]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_32.c
x86: add gbpages support to 32-bit init_memory_mapping()
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_32.c
1 /*
2  *
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  */
7
8 #include <linux/module.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/hugetlb.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/bootmem.h>
28 #include <linux/slab.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/initrd.h>
32 #include <linux/cpumask.h>
33
34 #include <asm/asm.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/processor.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/dma.h>
41 #include <asm/fixmap.h>
42 #include <asm/e820.h>
43 #include <asm/apic.h>
44 #include <asm/bugs.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/pgalloc.h>
48 #include <asm/sections.h>
49 #include <asm/paravirt.h>
50 #include <asm/setup.h>
51 #include <asm/cacheflush.h>
52
53 unsigned long max_low_pfn_mapped;
54 unsigned long max_pfn_mapped;
55
56 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
57 unsigned long highstart_pfn, highend_pfn;
58
59 static noinline int do_test_wp_bit(void);
60
61
62 static unsigned long __initdata table_start;
63 static unsigned long __meminitdata table_end;
64 static unsigned long __meminitdata table_top;
65
66 static int __initdata after_init_bootmem;
67
68 int direct_gbpages;
69
70 static __init void *alloc_low_page(void)
71 {
72         unsigned long pfn = table_end++;
73         void *adr;
74
75         if (pfn >= table_top)
76                 panic("alloc_low_page: ran out of memory");
77
78         adr = __va(pfn * PAGE_SIZE);
79         memset(adr, 0, PAGE_SIZE);
80         return adr;
81 }
82
83 /*
84  * Creates a middle page table and puts a pointer to it in the
85  * given global directory entry. This only returns the gd entry
86  * in non-PAE compilation mode, since the middle layer is folded.
87  */
88 static pmd_t * __init one_md_table_init(pgd_t *pgd)
89 {
90         pud_t *pud;
91         pmd_t *pmd_table;
92
93 #ifdef CONFIG_X86_PAE
94         if (!(pgd_val(*pgd) & _PAGE_PRESENT)) {
95                 if (after_init_bootmem)
96                         pmd_table = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
97                 else
98                         pmd_table = (pmd_t *)alloc_low_page();
99                 paravirt_alloc_pmd(&init_mm, __pa(pmd_table) >> PAGE_SHIFT);
100                 set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
101                 pud = pud_offset(pgd, 0);
102                 BUG_ON(pmd_table != pmd_offset(pud, 0));
103
104                 return pmd_table;
105         }
106 #endif
107         pud = pud_offset(pgd, 0);
108         pmd_table = pmd_offset(pud, 0);
109
110         return pmd_table;
111 }
112
113 /*
114  * Create a page table and place a pointer to it in a middle page
115  * directory entry:
116  */
117 static pte_t * __init one_page_table_init(pmd_t *pmd)
118 {
119         if (!(pmd_val(*pmd) & _PAGE_PRESENT)) {
120                 pte_t *page_table = NULL;
121
122                 if (after_init_bootmem) {
123 #ifdef CONFIG_DEBUG_PAGEALLOC
124                         page_table = (pte_t *) alloc_bootmem_pages(PAGE_SIZE);
125 #endif
126                         if (!page_table)
127                                 page_table =
128                                 (pte_t *)alloc_bootmem_low_pages(PAGE_SIZE);
129                 } else
130                         page_table = (pte_t *)alloc_low_page();
131
132                 paravirt_alloc_pte(&init_mm, __pa(page_table) >> PAGE_SHIFT);
133                 set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
134                 BUG_ON(page_table != pte_offset_kernel(pmd, 0));
135         }
136
137         return pte_offset_kernel(pmd, 0);
138 }
139
140 static pte_t *__init page_table_kmap_check(pte_t *pte, pmd_t *pmd,
141                                            unsigned long vaddr, pte_t *lastpte)
142 {
143 #ifdef CONFIG_HIGHMEM
144         /*
145          * Something (early fixmap) may already have put a pte
146          * page here, which causes the page table allocation
147          * to become nonlinear. Attempt to fix it, and if it
148          * is still nonlinear then we have to bug.
149          */
150         int pmd_idx_kmap_begin = fix_to_virt(FIX_KMAP_END) >> PMD_SHIFT;
151         int pmd_idx_kmap_end = fix_to_virt(FIX_KMAP_BEGIN) >> PMD_SHIFT;
152
153         if (pmd_idx_kmap_begin != pmd_idx_kmap_end
154             && (vaddr >> PMD_SHIFT) >= pmd_idx_kmap_begin
155             && (vaddr >> PMD_SHIFT) <= pmd_idx_kmap_end
156             && ((__pa(pte) >> PAGE_SHIFT) < table_start
157                 || (__pa(pte) >> PAGE_SHIFT) >= table_end)) {
158                 pte_t *newpte;
159                 int i;
160
161                 BUG_ON(after_init_bootmem);
162                 newpte = alloc_low_page();
163                 for (i = 0; i < PTRS_PER_PTE; i++)
164                         set_pte(newpte + i, pte[i]);
165
166                 paravirt_alloc_pte(&init_mm, __pa(newpte) >> PAGE_SHIFT);
167                 set_pmd(pmd, __pmd(__pa(newpte)|_PAGE_TABLE));
168                 BUG_ON(newpte != pte_offset_kernel(pmd, 0));
169                 __flush_tlb_all();
170
171                 paravirt_release_pte(__pa(pte) >> PAGE_SHIFT);
172                 pte = newpte;
173         }
174         BUG_ON(vaddr < fix_to_virt(FIX_KMAP_BEGIN - 1)
175                && vaddr > fix_to_virt(FIX_KMAP_END)
176                && lastpte && lastpte + PTRS_PER_PTE != pte);
177 #endif
178         return pte;
179 }
180
181 /*
182  * This function initializes a certain range of kernel virtual memory
183  * with new bootmem page tables, everywhere page tables are missing in
184  * the given range.
185  *
186  * NOTE: The pagetables are allocated contiguous on the physical space
187  * so we can cache the place of the first one and move around without
188  * checking the pgd every time.
189  */
190 static void __init
191 page_table_range_init(unsigned long start, unsigned long end, pgd_t *pgd_base)
192 {
193         int pgd_idx, pmd_idx;
194         unsigned long vaddr;
195         pgd_t *pgd;
196         pmd_t *pmd;
197         pte_t *pte = NULL;
198
199         vaddr = start;
200         pgd_idx = pgd_index(vaddr);
201         pmd_idx = pmd_index(vaddr);
202         pgd = pgd_base + pgd_idx;
203
204         for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
205                 pmd = one_md_table_init(pgd);
206                 pmd = pmd + pmd_index(vaddr);
207                 for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end);
208                                                         pmd++, pmd_idx++) {
209                         pte = page_table_kmap_check(one_page_table_init(pmd),
210                                                     pmd, vaddr, pte);
211
212                         vaddr += PMD_SIZE;
213                 }
214                 pmd_idx = 0;
215         }
216 }
217
218 static inline int is_kernel_text(unsigned long addr)
219 {
220         if (addr >= PAGE_OFFSET && addr <= (unsigned long)__init_end)
221                 return 1;
222         return 0;
223 }
224
225 /*
226  * This maps the physical memory to kernel virtual address space, a total
227  * of max_low_pfn pages, by creating page tables starting from address
228  * PAGE_OFFSET:
229  */
230 static void __init kernel_physical_mapping_init(pgd_t *pgd_base,
231                                                 unsigned long start_pfn,
232                                                 unsigned long end_pfn,
233                                                 int use_pse)
234 {
235         int pgd_idx, pmd_idx, pte_ofs;
236         unsigned long pfn;
237         pgd_t *pgd;
238         pmd_t *pmd;
239         pte_t *pte;
240         unsigned pages_2m, pages_4k;
241         int mapping_iter;
242
243         /*
244          * First iteration will setup identity mapping using large/small pages
245          * based on use_pse, with other attributes same as set by
246          * the early code in head_32.S
247          *
248          * Second iteration will setup the appropriate attributes (NX, GLOBAL..)
249          * as desired for the kernel identity mapping.
250          *
251          * This two pass mechanism conforms to the TLB app note which says:
252          *
253          *     "Software should not write to a paging-structure entry in a way
254          *      that would change, for any linear address, both the page size
255          *      and either the page frame or attributes."
256          */
257         mapping_iter = 1;
258
259         if (!cpu_has_pse)
260                 use_pse = 0;
261
262 repeat:
263         pages_2m = pages_4k = 0;
264         pfn = start_pfn;
265         pgd_idx = pgd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
266         pgd = pgd_base + pgd_idx;
267         for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
268                 pmd = one_md_table_init(pgd);
269
270                 if (pfn >= end_pfn)
271                         continue;
272 #ifdef CONFIG_X86_PAE
273                 pmd_idx = pmd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
274                 pmd += pmd_idx;
275 #else
276                 pmd_idx = 0;
277 #endif
278                 for (; pmd_idx < PTRS_PER_PMD && pfn < end_pfn;
279                      pmd++, pmd_idx++) {
280                         unsigned int addr = pfn * PAGE_SIZE + PAGE_OFFSET;
281
282                         /*
283                          * Map with big pages if possible, otherwise
284                          * create normal page tables:
285                          */
286                         if (use_pse) {
287                                 unsigned int addr2;
288                                 pgprot_t prot = PAGE_KERNEL_LARGE;
289                                 /*
290                                  * first pass will use the same initial
291                                  * identity mapping attribute + _PAGE_PSE.
292                                  */
293                                 pgprot_t init_prot =
294                                         __pgprot(PTE_IDENT_ATTR |
295                                                  _PAGE_PSE);
296
297                                 addr2 = (pfn + PTRS_PER_PTE-1) * PAGE_SIZE +
298                                         PAGE_OFFSET + PAGE_SIZE-1;
299
300                                 if (is_kernel_text(addr) ||
301                                     is_kernel_text(addr2))
302                                         prot = PAGE_KERNEL_LARGE_EXEC;
303
304                                 pages_2m++;
305                                 if (mapping_iter == 1)
306                                         set_pmd(pmd, pfn_pmd(pfn, init_prot));
307                                 else
308                                         set_pmd(pmd, pfn_pmd(pfn, prot));
309
310                                 pfn += PTRS_PER_PTE;
311                                 continue;
312                         }
313                         pte = one_page_table_init(pmd);
314
315                         pte_ofs = pte_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
316                         pte += pte_ofs;
317                         for (; pte_ofs < PTRS_PER_PTE && pfn < end_pfn;
318                              pte++, pfn++, pte_ofs++, addr += PAGE_SIZE) {
319                                 pgprot_t prot = PAGE_KERNEL;
320                                 /*
321                                  * first pass will use the same initial
322                                  * identity mapping attribute.
323                                  */
324                                 pgprot_t init_prot = __pgprot(PTE_IDENT_ATTR);
325
326                                 if (is_kernel_text(addr))
327                                         prot = PAGE_KERNEL_EXEC;
328
329                                 pages_4k++;
330                                 if (mapping_iter == 1)
331                                         set_pte(pte, pfn_pte(pfn, init_prot));
332                                 else
333                                         set_pte(pte, pfn_pte(pfn, prot));
334                         }
335                 }
336         }
337         if (mapping_iter == 1) {
338                 /*
339                  * update direct mapping page count only in the first
340                  * iteration.
341                  */
342                 update_page_count(PG_LEVEL_2M, pages_2m);
343                 update_page_count(PG_LEVEL_4K, pages_4k);
344
345                 /*
346                  * local global flush tlb, which will flush the previous
347                  * mappings present in both small and large page TLB's.
348                  */
349                 __flush_tlb_all();
350
351                 /*
352                  * Second iteration will set the actual desired PTE attributes.
353                  */
354                 mapping_iter = 2;
355                 goto repeat;
356         }
357 }
358
359 pte_t *kmap_pte;
360 pgprot_t kmap_prot;
361
362 static inline pte_t *kmap_get_fixmap_pte(unsigned long vaddr)
363 {
364         return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
365                         vaddr), vaddr), vaddr);
366 }
367
368 static void __init kmap_init(void)
369 {
370         unsigned long kmap_vstart;
371
372         /*
373          * Cache the first kmap pte:
374          */
375         kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
376         kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
377
378         kmap_prot = PAGE_KERNEL;
379 }
380
381 #ifdef CONFIG_HIGHMEM
382 static void __init permanent_kmaps_init(pgd_t *pgd_base)
383 {
384         unsigned long vaddr;
385         pgd_t *pgd;
386         pud_t *pud;
387         pmd_t *pmd;
388         pte_t *pte;
389
390         vaddr = PKMAP_BASE;
391         page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
392
393         pgd = swapper_pg_dir + pgd_index(vaddr);
394         pud = pud_offset(pgd, vaddr);
395         pmd = pmd_offset(pud, vaddr);
396         pte = pte_offset_kernel(pmd, vaddr);
397         pkmap_page_table = pte;
398 }
399
400 static void __init add_one_highpage_init(struct page *page, int pfn)
401 {
402         ClearPageReserved(page);
403         init_page_count(page);
404         __free_page(page);
405         totalhigh_pages++;
406 }
407
408 struct add_highpages_data {
409         unsigned long start_pfn;
410         unsigned long end_pfn;
411 };
412
413 static int __init add_highpages_work_fn(unsigned long start_pfn,
414                                          unsigned long end_pfn, void *datax)
415 {
416         int node_pfn;
417         struct page *page;
418         unsigned long final_start_pfn, final_end_pfn;
419         struct add_highpages_data *data;
420
421         data = (struct add_highpages_data *)datax;
422
423         final_start_pfn = max(start_pfn, data->start_pfn);
424         final_end_pfn = min(end_pfn, data->end_pfn);
425         if (final_start_pfn >= final_end_pfn)
426                 return 0;
427
428         for (node_pfn = final_start_pfn; node_pfn < final_end_pfn;
429              node_pfn++) {
430                 if (!pfn_valid(node_pfn))
431                         continue;
432                 page = pfn_to_page(node_pfn);
433                 add_one_highpage_init(page, node_pfn);
434         }
435
436         return 0;
437
438 }
439
440 void __init add_highpages_with_active_regions(int nid, unsigned long start_pfn,
441                                               unsigned long end_pfn)
442 {
443         struct add_highpages_data data;
444
445         data.start_pfn = start_pfn;
446         data.end_pfn = end_pfn;
447
448         work_with_active_regions(nid, add_highpages_work_fn, &data);
449 }
450
451 #else
452 static inline void permanent_kmaps_init(pgd_t *pgd_base)
453 {
454 }
455 #endif /* CONFIG_HIGHMEM */
456
457 void __init native_pagetable_setup_start(pgd_t *base)
458 {
459         unsigned long pfn, va;
460         pgd_t *pgd;
461         pud_t *pud;
462         pmd_t *pmd;
463         pte_t *pte;
464
465         /*
466          * Remove any mappings which extend past the end of physical
467          * memory from the boot time page table:
468          */
469         for (pfn = max_low_pfn + 1; pfn < 1<<(32-PAGE_SHIFT); pfn++) {
470                 va = PAGE_OFFSET + (pfn<<PAGE_SHIFT);
471                 pgd = base + pgd_index(va);
472                 if (!pgd_present(*pgd))
473                         break;
474
475                 pud = pud_offset(pgd, va);
476                 pmd = pmd_offset(pud, va);
477                 if (!pmd_present(*pmd))
478                         break;
479
480                 pte = pte_offset_kernel(pmd, va);
481                 if (!pte_present(*pte))
482                         break;
483
484                 pte_clear(NULL, va, pte);
485         }
486         paravirt_alloc_pmd(&init_mm, __pa(base) >> PAGE_SHIFT);
487 }
488
489 void __init native_pagetable_setup_done(pgd_t *base)
490 {
491 }
492
493 /*
494  * Build a proper pagetable for the kernel mappings.  Up until this
495  * point, we've been running on some set of pagetables constructed by
496  * the boot process.
497  *
498  * If we're booting on native hardware, this will be a pagetable
499  * constructed in arch/x86/kernel/head_32.S.  The root of the
500  * pagetable will be swapper_pg_dir.
501  *
502  * If we're booting paravirtualized under a hypervisor, then there are
503  * more options: we may already be running PAE, and the pagetable may
504  * or may not be based in swapper_pg_dir.  In any case,
505  * paravirt_pagetable_setup_start() will set up swapper_pg_dir
506  * appropriately for the rest of the initialization to work.
507  *
508  * In general, pagetable_init() assumes that the pagetable may already
509  * be partially populated, and so it avoids stomping on any existing
510  * mappings.
511  */
512 static void __init early_ioremap_page_table_range_init(pgd_t *pgd_base)
513 {
514         unsigned long vaddr, end;
515
516         /*
517          * Fixed mappings, only the page table structure has to be
518          * created - mappings will be set by set_fixmap():
519          */
520         vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
521         end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
522         page_table_range_init(vaddr, end, pgd_base);
523         early_ioremap_reset();
524 }
525
526 static void __init pagetable_init(void)
527 {
528         pgd_t *pgd_base = swapper_pg_dir;
529
530         permanent_kmaps_init(pgd_base);
531 }
532
533 #ifdef CONFIG_ACPI_SLEEP
534 /*
535  * ACPI suspend needs this for resume, because things like the intel-agp
536  * driver might have split up a kernel 4MB mapping.
537  */
538 char swsusp_pg_dir[PAGE_SIZE]
539         __attribute__ ((aligned(PAGE_SIZE)));
540
541 static inline void save_pg_dir(void)
542 {
543         memcpy(swsusp_pg_dir, swapper_pg_dir, PAGE_SIZE);
544 }
545 #else /* !CONFIG_ACPI_SLEEP */
546 static inline void save_pg_dir(void)
547 {
548 }
549 #endif /* !CONFIG_ACPI_SLEEP */
550
551 void zap_low_mappings(void)
552 {
553         int i;
554
555         /*
556          * Zap initial low-memory mappings.
557          *
558          * Note that "pgd_clear()" doesn't do it for
559          * us, because pgd_clear() is a no-op on i386.
560          */
561         for (i = 0; i < KERNEL_PGD_BOUNDARY; i++) {
562 #ifdef CONFIG_X86_PAE
563                 set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
564 #else
565                 set_pgd(swapper_pg_dir+i, __pgd(0));
566 #endif
567         }
568         flush_tlb_all();
569 }
570
571 int nx_enabled;
572
573 pteval_t __supported_pte_mask __read_mostly = ~(_PAGE_NX | _PAGE_GLOBAL | _PAGE_IOMAP);
574 EXPORT_SYMBOL_GPL(__supported_pte_mask);
575
576 #ifdef CONFIG_X86_PAE
577
578 static int disable_nx __initdata;
579
580 /*
581  * noexec = on|off
582  *
583  * Control non executable mappings.
584  *
585  * on      Enable
586  * off     Disable
587  */
588 static int __init noexec_setup(char *str)
589 {
590         if (!str || !strcmp(str, "on")) {
591                 if (cpu_has_nx) {
592                         __supported_pte_mask |= _PAGE_NX;
593                         disable_nx = 0;
594                 }
595         } else {
596                 if (!strcmp(str, "off")) {
597                         disable_nx = 1;
598                         __supported_pte_mask &= ~_PAGE_NX;
599                 } else {
600                         return -EINVAL;
601                 }
602         }
603
604         return 0;
605 }
606 early_param("noexec", noexec_setup);
607
608 static void __init set_nx(void)
609 {
610         unsigned int v[4], l, h;
611
612         if (cpu_has_pae && (cpuid_eax(0x80000000) > 0x80000001)) {
613                 cpuid(0x80000001, &v[0], &v[1], &v[2], &v[3]);
614
615                 if ((v[3] & (1 << 20)) && !disable_nx) {
616                         rdmsr(MSR_EFER, l, h);
617                         l |= EFER_NX;
618                         wrmsr(MSR_EFER, l, h);
619                         nx_enabled = 1;
620                         __supported_pte_mask |= _PAGE_NX;
621                 }
622         }
623 }
624 #endif
625
626 /* user-defined highmem size */
627 static unsigned int highmem_pages = -1;
628
629 /*
630  * highmem=size forces highmem to be exactly 'size' bytes.
631  * This works even on boxes that have no highmem otherwise.
632  * This also works to reduce highmem size on bigger boxes.
633  */
634 static int __init parse_highmem(char *arg)
635 {
636         if (!arg)
637                 return -EINVAL;
638
639         highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT;
640         return 0;
641 }
642 early_param("highmem", parse_highmem);
643
644 #define MSG_HIGHMEM_TOO_BIG \
645         "highmem size (%luMB) is bigger than pages available (%luMB)!\n"
646
647 #define MSG_LOWMEM_TOO_SMALL \
648         "highmem size (%luMB) results in <64MB lowmem, ignoring it!\n"
649 /*
650  * All of RAM fits into lowmem - but if user wants highmem
651  * artificially via the highmem=x boot parameter then create
652  * it:
653  */
654 void __init lowmem_pfn_init(void)
655 {
656         /* max_low_pfn is 0, we already have early_res support */
657         max_low_pfn = max_pfn;
658
659         if (highmem_pages == -1)
660                 highmem_pages = 0;
661 #ifdef CONFIG_HIGHMEM
662         if (highmem_pages >= max_pfn) {
663                 printk(KERN_ERR MSG_HIGHMEM_TOO_BIG,
664                         pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
665                 highmem_pages = 0;
666         }
667         if (highmem_pages) {
668                 if (max_low_pfn - highmem_pages < 64*1024*1024/PAGE_SIZE) {
669                         printk(KERN_ERR MSG_LOWMEM_TOO_SMALL,
670                                 pages_to_mb(highmem_pages));
671                         highmem_pages = 0;
672                 }
673                 max_low_pfn -= highmem_pages;
674         }
675 #else
676         if (highmem_pages)
677                 printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
678 #endif
679 }
680
681 #define MSG_HIGHMEM_TOO_SMALL \
682         "only %luMB highmem pages available, ignoring highmem size of %luMB!\n"
683
684 #define MSG_HIGHMEM_TRIMMED \
685         "Warning: only 4GB will be used. Use a HIGHMEM64G enabled kernel!\n"
686 /*
687  * We have more RAM than fits into lowmem - we try to put it into
688  * highmem, also taking the highmem=x boot parameter into account:
689  */
690 void __init highmem_pfn_init(void)
691 {
692         max_low_pfn = MAXMEM_PFN;
693
694         if (highmem_pages == -1)
695                 highmem_pages = max_pfn - MAXMEM_PFN;
696
697         if (highmem_pages + MAXMEM_PFN < max_pfn)
698                 max_pfn = MAXMEM_PFN + highmem_pages;
699
700         if (highmem_pages + MAXMEM_PFN > max_pfn) {
701                 printk(KERN_WARNING MSG_HIGHMEM_TOO_SMALL,
702                         pages_to_mb(max_pfn - MAXMEM_PFN),
703                         pages_to_mb(highmem_pages));
704                 highmem_pages = 0;
705         }
706 #ifndef CONFIG_HIGHMEM
707         /* Maximum memory usable is what is directly addressable */
708         printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20);
709         if (max_pfn > MAX_NONPAE_PFN)
710                 printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
711         else
712                 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
713         max_pfn = MAXMEM_PFN;
714 #else /* !CONFIG_HIGHMEM */
715 #ifndef CONFIG_HIGHMEM64G
716         if (max_pfn > MAX_NONPAE_PFN) {
717                 max_pfn = MAX_NONPAE_PFN;
718                 printk(KERN_WARNING MSG_HIGHMEM_TRIMMED);
719         }
720 #endif /* !CONFIG_HIGHMEM64G */
721 #endif /* !CONFIG_HIGHMEM */
722 }
723
724 /*
725  * Determine low and high memory ranges:
726  */
727 void __init find_low_pfn_range(void)
728 {
729         /* it could update max_pfn */
730
731         if (max_pfn <= MAXMEM_PFN)
732                 lowmem_pfn_init();
733         else
734                 highmem_pfn_init();
735 }
736
737 #ifndef CONFIG_NEED_MULTIPLE_NODES
738 void __init initmem_init(unsigned long start_pfn,
739                                   unsigned long end_pfn)
740 {
741 #ifdef CONFIG_HIGHMEM
742         highstart_pfn = highend_pfn = max_pfn;
743         if (max_pfn > max_low_pfn)
744                 highstart_pfn = max_low_pfn;
745         memory_present(0, 0, highend_pfn);
746         e820_register_active_regions(0, 0, highend_pfn);
747         printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
748                 pages_to_mb(highend_pfn - highstart_pfn));
749         num_physpages = highend_pfn;
750         high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
751 #else
752         memory_present(0, 0, max_low_pfn);
753         e820_register_active_regions(0, 0, max_low_pfn);
754         num_physpages = max_low_pfn;
755         high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
756 #endif
757 #ifdef CONFIG_FLATMEM
758         max_mapnr = num_physpages;
759 #endif
760         printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
761                         pages_to_mb(max_low_pfn));
762
763         setup_bootmem_allocator();
764 }
765 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
766
767 static void __init zone_sizes_init(void)
768 {
769         unsigned long max_zone_pfns[MAX_NR_ZONES];
770         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
771         max_zone_pfns[ZONE_DMA] =
772                 virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
773         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
774 #ifdef CONFIG_HIGHMEM
775         max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
776 #endif
777
778         free_area_init_nodes(max_zone_pfns);
779 }
780
781 static unsigned long __init setup_node_bootmem(int nodeid,
782                                  unsigned long start_pfn,
783                                  unsigned long end_pfn,
784                                  unsigned long bootmap)
785 {
786         unsigned long bootmap_size;
787
788         if (start_pfn > max_low_pfn)
789                 return bootmap;
790         if (end_pfn > max_low_pfn)
791                 end_pfn = max_low_pfn;
792
793         /* don't touch min_low_pfn */
794         bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
795                                          bootmap >> PAGE_SHIFT,
796                                          start_pfn, end_pfn);
797         printk(KERN_INFO "  node %d low ram: %08lx - %08lx\n",
798                 nodeid, start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
799         printk(KERN_INFO "  node %d bootmap %08lx - %08lx\n",
800                  nodeid, bootmap, bootmap + bootmap_size);
801         free_bootmem_with_active_regions(nodeid, end_pfn);
802         early_res_to_bootmem(start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
803
804         return bootmap + bootmap_size;
805 }
806
807 void __init setup_bootmem_allocator(void)
808 {
809         int nodeid;
810         unsigned long bootmap_size, bootmap;
811         /*
812          * Initialize the boot-time allocator (with low memory only):
813          */
814         bootmap_size = bootmem_bootmap_pages(max_low_pfn)<<PAGE_SHIFT;
815         bootmap = find_e820_area(0, max_pfn_mapped<<PAGE_SHIFT, bootmap_size,
816                                  PAGE_SIZE);
817         if (bootmap == -1L)
818                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
819         reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
820
821         printk(KERN_INFO "  mapped low ram: 0 - %08lx\n",
822                  max_pfn_mapped<<PAGE_SHIFT);
823         printk(KERN_INFO "  low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT);
824
825 #ifdef CONFIG_NEED_MULTIPLE_NODES
826         for_each_online_node(nodeid)
827                 bootmap = setup_node_bootmem(nodeid, node_start_pfn[nodeid],
828                                         node_end_pfn[nodeid], bootmap);
829 #else
830         bootmap = setup_node_bootmem(0, 0, max_low_pfn, bootmap);
831 #endif
832
833         after_init_bootmem = 1;
834 }
835
836 static void __init find_early_table_space(unsigned long end, int use_pse,
837                                           int use_gbpages)
838 {
839         unsigned long puds, pmds, ptes, tables, start;
840
841         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
842         tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
843
844         if (use_gbpages) {
845                 unsigned long extra;
846
847                 extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
848                 pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
849         } else
850                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
851
852         tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
853
854         if (use_pse) {
855                 unsigned long extra;
856
857                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
858                 extra += PMD_SIZE;
859                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
860         } else
861                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
862
863         tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
864
865         /* for fixmap */
866         tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
867
868         /*
869          * RED-PEN putting page tables only on node 0 could
870          * cause a hotspot and fill up ZONE_DMA. The page tables
871          * need roughly 0.5KB per GB.
872          */
873         start = 0x7000;
874         table_start = find_e820_area(start, max_pfn_mapped<<PAGE_SHIFT,
875                                         tables, PAGE_SIZE);
876         if (table_start == -1UL)
877                 panic("Cannot find space for the kernel page tables");
878
879         table_start >>= PAGE_SHIFT;
880         table_end = table_start;
881         table_top = table_start + (tables >> PAGE_SHIFT);
882
883         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
884                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
885 }
886
887 struct map_range {
888         unsigned long start;
889         unsigned long end;
890         unsigned page_size_mask;
891 };
892
893 #define NR_RANGE_MR 3
894
895 static int save_mr(struct map_range *mr, int nr_range,
896                    unsigned long start_pfn, unsigned long end_pfn,
897                    unsigned long page_size_mask)
898 {
899         if (start_pfn < end_pfn) {
900                 if (nr_range >= NR_RANGE_MR)
901                         panic("run out of range for init_memory_mapping\n");
902                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
903                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
904                 mr[nr_range].page_size_mask = page_size_mask;
905                 nr_range++;
906         }
907
908         return nr_range;
909 }
910
911 /*
912  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
913  * This runs before bootmem is initialized and gets pages directly from
914  * the physical memory. To access them they are temporarily mapped.
915  */
916 unsigned long __init_refok init_memory_mapping(unsigned long start,
917                                                unsigned long end)
918 {
919         pgd_t *pgd_base = swapper_pg_dir;
920         unsigned long page_size_mask = 0;
921         unsigned long start_pfn, end_pfn;
922         unsigned long pos;
923
924         struct map_range mr[NR_RANGE_MR];
925         int nr_range, i;
926         int use_pse, use_gbpages;
927
928         printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
929
930 #ifdef CONFIG_DEBUG_PAGEALLOC
931         /*
932          * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
933          * This will simplify cpa(), which otherwise needs to support splitting
934          * large pages into small in interrupt context, etc.
935          */
936         use_pse = use_gbpages = 0;
937 #else
938         use_pse = cpu_has_pse;
939         use_gbpages = direct_gbpages;
940 #endif
941
942 #ifdef CONFIG_X86_PAE
943         set_nx();
944         if (nx_enabled)
945                 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
946 #endif
947
948         /* Enable PSE if available */
949         if (cpu_has_pse)
950                 set_in_cr4(X86_CR4_PSE);
951
952         /* Enable PGE if available */
953         if (cpu_has_pge) {
954                 set_in_cr4(X86_CR4_PGE);
955                 __supported_pte_mask |= _PAGE_GLOBAL;
956         }
957
958         if (use_gbpages)
959                 page_size_mask |= 1 << PG_LEVEL_1G;
960         if (use_pse)
961                 page_size_mask |= 1 << PG_LEVEL_2M;
962
963         memset(mr, 0, sizeof(mr));
964         nr_range = 0;
965
966         /*
967          * Don't use a large page for the first 2/4MB of memory
968          * because there are often fixed size MTRRs in there
969          * and overlapping MTRRs into large pages can cause
970          * slowdowns.
971          */
972         /* head if not big page alignment ? */
973         start_pfn = start >> PAGE_SHIFT;
974         pos = start_pfn << PAGE_SHIFT;
975         if (pos == 0)
976                 end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
977         else
978                 end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
979                                  << (PMD_SHIFT - PAGE_SHIFT);
980         if (end_pfn > (end >> PAGE_SHIFT))
981                 end_pfn = end >> PAGE_SHIFT;
982         if (start_pfn < end_pfn) {
983                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
984                 pos = end_pfn << PAGE_SHIFT;
985         }
986
987         /* big page (2M) range */
988         start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
989                          << (PMD_SHIFT - PAGE_SHIFT);
990         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
991         if (start_pfn < end_pfn) {
992                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
993                                 page_size_mask & (1<<PG_LEVEL_2M));
994                 pos = end_pfn << PAGE_SHIFT;
995         }
996
997         /* tail is not big page (2M) alignment */
998         start_pfn = pos>>PAGE_SHIFT;
999         end_pfn = end>>PAGE_SHIFT;
1000         if (start_pfn < end_pfn)
1001                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
1002
1003         /* try to merge same page size and continuous */
1004         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
1005                 unsigned long old_start;
1006                 if (mr[i].end != mr[i+1].start ||
1007                     mr[i].page_size_mask != mr[i+1].page_size_mask)
1008                         continue;
1009                 /* move it */
1010                 old_start = mr[i].start;
1011                 memmove(&mr[i], &mr[i+1],
1012                         (nr_range - 1 - i) * sizeof(struct map_range));
1013                 mr[i--].start = old_start;
1014                 nr_range--;
1015         }
1016
1017         for (i = 0; i < nr_range; i++)
1018                 printk(KERN_DEBUG " %010lx - %010lx page %s\n",
1019                                 mr[i].start, mr[i].end,
1020                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
1021                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
1022
1023         /*
1024          * Find space for the kernel direct mapping tables.
1025          *
1026          * Later we should allocate these tables in the local node of the
1027          * memory mapped. Unfortunately this is done currently before the
1028          * nodes are discovered.
1029          */
1030         if (!after_init_bootmem)
1031                 find_early_table_space(end, use_pse, use_gbpages);
1032
1033         for (i = 0; i < nr_range; i++)
1034                 kernel_physical_mapping_init(pgd_base,
1035                                 mr[i].start >> PAGE_SHIFT,
1036                                 mr[i].end >> PAGE_SHIFT,
1037                                 mr[i].page_size_mask == (1<<PG_LEVEL_2M));
1038
1039         early_ioremap_page_table_range_init(pgd_base);
1040
1041         load_cr3(swapper_pg_dir);
1042
1043         __flush_tlb_all();
1044
1045         if (!after_init_bootmem)
1046                 reserve_early(table_start << PAGE_SHIFT,
1047                                  table_end << PAGE_SHIFT, "PGTABLE");
1048
1049         if (!after_init_bootmem)
1050                 early_memtest(start, end);
1051
1052         return end >> PAGE_SHIFT;
1053 }
1054
1055
1056 /*
1057  * paging_init() sets up the page tables - note that the first 8MB are
1058  * already mapped by head.S.
1059  *
1060  * This routines also unmaps the page at virtual kernel address 0, so
1061  * that we can trap those pesky NULL-reference errors in the kernel.
1062  */
1063 void __init paging_init(void)
1064 {
1065         pagetable_init();
1066
1067         __flush_tlb_all();
1068
1069         kmap_init();
1070
1071         /*
1072          * NOTE: at this point the bootmem allocator is fully available.
1073          */
1074         sparse_init();
1075         zone_sizes_init();
1076 }
1077
1078 /*
1079  * Test if the WP bit works in supervisor mode. It isn't supported on 386's
1080  * and also on some strange 486's. All 586+'s are OK. This used to involve
1081  * black magic jumps to work around some nasty CPU bugs, but fortunately the
1082  * switch to using exceptions got rid of all that.
1083  */
1084 static void __init test_wp_bit(void)
1085 {
1086         printk(KERN_INFO
1087   "Checking if this processor honours the WP bit even in supervisor mode...");
1088
1089         /* Any page-aligned address will do, the test is non-destructive */
1090         __set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_READONLY);
1091         boot_cpu_data.wp_works_ok = do_test_wp_bit();
1092         clear_fixmap(FIX_WP_TEST);
1093
1094         if (!boot_cpu_data.wp_works_ok) {
1095                 printk(KERN_CONT "No.\n");
1096 #ifdef CONFIG_X86_WP_WORKS_OK
1097                 panic(
1098   "This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
1099 #endif
1100         } else {
1101                 printk(KERN_CONT "Ok.\n");
1102         }
1103 }
1104
1105 static struct kcore_list kcore_mem, kcore_vmalloc;
1106
1107 void __init mem_init(void)
1108 {
1109         int codesize, reservedpages, datasize, initsize;
1110         int tmp;
1111
1112         pci_iommu_alloc();
1113
1114 #ifdef CONFIG_FLATMEM
1115         BUG_ON(!mem_map);
1116 #endif
1117         /* this will put all low memory onto the freelists */
1118         totalram_pages += free_all_bootmem();
1119
1120         reservedpages = 0;
1121         for (tmp = 0; tmp < max_low_pfn; tmp++)
1122                 /*
1123                  * Only count reserved RAM pages:
1124                  */
1125                 if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
1126                         reservedpages++;
1127
1128         set_highmem_pages_init();
1129
1130         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
1131         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
1132         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
1133
1134         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
1135         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
1136                    VMALLOC_END-VMALLOC_START);
1137
1138         printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, "
1139                         "%dk reserved, %dk data, %dk init, %ldk highmem)\n",
1140                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
1141                 num_physpages << (PAGE_SHIFT-10),
1142                 codesize >> 10,
1143                 reservedpages << (PAGE_SHIFT-10),
1144                 datasize >> 10,
1145                 initsize >> 10,
1146                 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
1147                );
1148
1149         printk(KERN_INFO "virtual kernel memory layout:\n"
1150                 "    fixmap  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1151 #ifdef CONFIG_HIGHMEM
1152                 "    pkmap   : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1153 #endif
1154                 "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
1155                 "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
1156                 "      .init : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1157                 "      .data : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1158                 "      .text : 0x%08lx - 0x%08lx   (%4ld kB)\n",
1159                 FIXADDR_START, FIXADDR_TOP,
1160                 (FIXADDR_TOP - FIXADDR_START) >> 10,
1161
1162 #ifdef CONFIG_HIGHMEM
1163                 PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
1164                 (LAST_PKMAP*PAGE_SIZE) >> 10,
1165 #endif
1166
1167                 VMALLOC_START, VMALLOC_END,
1168                 (VMALLOC_END - VMALLOC_START) >> 20,
1169
1170                 (unsigned long)__va(0), (unsigned long)high_memory,
1171                 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
1172
1173                 (unsigned long)&__init_begin, (unsigned long)&__init_end,
1174                 ((unsigned long)&__init_end -
1175                  (unsigned long)&__init_begin) >> 10,
1176
1177                 (unsigned long)&_etext, (unsigned long)&_edata,
1178                 ((unsigned long)&_edata - (unsigned long)&_etext) >> 10,
1179
1180                 (unsigned long)&_text, (unsigned long)&_etext,
1181                 ((unsigned long)&_etext - (unsigned long)&_text) >> 10);
1182
1183         /*
1184          * Check boundaries twice: Some fundamental inconsistencies can
1185          * be detected at build time already.
1186          */
1187 #define __FIXADDR_TOP (-PAGE_SIZE)
1188 #ifdef CONFIG_HIGHMEM
1189         BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP*PAGE_SIZE  > FIXADDR_START);
1190         BUILD_BUG_ON(VMALLOC_END                        > PKMAP_BASE);
1191 #endif
1192 #define high_memory (-128UL << 20)
1193         BUILD_BUG_ON(VMALLOC_START                      >= VMALLOC_END);
1194 #undef high_memory
1195 #undef __FIXADDR_TOP
1196
1197 #ifdef CONFIG_HIGHMEM
1198         BUG_ON(PKMAP_BASE + LAST_PKMAP*PAGE_SIZE        > FIXADDR_START);
1199         BUG_ON(VMALLOC_END                              > PKMAP_BASE);
1200 #endif
1201         BUG_ON(VMALLOC_START                            >= VMALLOC_END);
1202         BUG_ON((unsigned long)high_memory               > VMALLOC_START);
1203
1204         if (boot_cpu_data.wp_works_ok < 0)
1205                 test_wp_bit();
1206
1207         save_pg_dir();
1208         zap_low_mappings();
1209 }
1210
1211 #ifdef CONFIG_MEMORY_HOTPLUG
1212 int arch_add_memory(int nid, u64 start, u64 size)
1213 {
1214         struct pglist_data *pgdata = NODE_DATA(nid);
1215         struct zone *zone = pgdata->node_zones + ZONE_HIGHMEM;
1216         unsigned long start_pfn = start >> PAGE_SHIFT;
1217         unsigned long nr_pages = size >> PAGE_SHIFT;
1218
1219         return __add_pages(nid, zone, start_pfn, nr_pages);
1220 }
1221 #endif
1222
1223 /*
1224  * This function cannot be __init, since exceptions don't work in that
1225  * section.  Put this after the callers, so that it cannot be inlined.
1226  */
1227 static noinline int do_test_wp_bit(void)
1228 {
1229         char tmp_reg;
1230         int flag;
1231
1232         __asm__ __volatile__(
1233                 "       movb %0, %1     \n"
1234                 "1:     movb %1, %0     \n"
1235                 "       xorl %2, %2     \n"
1236                 "2:                     \n"
1237                 _ASM_EXTABLE(1b,2b)
1238                 :"=m" (*(char *)fix_to_virt(FIX_WP_TEST)),
1239                  "=q" (tmp_reg),
1240                  "=r" (flag)
1241                 :"2" (1)
1242                 :"memory");
1243
1244         return flag;
1245 }
1246
1247 #ifdef CONFIG_DEBUG_RODATA
1248 const int rodata_test_data = 0xC3;
1249 EXPORT_SYMBOL_GPL(rodata_test_data);
1250
1251 void mark_rodata_ro(void)
1252 {
1253         unsigned long start = PFN_ALIGN(_text);
1254         unsigned long size = PFN_ALIGN(_etext) - start;
1255
1256 #ifndef CONFIG_DYNAMIC_FTRACE
1257         /* Dynamic tracing modifies the kernel text section */
1258         set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
1259         printk(KERN_INFO "Write protecting the kernel text: %luk\n",
1260                 size >> 10);
1261
1262 #ifdef CONFIG_CPA_DEBUG
1263         printk(KERN_INFO "Testing CPA: Reverting %lx-%lx\n",
1264                 start, start+size);
1265         set_pages_rw(virt_to_page(start), size>>PAGE_SHIFT);
1266
1267         printk(KERN_INFO "Testing CPA: write protecting again\n");
1268         set_pages_ro(virt_to_page(start), size>>PAGE_SHIFT);
1269 #endif
1270 #endif /* CONFIG_DYNAMIC_FTRACE */
1271
1272         start += size;
1273         size = (unsigned long)__end_rodata - start;
1274         set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
1275         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1276                 size >> 10);
1277         rodata_test();
1278
1279 #ifdef CONFIG_CPA_DEBUG
1280         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, start + size);
1281         set_pages_rw(virt_to_page(start), size >> PAGE_SHIFT);
1282
1283         printk(KERN_INFO "Testing CPA: write protecting again\n");
1284         set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
1285 #endif
1286 }
1287 #endif
1288
1289 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1290                                    int flags)
1291 {
1292         return reserve_bootmem(phys, len, flags);
1293 }