail - cmdline_memory_size;
860
861                                 bytes_avail -= slack;
862                                 end_of_phys_memory -= slack;
863
864                                 pavail[i].reg_size -= slack;
865                                 if ((long)pavail[i].reg_size <= 0L) {
866                                         pavail[i].phys_addr = 0xdeadbeefUL;
867                                         pavail[i].reg_size = 0UL;
868                                         pavail_ents = i;
869                                 } else {
870                                         pavail[i+1].reg_size = 0Ul;
871                                         pavail[i+1].phys_addr = 0xdeadbeefUL;
872                                         pavail_ents = i + 1;
873                                 }
874                                 break;
875                         }
876                 }
877         }
878
879         *pages_avail = bytes_avail >> PAGE_SHIFT;
880
881         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
882
883 #ifdef CONFIG_BLK_DEV_INITRD
884         /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
885         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
886                 unsigned long ramdisk_image = sparc_ramdisk_image ?
887                         sparc_ramdisk_image : sparc_ramdisk_image64;
888                 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
889                         ramdisk_image -= KERNBASE;
890                 initrd_start = ramdisk_image + phys_base;
891                 initrd_end = initrd_start + sparc_ramdisk_size;
892                 if (initrd_end > end_of_phys_memory) {
893                         printk(KERN_CRIT "initrd extends beyond end of memory "
894                                          "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
895                                initrd_end, end_of_phys_memory);
896                         initrd_start = 0;
897                         initrd_end = 0;
898                 }
899         }
900 #endif  
901         /* Initialize the boot-time allocator. */
902         max_pfn = max_low_pfn = end_pfn;
903         min_low_pfn = (phys_base >> PAGE_SHIFT);
904
905         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
906
907 #ifdef CONFIG_DEBUG_BOOTMEM
908         prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
909                     min_low_pfn, bootmap_pfn, max_low_pfn);
910 #endif
911         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
912                                          min_low_pfn, end_pfn);
913
914         /* Now register the available physical memory with the
915          * allocator.
916          */
917         for (i = 0; i < pavail_ents; i++) {
918 #ifdef CONFIG_DEBUG_BOOTMEM
919                 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
920                             i, pavail[i].phys_addr, pavail[i].reg_size);
921 #endif
922                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
923         }
924
925 #ifdef CONFIG_BLK_DEV_INITRD
926         if (initrd_start) {
927                 size = initrd_end - initrd_start;
928
929                 /* Resert the initrd image area. */
930 #ifdef CONFIG_DEBUG_BOOTMEM
931                 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
932                         initrd_start, initrd_end);
933 #endif
934                 reserve_bootmem(initrd_start, size);
935                 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
936
937                 initrd_start += PAGE_OFFSET;
938                 initrd_end += PAGE_OFFSET;
939         }
940 #endif
941         /* Reserve the kernel text/data/bss. */
942 #ifdef CONFIG_DEBUG_BOOTMEM
943         prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
944 #endif
945         reserve_bootmem(kern_base, kern_size);
946         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
947
948         /* Reserve the bootmem map.   We do not account for it
949          * in pages_avail because we will release that memory
950          * in free_all_bootmem.
951          */
952         size = bootmap_size;
953 #ifdef CONFIG_DEBUG_BOOTMEM
954         prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
955                     (bootmap_pfn << PAGE_SHIFT), size);
956 #endif
957         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
958         *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
959
960         for (i = 0; i < pavail_ents; i++) {
961                 unsigned long start_pfn, end_pfn;
962
963                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
964                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
965 #ifdef CONFIG_DEBUG_BOOTMEM
966                 prom_printf("memory_present(0, %lx, %lx)\n",
967                             start_pfn, end_pfn);
968 #endif
969                 memory_present(0, start_pfn, end_pfn);
970         }
971
972         sparse_init();
973
974         return end_pfn;
975 }
976
977 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
978 static int pall_ents __initdata;
979
980 #ifdef CONFIG_DEBUG_PAGEALLOC
981 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
982 {
983         unsigned long vstart = PAGE_OFFSET + pstart;
984         unsigned long vend = PAGE_OFFSET + pend;
985         unsigned long alloc_bytes = 0UL;
986
987         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
988                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
989                             vstart, vend);
990                 prom_halt();
991         }
992
993         while (vstart < vend) {
994                 unsigned long this_end, paddr = __pa(vstart);
995                 pgd_t *pgd = pgd_offset_k(vstart);
996                 pud_t *pud;
997                 pmd_t *pmd;
998                 pte_t *pte;
999
1000                 pud = pud_offset(pgd, vstart);
1001                 if (pud_none(*pud)) {
1002                         pmd_t *new;
1003
1004                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1005                         alloc_bytes += PAGE_SIZE;
1006                         pud_populate(&init_mm, pud, new);
1007                 }
1008
1009                 pmd = pmd_offset(pud, vstart);
1010                 if (!pmd_present(*pmd)) {
1011                         pte_t *new;
1012
1013                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1014                         alloc_bytes += PAGE_SIZE;
1015                         pmd_populate_kernel(&init_mm, pmd, new);
1016                 }
1017
1018                 pte = pte_offset_kernel(pmd, vstart);
1019                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1020                 if (this_end > vend)
1021                         this_end = vend;
1022
1023                 while (vstart < this_end) {
1024                         pte_val(*pte) = (paddr | pgprot_val(prot));
1025
1026                         vstart += PAGE_SIZE;
1027                         paddr += PAGE_SIZE;
1028                         pte++;
1029                 }
1030         }
1031
1032         return alloc_bytes;
1033 }
1034
1035 extern unsigned int kvmap_linear_patch[1];
1036 #endif /* CONFIG_DEBUG_PAGEALLOC */
1037
1038 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1039 {
1040         const unsigned long shift_256MB = 28;
1041         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1042         const unsigned long size_256MB = (1UL << shift_256MB);
1043
1044         while (start < end) {
1045                 long remains;
1046
1047                 remains = end - start;
1048                 if (remains < size_256MB)
1049                         break;
1050
1051                 if (start & mask_256MB) {
1052                         start = (start + size_256MB) & ~mask_256MB;
1053                         continue;
1054                 }
1055
1056                 while (remains >= size_256MB) {
1057                         unsigned long index = start >> shift_256MB;
1058
1059                         __set_bit(index, kpte_linear_bitmap);
1060
1061                         start += size_256MB;
1062                         remains -= size_256MB;
1063                 }
1064         }
1065 }
1066
1067 static void __init kernel_physical_mapping_init(void)
1068 {
1069         unsigned long i;
1070 #ifdef CONFIG_DEBUG_PAGEALLOC
1071         unsigned long mem_alloced = 0UL;
1072 #endif
1073
1074         read_obp_memory("reg", &pall[0], &pall_ents);
1075
1076         for (i = 0; i < pall_ents; i++) {
1077                 unsigned long phys_start, phys_end;
1078
1079                 phys_start = pall[i].phys_addr;
1080                 phys_end = phys_start + pall[i].reg_size;
1081
1082                 mark_kpte_bitmap(phys_start, phys_end);
1083
1084 #ifdef CONFIG_DEBUG_PAGEALLOC
1085                 mem_alloced += kernel_map_range(phys_start, phys_end,
1086                                                 PAGE_KERNEL);
1087 #endif
1088         }
1089
1090 #ifdef CONFIG_DEBUG_PAGEALLOC
1091         printk("Allocated %ld bytes for kernel page tables.\n",
1092                mem_alloced);
1093
1094         kvmap_linear_patch[0] = 0x01000000; /* nop */
1095         flushi(&kvmap_linear_patch[0]);
1096
1097         __flush_tlb_all();
1098 #endif
1099 }
1100
1101 #ifdef CONFIG_DEBUG_PAGEALLOC
1102 void kernel_map_pages(struct page *page, int numpages, int enable)
1103 {
1104         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1105         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1106
1107         kernel_map_range(phys_start, phys_end,
1108                          (enable ? PAGE_KERNEL : __pgprot(0)));
1109
1110         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1111                                PAGE_OFFSET + phys_end);
1112
1113         /* we should perform an IPI and flush all tlbs,
1114          * but that can deadlock->flush only current cpu.
1115          */
1116         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1117                                  PAGE_OFFSET + phys_end);
1118 }
1119 #endif
1120
1121 unsigned long __init find_ecache_flush_span(unsigned long size)
1122 {
1123         int i;
1124
1125         for (i = 0; i < pavail_ents; i++) {
1126                 if (pavail[i].reg_size >= size)
1127                         return pavail[i].phys_addr;
1128         }
1129
1130         return ~0UL;
1131 }
1132
1133 static void __init tsb_phys_patch(void)
1134 {
1135         struct tsb_ldquad_phys_patch_entry *pquad;
1136         struct tsb_phys_patch_entry *p;
1137
1138         pquad = &__tsb_ldquad_phys_patch;
1139         while (pquad < &__tsb_ldquad_phys_patch_end) {
1140                 unsigned long addr = pquad->addr;
1141
1142                 if (tlb_type == hypervisor)
1143                         *(unsigned int *) addr = pquad->sun4v_insn;
1144                 else
1145                         *(unsigned int *) addr = pquad->sun4u_insn;
1146                 wmb();
1147                 __asm__ __volatile__("flush     %0"
1148                                      : /* no outputs */
1149                                      : "r" (addr));
1150
1151                 pquad++;
1152         }
1153
1154         p = &__tsb_phys_patch;
1155         while (p < &__tsb_phys_patch_end) {
1156                 unsigned long addr = p->addr;
1157
1158                 *(unsigned int *) addr = p->insn;
1159                 wmb();
1160                 __asm__ __volatile__("flush     %0"
1161                                      : /* no outputs */
1162                                      : "r" (addr));
1163
1164                 p++;
1165         }
1166 }
1167
1168 /* Don't mark as init, we give this to the Hypervisor.  */
1169 static struct hv_tsb_descr ktsb_descr[2];
1170 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1171
1172 static void __init sun4v_ktsb_init(void)
1173 {
1174         unsigned long ktsb_pa;
1175
1176         /* First KTSB for PAGE_SIZE mappings.  */
1177         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1178
1179         switch (PAGE_SIZE) {
1180         case 8 * 1024:
1181         default:
1182                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1183                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1184                 break;
1185
1186         case 64 * 1024:
1187                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1188                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1189                 break;
1190
1191         case 512 * 1024:
1192                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1193                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1194                 break;
1195
1196         case 4 * 1024 * 1024:
1197                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1198                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1199                 break;
1200         };
1201
1202         ktsb_descr[0].assoc = 1;
1203         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1204         ktsb_descr[0].ctx_idx = 0;
1205         ktsb_descr[0].tsb_base = ktsb_pa;
1206         ktsb_descr[0].resv = 0;
1207
1208         /* Second KTSB for 4MB/256MB mappings.  */
1209         ktsb_pa = (kern_base +
1210                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1211
1212         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1213         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1214                                    HV_PGSZ_MASK_256MB);
1215         ktsb_descr[1].assoc = 1;
1216         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1217         ktsb_descr[1].ctx_idx = 0;
1218         ktsb_descr[1].tsb_base = ktsb_pa;
1219         ktsb_descr[1].resv = 0;
1220 }
1221
1222 void __cpuinit sun4v_ktsb_register(void)
1223 {
1224         register unsigned long func asm("%o5");
1225         register unsigned long arg0 asm("%o0");
1226         register unsigned long arg1 asm("%o1");
1227         unsigned long pa;
1228
1229         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1230
1231         func = HV_FAST_MMU_TSB_CTX0;
1232         arg0 = 2;
1233         arg1 = pa;
1234         __asm__ __volatile__("ta        %6"
1235                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1236                              : "0" (func), "1" (arg0), "2" (arg1),
1237                                "i" (HV_FAST_TRAP));
1238 }
1239
1240 /* paging_init() sets up the page tables */
1241
1242 extern void cheetah_ecache_flush_init(void);
1243 extern void sun4v_patch_tlb_handlers(void);
1244
1245 static unsigned long last_valid_pfn;
1246 pgd_t swapper_pg_dir[2048];
1247
1248 static void sun4u_pgprot_init(void);
1249 static void sun4v_pgprot_init(void);
1250
1251 void __init paging_init(void)
1252 {
1253         unsigned long end_pfn, pages_avail, shift, phys_base;
1254         unsigned long real_end, i;
1255
1256         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1257         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1258
1259         /* Invalidate both kernel TSBs.  */
1260         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1261         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1262
1263         if (tlb_type == hypervisor)
1264                 sun4v_pgprot_init();
1265         else
1266                 sun4u_pgprot_init();
1267
1268         if (tlb_type == cheetah_plus ||
1269             tlb_type == hypervisor)
1270                 tsb_phys_patch();
1271
1272         if (tlb_type == hypervisor) {
1273                 sun4v_patch_tlb_handlers();
1274                 sun4v_ktsb_init();
1275         }
1276
1277         /* Find available physical memory... */
1278         read_obp_memory("available", &pavail[0], &pavail_ents);
1279
1280         phys_base = 0xffffffffffffffffUL;
1281         for (i = 0; i < pavail_ents; i++)
1282                 phys_base = min(phys_base, pavail[i].phys_addr);
1283
1284         set_bit(0, mmu_context_bmap);
1285
1286         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1287
1288         real_end = (unsigned long)_end;
1289         if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1290                 bigkernel = 1;
1291         if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1292                 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1293                 prom_halt();
1294         }
1295
1296         /* Set kernel pgd to upper alias so physical page computations
1297          * work.
1298          */
1299         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1300         
1301         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1302
1303         /* Now can init the kernel/bad page tables. */
1304         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1305                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1306         
1307         inherit_prom_mappings();
1308         
1309         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1310         setup_tba();
1311
1312         __flush_tlb_all();
1313
1314         if (tlb_type == hypervisor)
1315                 sun4v_ktsb_register();
1316
1317         /* Setup bootmem... */
1318         pages_avail = 0;
1319         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1320
1321         max_mapnr = last_valid_pfn;
1322
1323         kernel_physical_mapping_init();
1324
1325         {
1326                 unsigned long zones_size[MAX_NR_ZONES];
1327                 unsigned long zholes_size[MAX_NR_ZONES];
1328                 int znum;
1329
1330                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1331                         zones_size[znum] = zholes_size[znum] = 0;
1332
1333                 zones_size[ZONE_DMA] = end_pfn;
1334                 zholes_size[ZONE_DMA] = end_pfn - pages_avail;
1335
1336                 free_area_init_node(0, &contig_page_data, zones_size,
1337                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1338                                     zholes_size);
1339         }
1340
1341         device_scan();
1342 }
1343
1344 static void __init taint_real_pages(void)
1345 {
1346         int i;
1347
1348         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1349
1350         /* Find changes discovered in the physmem available rescan and
1351          * reserve the lost portions in the bootmem maps.
1352          */
1353         for (i = 0; i < pavail_ents; i++) {
1354                 unsigned long old_start, old_end;
1355
1356                 old_start = pavail[i].phys_addr;
1357                 old_end = old_start +
1358                         pavail[i].reg_size;
1359                 while (old_start < old_end) {
1360                         int n;
1361
1362                         for (n = 0; pavail_rescan_ents; n++) {
1363                                 unsigned long new_start, new_end;
1364
1365                                 new_start = pavail_rescan[n].phys_addr;
1366                                 new_end = new_start +
1367                                         pavail_rescan[n].reg_size;
1368
1369                                 if (new_start <= old_start &&
1370                                     new_end >= (old_start + PAGE_SIZE)) {
1371                                         set_bit(old_start >> 22,
1372                                                 sparc64_valid_addr_bitmap);
1373                                         goto do_next_page;
1374                                 }
1375                         }
1376                         reserve_bootmem(old_start, PAGE_SIZE);
1377
1378                 do_next_page:
1379                         old_start += PAGE_SIZE;
1380                 }
1381         }
1382 }
1383
1384 void __init mem_init(void)
1385 {
1386         unsigned long codepages, datapages, initpages;
1387         unsigned long addr, last;
1388         int i;
1389
1390         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1391         i += 1;
1392         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1393         if (sparc64_valid_addr_bitmap == NULL) {
1394                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1395                 prom_halt();
1396         }
1397         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1398
1399         addr = PAGE_OFFSET + kern_base;
1400         last = PAGE_ALIGN(kern_size) + addr;
1401         while (addr < last) {
1402                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1403                 addr += PAGE_SIZE;
1404         }
1405
1406         taint_real_pages();
1407
1408         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1409
1410 #ifdef CONFIG_DEBUG_BOOTMEM
1411         prom_printf("mem_init: Calling free_all_bootmem().\n");
1412 #endif
1413         totalram_pages = num_physpages = free_all_bootmem() - 1;
1414
1415         /*
1416          * Set up the zero page, mark it reserved, so that page count
1417          * is not manipulated when freeing the page from user ptes.
1418          */
1419         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1420         if (mem_map_zero == NULL) {
1421                 prom_printf("paging_init: Cannot alloc zero page.\n");
1422                 prom_halt();
1423         }
1424         SetPageReserved(mem_map_zero);
1425
1426         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1427         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1428         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1429         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1430         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1431         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1432
1433         printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1434                nr_free_pages() << (PAGE_SHIFT-10),
1435                codepages << (PAGE_SHIFT-10),
1436                datapages << (PAGE_SHIFT-10), 
1437                initpages << (PAGE_SHIFT-10), 
1438                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1439
1440         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1441                 cheetah_ecache_flush_init();
1442 }
1443
1444 void free_initmem(void)
1445 {
1446         unsigned long addr, initend;
1447
1448         /*
1449          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1450          */
1451         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1452         initend = (unsigned long)(__init_end) & PAGE_MASK;
1453         for (; addr < initend; addr += PAGE_SIZE) {
1454                 unsigned long page;
1455                 struct page *p;
1456
1457                 page = (addr +
1458                         ((unsigned long) __va(kern_base)) -
1459                         ((unsigned long) KERNBASE));
1460                 memset((void *)addr, 0xcc, PAGE_SIZE);
1461                 p = virt_to_page(page);
1462
1463                 ClearPageReserved(p);
1464                 set_page_count(p, 1);
1465                 __free_page(p);
1466                 num_physpages++;
1467                 totalram_pages++;
1468         }
1469 }
1470
1471 #ifdef CONFIG_BLK_DEV_INITRD
1472 void free_initrd_mem(unsigned long start, unsigned long end)
1473 {
1474         if (start < end)
1475                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1476         for (; start < end; start += PAGE_SIZE) {
1477                 struct page *p = virt_to_page(start);
1478
1479                 ClearPageReserved(p);
1480                 set_page_count(p, 1);
1481                 __free_page(p);
1482                 num_physpages++;
1483                 totalram_pages++;
1484         }
1485 }
1486 #endif
1487
1488 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1489 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1490 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1491 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1492 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1493 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1494
1495 pgprot_t PAGE_KERNEL __read_mostly;
1496 EXPORT_SYMBOL(PAGE_KERNEL);
1497
1498 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1499 pgprot_t PAGE_COPY __read_mostly;
1500
1501 pgprot_t PAGE_SHARED __read_mostly;
1502 EXPORT_SYMBOL(PAGE_SHARED);
1503
1504 pgprot_t PAGE_EXEC __read_mostly;
1505 unsigned long pg_iobits __read_mostly;
1506
1507 unsigned long _PAGE_IE __read_mostly;
1508
1509 unsigned long _PAGE_E __read_mostly;
1510 EXPORT_SYMBOL(_PAGE_E);
1511
1512 unsigned long _PAGE_CACHE __read_mostly;
1513 EXPORT_SYMBOL(_PAGE_CACHE);
1514
1515 static void prot_init_common(unsigned long page_none,
1516                              unsigned long page_shared,
1517                              unsigned long page_copy,
1518                              unsigned long page_readonly,
1519                              unsigned long page_exec_bit)
1520 {
1521         PAGE_COPY = __pgprot(page_copy);
1522         PAGE_SHARED = __pgprot(page_shared);
1523
1524         protection_map[0x0] = __pgprot(page_none);
1525         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1526         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1527         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1528         protection_map[0x4] = __pgprot(page_readonly);
1529         protection_map[0x5] = __pgprot(page_readonly);
1530         protection_map[0x6] = __pgprot(page_copy);
1531         protection_map[0x7] = __pgprot(page_copy);
1532         protection_map[0x8] = __pgprot(page_none);
1533         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1534         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1535         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1536         protection_map[0xc] = __pgprot(page_readonly);
1537         protection_map[0xd] = __pgprot(page_readonly);
1538         protection_map[0xe] = __pgprot(page_shared);
1539         protection_map[0xf] = __pgprot(page_shared);
1540 }
1541
1542 static void __init sun4u_pgprot_init(void)
1543 {
1544         unsigned long page_none, page_shared, page_copy, page_readonly;
1545         unsigned long page_exec_bit;
1546
1547         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1548                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1549                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1550                                 _PAGE_EXEC_4U);
1551         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1552                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1553                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1554                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1555         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1556
1557         _PAGE_IE = _PAGE_IE_4U;
1558         _PAGE_E = _PAGE_E_4U;
1559         _PAGE_CACHE = _PAGE_CACHE_4U;
1560
1561         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1562                      __ACCESS_BITS_4U | _PAGE_E_4U);
1563
1564         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1565                 0xfffff80000000000;
1566         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1567                                    _PAGE_P_4U | _PAGE_W_4U);
1568
1569         /* XXX Should use 256MB on Panther. XXX */
1570         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1571
1572         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1573         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1574                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1575                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1576
1577
1578         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1579         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1580                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1581         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1582                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1583         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1584                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1585
1586         page_exec_bit = _PAGE_EXEC_4U;
1587
1588         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1589                          page_exec_bit);
1590 }
1591
1592 static void __init sun4v_pgprot_init(void)
1593 {
1594         unsigned long page_none, page_shared, page_copy, page_readonly;
1595         unsigned long page_exec_bit;
1596
1597         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1598                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1599                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1600                                 _PAGE_EXEC_4V);
1601         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1602         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1603
1604         _PAGE_IE = _PAGE_IE_4V;
1605         _PAGE_E = _PAGE_E_4V;
1606         _PAGE_CACHE = _PAGE_CACHE_4V;
1607
1608         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1609                 0xfffff80000000000;
1610         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1611                                    _PAGE_P_4V | _PAGE_W_4V);
1612
1613         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1614                 0xfffff80000000000;
1615         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1616                                    _PAGE_P_4V | _PAGE_W_4V);
1617
1618         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1619                      __ACCESS_BITS_4V | _PAGE_E_4V);
1620
1621         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1622         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1623                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1624                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1625                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1626
1627         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1628         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1629                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1630         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1631                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1632         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1633                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1634
1635         page_exec_bit = _PAGE_EXEC_4V;
1636
1637         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1638                          page_exec_bit);
1639 }
1640
1641 unsigned long pte_sz_bits(unsigned long sz)
1642 {
1643         if (tlb_type == hypervisor) {
1644                 switch (sz) {
1645                 case 8 * 1024:
1646                 default:
1647                         return _PAGE_SZ8K_4V;
1648                 case 64 * 1024:
1649                         return _PAGE_SZ64K_4V;
1650                 case 512 * 1024:
1651                         return _PAGE_SZ512K_4V;
1652                 case 4 * 1024 * 1024:
1653                         return _PAGE_SZ4MB_4V;
1654                 };
1655         } else {
1656                 switch (sz) {
1657                 case 8 * 1024:
1658                 default:
1659                         return _PAGE_SZ8K_4U;
1660                 case 64 * 1024:
1661                         return _PAGE_SZ64K_4U;
1662                 case 512 * 1024:
1663                         return _PAGE_SZ512K_4U;
1664                 case 4 * 1024 * 1024:
1665                         return _PAGE_SZ4MB_4U;
1666                 };
1667         }
1668 }
1669
1670 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1671 {
1672         pte_t pte;
1673
1674         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1675         pte_val(pte) |= (((unsigned long)space) << 32);
1676         pte_val(pte) |= pte_sz_bits(page_size);
1677
1678         return pte;
1679 }
1680
1681 static unsigned long kern_large_tte(unsigned long paddr)
1682 {
1683         unsigned long val;
1684
1685         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1686                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1687                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1688         if (tlb_type == hypervisor)
1689                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1690                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1691                        _PAGE_EXEC_4V | _PAGE_W_4V);
1692
1693         return val | paddr;
1694 }
1695
1696 /*
1697  * Translate PROM's mapping we capture at boot time into physical address.
1698  * The second parameter is only set from prom_callback() invocations.
1699  */
1700 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1701 {
1702         unsigned long mask;
1703         int i;
1704
1705         mask = _PAGE_PADDR_4U;
1706         if (tlb_type == hypervisor)
1707                 mask = _PAGE_PADDR_4V;
1708
1709         for (i = 0; i < prom_trans_ents; i++) {
1710                 struct linux_prom_translation *p = &prom_trans[i];
1711
1712                 if (promva >= p->virt &&
1713                     promva < (p->virt + p->size)) {
1714                         unsigned long base = p->data & mask;
1715
1716                         if (error)
1717                                 *error = 0;
1718                         return base + (promva & (8192 - 1));
1719                 }
1720         }
1721         if (error)
1722                 *error = 1;
1723         return 0UL;
1724 }
1725
1726 /* XXX We should kill off this ugly thing at so me point. XXX */
1727 unsigned long sun4u_get_pte(unsigned long addr)
1728 {
1729         pgd_t *pgdp;
1730         pud_t *pudp;
1731         pmd_t *pmdp;
1732         pte_t *ptep;
1733         unsigned long mask = _PAGE_PADDR_4U;
1734
1735         if (tlb_type == hypervisor)
1736                 mask = _PAGE_PADDR_4V;
1737
1738         if (addr >= PAGE_OFFSET)
1739                 return addr & mask;
1740
1741         if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1742                 return prom_virt_to_phys(addr, NULL);
1743
1744         pgdp = pgd_offset_k(addr);
1745         pudp = pud_offset(pgdp, addr);
1746         pmdp = pmd_offset(pudp, addr);
1747         ptep = pte_offset_kernel(pmdp, addr);
1748
1749         return pte_val(*ptep) & mask;
1750 }
1751
1752 /* If not locked, zap it. */
1753 void __flush_tlb_all(void)
1754 {
1755         unsigned long pstate;
1756         int i;
1757
1758         __asm__ __volatile__("flushw\n\t"
1759                              "rdpr      %%pstate, %0\n\t"
1760                              "wrpr      %0, %1, %%pstate"
1761                              : "=r" (pstate)
1762                              : "i" (PSTATE_IE));
1763         if (tlb_type == spitfire) {
1764                 for (i = 0; i < 64; i++) {
1765                         /* Spitfire Errata #32 workaround */
1766                         /* NOTE: Always runs on spitfire, so no
1767                          *       cheetah+ page size encodings.
1768                          */
1769                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1770                                              "flush     %%g6"
1771                                              : /* No outputs */
1772                                              : "r" (0),
1773                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1774
1775                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1776                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1777                                                      "membar #Sync"
1778                                                      : /* no outputs */
1779                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1780                                 spitfire_put_dtlb_data(i, 0x0UL);
1781                         }
1782
1783                         /* Spitfire Errata #32 workaround */
1784                         /* NOTE: Always runs on spitfire, so no
1785                          *       cheetah+ page size encodings.
1786                          */
1787                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1788                                              "flush     %%g6"
1789                                              : /* No outputs */
1790                                              : "r" (0),
1791                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1792
1793                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1794                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1795                                                      "membar #Sync"
1796                                                      : /* no outputs */
1797                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1798                                 spitfire_put_itlb_data(i, 0x0UL);
1799                         }
1800                 }
1801         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1802                 cheetah_flush_dtlb_all();
1803                 cheetah_flush_itlb_all();
1804         }
1805         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1806                              : : "r" (pstate));
1807 }
1808
1809 #ifdef CONFIG_MEMORY_HOTPLUG
1810
1811 void online_page(struct page *page)
1812 {
1813         ClearPageReserved(page);
1814         set_page_count(page, 0);
1815         free_cold_page(page);
1816         totalram_pages++;
1817         num_physpages++;
1818 }
1819
1820 int remove_memory(u64 start, u64 size)
1821 {
1822         return -EINVAL;
1823 }
1824
1825 #endif /* CONFIG_MEMORY_HOTPLUG */