]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/x86/mm/init_64.c
x86, 64-bit: create small vmemmap mappings if PSE not available
[linux-2.6-omap-h63xx.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/pgtable.h>
37 #include <asm/pgalloc.h>
38 #include <asm/dma.h>
39 #include <asm/fixmap.h>
40 #include <asm/e820.h>
41 #include <asm/apic.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44 #include <asm/proto.h>
45 #include <asm/smp.h>
46 #include <asm/sections.h>
47 #include <asm/kdebug.h>
48 #include <asm/numa.h>
49 #include <asm/cacheflush.h>
50
51 /*
52  * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53  * The direct mapping extends to max_pfn_mapped, so that we can directly access
54  * apertures, ACPI and other tables without having to play with fixmaps.
55  */
56 unsigned long max_pfn_mapped;
57
58 static unsigned long dma_reserve __initdata;
59
60 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61
62 int direct_gbpages __meminitdata
63 #ifdef CONFIG_DIRECT_GBPAGES
64                                 = 1
65 #endif
66 ;
67
68 static int __init parse_direct_gbpages_off(char *arg)
69 {
70         direct_gbpages = 0;
71         return 0;
72 }
73 early_param("nogbpages", parse_direct_gbpages_off);
74
75 static int __init parse_direct_gbpages_on(char *arg)
76 {
77         direct_gbpages = 1;
78         return 0;
79 }
80 early_param("gbpages", parse_direct_gbpages_on);
81
82 /*
83  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
84  * physical space so we can cache the place of the first one and move
85  * around without checking the pgd every time.
86  */
87
88 void show_mem(void)
89 {
90         long i, total = 0, reserved = 0;
91         long shared = 0, cached = 0;
92         struct page *page;
93         pg_data_t *pgdat;
94
95         printk(KERN_INFO "Mem-info:\n");
96         show_free_areas();
97         for_each_online_pgdat(pgdat) {
98                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
99                         /*
100                          * This loop can take a while with 256 GB and
101                          * 4k pages so defer the NMI watchdog:
102                          */
103                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
104                                 touch_nmi_watchdog();
105
106                         if (!pfn_valid(pgdat->node_start_pfn + i))
107                                 continue;
108
109                         page = pfn_to_page(pgdat->node_start_pfn + i);
110                         total++;
111                         if (PageReserved(page))
112                                 reserved++;
113                         else if (PageSwapCache(page))
114                                 cached++;
115                         else if (page_count(page))
116                                 shared += page_count(page) - 1;
117                 }
118         }
119         printk(KERN_INFO "%lu pages of RAM\n",          total);
120         printk(KERN_INFO "%lu reserved pages\n",        reserved);
121         printk(KERN_INFO "%lu pages shared\n",          shared);
122         printk(KERN_INFO "%lu pages swap cached\n",     cached);
123 }
124
125 int after_bootmem;
126
127 static __init void *spp_getpage(void)
128 {
129         void *ptr;
130
131         if (after_bootmem)
132                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
133         else
134                 ptr = alloc_bootmem_pages(PAGE_SIZE);
135
136         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
137                 panic("set_pte_phys: cannot allocate page data %s\n",
138                         after_bootmem ? "after bootmem" : "");
139         }
140
141         pr_debug("spp_getpage %p\n", ptr);
142
143         return ptr;
144 }
145
146 void
147 set_pte_vaddr(unsigned long vaddr, pte_t new_pte)
148 {
149         pgd_t *pgd;
150         pud_t *pud;
151         pmd_t *pmd;
152         pte_t *pte;
153
154         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(new_pte));
155
156         pgd = pgd_offset_k(vaddr);
157         if (pgd_none(*pgd)) {
158                 printk(KERN_ERR
159                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
160                 return;
161         }
162         pud = pud_offset(pgd, vaddr);
163         if (pud_none(*pud)) {
164                 pmd = (pmd_t *) spp_getpage();
165                 pud_populate(&init_mm, pud, pmd);
166                 if (pmd != pmd_offset(pud, 0)) {
167                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
168                                 pmd, pmd_offset(pud, 0));
169                         return;
170                 }
171         }
172         pmd = pmd_offset(pud, vaddr);
173         if (pmd_none(*pmd)) {
174                 pte = (pte_t *) spp_getpage();
175                 pmd_populate_kernel(&init_mm, pmd, pte);
176                 if (pte != pte_offset_kernel(pmd, 0)) {
177                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
178                         return;
179                 }
180         }
181
182         pte = pte_offset_kernel(pmd, vaddr);
183         if (!pte_none(*pte) && pte_val(new_pte) &&
184             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
185                 pte_ERROR(*pte);
186         set_pte(pte, new_pte);
187
188         /*
189          * It's enough to flush this one mapping.
190          * (PGE mappings get flushed as well)
191          */
192         __flush_tlb_one(vaddr);
193 }
194
195 /*
196  * The head.S code sets up the kernel high mapping:
197  *
198  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
199  *
200  * phys_addr holds the negative offset to the kernel, which is added
201  * to the compile time generated pmds. This results in invalid pmds up
202  * to the point where we hit the physaddr 0 mapping.
203  *
204  * We limit the mappings to the region from _text to _end.  _end is
205  * rounded up to the 2MB boundary. This catches the invalid pmds as
206  * well, as they are located before _text:
207  */
208 void __init cleanup_highmap(void)
209 {
210         unsigned long vaddr = __START_KERNEL_map;
211         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
212         pmd_t *pmd = level2_kernel_pgt;
213         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
214
215         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
216                 if (pmd_none(*pmd))
217                         continue;
218                 if (vaddr < (unsigned long) _text || vaddr > end)
219                         set_pmd(pmd, __pmd(0));
220         }
221 }
222
223 static unsigned long __initdata table_start;
224 static unsigned long __meminitdata table_end;
225 static unsigned long __meminitdata table_top;
226
227 static __meminit void *alloc_low_page(unsigned long *phys)
228 {
229         unsigned long pfn = table_end++;
230         void *adr;
231
232         if (after_bootmem) {
233                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
234                 *phys = __pa(adr);
235
236                 return adr;
237         }
238
239         if (pfn >= table_top)
240                 panic("alloc_low_page: ran out of memory");
241
242         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
243         memset(adr, 0, PAGE_SIZE);
244         *phys  = pfn * PAGE_SIZE;
245         return adr;
246 }
247
248 static __meminit void unmap_low_page(void *adr)
249 {
250         if (after_bootmem)
251                 return;
252
253         early_iounmap(adr, PAGE_SIZE);
254 }
255
256 static void __meminit
257 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
258 {
259         unsigned pages = 0;
260         int i;
261         pte_t *pte = pte_page + pte_index(addr);
262
263         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
264
265                 if (addr >= end) {
266                         if (!after_bootmem) {
267                                 for(; i < PTRS_PER_PTE; i++, pte++)
268                                         set_pte(pte, __pte(0));
269                         }
270                         break;
271                 }
272
273                 if (pte_val(*pte))
274                         continue;
275
276                 if (0)
277                         printk("   pte=%p addr=%lx pte=%016lx\n",
278                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
279                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
280                 pages++;
281         }
282         update_page_count(PG_LEVEL_4K, pages);
283 }
284
285 static void __meminit
286 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
287 {
288         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
289
290         phys_pte_init(pte, address, end);
291 }
292
293 static unsigned long __meminit
294 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
295 {
296         unsigned long pages = 0;
297
298         int i = pmd_index(address);
299
300         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
301                 unsigned long pte_phys;
302                 pmd_t *pmd = pmd_page + pmd_index(address);
303                 pte_t *pte;
304
305                 if (address >= end) {
306                         if (!after_bootmem) {
307                                 for (; i < PTRS_PER_PMD; i++, pmd++)
308                                         set_pmd(pmd, __pmd(0));
309                         }
310                         break;
311                 }
312
313                 if (pmd_val(*pmd)) {
314                         phys_pte_update(pmd, address, end);
315                         continue;
316                 }
317
318                 if (cpu_has_pse) {
319                         pages++;
320                         set_pte((pte_t *)pmd,
321                                 pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
322                         continue;
323                 }
324
325                 pte = alloc_low_page(&pte_phys);
326                 phys_pte_init(pte, address, end);
327                 unmap_low_page(pte);
328
329                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
330         }
331         update_page_count(PG_LEVEL_2M, pages);
332         return address;
333 }
334
335 static unsigned long __meminit
336 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
337 {
338         pmd_t *pmd = pmd_offset(pud, 0);
339         unsigned long last_map_addr;
340
341         spin_lock(&init_mm.page_table_lock);
342         last_map_addr = phys_pmd_init(pmd, address, end);
343         spin_unlock(&init_mm.page_table_lock);
344         __flush_tlb_all();
345         return last_map_addr;
346 }
347
348 static unsigned long __meminit
349 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
350 {
351         unsigned long pages = 0;
352         unsigned long last_map_addr = end;
353         int i = pud_index(addr);
354
355         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
356                 unsigned long pmd_phys;
357                 pud_t *pud = pud_page + pud_index(addr);
358                 pmd_t *pmd;
359
360                 if (addr >= end)
361                         break;
362
363                 if (!after_bootmem &&
364                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
365                         set_pud(pud, __pud(0));
366                         continue;
367                 }
368
369                 if (pud_val(*pud)) {
370                         if (!pud_large(*pud))
371                                 last_map_addr = phys_pmd_update(pud, addr, end);
372                         continue;
373                 }
374
375                 if (direct_gbpages) {
376                         pages++;
377                         set_pte((pte_t *)pud,
378                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
379                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
380                         continue;
381                 }
382
383                 pmd = alloc_low_page(&pmd_phys);
384
385                 spin_lock(&init_mm.page_table_lock);
386                 last_map_addr = phys_pmd_init(pmd, addr, end);
387                 unmap_low_page(pmd);
388                 pud_populate(&init_mm, pud, __va(pmd_phys));
389                 spin_unlock(&init_mm.page_table_lock);
390
391         }
392         __flush_tlb_all();
393         update_page_count(PG_LEVEL_1G, pages);
394
395         return last_map_addr;
396 }
397
398 static unsigned long __meminit
399 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end)
400 {
401         pud_t *pud;
402
403         pud = (pud_t *)pgd_page_vaddr(*pgd);
404
405         return phys_pud_init(pud, addr, end);
406 }
407
408 static void __init find_early_table_space(unsigned long end)
409 {
410         unsigned long puds, tables, start;
411
412         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
413         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
414         if (!direct_gbpages) {
415                 unsigned long pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
416                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
417         }
418         if (!cpu_has_pse) {
419                 unsigned long ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
420                 tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
421         }
422
423         /*
424          * RED-PEN putting page tables only on node 0 could
425          * cause a hotspot and fill up ZONE_DMA. The page tables
426          * need roughly 0.5KB per GB.
427          */
428         start = 0x8000;
429         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
430         if (table_start == -1UL)
431                 panic("Cannot find space for the kernel page tables");
432
433         table_start >>= PAGE_SHIFT;
434         table_end = table_start;
435         table_top = table_start + (tables >> PAGE_SHIFT);
436
437         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
438                 end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
439 }
440
441 static void __init init_gbpages(void)
442 {
443         if (direct_gbpages && cpu_has_gbpages)
444                 printk(KERN_INFO "Using GB pages for direct mapping\n");
445         else
446                 direct_gbpages = 0;
447 }
448
449 #ifdef CONFIG_MEMTEST
450
451 static void __init memtest(unsigned long start_phys, unsigned long size,
452                                  unsigned pattern)
453 {
454         unsigned long i;
455         unsigned long *start;
456         unsigned long start_bad;
457         unsigned long last_bad;
458         unsigned long val;
459         unsigned long start_phys_aligned;
460         unsigned long count;
461         unsigned long incr;
462
463         switch (pattern) {
464         case 0:
465                 val = 0UL;
466                 break;
467         case 1:
468                 val = -1UL;
469                 break;
470         case 2:
471                 val = 0x5555555555555555UL;
472                 break;
473         case 3:
474                 val = 0xaaaaaaaaaaaaaaaaUL;
475                 break;
476         default:
477                 return;
478         }
479
480         incr = sizeof(unsigned long);
481         start_phys_aligned = ALIGN(start_phys, incr);
482         count = (size - (start_phys_aligned - start_phys))/incr;
483         start = __va(start_phys_aligned);
484         start_bad = 0;
485         last_bad = 0;
486
487         for (i = 0; i < count; i++)
488                 start[i] = val;
489         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
490                 if (*start != val) {
491                         if (start_phys_aligned == last_bad + incr) {
492                                 last_bad += incr;
493                         } else {
494                                 if (start_bad) {
495                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
496                                                 val, start_bad, last_bad + incr);
497                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
498                                 }
499                                 start_bad = last_bad = start_phys_aligned;
500                         }
501                 }
502         }
503         if (start_bad) {
504                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
505                         val, start_bad, last_bad + incr);
506                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
507         }
508
509 }
510
511 /* default is disabled */
512 static int memtest_pattern __initdata;
513
514 static int __init parse_memtest(char *arg)
515 {
516         if (arg)
517                 memtest_pattern = simple_strtoul(arg, NULL, 0);
518         return 0;
519 }
520
521 early_param("memtest", parse_memtest);
522
523 static void __init early_memtest(unsigned long start, unsigned long end)
524 {
525         u64 t_start, t_size;
526         unsigned pattern;
527
528         if (!memtest_pattern)
529                 return;
530
531         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
532         for (pattern = 0; pattern < memtest_pattern; pattern++) {
533                 t_start = start;
534                 t_size = 0;
535                 while (t_start < end) {
536                         t_start = find_e820_area_size(t_start, &t_size, 1);
537
538                         /* done ? */
539                         if (t_start >= end)
540                                 break;
541                         if (t_start + t_size > end)
542                                 t_size = end - t_start;
543
544                         printk(KERN_CONT "\n  %016llx - %016llx pattern %d",
545                                 (unsigned long long)t_start,
546                                 (unsigned long long)t_start + t_size, pattern);
547
548                         memtest(t_start, t_size, pattern);
549
550                         t_start += t_size;
551                 }
552         }
553         printk(KERN_CONT "\n");
554 }
555 #else
556 static void __init early_memtest(unsigned long start, unsigned long end)
557 {
558 }
559 #endif
560
561 /*
562  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
563  * This runs before bootmem is initialized and gets pages directly from
564  * the physical memory. To access them they are temporarily mapped.
565  */
566 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
567 {
568         unsigned long next, last_map_addr = end;
569         unsigned long start_phys = start, end_phys = end;
570
571         printk(KERN_INFO "init_memory_mapping\n");
572
573         /*
574          * Find space for the kernel direct mapping tables.
575          *
576          * Later we should allocate these tables in the local node of the
577          * memory mapped. Unfortunately this is done currently before the
578          * nodes are discovered.
579          */
580         if (!after_bootmem) {
581                 init_gbpages();
582                 find_early_table_space(end);
583         }
584
585         start = (unsigned long)__va(start);
586         end = (unsigned long)__va(end);
587
588         for (; start < end; start = next) {
589                 pgd_t *pgd = pgd_offset_k(start);
590                 unsigned long pud_phys;
591                 pud_t *pud;
592
593                 next = start + PGDIR_SIZE;
594                 if (next > end)
595                         next = end;
596
597                 if (pgd_val(*pgd)) {
598                         last_map_addr = phys_pud_update(pgd, __pa(start), __pa(end));
599                         continue;
600                 }
601
602                 if (after_bootmem)
603                         pud = pud_offset(pgd, start & PGDIR_MASK);
604                 else
605                         pud = alloc_low_page(&pud_phys);
606
607                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
608                 unmap_low_page(pud);
609                 if (!after_bootmem)
610                         pgd_populate(&init_mm, pgd_offset_k(start),
611                                      __va(pud_phys));
612         }
613
614         if (!after_bootmem)
615                 mmu_cr4_features = read_cr4();
616         __flush_tlb_all();
617
618         if (!after_bootmem)
619                 reserve_early(table_start << PAGE_SHIFT,
620                                  table_end << PAGE_SHIFT, "PGTABLE");
621
622         if (!after_bootmem)
623                 early_memtest(start_phys, end_phys);
624
625         return last_map_addr >> PAGE_SHIFT;
626 }
627
628 #ifndef CONFIG_NUMA
629 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
630 {
631         unsigned long bootmap_size, bootmap;
632
633         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
634         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
635                                  PAGE_SIZE);
636         if (bootmap == -1L)
637                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
638         /* don't touch min_low_pfn */
639         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
640                                          0, end_pfn);
641         e820_register_active_regions(0, start_pfn, end_pfn);
642         free_bootmem_with_active_regions(0, end_pfn);
643         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
644         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
645 }
646
647 void __init paging_init(void)
648 {
649         unsigned long max_zone_pfns[MAX_NR_ZONES];
650
651         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
652         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
653         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
654         max_zone_pfns[ZONE_NORMAL] = max_pfn;
655
656         memory_present(0, 0, max_pfn);
657         sparse_init();
658         free_area_init_nodes(max_zone_pfns);
659 }
660 #endif
661
662 /*
663  * Memory hotplug specific functions
664  */
665 #ifdef CONFIG_MEMORY_HOTPLUG
666 /*
667  * Memory is added always to NORMAL zone. This means you will never get
668  * additional DMA/DMA32 memory.
669  */
670 int arch_add_memory(int nid, u64 start, u64 size)
671 {
672         struct pglist_data *pgdat = NODE_DATA(nid);
673         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
674         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
675         unsigned long nr_pages = size >> PAGE_SHIFT;
676         int ret;
677
678         last_mapped_pfn = init_memory_mapping(start, start + size-1);
679         if (last_mapped_pfn > max_pfn_mapped)
680                 max_pfn_mapped = last_mapped_pfn;
681
682         ret = __add_pages(zone, start_pfn, nr_pages);
683         WARN_ON(1);
684
685         return ret;
686 }
687 EXPORT_SYMBOL_GPL(arch_add_memory);
688
689 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
690 int memory_add_physaddr_to_nid(u64 start)
691 {
692         return 0;
693 }
694 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
695 #endif
696
697 #endif /* CONFIG_MEMORY_HOTPLUG */
698
699 /*
700  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
701  * is valid. The argument is a physical page number.
702  *
703  *
704  * On x86, access has to be given to the first megabyte of ram because that area
705  * contains bios code and data regions used by X and dosemu and similar apps.
706  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
707  * mmio resources as well as potential bios/acpi data regions.
708  */
709 int devmem_is_allowed(unsigned long pagenr)
710 {
711         if (pagenr <= 256)
712                 return 1;
713         if (!page_is_ram(pagenr))
714                 return 1;
715         return 0;
716 }
717
718
719 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
720                          kcore_modules, kcore_vsyscall;
721
722 void __init mem_init(void)
723 {
724         long codesize, reservedpages, datasize, initsize;
725
726         pci_iommu_alloc();
727
728         /* clear_bss() already clear the empty_zero_page */
729
730         reservedpages = 0;
731
732         /* this will put all low memory onto the freelists */
733 #ifdef CONFIG_NUMA
734         totalram_pages = numa_free_all_bootmem();
735 #else
736         totalram_pages = free_all_bootmem();
737 #endif
738         reservedpages = max_pfn - totalram_pages -
739                                         absent_pages_in_range(0, max_pfn);
740         after_bootmem = 1;
741
742         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
743         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
744         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
745
746         /* Register memory areas for /proc/kcore */
747         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
748         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
749                    VMALLOC_END-VMALLOC_START);
750         kclist_add(&kcore_kernel, &_stext, _end - _stext);
751         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
752         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
753                                  VSYSCALL_END - VSYSCALL_START);
754
755         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
756                                 "%ldk reserved, %ldk data, %ldk init)\n",
757                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
758                 max_pfn << (PAGE_SHIFT-10),
759                 codesize >> 10,
760                 reservedpages << (PAGE_SHIFT-10),
761                 datasize >> 10,
762                 initsize >> 10);
763
764         cpa_init();
765 }
766
767 void free_init_pages(char *what, unsigned long begin, unsigned long end)
768 {
769         unsigned long addr = begin;
770
771         if (addr >= end)
772                 return;
773
774         /*
775          * If debugging page accesses then do not free this memory but
776          * mark them not present - any buggy init-section access will
777          * create a kernel page fault:
778          */
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
781                 begin, PAGE_ALIGN(end));
782         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
783 #else
784         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
785
786         for (; addr < end; addr += PAGE_SIZE) {
787                 ClearPageReserved(virt_to_page(addr));
788                 init_page_count(virt_to_page(addr));
789                 memset((void *)(addr & ~(PAGE_SIZE-1)),
790                         POISON_FREE_INITMEM, PAGE_SIZE);
791                 free_page(addr);
792                 totalram_pages++;
793         }
794 #endif
795 }
796
797 void free_initmem(void)
798 {
799         free_init_pages("unused kernel memory",
800                         (unsigned long)(&__init_begin),
801                         (unsigned long)(&__init_end));
802 }
803
804 #ifdef CONFIG_DEBUG_RODATA
805 const int rodata_test_data = 0xC3;
806 EXPORT_SYMBOL_GPL(rodata_test_data);
807
808 void mark_rodata_ro(void)
809 {
810         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
811
812         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
813                (end - start) >> 10);
814         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
815
816         /*
817          * The rodata section (but not the kernel text!) should also be
818          * not-executable.
819          */
820         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
821         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
822
823         rodata_test();
824
825 #ifdef CONFIG_CPA_DEBUG
826         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
827         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
828
829         printk(KERN_INFO "Testing CPA: again\n");
830         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
831 #endif
832 }
833
834 #endif
835
836 #ifdef CONFIG_BLK_DEV_INITRD
837 void free_initrd_mem(unsigned long start, unsigned long end)
838 {
839         free_init_pages("initrd memory", start, end);
840 }
841 #endif
842
843 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
844                                    int flags)
845 {
846 #ifdef CONFIG_NUMA
847         int nid, next_nid;
848         int ret;
849 #endif
850         unsigned long pfn = phys >> PAGE_SHIFT;
851
852         if (pfn >= max_pfn) {
853                 /*
854                  * This can happen with kdump kernels when accessing
855                  * firmware tables:
856                  */
857                 if (pfn < max_pfn_mapped)
858                         return -EFAULT;
859
860                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
861                                 phys, len);
862                 return -EFAULT;
863         }
864
865         /* Should check here against the e820 map to avoid double free */
866 #ifdef CONFIG_NUMA
867         nid = phys_to_nid(phys);
868         next_nid = phys_to_nid(phys + len - 1);
869         if (nid == next_nid)
870                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
871         else
872                 ret = reserve_bootmem(phys, len, flags);
873
874         if (ret != 0)
875                 return ret;
876
877 #else
878         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
879 #endif
880
881         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
882                 dma_reserve += len / PAGE_SIZE;
883                 set_dma_reserve(dma_reserve);
884         }
885
886         return 0;
887 }
888
889 int kern_addr_valid(unsigned long addr)
890 {
891         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
892         pgd_t *pgd;
893         pud_t *pud;
894         pmd_t *pmd;
895         pte_t *pte;
896
897         if (above != 0 && above != -1UL)
898                 return 0;
899
900         pgd = pgd_offset_k(addr);
901         if (pgd_none(*pgd))
902                 return 0;
903
904         pud = pud_offset(pgd, addr);
905         if (pud_none(*pud))
906                 return 0;
907
908         pmd = pmd_offset(pud, addr);
909         if (pmd_none(*pmd))
910                 return 0;
911
912         if (pmd_large(*pmd))
913                 return pfn_valid(pmd_pfn(*pmd));
914
915         pte = pte_offset_kernel(pmd, addr);
916         if (pte_none(*pte))
917                 return 0;
918
919         return pfn_valid(pte_pfn(*pte));
920 }
921
922 /*
923  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
924  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
925  * not need special handling anymore:
926  */
927 static struct vm_area_struct gate_vma = {
928         .vm_start       = VSYSCALL_START,
929         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
930         .vm_page_prot   = PAGE_READONLY_EXEC,
931         .vm_flags       = VM_READ | VM_EXEC
932 };
933
934 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
935 {
936 #ifdef CONFIG_IA32_EMULATION
937         if (test_tsk_thread_flag(tsk, TIF_IA32))
938                 return NULL;
939 #endif
940         return &gate_vma;
941 }
942
943 int in_gate_area(struct task_struct *task, unsigned long addr)
944 {
945         struct vm_area_struct *vma = get_gate_vma(task);
946
947         if (!vma)
948                 return 0;
949
950         return (addr >= vma->vm_start) && (addr < vma->vm_end);
951 }
952
953 /*
954  * Use this when you have no reliable task/vma, typically from interrupt
955  * context. It is less reliable than using the task's vma and may give
956  * false positives:
957  */
958 int in_gate_area_no_task(unsigned long addr)
959 {
960         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
961 }
962
963 const char *arch_vma_name(struct vm_area_struct *vma)
964 {
965         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
966                 return "[vdso]";
967         if (vma == &gate_vma)
968                 return "[vsyscall]";
969         return NULL;
970 }
971
972 #ifdef CONFIG_SPARSEMEM_VMEMMAP
973 /*
974  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
975  */
976 static long __meminitdata addr_start, addr_end;
977 static void __meminitdata *p_start, *p_end;
978 static int __meminitdata node_start;
979
980 int __meminit
981 vmemmap_populate(struct page *start_page, unsigned long size, int node)
982 {
983         unsigned long addr = (unsigned long)start_page;
984         unsigned long end = (unsigned long)(start_page + size);
985         unsigned long next;
986         pgd_t *pgd;
987         pud_t *pud;
988         pmd_t *pmd;
989
990         for (; addr < end; addr = next) {
991                 void *p = NULL;
992
993                 pgd = vmemmap_pgd_populate(addr, node);
994                 if (!pgd)
995                         return -ENOMEM;
996
997                 pud = vmemmap_pud_populate(pgd, addr, node);
998                 if (!pud)
999                         return -ENOMEM;
1000
1001                 if (!cpu_has_pse) {
1002                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1003                         pmd = vmemmap_pmd_populate(pud, addr, node);
1004
1005                         if (!pmd)
1006                                 return -ENOMEM;
1007
1008                         p = vmemmap_pte_populate(pmd, addr, node);
1009
1010                         if (!p)
1011                                 return -ENOMEM;
1012
1013                         addr_end = addr + PAGE_SIZE;
1014                         p_end = p + PAGE_SIZE;
1015                 } else {
1016                         next = pmd_addr_end(addr, end);
1017
1018                         pmd = pmd_offset(pud, addr);
1019                         if (pmd_none(*pmd)) {
1020                                 pte_t entry;
1021
1022                                 p = vmemmap_alloc_block(PMD_SIZE, node);
1023                                 if (!p)
1024                                         return -ENOMEM;
1025
1026                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1027                                                 PAGE_KERNEL_LARGE);
1028                                 set_pmd(pmd, __pmd(pte_val(entry)));
1029
1030                                 addr_end = addr + PMD_SIZE;
1031                                 p_end = p + PMD_SIZE;
1032
1033                                 /* check to see if we have contiguous blocks */
1034                                 if (p_end != p || node_start != node) {
1035                                         if (p_start)
1036                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1037                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1038                                         addr_start = addr;
1039                                         node_start = node;
1040                                         p_start = p;
1041                                 }
1042                         } else
1043                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
1044                 }
1045
1046         }
1047         return 0;
1048 }
1049
1050 void __meminit vmemmap_populate_print_last(void)
1051 {
1052         if (p_start) {
1053                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1054                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1055                 p_start = NULL;
1056                 p_end = NULL;
1057                 node_start = 0;
1058         }
1059 }
1060 #endif