]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-ohci.c
faa384426a12e9201c9bb87ecf6496b3f29a9c59
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48 #define descriptor_wait                 (3 << 0)
49
50 struct descriptor {
51         __le16 req_count;
52         __le16 control;
53         __le32 data_address;
54         __le32 branch_address;
55         __le16 res_count;
56         __le16 transfer_status;
57 } __attribute__((aligned(16)));
58
59 struct db_descriptor {
60         __le16 first_size;
61         __le16 control;
62         __le16 second_req_count;
63         __le16 first_req_count;
64         __le32 branch_address;
65         __le16 second_res_count;
66         __le16 first_res_count;
67         __le32 reserved0;
68         __le32 first_buffer;
69         __le32 second_buffer;
70         __le32 reserved1;
71 } __attribute__((aligned(16)));
72
73 #define control_set(regs)       (regs)
74 #define control_clear(regs)     ((regs) + 4)
75 #define command_ptr(regs)       ((regs) + 12)
76 #define context_match(regs)     ((regs) + 16)
77
78 struct ar_buffer {
79         struct descriptor descriptor;
80         struct ar_buffer *next;
81         __le32 data[0];
82 };
83
84 struct ar_context {
85         struct fw_ohci *ohci;
86         struct ar_buffer *current_buffer;
87         struct ar_buffer *last_buffer;
88         void *pointer;
89         u32 regs;
90         struct tasklet_struct tasklet;
91 };
92
93 struct context;
94
95 typedef int (*descriptor_callback_t)(struct context *ctx,
96                                      struct descriptor *d,
97                                      struct descriptor *last);
98 struct context {
99         struct fw_ohci *ohci;
100         u32 regs;
101  
102         struct descriptor *buffer;
103         dma_addr_t buffer_bus;
104         size_t buffer_size;
105         struct descriptor *head_descriptor;
106         struct descriptor *tail_descriptor;
107         struct descriptor *tail_descriptor_last;
108         struct descriptor *prev_descriptor;
109
110         descriptor_callback_t callback;
111
112         struct tasklet_struct tasklet;
113 };
114  
115
116
117 struct at_context {
118         struct fw_ohci *ohci;
119         dma_addr_t descriptor_bus;
120         dma_addr_t buffer_bus;
121         struct fw_packet *current_packet;
122
123         struct list_head list;
124
125         struct {
126                 struct descriptor more;
127                 __le32 header[4];
128                 struct descriptor last;
129         } d;
130
131         u32 regs;
132
133         struct tasklet_struct tasklet;
134 };
135
136 #define it_header_sy(v)          ((v) <<  0)
137 #define it_header_tcode(v)       ((v) <<  4)
138 #define it_header_channel(v)     ((v) <<  8)
139 #define it_header_tag(v)         ((v) << 14)
140 #define it_header_speed(v)       ((v) << 16)
141 #define it_header_data_length(v) ((v) << 16)
142
143 struct iso_context {
144         struct fw_iso_context base;
145         struct context context;
146 };
147
148 #define CONFIG_ROM_SIZE 1024
149
150 struct fw_ohci {
151         struct fw_card card;
152
153         __iomem char *registers;
154         dma_addr_t self_id_bus;
155         __le32 *self_id_cpu;
156         struct tasklet_struct bus_reset_tasklet;
157         int node_id;
158         int generation;
159         int request_generation;
160
161         /* Spinlock for accessing fw_ohci data.  Never call out of
162          * this driver with this lock held. */
163         spinlock_t lock;
164         u32 self_id_buffer[512];
165
166         /* Config rom buffers */
167         __be32 *config_rom;
168         dma_addr_t config_rom_bus;
169         __be32 *next_config_rom;
170         dma_addr_t next_config_rom_bus;
171         u32 next_header;
172
173         struct ar_context ar_request_ctx;
174         struct ar_context ar_response_ctx;
175         struct at_context at_request_ctx;
176         struct at_context at_response_ctx;
177
178         u32 it_context_mask;
179         struct iso_context *it_context_list;
180         u32 ir_context_mask;
181         struct iso_context *ir_context_list;
182 };
183
184 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
185 {
186         return container_of(card, struct fw_ohci, card);
187 }
188
189 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
190 #define IR_CONTEXT_BUFFER_FILL          0x80000000
191 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
192 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
193 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
194 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
195
196 #define CONTEXT_RUN     0x8000
197 #define CONTEXT_WAKE    0x1000
198 #define CONTEXT_DEAD    0x0800
199 #define CONTEXT_ACTIVE  0x0400
200
201 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
202 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
203 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
204
205 #define FW_OHCI_MAJOR                   240
206 #define OHCI1394_REGISTER_SIZE          0x800
207 #define OHCI_LOOP_COUNT                 500
208 #define OHCI1394_PCI_HCI_Control        0x40
209 #define SELF_ID_BUF_SIZE                0x800
210 #define OHCI_TCODE_PHY_PACKET           0x0e
211
212 static char ohci_driver_name[] = KBUILD_MODNAME;
213
214 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
215 {
216         writel(data, ohci->registers + offset);
217 }
218
219 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
220 {
221         return readl(ohci->registers + offset);
222 }
223
224 static inline void flush_writes(const struct fw_ohci *ohci)
225 {
226         /* Do a dummy read to flush writes. */
227         reg_read(ohci, OHCI1394_Version);
228 }
229
230 static int
231 ohci_update_phy_reg(struct fw_card *card, int addr,
232                     int clear_bits, int set_bits)
233 {
234         struct fw_ohci *ohci = fw_ohci(card);
235         u32 val, old;
236
237         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
238         msleep(2);
239         val = reg_read(ohci, OHCI1394_PhyControl);
240         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
241                 fw_error("failed to set phy reg bits.\n");
242                 return -EBUSY;
243         }
244
245         old = OHCI1394_PhyControl_ReadData(val);
246         old = (old & ~clear_bits) | set_bits;
247         reg_write(ohci, OHCI1394_PhyControl,
248                   OHCI1394_PhyControl_Write(addr, old));
249
250         return 0;
251 }
252
253 static int ar_context_add_page(struct ar_context *ctx)
254 {
255         struct device *dev = ctx->ohci->card.device;
256         struct ar_buffer *ab;
257         dma_addr_t ab_bus;
258         size_t offset;
259
260         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
261         if (ab == NULL)
262                 return -ENOMEM;
263
264         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
265         if (dma_mapping_error(ab_bus)) {
266                 free_page((unsigned long) ab);
267                 return -ENOMEM;
268         }
269
270         memset(&ab->descriptor, 0, sizeof ab->descriptor);
271         ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
272                                                     descriptor_status |
273                                                     descriptor_branch_always);
274         offset = offsetof(struct ar_buffer, data);
275         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
276         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
277         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
278         ab->descriptor.branch_address = 0;
279
280         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
281
282         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
283         ctx->last_buffer->next = ab;
284         ctx->last_buffer = ab;
285
286         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
287         flush_writes(ctx->ohci);
288
289         return 0;
290 }
291
292 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
293 {
294         struct fw_ohci *ohci = ctx->ohci;
295         struct fw_packet p;
296         u32 status, length, tcode;
297
298         p.header[0] = le32_to_cpu(buffer[0]);
299         p.header[1] = le32_to_cpu(buffer[1]);
300         p.header[2] = le32_to_cpu(buffer[2]);
301
302         tcode = (p.header[0] >> 4) & 0x0f;
303         switch (tcode) {
304         case TCODE_WRITE_QUADLET_REQUEST:
305         case TCODE_READ_QUADLET_RESPONSE:
306                 p.header[3] = (__force __u32) buffer[3];
307                 p.header_length = 16;
308                 p.payload_length = 0;
309                 break;
310
311         case TCODE_READ_BLOCK_REQUEST :
312                 p.header[3] = le32_to_cpu(buffer[3]);
313                 p.header_length = 16;
314                 p.payload_length = 0;
315                 break;
316
317         case TCODE_WRITE_BLOCK_REQUEST:
318         case TCODE_READ_BLOCK_RESPONSE:
319         case TCODE_LOCK_REQUEST:
320         case TCODE_LOCK_RESPONSE:
321                 p.header[3] = le32_to_cpu(buffer[3]);
322                 p.header_length = 16;
323                 p.payload_length = p.header[3] >> 16;
324                 break;
325
326         case TCODE_WRITE_RESPONSE:
327         case TCODE_READ_QUADLET_REQUEST:
328         case OHCI_TCODE_PHY_PACKET:
329                 p.header_length = 12;
330                 p.payload_length = 0;
331                 break;
332         }
333
334         p.payload = (void *) buffer + p.header_length;
335
336         /* FIXME: What to do about evt_* errors? */
337         length = (p.header_length + p.payload_length + 3) / 4;
338         status = le32_to_cpu(buffer[length]);
339
340         p.ack        = ((status >> 16) & 0x1f) - 16;
341         p.speed      = (status >> 21) & 0x7;
342         p.timestamp  = status & 0xffff;
343         p.generation = ohci->request_generation;
344
345         /* The OHCI bus reset handler synthesizes a phy packet with
346          * the new generation number when a bus reset happens (see
347          * section 8.4.2.3).  This helps us determine when a request
348          * was received and make sure we send the response in the same
349          * generation.  We only need this for requests; for responses
350          * we use the unique tlabel for finding the matching
351          * request. */
352
353         if (p.ack + 16 == 0x09)
354                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
355         else if (ctx == &ohci->ar_request_ctx)
356                 fw_core_handle_request(&ohci->card, &p);
357         else
358                 fw_core_handle_response(&ohci->card, &p);
359
360         return buffer + length + 1;
361 }
362
363 static void ar_context_tasklet(unsigned long data)
364 {
365         struct ar_context *ctx = (struct ar_context *)data;
366         struct fw_ohci *ohci = ctx->ohci;
367         struct ar_buffer *ab;
368         struct descriptor *d;
369         void *buffer, *end;
370
371         ab = ctx->current_buffer;
372         d = &ab->descriptor;
373
374         if (d->res_count == 0) {
375                 size_t size, rest, offset;
376
377                 /* This descriptor is finished and we may have a
378                  * packet split across this and the next buffer. We
379                  * reuse the page for reassembling the split packet. */
380
381                 offset = offsetof(struct ar_buffer, data);
382                 dma_unmap_single(ohci->card.device,
383                                  ab->descriptor.data_address - offset,
384                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
385
386                 buffer = ab;
387                 ab = ab->next;
388                 d = &ab->descriptor;
389                 size = buffer + PAGE_SIZE - ctx->pointer;
390                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
391                 memmove(buffer, ctx->pointer, size);
392                 memcpy(buffer + size, ab->data, rest);
393                 ctx->current_buffer = ab;
394                 ctx->pointer = (void *) ab->data + rest;
395                 end = buffer + size + rest;
396
397                 while (buffer < end)
398                         buffer = handle_ar_packet(ctx, buffer);
399
400                 free_page((unsigned long)buffer);
401                 ar_context_add_page(ctx);
402         } else {
403                 buffer = ctx->pointer;
404                 ctx->pointer = end =
405                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
406
407                 while (buffer < end)
408                         buffer = handle_ar_packet(ctx, buffer);
409         }
410 }
411
412 static int
413 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
414 {
415         struct ar_buffer ab;
416
417         ctx->regs        = regs;
418         ctx->ohci        = ohci;
419         ctx->last_buffer = &ab;
420         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
421
422         ar_context_add_page(ctx);
423         ar_context_add_page(ctx);
424         ctx->current_buffer = ab.next;
425         ctx->pointer = ctx->current_buffer->data;
426
427         reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
428         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
429         flush_writes(ctx->ohci);
430
431         return 0;
432 }
433  
434 static void context_tasklet(unsigned long data)
435 {
436         struct context *ctx = (struct context *) data;
437         struct fw_ohci *ohci = ctx->ohci;
438         struct descriptor *d, *last;
439         u32 address;
440         int z;
441
442         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
443                                 ctx->buffer_size, DMA_TO_DEVICE);
444
445         d    = ctx->tail_descriptor;
446         last = ctx->tail_descriptor_last;
447
448         while (last->branch_address != 0) {
449                 address = le32_to_cpu(last->branch_address);
450                 z = address & 0xf;
451                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
452                 last = (z == 2) ? d : d + z - 1;
453
454                 if (!ctx->callback(ctx, d, last))
455                         break;
456
457                 ctx->tail_descriptor      = d;
458                 ctx->tail_descriptor_last = last;
459         }
460 }
461
462 static int
463 context_init(struct context *ctx, struct fw_ohci *ohci,
464              size_t buffer_size, u32 regs,
465              descriptor_callback_t callback)
466 {
467         ctx->ohci = ohci;
468         ctx->regs = regs;
469         ctx->buffer_size = buffer_size;
470         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
471         if (ctx->buffer == NULL)
472                 return -ENOMEM;
473
474         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
475         ctx->callback = callback;
476
477         ctx->buffer_bus =
478                 dma_map_single(ohci->card.device, ctx->buffer,
479                                buffer_size, DMA_TO_DEVICE);
480         if (dma_mapping_error(ctx->buffer_bus)) {
481                 kfree(ctx->buffer);
482                 return -ENOMEM;
483         }
484
485         ctx->head_descriptor      = ctx->buffer;
486         ctx->prev_descriptor      = ctx->buffer;
487         ctx->tail_descriptor      = ctx->buffer;
488         ctx->tail_descriptor_last = ctx->buffer;
489
490         /* We put a dummy descriptor in the buffer that has a NULL
491          * branch address and looks like it's been sent.  That way we
492          * have a descriptor to append DMA programs to.  Also, the
493          * ring buffer invariant is that it always has at least one
494          * element so that head == tail means buffer full. */
495
496         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
497         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
498         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
499         ctx->head_descriptor++;
500
501         return 0;
502 }
503
504  static void
505 context_release(struct context *ctx)
506 {
507         struct fw_card *card = &ctx->ohci->card;
508
509         dma_unmap_single(card->device, ctx->buffer_bus,
510                          ctx->buffer_size, DMA_TO_DEVICE);
511         kfree(ctx->buffer);
512 }
513
514 static struct descriptor *
515 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
516 {
517         struct descriptor *d, *tail, *end;
518
519         d = ctx->head_descriptor;
520         tail = ctx->tail_descriptor;
521         end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
522
523         if (d + z <= tail) {
524                 goto has_space;
525         } else if (d > tail && d + z <= end) {
526                 goto has_space;
527         } else if (d > tail && ctx->buffer + z <= tail) {
528                 d = ctx->buffer;
529                 goto has_space;
530         }
531
532         return NULL;
533
534  has_space:
535         memset(d, 0, z * sizeof *d);
536         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
537
538         return d;
539 }
540
541 static void context_run(struct context *ctx, u32 extra)
542 {
543         struct fw_ohci *ohci = ctx->ohci;
544
545         reg_write(ohci, command_ptr(ctx->regs),
546                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
547         reg_write(ohci, control_clear(ctx->regs), ~0);
548         reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
549         flush_writes(ohci);
550 }
551
552 static void context_append(struct context *ctx,
553                            struct descriptor *d, int z, int extra)
554 {
555         dma_addr_t d_bus;
556
557         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
558
559         ctx->head_descriptor = d + z + extra;
560         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
561         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
562
563         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
564                                    ctx->buffer_size, DMA_TO_DEVICE);
565
566         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
567         flush_writes(ctx->ohci);
568 }
569
570 static void context_stop(struct context *ctx)
571 {
572         u32 reg;
573
574         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
575
576         reg = reg_read(ctx->ohci, control_set(ctx->regs));
577         if (reg & CONTEXT_ACTIVE)
578                 fw_notify("Tried to stop context, but it is still active "
579                           "(0x%08x).\n", reg);
580 }
581
582 static void
583 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
584 {
585         struct fw_packet *p, *next;
586
587         list_for_each_entry_safe(p, next, list, link)
588                 p->callback(p, &ohci->card, p->ack);
589 }
590
591 static void
592 complete_transmission(struct fw_packet *packet,
593                       int ack, struct list_head *list)
594 {
595         list_move_tail(&packet->link, list);
596         packet->ack = ack;
597 }
598
599 /* This function prepares the first packet in the context queue for
600  * transmission.  Must always be called with the ochi->lock held to
601  * ensure proper generation handling and locking around packet queue
602  * manipulation. */
603 static void
604 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
605 {
606         struct fw_packet *packet;
607         struct fw_ohci *ohci = ctx->ohci;
608         int z, tcode;
609
610         packet = fw_packet(ctx->list.next);
611
612         memset(&ctx->d, 0, sizeof ctx->d);
613         if (packet->payload_length > 0) {
614                 packet->payload_bus = dma_map_single(ohci->card.device,
615                                                      packet->payload,
616                                                      packet->payload_length,
617                                                      DMA_TO_DEVICE);
618                 if (dma_mapping_error(packet->payload_bus)) {
619                         complete_transmission(packet, RCODE_SEND_ERROR, list);
620                         return;
621                 }
622
623                 ctx->d.more.control      =
624                         cpu_to_le16(descriptor_output_more |
625                                     descriptor_key_immediate);
626                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
627                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
628                 ctx->d.last.control      =
629                         cpu_to_le16(descriptor_output_last |
630                                     descriptor_irq_always |
631                                     descriptor_branch_always);
632                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
633                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
634                 z = 3;
635         } else {
636                 ctx->d.more.control   =
637                         cpu_to_le16(descriptor_output_last |
638                                     descriptor_key_immediate |
639                                     descriptor_irq_always |
640                                     descriptor_branch_always);
641                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
642                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
643                 z = 2;
644         }
645
646         /* The DMA format for asyncronous link packets is different
647          * from the IEEE1394 layout, so shift the fields around
648          * accordingly.  If header_length is 8, it's a PHY packet, to
649          * which we need to prepend an extra quadlet. */
650         if (packet->header_length > 8) {
651                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
652                                                (packet->speed << 16));
653                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
654                                                (packet->header[0] & 0xffff0000));
655                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
656
657                 tcode = (packet->header[0] >> 4) & 0x0f;
658                 if (TCODE_IS_BLOCK_PACKET(tcode))
659                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
660                 else
661                         ctx->d.header[3] = packet->header[3];
662         } else {
663                 ctx->d.header[0] =
664                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
665                                     (packet->speed << 16));
666                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
667                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
668                 ctx->d.more.req_count = cpu_to_le16(12);
669         }
670
671         /* FIXME: Document how the locking works. */
672         if (ohci->generation == packet->generation) {
673                 reg_write(ctx->ohci, command_ptr(ctx->regs),
674                           ctx->descriptor_bus | z);
675                 reg_write(ctx->ohci, control_set(ctx->regs),
676                           CONTEXT_RUN | CONTEXT_WAKE);
677                 ctx->current_packet = packet;
678         } else {
679                 /* We dont return error codes from this function; all
680                  * transmission errors are reported through the
681                  * callback. */
682                 complete_transmission(packet, RCODE_GENERATION, list);
683         }
684 }
685
686 static void at_context_stop(struct at_context *ctx)
687 {
688         u32 reg;
689
690         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
691
692         reg = reg_read(ctx->ohci, control_set(ctx->regs));
693         if (reg & CONTEXT_ACTIVE)
694                 fw_notify("Tried to stop context, but it is still active "
695                           "(0x%08x).\n", reg);
696 }
697
698 static void at_context_tasklet(unsigned long data)
699 {
700         struct at_context *ctx = (struct at_context *)data;
701         struct fw_ohci *ohci = ctx->ohci;
702         struct fw_packet *packet;
703         LIST_HEAD(list);
704         unsigned long flags;
705         int evt;
706
707         spin_lock_irqsave(&ohci->lock, flags);
708
709         packet = fw_packet(ctx->list.next);
710
711         at_context_stop(ctx);
712
713         /* If the head of the list isn't the packet that just got
714          * transmitted, the packet got cancelled before we finished
715          * transmitting it. */
716         if (ctx->current_packet != packet)
717                 goto skip_to_next;
718
719         if (packet->payload_length > 0) {
720                 dma_unmap_single(ohci->card.device, packet->payload_bus,
721                                  packet->payload_length, DMA_TO_DEVICE);
722                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
723                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
724         }
725         else {
726                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
727                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
728         }
729
730         if (evt < 16) {
731                 switch (evt) {
732                 case OHCI1394_evt_timeout:
733                         /* Async response transmit timed out. */
734                         complete_transmission(packet, RCODE_CANCELLED, &list);
735                         break;
736
737                 case OHCI1394_evt_flushed:
738                         /* The packet was flushed should give same
739                          * error as when we try to use a stale
740                          * generation count. */
741                         complete_transmission(packet,
742                                               RCODE_GENERATION, &list);
743                         break;
744
745                 case OHCI1394_evt_missing_ack:
746                         /* Using a valid (current) generation count,
747                          * but the node is not on the bus or not
748                          * sending acks. */
749                         complete_transmission(packet, RCODE_NO_ACK, &list);
750                         break;
751
752                 default:
753                         complete_transmission(packet, RCODE_SEND_ERROR, &list);
754                         break;
755                 }
756         } else
757                 complete_transmission(packet, evt - 16, &list);
758
759  skip_to_next:
760         /* If more packets are queued, set up the next one. */
761         if (!list_empty(&ctx->list))
762                 at_context_setup_packet(ctx, &list);
763
764         spin_unlock_irqrestore(&ohci->lock, flags);
765
766         do_packet_callbacks(ohci, &list);
767 }
768
769 static int
770 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
771 {
772         INIT_LIST_HEAD(&ctx->list);
773
774         ctx->descriptor_bus =
775                 dma_map_single(ohci->card.device, &ctx->d,
776                                sizeof ctx->d, DMA_TO_DEVICE);
777         if (dma_mapping_error(ctx->descriptor_bus))
778                 return -ENOMEM;
779
780         ctx->regs = regs;
781         ctx->ohci = ohci;
782
783         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
784
785         return 0;
786 }
787
788 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
789 #define header_get_tcode(q)             (((q) >> 4) & 0x0f)
790 #define header_get_offset_high(q)       (((q) >> 0) & 0xffff)
791 #define header_get_data_length(q)       (((q) >> 16) & 0xffff)
792 #define header_get_extended_tcode(q)    (((q) >> 0) & 0xffff)
793
794 static void
795 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
796 {
797         struct fw_packet response;
798         int tcode, length, i;
799
800         tcode = header_get_tcode(packet->header[0]);
801         if (TCODE_IS_BLOCK_PACKET(tcode))
802                 length = header_get_data_length(packet->header[3]);
803         else
804                 length = 4;
805
806         i = csr - CSR_CONFIG_ROM;
807         if (i + length > CONFIG_ROM_SIZE) {
808                 fw_fill_response(&response, packet->header,
809                                  RCODE_ADDRESS_ERROR, NULL, 0);
810         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
811                 fw_fill_response(&response, packet->header,
812                                  RCODE_TYPE_ERROR, NULL, 0);
813         } else {
814                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
815                                  (void *) ohci->config_rom + i, length);
816         }
817
818         fw_core_handle_response(&ohci->card, &response);
819 }
820
821 static void
822 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
823 {
824         struct fw_packet response;
825         int tcode, length, ext_tcode, sel;
826         __be32 *payload, lock_old;
827         u32 lock_arg, lock_data;
828
829         tcode = header_get_tcode(packet->header[0]);
830         length = header_get_data_length(packet->header[3]);
831         payload = packet->payload;
832         ext_tcode = header_get_extended_tcode(packet->header[3]);
833
834         if (tcode == TCODE_LOCK_REQUEST &&
835             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
836                 lock_arg = be32_to_cpu(payload[0]);
837                 lock_data = be32_to_cpu(payload[1]);
838         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
839                 lock_arg = 0;
840                 lock_data = 0;
841         } else {
842                 fw_fill_response(&response, packet->header,
843                                  RCODE_TYPE_ERROR, NULL, 0);
844                 goto out;
845         }
846
847         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
848         reg_write(ohci, OHCI1394_CSRData, lock_data);
849         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
850         reg_write(ohci, OHCI1394_CSRControl, sel);
851
852         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
853                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
854         else
855                 fw_notify("swap not done yet\n");
856
857         fw_fill_response(&response, packet->header,
858                          RCODE_COMPLETE, &lock_old, sizeof lock_old);
859  out:
860         fw_core_handle_response(&ohci->card, &response);
861 }
862
863 static void
864 handle_local_request(struct at_context *ctx, struct fw_packet *packet)
865 {
866         u64 offset;
867         u32 csr;
868
869         packet->ack = ACK_PENDING;
870         packet->callback(packet, &ctx->ohci->card, packet->ack);
871
872         offset =
873                 ((unsigned long long)
874                  header_get_offset_high(packet->header[1]) << 32) |
875                 packet->header[2];
876         csr = offset - CSR_REGISTER_BASE;
877
878         /* Handle config rom reads. */
879         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
880                 handle_local_rom(ctx->ohci, packet, csr);
881         else switch (csr) {
882         case CSR_BUS_MANAGER_ID:
883         case CSR_BANDWIDTH_AVAILABLE:
884         case CSR_CHANNELS_AVAILABLE_HI:
885         case CSR_CHANNELS_AVAILABLE_LO:
886                 handle_local_lock(ctx->ohci, packet, csr);
887                 break;
888         default:
889                 if (ctx == &ctx->ohci->at_request_ctx)
890                         fw_core_handle_request(&ctx->ohci->card, packet);
891                 else
892                         fw_core_handle_response(&ctx->ohci->card, packet);
893                 break;
894         }
895 }
896
897 static void
898 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
899 {
900         LIST_HEAD(list);
901         unsigned long flags;
902
903         spin_lock_irqsave(&ctx->ohci->lock, flags);
904
905         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
906             ctx->ohci->generation == packet->generation) {
907                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
908                 handle_local_request(ctx, packet);
909                 return;
910         }
911
912         list_add_tail(&packet->link, &ctx->list);
913         if (ctx->list.next == &packet->link)
914                 at_context_setup_packet(ctx, &list);
915
916         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
917
918         do_packet_callbacks(ctx->ohci, &list);
919 }
920
921 static void bus_reset_tasklet(unsigned long data)
922 {
923         struct fw_ohci *ohci = (struct fw_ohci *)data;
924         int self_id_count, i, j, reg;
925         int generation, new_generation;
926         unsigned long flags;
927
928         reg = reg_read(ohci, OHCI1394_NodeID);
929         if (!(reg & OHCI1394_NodeID_idValid)) {
930                 fw_error("node ID not valid, new bus reset in progress\n");
931                 return;
932         }
933         ohci->node_id = reg & 0xffff;
934
935         /* The count in the SelfIDCount register is the number of
936          * bytes in the self ID receive buffer.  Since we also receive
937          * the inverted quadlets and a header quadlet, we shift one
938          * bit extra to get the actual number of self IDs. */
939
940         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
941         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
942
943         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
944                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
945                         fw_error("inconsistent self IDs\n");
946                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
947         }
948
949         /* Check the consistency of the self IDs we just read.  The
950          * problem we face is that a new bus reset can start while we
951          * read out the self IDs from the DMA buffer. If this happens,
952          * the DMA buffer will be overwritten with new self IDs and we
953          * will read out inconsistent data.  The OHCI specification
954          * (section 11.2) recommends a technique similar to
955          * linux/seqlock.h, where we remember the generation of the
956          * self IDs in the buffer before reading them out and compare
957          * it to the current generation after reading them out.  If
958          * the two generations match we know we have a consistent set
959          * of self IDs. */
960
961         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
962         if (new_generation != generation) {
963                 fw_notify("recursive bus reset detected, "
964                           "discarding self ids\n");
965                 return;
966         }
967
968         /* FIXME: Document how the locking works. */
969         spin_lock_irqsave(&ohci->lock, flags);
970
971         ohci->generation = generation;
972         at_context_stop(&ohci->at_request_ctx);
973         at_context_stop(&ohci->at_response_ctx);
974         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
975
976         /* This next bit is unrelated to the AT context stuff but we
977          * have to do it under the spinlock also.  If a new config rom
978          * was set up before this reset, the old one is now no longer
979          * in use and we can free it. Update the config rom pointers
980          * to point to the current config rom and clear the
981          * next_config_rom pointer so a new udpate can take place. */
982
983         if (ohci->next_config_rom != NULL) {
984                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
985                                   ohci->config_rom, ohci->config_rom_bus);
986                 ohci->config_rom      = ohci->next_config_rom;
987                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
988                 ohci->next_config_rom = NULL;
989
990                 /* Restore config_rom image and manually update
991                  * config_rom registers.  Writing the header quadlet
992                  * will indicate that the config rom is ready, so we
993                  * do that last. */
994                 reg_write(ohci, OHCI1394_BusOptions,
995                           be32_to_cpu(ohci->config_rom[2]));
996                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
997                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
998         }
999
1000         spin_unlock_irqrestore(&ohci->lock, flags);
1001
1002         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1003                                  self_id_count, ohci->self_id_buffer);
1004 }
1005
1006 static irqreturn_t irq_handler(int irq, void *data)
1007 {
1008         struct fw_ohci *ohci = data;
1009         u32 event, iso_event;
1010         int i;
1011
1012         event = reg_read(ohci, OHCI1394_IntEventClear);
1013
1014         if (!event)
1015                 return IRQ_NONE;
1016
1017         reg_write(ohci, OHCI1394_IntEventClear, event);
1018
1019         if (event & OHCI1394_selfIDComplete)
1020                 tasklet_schedule(&ohci->bus_reset_tasklet);
1021
1022         if (event & OHCI1394_RQPkt)
1023                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1024
1025         if (event & OHCI1394_RSPkt)
1026                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1027
1028         if (event & OHCI1394_reqTxComplete)
1029                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1030
1031         if (event & OHCI1394_respTxComplete)
1032                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1033
1034         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1035         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1036
1037         while (iso_event) {
1038                 i = ffs(iso_event) - 1;
1039                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1040                 iso_event &= ~(1 << i);
1041         }
1042
1043         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1044         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1045
1046         while (iso_event) {
1047                 i = ffs(iso_event) - 1;
1048                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1049                 iso_event &= ~(1 << i);
1050         }
1051
1052         return IRQ_HANDLED;
1053 }
1054
1055 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1056 {
1057         struct fw_ohci *ohci = fw_ohci(card);
1058         struct pci_dev *dev = to_pci_dev(card->device);
1059
1060         /* When the link is not yet enabled, the atomic config rom
1061          * update mechanism described below in ohci_set_config_rom()
1062          * is not active.  We have to update ConfigRomHeader and
1063          * BusOptions manually, and the write to ConfigROMmap takes
1064          * effect immediately.  We tie this to the enabling of the
1065          * link, so we have a valid config rom before enabling - the
1066          * OHCI requires that ConfigROMhdr and BusOptions have valid
1067          * values before enabling.
1068          *
1069          * However, when the ConfigROMmap is written, some controllers
1070          * always read back quadlets 0 and 2 from the config rom to
1071          * the ConfigRomHeader and BusOptions registers on bus reset.
1072          * They shouldn't do that in this initial case where the link
1073          * isn't enabled.  This means we have to use the same
1074          * workaround here, setting the bus header to 0 and then write
1075          * the right values in the bus reset tasklet.
1076          */
1077
1078         ohci->next_config_rom =
1079                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1080                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1081         if (ohci->next_config_rom == NULL)
1082                 return -ENOMEM;
1083
1084         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1085         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1086
1087         ohci->next_header = config_rom[0];
1088         ohci->next_config_rom[0] = 0;
1089         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1090         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1091         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1092
1093         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1094
1095         if (request_irq(dev->irq, irq_handler,
1096                         SA_SHIRQ, ohci_driver_name, ohci)) {
1097                 fw_error("Failed to allocate shared interrupt %d.\n",
1098                          dev->irq);
1099                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1100                                   ohci->config_rom, ohci->config_rom_bus);
1101                 return -EIO;
1102         }
1103
1104         reg_write(ohci, OHCI1394_HCControlSet,
1105                   OHCI1394_HCControl_linkEnable |
1106                   OHCI1394_HCControl_BIBimageValid);
1107         flush_writes(ohci);
1108
1109         /* We are ready to go, initiate bus reset to finish the
1110          * initialization. */
1111
1112         fw_core_initiate_bus_reset(&ohci->card, 1);
1113
1114         return 0;
1115 }
1116
1117 static int
1118 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1119 {
1120         struct fw_ohci *ohci;
1121         unsigned long flags;
1122         int retval = 0;
1123         __be32 *next_config_rom;
1124         dma_addr_t next_config_rom_bus;
1125
1126         ohci = fw_ohci(card);
1127
1128         /* When the OHCI controller is enabled, the config rom update
1129          * mechanism is a bit tricky, but easy enough to use.  See
1130          * section 5.5.6 in the OHCI specification.
1131          *
1132          * The OHCI controller caches the new config rom address in a
1133          * shadow register (ConfigROMmapNext) and needs a bus reset
1134          * for the changes to take place.  When the bus reset is
1135          * detected, the controller loads the new values for the
1136          * ConfigRomHeader and BusOptions registers from the specified
1137          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1138          * shadow register. All automatically and atomically.
1139          *
1140          * Now, there's a twist to this story.  The automatic load of
1141          * ConfigRomHeader and BusOptions doesn't honor the
1142          * noByteSwapData bit, so with a be32 config rom, the
1143          * controller will load be32 values in to these registers
1144          * during the atomic update, even on litte endian
1145          * architectures.  The workaround we use is to put a 0 in the
1146          * header quadlet; 0 is endian agnostic and means that the
1147          * config rom isn't ready yet.  In the bus reset tasklet we
1148          * then set up the real values for the two registers.
1149          *
1150          * We use ohci->lock to avoid racing with the code that sets
1151          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1152          */
1153
1154         next_config_rom =
1155                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1156                                    &next_config_rom_bus, GFP_KERNEL);
1157         if (next_config_rom == NULL)
1158                 return -ENOMEM;
1159
1160         spin_lock_irqsave(&ohci->lock, flags);
1161
1162         if (ohci->next_config_rom == NULL) {
1163                 ohci->next_config_rom = next_config_rom;
1164                 ohci->next_config_rom_bus = next_config_rom_bus;
1165
1166                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1167                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1168                                   length * 4);
1169
1170                 ohci->next_header = config_rom[0];
1171                 ohci->next_config_rom[0] = 0;
1172
1173                 reg_write(ohci, OHCI1394_ConfigROMmap,
1174                           ohci->next_config_rom_bus);
1175         } else {
1176                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1177                                   next_config_rom, next_config_rom_bus);
1178                 retval = -EBUSY;
1179         }
1180
1181         spin_unlock_irqrestore(&ohci->lock, flags);
1182
1183         /* Now initiate a bus reset to have the changes take
1184          * effect. We clean up the old config rom memory and DMA
1185          * mappings in the bus reset tasklet, since the OHCI
1186          * controller could need to access it before the bus reset
1187          * takes effect. */
1188         if (retval == 0)
1189                 fw_core_initiate_bus_reset(&ohci->card, 1);
1190
1191         return retval;
1192 }
1193
1194 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1195 {
1196         struct fw_ohci *ohci = fw_ohci(card);
1197
1198         at_context_transmit(&ohci->at_request_ctx, packet);
1199 }
1200
1201 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1202 {
1203         struct fw_ohci *ohci = fw_ohci(card);
1204
1205         at_context_transmit(&ohci->at_response_ctx, packet);
1206 }
1207
1208 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1209 {
1210         struct fw_ohci *ohci = fw_ohci(card);
1211         LIST_HEAD(list);
1212         unsigned long flags;
1213
1214         spin_lock_irqsave(&ohci->lock, flags);
1215
1216         if (packet->ack == 0) {
1217                 fw_notify("cancelling packet %p (header[0]=%08x)\n",
1218                           packet, packet->header[0]);
1219
1220                 complete_transmission(packet, RCODE_CANCELLED, &list);
1221         }
1222
1223         spin_unlock_irqrestore(&ohci->lock, flags);
1224
1225         do_packet_callbacks(ohci, &list);
1226
1227         /* Return success if we actually cancelled something. */
1228         return list_empty(&list) ? -ENOENT : 0;
1229 }
1230
1231 static int
1232 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1233 {
1234         struct fw_ohci *ohci = fw_ohci(card);
1235         unsigned long flags;
1236         int n, retval = 0;
1237
1238         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
1239          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1240
1241         spin_lock_irqsave(&ohci->lock, flags);
1242
1243         if (ohci->generation != generation) {
1244                 retval = -ESTALE;
1245                 goto out;
1246         }
1247
1248         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1249          * enabled for _all_ nodes on remote buses. */
1250
1251         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1252         if (n < 32)
1253                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1254         else
1255                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1256
1257         flush_writes(ohci);
1258  out:
1259         spin_unlock_irqrestore(&ohci->lock, flags);
1260         return retval;
1261 }
1262
1263 static int handle_ir_packet(struct context *context,
1264                             struct descriptor *d,
1265                             struct descriptor *last)
1266 {
1267         struct iso_context *ctx =
1268                 container_of(context, struct iso_context, context);
1269         struct db_descriptor *db = (struct db_descriptor *) d;
1270  
1271         if (db->first_res_count > 0 && db->second_res_count > 0)
1272                 /* This descriptor isn't done yet, stop iteration. */
1273                 return 0;
1274
1275         if (le16_to_cpu(db->control) & descriptor_irq_always)
1276                 /* FIXME: we should pass payload address here. */
1277                 ctx->base.callback(&ctx->base,
1278                                    0, 0,
1279                                    ctx->base.callback_data);
1280
1281         return 1;
1282 }
1283
1284 #define ISO_BUFFER_SIZE (64 * 1024)
1285
1286 static int handle_it_packet(struct context *context,
1287                             struct descriptor *d,
1288                             struct descriptor *last)
1289 {
1290         struct iso_context *ctx =
1291                 container_of(context, struct iso_context, context);
1292  
1293         if (last->transfer_status == 0)
1294                 /* This descriptor isn't done yet, stop iteration. */
1295                 return 0;
1296
1297         if (le16_to_cpu(last->control) & descriptor_irq_always)
1298                 ctx->base.callback(&ctx->base,
1299                                    0, le16_to_cpu(last->res_count),
1300                                    ctx->base.callback_data);
1301
1302         return 1;
1303 }
1304
1305 static struct fw_iso_context *
1306 ohci_allocate_iso_context(struct fw_card *card, int type)
1307 {
1308         struct fw_ohci *ohci = fw_ohci(card);
1309         struct iso_context *ctx, *list;
1310         descriptor_callback_t callback;
1311         u32 *mask, regs;
1312         unsigned long flags;
1313         int index, retval;
1314
1315         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1316                 mask = &ohci->it_context_mask;
1317                 list = ohci->it_context_list;
1318                 callback = handle_it_packet;
1319         } else {
1320                 mask = &ohci->ir_context_mask;
1321                 list = ohci->ir_context_list;
1322                 callback = handle_ir_packet;
1323         }
1324
1325         spin_lock_irqsave(&ohci->lock, flags);
1326         index = ffs(*mask) - 1;
1327         if (index >= 0)
1328                 *mask &= ~(1 << index);
1329         spin_unlock_irqrestore(&ohci->lock, flags);
1330
1331         if (index < 0)
1332                 return ERR_PTR(-EBUSY);
1333
1334         if (type == FW_ISO_CONTEXT_TRANSMIT)
1335                 regs = OHCI1394_IsoXmitContextBase(index);
1336         else
1337                 regs = OHCI1394_IsoRcvContextBase(index);
1338  
1339         ctx = &list[index];
1340         memset(ctx, 0, sizeof *ctx);
1341         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1342                               regs, callback);
1343         if (retval < 0) {
1344                 spin_lock_irqsave(&ohci->lock, flags);
1345                 *mask |= 1 << index;
1346                 spin_unlock_irqrestore(&ohci->lock, flags);
1347                 return ERR_PTR(retval);
1348         }
1349
1350         return &ctx->base;
1351 }
1352
1353 static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
1354 {
1355         struct iso_context *ctx = container_of(base, struct iso_context, base);
1356         struct fw_ohci *ohci = ctx->context.ohci;
1357         u32 cycle_match = 0;
1358         int index;
1359
1360         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1361                 index = ctx - ohci->it_context_list;
1362                 if (cycle > 0)
1363                         cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1364                                 (cycle & 0x7fff) << 16;
1365                 
1366                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1367                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1368                 context_run(&ctx->context, cycle_match);
1369         } else {
1370                 index = ctx - ohci->ir_context_list;
1371
1372                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1373                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1374                 reg_write(ohci, context_match(ctx->context.regs),
1375                           0xf0000000 | ctx->base.channel);
1376                 context_run(&ctx->context, IR_CONTEXT_DUAL_BUFFER_MODE);
1377         }
1378
1379         return 0;
1380 }
1381
1382 static void ohci_free_iso_context(struct fw_iso_context *base)
1383 {
1384         struct fw_ohci *ohci = fw_ohci(base->card);
1385         struct iso_context *ctx = container_of(base, struct iso_context, base);
1386         unsigned long flags;
1387         int index;
1388
1389         spin_lock_irqsave(&ohci->lock, flags);
1390
1391         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1392                 index = ctx - ohci->it_context_list;
1393                 reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
1394                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1395                 ohci->it_context_mask |= 1 << index;
1396         } else {
1397                 index = ctx - ohci->ir_context_list;
1398                 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
1399                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1400                 ohci->ir_context_mask |= 1 << index;
1401         }
1402         flush_writes(ohci);
1403
1404         context_release(&ctx->context);
1405
1406         spin_unlock_irqrestore(&ohci->lock, flags);
1407 }
1408
1409 static int
1410 ohci_queue_iso_transmit(struct fw_iso_context *base,
1411                         struct fw_iso_packet *packet,
1412                         struct fw_iso_buffer *buffer,
1413                         unsigned long payload)
1414 {
1415         struct iso_context *ctx = container_of(base, struct iso_context, base);
1416         struct descriptor *d, *last, *pd;
1417         struct fw_iso_packet *p;
1418         __le32 *header;
1419         dma_addr_t d_bus, page_bus;
1420         u32 z, header_z, payload_z, irq;
1421         u32 payload_index, payload_end_index, next_page_index;
1422         int page, end_page, i, length, offset;
1423
1424         /* FIXME: Cycle lost behavior should be configurable: lose
1425          * packet, retransmit or terminate.. */
1426
1427         p = packet;
1428         payload_index = payload;
1429
1430         if (p->skip)
1431                 z = 1;
1432         else
1433                 z = 2;
1434         if (p->header_length > 0)
1435                 z++;
1436
1437         /* Determine the first page the payload isn't contained in. */
1438         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1439         if (p->payload_length > 0)
1440                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1441         else
1442                 payload_z = 0;
1443
1444         z += payload_z;
1445
1446         /* Get header size in number of descriptors. */
1447         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1448
1449         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1450         if (d == NULL)
1451                 return -ENOMEM;
1452
1453         if (!p->skip) {
1454                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1455                 d[0].req_count = cpu_to_le16(8);
1456
1457                 header = (__le32 *) &d[1];
1458                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1459                                         it_header_tag(p->tag) |
1460                                         it_header_tcode(TCODE_STREAM_DATA) |
1461                                         it_header_channel(ctx->base.channel) |
1462                                         it_header_speed(ctx->base.speed));
1463                 header[1] =
1464                         cpu_to_le32(it_header_data_length(p->header_length +
1465                                                           p->payload_length));
1466         }
1467
1468         if (p->header_length > 0) {
1469                 d[2].req_count    = cpu_to_le16(p->header_length);
1470                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1471                 memcpy(&d[z], p->header, p->header_length);
1472         }
1473
1474         pd = d + z - payload_z;
1475         payload_end_index = payload_index + p->payload_length;
1476         for (i = 0; i < payload_z; i++) {
1477                 page               = payload_index >> PAGE_SHIFT;
1478                 offset             = payload_index & ~PAGE_MASK;
1479                 next_page_index    = (page + 1) << PAGE_SHIFT;
1480                 length             =
1481                         min(next_page_index, payload_end_index) - payload_index;
1482                 pd[i].req_count    = cpu_to_le16(length);
1483
1484                 page_bus = page_private(buffer->pages[page]);
1485                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1486
1487                 payload_index += length;
1488         }
1489
1490         if (p->interrupt)
1491                 irq = descriptor_irq_always;
1492         else
1493                 irq = descriptor_no_irq;
1494
1495         last = z == 2 ? d : d + z - 1;
1496         last->control |= cpu_to_le16(descriptor_output_last |
1497                                      descriptor_status |
1498                                      descriptor_branch_always |
1499                                      irq);
1500
1501         context_append(&ctx->context, d, z, header_z);
1502
1503         return 0;
1504 }
1505
1506 static int
1507 ohci_queue_iso_receive(struct fw_iso_context *base,
1508                        struct fw_iso_packet *packet,
1509                        struct fw_iso_buffer *buffer,
1510                        unsigned long payload)
1511 {
1512         struct iso_context *ctx = container_of(base, struct iso_context, base);
1513         struct db_descriptor *db = NULL;
1514         struct descriptor *d;
1515         struct fw_iso_packet *p;
1516         dma_addr_t d_bus, page_bus;
1517         u32 z, header_z, length, rest;
1518         int page, offset;
1519  
1520         /* FIXME: Cycle lost behavior should be configurable: lose
1521          * packet, retransmit or terminate.. */
1522
1523         p = packet;
1524         z = 2;
1525
1526         /* Get header size in number of descriptors. */
1527         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1528         page     = payload >> PAGE_SHIFT;
1529         offset   = payload & ~PAGE_MASK;
1530         rest     = p->payload_length;
1531
1532         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1533         /* FIXME: handle descriptor_wait */
1534         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1535         while (rest > 0) {
1536                 d = context_get_descriptors(&ctx->context,
1537                                             z + header_z, &d_bus);
1538                 if (d == NULL)
1539                         return -ENOMEM;
1540
1541                 db = (struct db_descriptor *) d;
1542                 db->control = cpu_to_le16(descriptor_status |
1543                                           descriptor_branch_always);
1544                 db->first_size = cpu_to_le16(ctx->base.header_size);
1545                 db->first_req_count = cpu_to_le16(p->header_length);
1546                 db->second_req_count = cpu_to_le16(p->payload_length);
1547                 db->first_res_count = cpu_to_le16(db->first_req_count);
1548                 db->second_res_count = cpu_to_le16(db->second_req_count);
1549
1550                 db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
1551                 
1552                 if (offset + rest < PAGE_SIZE)
1553                         length = rest;
1554                 else
1555                         length = PAGE_SIZE - offset;
1556
1557                 page_bus = page_private(buffer->pages[page]);
1558                 db->second_buffer = cpu_to_le32(page_bus + offset);
1559
1560                 context_append(&ctx->context, d, z, header_z);
1561                 offset = (offset + length) & ~PAGE_MASK;
1562                 rest -= length;
1563                 page++;
1564         }
1565
1566         if (p->interrupt)
1567                 db->control |= cpu_to_le16(descriptor_irq_always);
1568  
1569         return 0;
1570  }
1571  
1572 static int
1573 ohci_queue_iso(struct fw_iso_context *base,
1574                struct fw_iso_packet *packet,
1575                struct fw_iso_buffer *buffer,
1576                unsigned long payload)
1577 {
1578         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1579                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1580         else
1581                 return ohci_queue_iso_receive(base, packet, buffer, payload);
1582 }
1583
1584 static const struct fw_card_driver ohci_driver = {
1585         .name                   = ohci_driver_name,
1586         .enable                 = ohci_enable,
1587         .update_phy_reg         = ohci_update_phy_reg,
1588         .set_config_rom         = ohci_set_config_rom,
1589         .send_request           = ohci_send_request,
1590         .send_response          = ohci_send_response,
1591         .cancel_packet          = ohci_cancel_packet,
1592         .enable_phys_dma        = ohci_enable_phys_dma,
1593
1594         .allocate_iso_context   = ohci_allocate_iso_context,
1595         .free_iso_context       = ohci_free_iso_context,
1596         .queue_iso              = ohci_queue_iso,
1597         .start_iso              = ohci_start_iso,
1598 };
1599
1600 static int software_reset(struct fw_ohci *ohci)
1601 {
1602         int i;
1603
1604         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1605
1606         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1607                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1608                      OHCI1394_HCControl_softReset) == 0)
1609                         return 0;
1610                 msleep(1);
1611         }
1612
1613         return -EBUSY;
1614 }
1615
1616 /* ---------- pci subsystem interface ---------- */
1617
1618 enum {
1619         CLEANUP_SELF_ID,
1620         CLEANUP_REGISTERS,
1621         CLEANUP_IOMEM,
1622         CLEANUP_DISABLE,
1623         CLEANUP_PUT_CARD,
1624 };
1625
1626 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1627 {
1628         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1629
1630         switch (stage) {
1631         case CLEANUP_SELF_ID:
1632                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1633                                   ohci->self_id_cpu, ohci->self_id_bus);
1634         case CLEANUP_REGISTERS:
1635                 kfree(ohci->it_context_list);
1636                 kfree(ohci->ir_context_list);
1637                 pci_iounmap(dev, ohci->registers);
1638         case CLEANUP_IOMEM:
1639                 pci_release_region(dev, 0);
1640         case CLEANUP_DISABLE:
1641                 pci_disable_device(dev);
1642         case CLEANUP_PUT_CARD:
1643                 fw_card_put(&ohci->card);
1644         }
1645
1646         return code;
1647 }
1648
1649 static int __devinit
1650 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1651 {
1652         struct fw_ohci *ohci;
1653         u32 bus_options, max_receive, link_speed;
1654         u64 guid;
1655         int error_code;
1656         size_t size;
1657
1658         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1659         if (ohci == NULL) {
1660                 fw_error("Could not malloc fw_ohci data.\n");
1661                 return -ENOMEM;
1662         }
1663
1664         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1665
1666         if (pci_enable_device(dev)) {
1667                 fw_error("Failed to enable OHCI hardware.\n");
1668                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1669         }
1670
1671         pci_set_master(dev);
1672         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1673         pci_set_drvdata(dev, ohci);
1674
1675         spin_lock_init(&ohci->lock);
1676
1677         tasklet_init(&ohci->bus_reset_tasklet,
1678                      bus_reset_tasklet, (unsigned long)ohci);
1679
1680         if (pci_request_region(dev, 0, ohci_driver_name)) {
1681                 fw_error("MMIO resource unavailable\n");
1682                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1683         }
1684
1685         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1686         if (ohci->registers == NULL) {
1687                 fw_error("Failed to remap registers\n");
1688                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1689         }
1690
1691         if (software_reset(ohci)) {
1692                 fw_error("Failed to reset ohci card.\n");
1693                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1694         }
1695
1696         /* Now enable LPS, which we need in order to start accessing
1697          * most of the registers.  In fact, on some cards (ALI M5251),
1698          * accessing registers in the SClk domain without LPS enabled
1699          * will lock up the machine.  Wait 50msec to make sure we have
1700          * full link enabled.  */
1701         reg_write(ohci, OHCI1394_HCControlSet,
1702                   OHCI1394_HCControl_LPS |
1703                   OHCI1394_HCControl_postedWriteEnable);
1704         flush_writes(ohci);
1705         msleep(50);
1706
1707         reg_write(ohci, OHCI1394_HCControlClear,
1708                   OHCI1394_HCControl_noByteSwapData);
1709
1710         reg_write(ohci, OHCI1394_LinkControlSet,
1711                   OHCI1394_LinkControl_rcvSelfID |
1712                   OHCI1394_LinkControl_cycleTimerEnable |
1713                   OHCI1394_LinkControl_cycleMaster);
1714
1715         ar_context_init(&ohci->ar_request_ctx, ohci,
1716                         OHCI1394_AsReqRcvContextControlSet);
1717
1718         ar_context_init(&ohci->ar_response_ctx, ohci,
1719                         OHCI1394_AsRspRcvContextControlSet);
1720
1721         at_context_init(&ohci->at_request_ctx, ohci,
1722                         OHCI1394_AsReqTrContextControlSet);
1723
1724         at_context_init(&ohci->at_response_ctx, ohci,
1725                         OHCI1394_AsRspTrContextControlSet);
1726
1727         reg_write(ohci, OHCI1394_ATRetries,
1728                   OHCI1394_MAX_AT_REQ_RETRIES |
1729                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1730                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1731
1732         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1733         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1734         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1735         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1736         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1737
1738         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1739         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1740         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1741         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1742         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1743
1744         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1745                 fw_error("Out of memory for it/ir contexts.\n");
1746                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1747         }
1748
1749         /* self-id dma buffer allocation */
1750         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1751                                                SELF_ID_BUF_SIZE,
1752                                                &ohci->self_id_bus,
1753                                                GFP_KERNEL);
1754         if (ohci->self_id_cpu == NULL) {
1755                 fw_error("Out of memory for self ID buffer.\n");
1756                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1757         }
1758
1759         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1760         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1761         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1762         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1763         reg_write(ohci, OHCI1394_IntMaskSet,
1764                   OHCI1394_selfIDComplete |
1765                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1766                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1767                   OHCI1394_isochRx | OHCI1394_isochTx |
1768                   OHCI1394_masterIntEnable);
1769
1770         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1771         max_receive = (bus_options >> 12) & 0xf;
1772         link_speed = bus_options & 0x7;
1773         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1774                 reg_read(ohci, OHCI1394_GUIDLo);
1775
1776         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1777         if (error_code < 0)
1778                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1779
1780         fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);
1781
1782         return 0;
1783 }
1784
1785 static void pci_remove(struct pci_dev *dev)
1786 {
1787         struct fw_ohci *ohci;
1788
1789         ohci = pci_get_drvdata(dev);
1790         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1791         fw_core_remove_card(&ohci->card);
1792
1793         /* FIXME: Fail all pending packets here, now that the upper
1794          * layers can't queue any more. */
1795
1796         software_reset(ohci);
1797         free_irq(dev->irq, ohci);
1798         cleanup(ohci, CLEANUP_SELF_ID, 0);
1799
1800         fw_notify("Removed fw-ohci device.\n");
1801 }
1802
1803 static struct pci_device_id pci_table[] = {
1804         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1805         { }
1806 };
1807
1808 MODULE_DEVICE_TABLE(pci, pci_table);
1809
1810 static struct pci_driver fw_ohci_pci_driver = {
1811         .name           = ohci_driver_name,
1812         .id_table       = pci_table,
1813         .probe          = pci_probe,
1814         .remove         = pci_remove,
1815 };
1816
1817 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1818 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1819 MODULE_LICENSE("GPL");
1820
1821 static int __init fw_ohci_init(void)
1822 {
1823         return pci_register_driver(&fw_ohci_pci_driver);
1824 }
1825
1826 static void __exit fw_ohci_cleanup(void)
1827 {
1828         pci_unregister_driver(&fw_ohci_pci_driver);
1829 }
1830
1831 module_init(fw_ohci_init);
1832 module_exit(fw_ohci_cleanup);