]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-sbp2.c
323b03bacd29dcc9ea5130a013636e955908c1cf
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
54
55 /*
56  * So far only bridges from Oxford Semiconductor are known to support
57  * concurrent logins. Depending on firmware, four or two concurrent logins
58  * are possible on OXFW911 and newer Oxsemi bridges.
59  *
60  * Concurrent logins are useful together with cluster filesystems.
61  */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65                  "(default = Y, use N for concurrent initiators)");
66
67 /*
68  * Flags for firmware oddities
69  *
70  * - 128kB max transfer
71  *   Limit transfer size. Necessary for some old bridges.
72  *
73  * - 36 byte inquiry
74  *   When scsi_mod probes the device, let the inquiry command look like that
75  *   from MS Windows.
76  *
77  * - skip mode page 8
78  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
79  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
80  *
81  * - fix capacity
82  *   Tell sd_mod to correct the last sector number reported by read_capacity.
83  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
84  *   Don't use this with devices which don't have this bug.
85  *
86  * - delay inquiry
87  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88  *
89  * - override internal blacklist
90  *   Instead of adding to the built-in blacklist, use only the workarounds
91  *   specified in the module load parameter.
92  *   Useful if a blacklist entry interfered with a non-broken device.
93  */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
95 #define SBP2_WORKAROUND_INQUIRY_36      0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
99 #define SBP2_INQUIRY_DELAY              12
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111         ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120  * and one struct scsi_device per sbp2_logical_unit.
121  */
122 struct sbp2_logical_unit {
123         struct sbp2_target *tgt;
124         struct list_head link;
125         struct scsi_device *sdev;
126         struct fw_address_handler address_handler;
127         struct list_head orb_list;
128
129         u64 command_block_agent_address;
130         u16 lun;
131         int login_id;
132
133         /*
134          * The generation is updated once we've logged in or reconnected
135          * to the logical unit.  Thus, I/O to the device will automatically
136          * fail and get retried if it happens in a window where the device
137          * is not ready, e.g. after a bus reset but before we reconnect.
138          */
139         int generation;
140         int retries;
141         struct delayed_work work;
142 };
143
144 /*
145  * We create one struct sbp2_target per IEEE 1212 Unit Directory
146  * and one struct Scsi_Host per sbp2_target.
147  */
148 struct sbp2_target {
149         struct kref kref;
150         struct fw_unit *unit;
151         const char *bus_id;
152         struct list_head lu_list;
153
154         u64 management_agent_address;
155         int directory_id;
156         int node_id;
157         int address_high;
158         unsigned int workarounds;
159         unsigned int mgt_orb_timeout;
160 };
161
162 /*
163  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
164  * provided in the config rom. Most devices do provide a value, which
165  * we'll use for login management orbs, but with some sane limits.
166  */
167 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
168 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
169 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
170 #define SBP2_ORB_NULL                   0x80000000
171 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
172
173 #define SBP2_DIRECTION_TO_MEDIA         0x0
174 #define SBP2_DIRECTION_FROM_MEDIA       0x1
175
176 /* Unit directory keys */
177 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
178 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
179 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
180 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
181
182 /* Management orb opcodes */
183 #define SBP2_LOGIN_REQUEST              0x0
184 #define SBP2_QUERY_LOGINS_REQUEST       0x1
185 #define SBP2_RECONNECT_REQUEST          0x3
186 #define SBP2_SET_PASSWORD_REQUEST       0x4
187 #define SBP2_LOGOUT_REQUEST             0x7
188 #define SBP2_ABORT_TASK_REQUEST         0xb
189 #define SBP2_ABORT_TASK_SET             0xc
190 #define SBP2_LOGICAL_UNIT_RESET         0xe
191 #define SBP2_TARGET_RESET_REQUEST       0xf
192
193 /* Offsets for command block agent registers */
194 #define SBP2_AGENT_STATE                0x00
195 #define SBP2_AGENT_RESET                0x04
196 #define SBP2_ORB_POINTER                0x08
197 #define SBP2_DOORBELL                   0x10
198 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
199
200 /* Status write response codes */
201 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
202 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
203 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
204 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
205
206 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
207 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
208 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
209 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
210 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
211 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
212 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
213 #define STATUS_GET_DATA(v)              ((v).data)
214
215 struct sbp2_status {
216         u32 status;
217         u32 orb_low;
218         u8 data[24];
219 };
220
221 struct sbp2_pointer {
222         u32 high;
223         u32 low;
224 };
225
226 struct sbp2_orb {
227         struct fw_transaction t;
228         struct kref kref;
229         dma_addr_t request_bus;
230         int rcode;
231         struct sbp2_pointer pointer;
232         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
233         struct list_head link;
234 };
235
236 #define MANAGEMENT_ORB_LUN(v)                   ((v))
237 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
238 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
239 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
240 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
241 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
242
243 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
244 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
245
246 struct sbp2_management_orb {
247         struct sbp2_orb base;
248         struct {
249                 struct sbp2_pointer password;
250                 struct sbp2_pointer response;
251                 u32 misc;
252                 u32 length;
253                 struct sbp2_pointer status_fifo;
254         } request;
255         __be32 response[4];
256         dma_addr_t response_bus;
257         struct completion done;
258         struct sbp2_status status;
259 };
260
261 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
262 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
263
264 struct sbp2_login_response {
265         u32 misc;
266         struct sbp2_pointer command_block_agent;
267         u32 reconnect_hold;
268 };
269 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
270 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
271 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
272 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
273 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
274 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
275 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
276 #define COMMAND_ORB_NOTIFY              ((1) << 31)
277
278 struct sbp2_command_orb {
279         struct sbp2_orb base;
280         struct {
281                 struct sbp2_pointer next;
282                 struct sbp2_pointer data_descriptor;
283                 u32 misc;
284                 u8 command_block[12];
285         } request;
286         struct scsi_cmnd *cmd;
287         scsi_done_fn_t done;
288         struct sbp2_logical_unit *lu;
289
290         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
291         dma_addr_t page_table_bus;
292 };
293
294 /*
295  * List of devices with known bugs.
296  *
297  * The firmware_revision field, masked with 0xffff00, is the best
298  * indicator for the type of bridge chip of a device.  It yields a few
299  * false positives but this did not break correctly behaving devices
300  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
301  * from the config rom can never match that.
302  */
303 static const struct {
304         u32 firmware_revision;
305         u32 model;
306         unsigned int workarounds;
307 } sbp2_workarounds_table[] = {
308         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
309                 .firmware_revision      = 0x002800,
310                 .model                  = 0x001010,
311                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
312                                           SBP2_WORKAROUND_MODE_SENSE_8,
313         },
314         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
315                 .firmware_revision      = 0x002800,
316                 .model                  = 0x000000,
317                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
318         },
319         /* Initio bridges, actually only needed for some older ones */ {
320                 .firmware_revision      = 0x000200,
321                 .model                  = ~0,
322                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
323         },
324         /* Symbios bridge */ {
325                 .firmware_revision      = 0xa0b800,
326                 .model                  = ~0,
327                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
328         },
329
330         /*
331          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
332          * these iPods do not feature the read_capacity bug according
333          * to one report.  Read_capacity behaviour as well as model_id
334          * could change due to Apple-supplied firmware updates though.
335          */
336
337         /* iPod 4th generation. */ {
338                 .firmware_revision      = 0x0a2700,
339                 .model                  = 0x000021,
340                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
341         },
342         /* iPod mini */ {
343                 .firmware_revision      = 0x0a2700,
344                 .model                  = 0x000023,
345                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
346         },
347         /* iPod Photo */ {
348                 .firmware_revision      = 0x0a2700,
349                 .model                  = 0x00007e,
350                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
351         }
352 };
353
354 static void
355 free_orb(struct kref *kref)
356 {
357         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
358
359         kfree(orb);
360 }
361
362 static void
363 sbp2_status_write(struct fw_card *card, struct fw_request *request,
364                   int tcode, int destination, int source,
365                   int generation, int speed,
366                   unsigned long long offset,
367                   void *payload, size_t length, void *callback_data)
368 {
369         struct sbp2_logical_unit *lu = callback_data;
370         struct sbp2_orb *orb;
371         struct sbp2_status status;
372         size_t header_size;
373         unsigned long flags;
374
375         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
376             length == 0 || length > sizeof(status)) {
377                 fw_send_response(card, request, RCODE_TYPE_ERROR);
378                 return;
379         }
380
381         header_size = min(length, 2 * sizeof(u32));
382         fw_memcpy_from_be32(&status, payload, header_size);
383         if (length > header_size)
384                 memcpy(status.data, payload + 8, length - header_size);
385         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
386                 fw_notify("non-orb related status write, not handled\n");
387                 fw_send_response(card, request, RCODE_COMPLETE);
388                 return;
389         }
390
391         /* Lookup the orb corresponding to this status write. */
392         spin_lock_irqsave(&card->lock, flags);
393         list_for_each_entry(orb, &lu->orb_list, link) {
394                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
395                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
396                         orb->rcode = RCODE_COMPLETE;
397                         list_del(&orb->link);
398                         break;
399                 }
400         }
401         spin_unlock_irqrestore(&card->lock, flags);
402
403         if (&orb->link != &lu->orb_list)
404                 orb->callback(orb, &status);
405         else
406                 fw_error("status write for unknown orb\n");
407
408         kref_put(&orb->kref, free_orb);
409
410         fw_send_response(card, request, RCODE_COMPLETE);
411 }
412
413 static void
414 complete_transaction(struct fw_card *card, int rcode,
415                      void *payload, size_t length, void *data)
416 {
417         struct sbp2_orb *orb = data;
418         unsigned long flags;
419
420         /*
421          * This is a little tricky.  We can get the status write for
422          * the orb before we get this callback.  The status write
423          * handler above will assume the orb pointer transaction was
424          * successful and set the rcode to RCODE_COMPLETE for the orb.
425          * So this callback only sets the rcode if it hasn't already
426          * been set and only does the cleanup if the transaction
427          * failed and we didn't already get a status write.
428          */
429         spin_lock_irqsave(&card->lock, flags);
430
431         if (orb->rcode == -1)
432                 orb->rcode = rcode;
433         if (orb->rcode != RCODE_COMPLETE) {
434                 list_del(&orb->link);
435                 spin_unlock_irqrestore(&card->lock, flags);
436                 orb->callback(orb, NULL);
437         } else {
438                 spin_unlock_irqrestore(&card->lock, flags);
439         }
440
441         kref_put(&orb->kref, free_orb);
442 }
443
444 static void
445 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
446               int node_id, int generation, u64 offset)
447 {
448         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
449         unsigned long flags;
450
451         orb->pointer.high = 0;
452         orb->pointer.low = orb->request_bus;
453         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
454
455         spin_lock_irqsave(&device->card->lock, flags);
456         list_add_tail(&orb->link, &lu->orb_list);
457         spin_unlock_irqrestore(&device->card->lock, flags);
458
459         /* Take a ref for the orb list and for the transaction callback. */
460         kref_get(&orb->kref);
461         kref_get(&orb->kref);
462
463         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
464                         node_id, generation, device->max_speed, offset,
465                         &orb->pointer, sizeof(orb->pointer),
466                         complete_transaction, orb);
467 }
468
469 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
470 {
471         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
472         struct sbp2_orb *orb, *next;
473         struct list_head list;
474         unsigned long flags;
475         int retval = -ENOENT;
476
477         INIT_LIST_HEAD(&list);
478         spin_lock_irqsave(&device->card->lock, flags);
479         list_splice_init(&lu->orb_list, &list);
480         spin_unlock_irqrestore(&device->card->lock, flags);
481
482         list_for_each_entry_safe(orb, next, &list, link) {
483                 retval = 0;
484                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
485                         continue;
486
487                 orb->rcode = RCODE_CANCELLED;
488                 orb->callback(orb, NULL);
489         }
490
491         return retval;
492 }
493
494 static void
495 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
496 {
497         struct sbp2_management_orb *orb =
498                 container_of(base_orb, struct sbp2_management_orb, base);
499
500         if (status)
501                 memcpy(&orb->status, status, sizeof(*status));
502         complete(&orb->done);
503 }
504
505 static int
506 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
507                          int generation, int function, int lun_or_login_id,
508                          void *response)
509 {
510         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
511         struct sbp2_management_orb *orb;
512         unsigned int timeout;
513         int retval = -ENOMEM;
514
515         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
516                 return 0;
517
518         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
519         if (orb == NULL)
520                 return -ENOMEM;
521
522         kref_init(&orb->base.kref);
523         orb->response_bus =
524                 dma_map_single(device->card->device, &orb->response,
525                                sizeof(orb->response), DMA_FROM_DEVICE);
526         if (dma_mapping_error(orb->response_bus))
527                 goto fail_mapping_response;
528
529         orb->request.response.high    = 0;
530         orb->request.response.low     = orb->response_bus;
531
532         orb->request.misc =
533                 MANAGEMENT_ORB_NOTIFY |
534                 MANAGEMENT_ORB_FUNCTION(function) |
535                 MANAGEMENT_ORB_LUN(lun_or_login_id);
536         orb->request.length =
537                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
538
539         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
540         orb->request.status_fifo.low  = lu->address_handler.offset;
541
542         if (function == SBP2_LOGIN_REQUEST) {
543                 /* Ask for 2^2 == 4 seconds reconnect grace period */
544                 orb->request.misc |=
545                         MANAGEMENT_ORB_RECONNECT(2) |
546                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
547                 timeout = lu->tgt->mgt_orb_timeout;
548         } else {
549                 timeout = SBP2_ORB_TIMEOUT;
550         }
551
552         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
553
554         init_completion(&orb->done);
555         orb->base.callback = complete_management_orb;
556
557         orb->base.request_bus =
558                 dma_map_single(device->card->device, &orb->request,
559                                sizeof(orb->request), DMA_TO_DEVICE);
560         if (dma_mapping_error(orb->base.request_bus))
561                 goto fail_mapping_request;
562
563         sbp2_send_orb(&orb->base, lu, node_id, generation,
564                       lu->tgt->management_agent_address);
565
566         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
567
568         retval = -EIO;
569         if (sbp2_cancel_orbs(lu) == 0) {
570                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
571                          lu->tgt->bus_id, orb->base.rcode);
572                 goto out;
573         }
574
575         if (orb->base.rcode != RCODE_COMPLETE) {
576                 fw_error("%s: management write failed, rcode 0x%02x\n",
577                          lu->tgt->bus_id, orb->base.rcode);
578                 goto out;
579         }
580
581         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
582             STATUS_GET_SBP_STATUS(orb->status) != 0) {
583                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
584                          STATUS_GET_RESPONSE(orb->status),
585                          STATUS_GET_SBP_STATUS(orb->status));
586                 goto out;
587         }
588
589         retval = 0;
590  out:
591         dma_unmap_single(device->card->device, orb->base.request_bus,
592                          sizeof(orb->request), DMA_TO_DEVICE);
593  fail_mapping_request:
594         dma_unmap_single(device->card->device, orb->response_bus,
595                          sizeof(orb->response), DMA_FROM_DEVICE);
596  fail_mapping_response:
597         if (response)
598                 fw_memcpy_from_be32(response,
599                                     orb->response, sizeof(orb->response));
600         kref_put(&orb->base.kref, free_orb);
601
602         return retval;
603 }
604
605 static void
606 complete_agent_reset_write(struct fw_card *card, int rcode,
607                            void *payload, size_t length, void *done)
608 {
609         complete(done);
610 }
611
612 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
613 {
614         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
615         DECLARE_COMPLETION_ONSTACK(done);
616         struct fw_transaction t;
617         static u32 z;
618
619         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
620                         lu->tgt->node_id, lu->generation, device->max_speed,
621                         lu->command_block_agent_address + SBP2_AGENT_RESET,
622                         &z, sizeof(z), complete_agent_reset_write, &done);
623         wait_for_completion(&done);
624 }
625
626 static void
627 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
628                                    void *payload, size_t length, void *data)
629 {
630         kfree(data);
631 }
632
633 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
634 {
635         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
636         struct fw_transaction *t;
637         static u32 z;
638
639         t = kmalloc(sizeof(*t), GFP_ATOMIC);
640         if (t == NULL)
641                 return;
642
643         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
644                         lu->tgt->node_id, lu->generation, device->max_speed,
645                         lu->command_block_agent_address + SBP2_AGENT_RESET,
646                         &z, sizeof(z), complete_agent_reset_write_no_wait, t);
647 }
648
649 static void sbp2_release_target(struct kref *kref)
650 {
651         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
652         struct sbp2_logical_unit *lu, *next;
653         struct Scsi_Host *shost =
654                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
655
656         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
657                 if (lu->sdev)
658                         scsi_remove_device(lu->sdev);
659
660                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
661                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
662
663                 fw_core_remove_address_handler(&lu->address_handler);
664                 list_del(&lu->link);
665                 kfree(lu);
666         }
667         scsi_remove_host(shost);
668         fw_notify("released %s\n", tgt->bus_id);
669
670         put_device(&tgt->unit->device);
671         scsi_host_put(shost);
672 }
673
674 static struct workqueue_struct *sbp2_wq;
675
676 /*
677  * Always get the target's kref when scheduling work on one its units.
678  * Each workqueue job is responsible to call sbp2_target_put() upon return.
679  */
680 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
681 {
682         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
683                 kref_get(&lu->tgt->kref);
684 }
685
686 static void sbp2_target_put(struct sbp2_target *tgt)
687 {
688         kref_put(&tgt->kref, sbp2_release_target);
689 }
690
691 static void sbp2_reconnect(struct work_struct *work);
692
693 static void sbp2_login(struct work_struct *work)
694 {
695         struct sbp2_logical_unit *lu =
696                 container_of(work, struct sbp2_logical_unit, work.work);
697         struct sbp2_target *tgt = lu->tgt;
698         struct fw_device *device = fw_device(tgt->unit->device.parent);
699         struct Scsi_Host *shost;
700         struct scsi_device *sdev;
701         struct scsi_lun eight_bytes_lun;
702         struct sbp2_login_response response;
703         int generation, node_id, local_node_id;
704
705         if (fw_device_is_shutdown(device))
706                 goto out;
707
708         generation    = device->generation;
709         smp_rmb();    /* node_id must not be older than generation */
710         node_id       = device->node_id;
711         local_node_id = device->card->node_id;
712
713         /* If this is a re-login attempt, log out, or we might be rejected. */
714         if (lu->sdev)
715                 sbp2_send_management_orb(lu, device->node_id, generation,
716                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
717
718         if (sbp2_send_management_orb(lu, node_id, generation,
719                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
720                 if (lu->retries++ < 5)
721                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
722                 else
723                         fw_error("%s: failed to login to LUN %04x\n",
724                                  tgt->bus_id, lu->lun);
725                 goto out;
726         }
727
728         lu->generation    = generation;
729         tgt->node_id      = node_id;
730         tgt->address_high = local_node_id << 16;
731
732         /* Get command block agent offset and login id. */
733         lu->command_block_agent_address =
734                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
735                 response.command_block_agent.low;
736         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
737
738         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
739                   tgt->bus_id, lu->lun, lu->retries);
740
741 #if 0
742         /* FIXME: The linux1394 sbp2 does this last step. */
743         sbp2_set_busy_timeout(scsi_id);
744 #endif
745
746         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
747         sbp2_agent_reset(lu);
748
749         /* This was a re-login. */
750         if (lu->sdev) {
751                 sbp2_cancel_orbs(lu);
752                 goto out;
753         }
754
755         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
756                 ssleep(SBP2_INQUIRY_DELAY);
757
758         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
759         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
760         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
761         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
762
763         sdev = __scsi_add_device(shost, 0, 0,
764                                  scsilun_to_int(&eight_bytes_lun), lu);
765         if (IS_ERR(sdev)) {
766                 smp_rmb(); /* generation may have changed */
767                 generation = device->generation;
768                 smp_rmb(); /* node_id must not be older than generation */
769
770                 sbp2_send_management_orb(lu, device->node_id, generation,
771                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
772                 /*
773                  * Set this back to sbp2_login so we fall back and
774                  * retry login on bus reset.
775                  */
776                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
777         } else {
778                 lu->sdev = sdev;
779                 scsi_device_put(sdev);
780         }
781  out:
782         sbp2_target_put(tgt);
783 }
784
785 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
786 {
787         struct sbp2_logical_unit *lu;
788
789         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
790         if (!lu)
791                 return -ENOMEM;
792
793         lu->address_handler.length           = 0x100;
794         lu->address_handler.address_callback = sbp2_status_write;
795         lu->address_handler.callback_data    = lu;
796
797         if (fw_core_add_address_handler(&lu->address_handler,
798                                         &fw_high_memory_region) < 0) {
799                 kfree(lu);
800                 return -ENOMEM;
801         }
802
803         lu->tgt  = tgt;
804         lu->sdev = NULL;
805         lu->lun  = lun_entry & 0xffff;
806         lu->retries = 0;
807         INIT_LIST_HEAD(&lu->orb_list);
808         INIT_DELAYED_WORK(&lu->work, sbp2_login);
809
810         list_add_tail(&lu->link, &tgt->lu_list);
811         return 0;
812 }
813
814 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
815 {
816         struct fw_csr_iterator ci;
817         int key, value;
818
819         fw_csr_iterator_init(&ci, directory);
820         while (fw_csr_iterator_next(&ci, &key, &value))
821                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
822                     sbp2_add_logical_unit(tgt, value) < 0)
823                         return -ENOMEM;
824         return 0;
825 }
826
827 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
828                               u32 *model, u32 *firmware_revision)
829 {
830         struct fw_csr_iterator ci;
831         int key, value;
832         unsigned int timeout;
833
834         fw_csr_iterator_init(&ci, directory);
835         while (fw_csr_iterator_next(&ci, &key, &value)) {
836                 switch (key) {
837
838                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
839                         tgt->management_agent_address =
840                                         CSR_REGISTER_BASE + 4 * value;
841                         break;
842
843                 case CSR_DIRECTORY_ID:
844                         tgt->directory_id = value;
845                         break;
846
847                 case CSR_MODEL:
848                         *model = value;
849                         break;
850
851                 case SBP2_CSR_FIRMWARE_REVISION:
852                         *firmware_revision = value;
853                         break;
854
855                 case SBP2_CSR_UNIT_CHARACTERISTICS:
856                         /* the timeout value is stored in 500ms units */
857                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
858                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
859                         tgt->mgt_orb_timeout =
860                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
861
862                         if (timeout > tgt->mgt_orb_timeout)
863                                 fw_notify("%s: config rom contains %ds "
864                                           "management ORB timeout, limiting "
865                                           "to %ds\n", tgt->bus_id,
866                                           timeout / 1000,
867                                           tgt->mgt_orb_timeout / 1000);
868                         break;
869
870                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
871                         if (sbp2_add_logical_unit(tgt, value) < 0)
872                                 return -ENOMEM;
873                         break;
874
875                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
876                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
877                                 return -ENOMEM;
878                         break;
879                 }
880         }
881         return 0;
882 }
883
884 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
885                                   u32 firmware_revision)
886 {
887         int i;
888         unsigned int w = sbp2_param_workarounds;
889
890         if (w)
891                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
892                           "if you need the workarounds parameter for %s\n",
893                           tgt->bus_id);
894
895         if (w & SBP2_WORKAROUND_OVERRIDE)
896                 goto out;
897
898         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
899
900                 if (sbp2_workarounds_table[i].firmware_revision !=
901                     (firmware_revision & 0xffffff00))
902                         continue;
903
904                 if (sbp2_workarounds_table[i].model != model &&
905                     sbp2_workarounds_table[i].model != ~0)
906                         continue;
907
908                 w |= sbp2_workarounds_table[i].workarounds;
909                 break;
910         }
911  out:
912         if (w)
913                 fw_notify("Workarounds for %s: 0x%x "
914                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
915                           tgt->bus_id, w, firmware_revision, model);
916         tgt->workarounds = w;
917 }
918
919 static struct scsi_host_template scsi_driver_template;
920
921 static int sbp2_probe(struct device *dev)
922 {
923         struct fw_unit *unit = fw_unit(dev);
924         struct fw_device *device = fw_device(unit->device.parent);
925         struct sbp2_target *tgt;
926         struct sbp2_logical_unit *lu;
927         struct Scsi_Host *shost;
928         u32 model, firmware_revision;
929
930         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
931         if (shost == NULL)
932                 return -ENOMEM;
933
934         tgt = (struct sbp2_target *)shost->hostdata;
935         unit->device.driver_data = tgt;
936         tgt->unit = unit;
937         kref_init(&tgt->kref);
938         INIT_LIST_HEAD(&tgt->lu_list);
939         tgt->bus_id = unit->device.bus_id;
940
941         if (fw_device_enable_phys_dma(device) < 0)
942                 goto fail_shost_put;
943
944         if (scsi_add_host(shost, &unit->device) < 0)
945                 goto fail_shost_put;
946
947         /* Initialize to values that won't match anything in our table. */
948         firmware_revision = 0xff000000;
949         model = 0xff000000;
950
951         /* implicit directory ID */
952         tgt->directory_id = ((unit->directory - device->config_rom) * 4
953                              + CSR_CONFIG_ROM) & 0xffffff;
954
955         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
956                                &firmware_revision) < 0)
957                 goto fail_tgt_put;
958
959         sbp2_init_workarounds(tgt, model, firmware_revision);
960
961         get_device(&unit->device);
962
963         /* Do the login in a workqueue so we can easily reschedule retries. */
964         list_for_each_entry(lu, &tgt->lu_list, link)
965                 sbp2_queue_work(lu, 0);
966         return 0;
967
968  fail_tgt_put:
969         sbp2_target_put(tgt);
970         return -ENOMEM;
971
972  fail_shost_put:
973         scsi_host_put(shost);
974         return -ENOMEM;
975 }
976
977 static int sbp2_remove(struct device *dev)
978 {
979         struct fw_unit *unit = fw_unit(dev);
980         struct sbp2_target *tgt = unit->device.driver_data;
981
982         sbp2_target_put(tgt);
983         return 0;
984 }
985
986 static void sbp2_reconnect(struct work_struct *work)
987 {
988         struct sbp2_logical_unit *lu =
989                 container_of(work, struct sbp2_logical_unit, work.work);
990         struct sbp2_target *tgt = lu->tgt;
991         struct fw_device *device = fw_device(tgt->unit->device.parent);
992         int generation, node_id, local_node_id;
993
994         if (fw_device_is_shutdown(device))
995                 goto out;
996
997         generation    = device->generation;
998         smp_rmb();    /* node_id must not be older than generation */
999         node_id       = device->node_id;
1000         local_node_id = device->card->node_id;
1001
1002         if (sbp2_send_management_orb(lu, node_id, generation,
1003                                      SBP2_RECONNECT_REQUEST,
1004                                      lu->login_id, NULL) < 0) {
1005                 /*
1006                  * If reconnect was impossible even though we are in the
1007                  * current generation, fall back and try to log in again.
1008                  *
1009                  * We could check for "Function rejected" status, but
1010                  * looking at the bus generation as simpler and more general.
1011                  */
1012                 smp_rmb(); /* get current card generation */
1013                 if (generation == device->card->generation ||
1014                     lu->retries++ >= 5) {
1015                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1016                         lu->retries = 0;
1017                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1018                 }
1019                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1020                 goto out;
1021         }
1022
1023         lu->generation    = generation;
1024         tgt->node_id      = node_id;
1025         tgt->address_high = local_node_id << 16;
1026
1027         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1028                   tgt->bus_id, lu->lun, lu->retries);
1029
1030         sbp2_agent_reset(lu);
1031         sbp2_cancel_orbs(lu);
1032  out:
1033         sbp2_target_put(tgt);
1034 }
1035
1036 static void sbp2_update(struct fw_unit *unit)
1037 {
1038         struct sbp2_target *tgt = unit->device.driver_data;
1039         struct sbp2_logical_unit *lu;
1040
1041         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1042
1043         /*
1044          * Fw-core serializes sbp2_update() against sbp2_remove().
1045          * Iteration over tgt->lu_list is therefore safe here.
1046          */
1047         list_for_each_entry(lu, &tgt->lu_list, link) {
1048                 lu->retries = 0;
1049                 sbp2_queue_work(lu, 0);
1050         }
1051 }
1052
1053 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1054 #define SBP2_SW_VERSION_ENTRY   0x00010483
1055
1056 static const struct fw_device_id sbp2_id_table[] = {
1057         {
1058                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1059                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1060                 .version      = SBP2_SW_VERSION_ENTRY,
1061         },
1062         { }
1063 };
1064
1065 static struct fw_driver sbp2_driver = {
1066         .driver   = {
1067                 .owner  = THIS_MODULE,
1068                 .name   = sbp2_driver_name,
1069                 .bus    = &fw_bus_type,
1070                 .probe  = sbp2_probe,
1071                 .remove = sbp2_remove,
1072         },
1073         .update   = sbp2_update,
1074         .id_table = sbp2_id_table,
1075 };
1076
1077 static unsigned int
1078 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1079 {
1080         int sam_status;
1081
1082         sense_data[0] = 0x70;
1083         sense_data[1] = 0x0;
1084         sense_data[2] = sbp2_status[1];
1085         sense_data[3] = sbp2_status[4];
1086         sense_data[4] = sbp2_status[5];
1087         sense_data[5] = sbp2_status[6];
1088         sense_data[6] = sbp2_status[7];
1089         sense_data[7] = 10;
1090         sense_data[8] = sbp2_status[8];
1091         sense_data[9] = sbp2_status[9];
1092         sense_data[10] = sbp2_status[10];
1093         sense_data[11] = sbp2_status[11];
1094         sense_data[12] = sbp2_status[2];
1095         sense_data[13] = sbp2_status[3];
1096         sense_data[14] = sbp2_status[12];
1097         sense_data[15] = sbp2_status[13];
1098
1099         sam_status = sbp2_status[0] & 0x3f;
1100
1101         switch (sam_status) {
1102         case SAM_STAT_GOOD:
1103         case SAM_STAT_CHECK_CONDITION:
1104         case SAM_STAT_CONDITION_MET:
1105         case SAM_STAT_BUSY:
1106         case SAM_STAT_RESERVATION_CONFLICT:
1107         case SAM_STAT_COMMAND_TERMINATED:
1108                 return DID_OK << 16 | sam_status;
1109
1110         default:
1111                 return DID_ERROR << 16;
1112         }
1113 }
1114
1115 static void
1116 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1117 {
1118         struct sbp2_command_orb *orb =
1119                 container_of(base_orb, struct sbp2_command_orb, base);
1120         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1121         int result;
1122
1123         if (status != NULL) {
1124                 if (STATUS_GET_DEAD(*status))
1125                         sbp2_agent_reset_no_wait(orb->lu);
1126
1127                 switch (STATUS_GET_RESPONSE(*status)) {
1128                 case SBP2_STATUS_REQUEST_COMPLETE:
1129                         result = DID_OK << 16;
1130                         break;
1131                 case SBP2_STATUS_TRANSPORT_FAILURE:
1132                         result = DID_BUS_BUSY << 16;
1133                         break;
1134                 case SBP2_STATUS_ILLEGAL_REQUEST:
1135                 case SBP2_STATUS_VENDOR_DEPENDENT:
1136                 default:
1137                         result = DID_ERROR << 16;
1138                         break;
1139                 }
1140
1141                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1142                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1143                                                            orb->cmd->sense_buffer);
1144         } else {
1145                 /*
1146                  * If the orb completes with status == NULL, something
1147                  * went wrong, typically a bus reset happened mid-orb
1148                  * or when sending the write (less likely).
1149                  */
1150                 result = DID_BUS_BUSY << 16;
1151         }
1152
1153         dma_unmap_single(device->card->device, orb->base.request_bus,
1154                          sizeof(orb->request), DMA_TO_DEVICE);
1155
1156         if (scsi_sg_count(orb->cmd) > 0)
1157                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1158                              scsi_sg_count(orb->cmd),
1159                              orb->cmd->sc_data_direction);
1160
1161         if (orb->page_table_bus != 0)
1162                 dma_unmap_single(device->card->device, orb->page_table_bus,
1163                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1164
1165         orb->cmd->result = result;
1166         orb->done(orb->cmd);
1167 }
1168
1169 static int
1170 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1171                      struct sbp2_logical_unit *lu)
1172 {
1173         struct scatterlist *sg;
1174         int sg_len, l, i, j, count;
1175         dma_addr_t sg_addr;
1176
1177         sg = scsi_sglist(orb->cmd);
1178         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1179                            orb->cmd->sc_data_direction);
1180         if (count == 0)
1181                 goto fail;
1182
1183         /*
1184          * Handle the special case where there is only one element in
1185          * the scatter list by converting it to an immediate block
1186          * request. This is also a workaround for broken devices such
1187          * as the second generation iPod which doesn't support page
1188          * tables.
1189          */
1190         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1191                 orb->request.data_descriptor.high = lu->tgt->address_high;
1192                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1193                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1194                 return 0;
1195         }
1196
1197         /*
1198          * Convert the scatterlist to an sbp2 page table.  If any
1199          * scatterlist entries are too big for sbp2, we split them as we
1200          * go.  Even if we ask the block I/O layer to not give us sg
1201          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1202          * during DMA mapping, and Linux currently doesn't prevent this.
1203          */
1204         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1205                 sg_len = sg_dma_len(sg);
1206                 sg_addr = sg_dma_address(sg);
1207                 while (sg_len) {
1208                         /* FIXME: This won't get us out of the pinch. */
1209                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1210                                 fw_error("page table overflow\n");
1211                                 goto fail_page_table;
1212                         }
1213                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1214                         orb->page_table[j].low = sg_addr;
1215                         orb->page_table[j].high = (l << 16);
1216                         sg_addr += l;
1217                         sg_len -= l;
1218                         j++;
1219                 }
1220         }
1221
1222         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1223                           sizeof(orb->page_table[0]) * j);
1224         orb->page_table_bus =
1225                 dma_map_single(device->card->device, orb->page_table,
1226                                sizeof(orb->page_table), DMA_TO_DEVICE);
1227         if (dma_mapping_error(orb->page_table_bus))
1228                 goto fail_page_table;
1229
1230         /*
1231          * The data_descriptor pointer is the one case where we need
1232          * to fill in the node ID part of the address.  All other
1233          * pointers assume that the data referenced reside on the
1234          * initiator (i.e. us), but data_descriptor can refer to data
1235          * on other nodes so we need to put our ID in descriptor.high.
1236          */
1237         orb->request.data_descriptor.high = lu->tgt->address_high;
1238         orb->request.data_descriptor.low  = orb->page_table_bus;
1239         orb->request.misc |=
1240                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1241                 COMMAND_ORB_DATA_SIZE(j);
1242
1243         return 0;
1244
1245  fail_page_table:
1246         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1247                      orb->cmd->sc_data_direction);
1248  fail:
1249         return -ENOMEM;
1250 }
1251
1252 /* SCSI stack integration */
1253
1254 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1255 {
1256         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1257         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1258         struct sbp2_command_orb *orb;
1259         unsigned int max_payload;
1260         int retval = SCSI_MLQUEUE_HOST_BUSY;
1261
1262         /*
1263          * Bidirectional commands are not yet implemented, and unknown
1264          * transfer direction not handled.
1265          */
1266         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1267                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1268                 cmd->result = DID_ERROR << 16;
1269                 done(cmd);
1270                 return 0;
1271         }
1272
1273         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1274         if (orb == NULL) {
1275                 fw_notify("failed to alloc orb\n");
1276                 return SCSI_MLQUEUE_HOST_BUSY;
1277         }
1278
1279         /* Initialize rcode to something not RCODE_COMPLETE. */
1280         orb->base.rcode = -1;
1281         kref_init(&orb->base.kref);
1282
1283         orb->lu   = lu;
1284         orb->done = done;
1285         orb->cmd  = cmd;
1286
1287         orb->request.next.high   = SBP2_ORB_NULL;
1288         orb->request.next.low    = 0x0;
1289         /*
1290          * At speed 100 we can do 512 bytes per packet, at speed 200,
1291          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1292          * specifies the max payload size as 2 ^ (max_payload + 2), so
1293          * if we set this to max_speed + 7, we get the right value.
1294          */
1295         max_payload = min(device->max_speed + 7,
1296                           device->card->max_receive - 1);
1297         orb->request.misc =
1298                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1299                 COMMAND_ORB_SPEED(device->max_speed) |
1300                 COMMAND_ORB_NOTIFY;
1301
1302         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1303                 orb->request.misc |=
1304                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1305         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1306                 orb->request.misc |=
1307                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1308
1309         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1310                 goto out;
1311
1312         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1313
1314         memset(orb->request.command_block,
1315                0, sizeof(orb->request.command_block));
1316         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1317
1318         orb->base.callback = complete_command_orb;
1319         orb->base.request_bus =
1320                 dma_map_single(device->card->device, &orb->request,
1321                                sizeof(orb->request), DMA_TO_DEVICE);
1322         if (dma_mapping_error(orb->base.request_bus))
1323                 goto out;
1324
1325         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1326                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1327         retval = 0;
1328  out:
1329         kref_put(&orb->base.kref, free_orb);
1330         return retval;
1331 }
1332
1333 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1334 {
1335         struct sbp2_logical_unit *lu = sdev->hostdata;
1336
1337         sdev->allow_restart = 1;
1338
1339         /*
1340          * Update the dma alignment (minimum alignment requirements for
1341          * start and end of DMA transfers) to be a sector
1342          */
1343         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1344
1345         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1346                 sdev->inquiry_len = 36;
1347
1348         return 0;
1349 }
1350
1351 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1352 {
1353         struct sbp2_logical_unit *lu = sdev->hostdata;
1354
1355         sdev->use_10_for_rw = 1;
1356
1357         if (sdev->type == TYPE_ROM)
1358                 sdev->use_10_for_ms = 1;
1359
1360         if (sdev->type == TYPE_DISK &&
1361             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1362                 sdev->skip_ms_page_8 = 1;
1363
1364         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1365                 sdev->fix_capacity = 1;
1366
1367         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1368                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1369
1370         return 0;
1371 }
1372
1373 /*
1374  * Called by scsi stack when something has really gone wrong.  Usually
1375  * called when a command has timed-out for some reason.
1376  */
1377 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1378 {
1379         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1380
1381         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1382         sbp2_agent_reset(lu);
1383         sbp2_cancel_orbs(lu);
1384
1385         return SUCCESS;
1386 }
1387
1388 /*
1389  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1390  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1391  *
1392  * This is the concatenation of target port identifier and logical unit
1393  * identifier as per SAM-2...SAM-4 annex A.
1394  */
1395 static ssize_t
1396 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1397                             char *buf)
1398 {
1399         struct scsi_device *sdev = to_scsi_device(dev);
1400         struct sbp2_logical_unit *lu;
1401         struct fw_device *device;
1402
1403         if (!sdev)
1404                 return 0;
1405
1406         lu = sdev->hostdata;
1407         device = fw_device(lu->tgt->unit->device.parent);
1408
1409         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1410                         device->config_rom[3], device->config_rom[4],
1411                         lu->tgt->directory_id, lu->lun);
1412 }
1413
1414 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1415
1416 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1417         &dev_attr_ieee1394_id,
1418         NULL
1419 };
1420
1421 static struct scsi_host_template scsi_driver_template = {
1422         .module                 = THIS_MODULE,
1423         .name                   = "SBP-2 IEEE-1394",
1424         .proc_name              = sbp2_driver_name,
1425         .queuecommand           = sbp2_scsi_queuecommand,
1426         .slave_alloc            = sbp2_scsi_slave_alloc,
1427         .slave_configure        = sbp2_scsi_slave_configure,
1428         .eh_abort_handler       = sbp2_scsi_abort,
1429         .this_id                = -1,
1430         .sg_tablesize           = SG_ALL,
1431         .use_clustering         = ENABLE_CLUSTERING,
1432         .cmd_per_lun            = 1,
1433         .can_queue              = 1,
1434         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1435 };
1436
1437 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1438 MODULE_DESCRIPTION("SCSI over IEEE1394");
1439 MODULE_LICENSE("GPL");
1440 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1441
1442 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1443 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1444 MODULE_ALIAS("sbp2");
1445 #endif
1446
1447 static int __init sbp2_init(void)
1448 {
1449         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1450         if (!sbp2_wq)
1451                 return -ENOMEM;
1452
1453         return driver_register(&sbp2_driver.driver);
1454 }
1455
1456 static void __exit sbp2_cleanup(void)
1457 {
1458         driver_unregister(&sbp2_driver.driver);
1459         destroy_workqueue(sbp2_wq);
1460 }
1461
1462 module_init(sbp2_init);
1463 module_exit(sbp2_cleanup);