]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/firewire/fw-sbp2.c
firewire: fw-sbp2: add INQUIRY delay workaround
[linux-2.6-omap-h63xx.git] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/delay.h>
36 #include <linux/device.h>
37 #include <linux/scatterlist.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/blkdev.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-transaction.h"
52 #include "fw-topology.h"
53 #include "fw-device.h"
54
55 /*
56  * So far only bridges from Oxford Semiconductor are known to support
57  * concurrent logins. Depending on firmware, four or two concurrent logins
58  * are possible on OXFW911 and newer Oxsemi bridges.
59  *
60  * Concurrent logins are useful together with cluster filesystems.
61  */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65                  "(default = Y, use N for concurrent initiators)");
66
67 /*
68  * Flags for firmware oddities
69  *
70  * - 128kB max transfer
71  *   Limit transfer size. Necessary for some old bridges.
72  *
73  * - 36 byte inquiry
74  *   When scsi_mod probes the device, let the inquiry command look like that
75  *   from MS Windows.
76  *
77  * - skip mode page 8
78  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
79  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
80  *
81  * - fix capacity
82  *   Tell sd_mod to correct the last sector number reported by read_capacity.
83  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
84  *   Don't use this with devices which don't have this bug.
85  *
86  * - delay inquiry
87  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88  *
89  * - override internal blacklist
90  *   Instead of adding to the built-in blacklist, use only the workarounds
91  *   specified in the module load parameter.
92  *   Useful if a blacklist entry interfered with a non-broken device.
93  */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
95 #define SBP2_WORKAROUND_INQUIRY_36      0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
99 #define SBP2_INQUIRY_DELAY              12
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111         ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120  * and one struct scsi_device per sbp2_logical_unit.
121  */
122 struct sbp2_logical_unit {
123         struct sbp2_target *tgt;
124         struct list_head link;
125         struct scsi_device *sdev;
126         struct fw_address_handler address_handler;
127         struct list_head orb_list;
128
129         u64 command_block_agent_address;
130         u16 lun;
131         int login_id;
132
133         /*
134          * The generation is updated once we've logged in or reconnected
135          * to the logical unit.  Thus, I/O to the device will automatically
136          * fail and get retried if it happens in a window where the device
137          * is not ready, e.g. after a bus reset but before we reconnect.
138          */
139         int generation;
140         int retries;
141         struct delayed_work work;
142 };
143
144 /*
145  * We create one struct sbp2_target per IEEE 1212 Unit Directory
146  * and one struct Scsi_Host per sbp2_target.
147  */
148 struct sbp2_target {
149         struct kref kref;
150         struct fw_unit *unit;
151         struct list_head lu_list;
152
153         u64 management_agent_address;
154         int directory_id;
155         int node_id;
156         int address_high;
157         unsigned int workarounds;
158         unsigned int mgt_orb_timeout;
159 };
160
161 /*
162  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
163  * provided in the config rom. Most devices do provide a value, which
164  * we'll use for login management orbs, but with some sane limits.
165  */
166 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
167 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
168 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
169 #define SBP2_ORB_NULL                   0x80000000
170 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
171
172 #define SBP2_DIRECTION_TO_MEDIA         0x0
173 #define SBP2_DIRECTION_FROM_MEDIA       0x1
174
175 /* Unit directory keys */
176 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
177 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
178 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
179 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
180
181 /* Management orb opcodes */
182 #define SBP2_LOGIN_REQUEST              0x0
183 #define SBP2_QUERY_LOGINS_REQUEST       0x1
184 #define SBP2_RECONNECT_REQUEST          0x3
185 #define SBP2_SET_PASSWORD_REQUEST       0x4
186 #define SBP2_LOGOUT_REQUEST             0x7
187 #define SBP2_ABORT_TASK_REQUEST         0xb
188 #define SBP2_ABORT_TASK_SET             0xc
189 #define SBP2_LOGICAL_UNIT_RESET         0xe
190 #define SBP2_TARGET_RESET_REQUEST       0xf
191
192 /* Offsets for command block agent registers */
193 #define SBP2_AGENT_STATE                0x00
194 #define SBP2_AGENT_RESET                0x04
195 #define SBP2_ORB_POINTER                0x08
196 #define SBP2_DOORBELL                   0x10
197 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
198
199 /* Status write response codes */
200 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
201 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
202 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
203 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
204
205 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
206 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
207 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
208 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
209 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
210 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
211 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
212 #define STATUS_GET_DATA(v)              ((v).data)
213
214 struct sbp2_status {
215         u32 status;
216         u32 orb_low;
217         u8 data[24];
218 };
219
220 struct sbp2_pointer {
221         u32 high;
222         u32 low;
223 };
224
225 struct sbp2_orb {
226         struct fw_transaction t;
227         struct kref kref;
228         dma_addr_t request_bus;
229         int rcode;
230         struct sbp2_pointer pointer;
231         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
232         struct list_head link;
233 };
234
235 #define MANAGEMENT_ORB_LUN(v)                   ((v))
236 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
237 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
238 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
239 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
240 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
241
242 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
243 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
244
245 struct sbp2_management_orb {
246         struct sbp2_orb base;
247         struct {
248                 struct sbp2_pointer password;
249                 struct sbp2_pointer response;
250                 u32 misc;
251                 u32 length;
252                 struct sbp2_pointer status_fifo;
253         } request;
254         __be32 response[4];
255         dma_addr_t response_bus;
256         struct completion done;
257         struct sbp2_status status;
258 };
259
260 #define LOGIN_RESPONSE_GET_LOGIN_ID(v)  ((v).misc & 0xffff)
261 #define LOGIN_RESPONSE_GET_LENGTH(v)    (((v).misc >> 16) & 0xffff)
262
263 struct sbp2_login_response {
264         u32 misc;
265         struct sbp2_pointer command_block_agent;
266         u32 reconnect_hold;
267 };
268 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
269 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
270 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
271 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
272 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
273 #define COMMAND_ORB_DIRECTION(v)        ((v) << 27)
274 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
275 #define COMMAND_ORB_NOTIFY              ((1) << 31)
276
277 struct sbp2_command_orb {
278         struct sbp2_orb base;
279         struct {
280                 struct sbp2_pointer next;
281                 struct sbp2_pointer data_descriptor;
282                 u32 misc;
283                 u8 command_block[12];
284         } request;
285         struct scsi_cmnd *cmd;
286         scsi_done_fn_t done;
287         struct sbp2_logical_unit *lu;
288
289         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
290         dma_addr_t page_table_bus;
291 };
292
293 /*
294  * List of devices with known bugs.
295  *
296  * The firmware_revision field, masked with 0xffff00, is the best
297  * indicator for the type of bridge chip of a device.  It yields a few
298  * false positives but this did not break correctly behaving devices
299  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
300  * from the config rom can never match that.
301  */
302 static const struct {
303         u32 firmware_revision;
304         u32 model;
305         unsigned int workarounds;
306 } sbp2_workarounds_table[] = {
307         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
308                 .firmware_revision      = 0x002800,
309                 .model                  = 0x001010,
310                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
311                                           SBP2_WORKAROUND_MODE_SENSE_8,
312         },
313         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
314                 .firmware_revision      = 0x002800,
315                 .model                  = 0x000000,
316                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
317         },
318         /* Initio bridges, actually only needed for some older ones */ {
319                 .firmware_revision      = 0x000200,
320                 .model                  = ~0,
321                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
322         },
323         /* Symbios bridge */ {
324                 .firmware_revision      = 0xa0b800,
325                 .model                  = ~0,
326                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
327         },
328
329         /*
330          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
331          * these iPods do not feature the read_capacity bug according
332          * to one report.  Read_capacity behaviour as well as model_id
333          * could change due to Apple-supplied firmware updates though.
334          */
335
336         /* iPod 4th generation. */ {
337                 .firmware_revision      = 0x0a2700,
338                 .model                  = 0x000021,
339                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
340         },
341         /* iPod mini */ {
342                 .firmware_revision      = 0x0a2700,
343                 .model                  = 0x000023,
344                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
345         },
346         /* iPod Photo */ {
347                 .firmware_revision      = 0x0a2700,
348                 .model                  = 0x00007e,
349                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
350         }
351 };
352
353 static void
354 free_orb(struct kref *kref)
355 {
356         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
357
358         kfree(orb);
359 }
360
361 static void
362 sbp2_status_write(struct fw_card *card, struct fw_request *request,
363                   int tcode, int destination, int source,
364                   int generation, int speed,
365                   unsigned long long offset,
366                   void *payload, size_t length, void *callback_data)
367 {
368         struct sbp2_logical_unit *lu = callback_data;
369         struct sbp2_orb *orb;
370         struct sbp2_status status;
371         size_t header_size;
372         unsigned long flags;
373
374         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
375             length == 0 || length > sizeof(status)) {
376                 fw_send_response(card, request, RCODE_TYPE_ERROR);
377                 return;
378         }
379
380         header_size = min(length, 2 * sizeof(u32));
381         fw_memcpy_from_be32(&status, payload, header_size);
382         if (length > header_size)
383                 memcpy(status.data, payload + 8, length - header_size);
384         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
385                 fw_notify("non-orb related status write, not handled\n");
386                 fw_send_response(card, request, RCODE_COMPLETE);
387                 return;
388         }
389
390         /* Lookup the orb corresponding to this status write. */
391         spin_lock_irqsave(&card->lock, flags);
392         list_for_each_entry(orb, &lu->orb_list, link) {
393                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
394                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
395                         orb->rcode = RCODE_COMPLETE;
396                         list_del(&orb->link);
397                         break;
398                 }
399         }
400         spin_unlock_irqrestore(&card->lock, flags);
401
402         if (&orb->link != &lu->orb_list)
403                 orb->callback(orb, &status);
404         else
405                 fw_error("status write for unknown orb\n");
406
407         kref_put(&orb->kref, free_orb);
408
409         fw_send_response(card, request, RCODE_COMPLETE);
410 }
411
412 static void
413 complete_transaction(struct fw_card *card, int rcode,
414                      void *payload, size_t length, void *data)
415 {
416         struct sbp2_orb *orb = data;
417         unsigned long flags;
418
419         /*
420          * This is a little tricky.  We can get the status write for
421          * the orb before we get this callback.  The status write
422          * handler above will assume the orb pointer transaction was
423          * successful and set the rcode to RCODE_COMPLETE for the orb.
424          * So this callback only sets the rcode if it hasn't already
425          * been set and only does the cleanup if the transaction
426          * failed and we didn't already get a status write.
427          */
428         spin_lock_irqsave(&card->lock, flags);
429
430         if (orb->rcode == -1)
431                 orb->rcode = rcode;
432         if (orb->rcode != RCODE_COMPLETE) {
433                 list_del(&orb->link);
434                 spin_unlock_irqrestore(&card->lock, flags);
435                 orb->callback(orb, NULL);
436         } else {
437                 spin_unlock_irqrestore(&card->lock, flags);
438         }
439
440         kref_put(&orb->kref, free_orb);
441 }
442
443 static void
444 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
445               int node_id, int generation, u64 offset)
446 {
447         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
448         unsigned long flags;
449
450         orb->pointer.high = 0;
451         orb->pointer.low = orb->request_bus;
452         fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
453
454         spin_lock_irqsave(&device->card->lock, flags);
455         list_add_tail(&orb->link, &lu->orb_list);
456         spin_unlock_irqrestore(&device->card->lock, flags);
457
458         /* Take a ref for the orb list and for the transaction callback. */
459         kref_get(&orb->kref);
460         kref_get(&orb->kref);
461
462         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
463                         node_id, generation, device->max_speed, offset,
464                         &orb->pointer, sizeof(orb->pointer),
465                         complete_transaction, orb);
466 }
467
468 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
469 {
470         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
471         struct sbp2_orb *orb, *next;
472         struct list_head list;
473         unsigned long flags;
474         int retval = -ENOENT;
475
476         INIT_LIST_HEAD(&list);
477         spin_lock_irqsave(&device->card->lock, flags);
478         list_splice_init(&lu->orb_list, &list);
479         spin_unlock_irqrestore(&device->card->lock, flags);
480
481         list_for_each_entry_safe(orb, next, &list, link) {
482                 retval = 0;
483                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
484                         continue;
485
486                 orb->rcode = RCODE_CANCELLED;
487                 orb->callback(orb, NULL);
488         }
489
490         return retval;
491 }
492
493 static void
494 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
495 {
496         struct sbp2_management_orb *orb =
497                 container_of(base_orb, struct sbp2_management_orb, base);
498
499         if (status)
500                 memcpy(&orb->status, status, sizeof(*status));
501         complete(&orb->done);
502 }
503
504 static int
505 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
506                          int generation, int function, int lun_or_login_id,
507                          void *response)
508 {
509         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
510         struct sbp2_management_orb *orb;
511         unsigned int timeout;
512         int retval = -ENOMEM;
513
514         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
515                 return 0;
516
517         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
518         if (orb == NULL)
519                 return -ENOMEM;
520
521         kref_init(&orb->base.kref);
522         orb->response_bus =
523                 dma_map_single(device->card->device, &orb->response,
524                                sizeof(orb->response), DMA_FROM_DEVICE);
525         if (dma_mapping_error(orb->response_bus))
526                 goto fail_mapping_response;
527
528         orb->request.response.high    = 0;
529         orb->request.response.low     = orb->response_bus;
530
531         orb->request.misc =
532                 MANAGEMENT_ORB_NOTIFY |
533                 MANAGEMENT_ORB_FUNCTION(function) |
534                 MANAGEMENT_ORB_LUN(lun_or_login_id);
535         orb->request.length =
536                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
537
538         orb->request.status_fifo.high = lu->address_handler.offset >> 32;
539         orb->request.status_fifo.low  = lu->address_handler.offset;
540
541         if (function == SBP2_LOGIN_REQUEST) {
542                 /* Ask for 2^2 == 4 seconds reconnect grace period */
543                 orb->request.misc |=
544                         MANAGEMENT_ORB_RECONNECT(2) |
545                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
546                 timeout = lu->tgt->mgt_orb_timeout;
547         } else {
548                 timeout = SBP2_ORB_TIMEOUT;
549         }
550
551         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
552
553         init_completion(&orb->done);
554         orb->base.callback = complete_management_orb;
555
556         orb->base.request_bus =
557                 dma_map_single(device->card->device, &orb->request,
558                                sizeof(orb->request), DMA_TO_DEVICE);
559         if (dma_mapping_error(orb->base.request_bus))
560                 goto fail_mapping_request;
561
562         sbp2_send_orb(&orb->base, lu, node_id, generation,
563                       lu->tgt->management_agent_address);
564
565         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
566
567         retval = -EIO;
568         if (sbp2_cancel_orbs(lu) == 0) {
569                 fw_error("orb reply timed out, rcode=0x%02x\n",
570                          orb->base.rcode);
571                 goto out;
572         }
573
574         if (orb->base.rcode != RCODE_COMPLETE) {
575                 fw_error("management write failed, rcode 0x%02x\n",
576                          orb->base.rcode);
577                 goto out;
578         }
579
580         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
581             STATUS_GET_SBP_STATUS(orb->status) != 0) {
582                 fw_error("error status: %d:%d\n",
583                          STATUS_GET_RESPONSE(orb->status),
584                          STATUS_GET_SBP_STATUS(orb->status));
585                 goto out;
586         }
587
588         retval = 0;
589  out:
590         dma_unmap_single(device->card->device, orb->base.request_bus,
591                          sizeof(orb->request), DMA_TO_DEVICE);
592  fail_mapping_request:
593         dma_unmap_single(device->card->device, orb->response_bus,
594                          sizeof(orb->response), DMA_FROM_DEVICE);
595  fail_mapping_response:
596         if (response)
597                 fw_memcpy_from_be32(response,
598                                     orb->response, sizeof(orb->response));
599         kref_put(&orb->base.kref, free_orb);
600
601         return retval;
602 }
603
604 static void
605 complete_agent_reset_write(struct fw_card *card, int rcode,
606                            void *payload, size_t length, void *data)
607 {
608         struct fw_transaction *t = data;
609
610         kfree(t);
611 }
612
613 static int sbp2_agent_reset(struct sbp2_logical_unit *lu)
614 {
615         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
616         struct fw_transaction *t;
617         static u32 zero;
618
619         t = kzalloc(sizeof(*t), GFP_ATOMIC);
620         if (t == NULL)
621                 return -ENOMEM;
622
623         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
624                         lu->tgt->node_id, lu->generation, device->max_speed,
625                         lu->command_block_agent_address + SBP2_AGENT_RESET,
626                         &zero, sizeof(zero), complete_agent_reset_write, t);
627
628         return 0;
629 }
630
631 static void sbp2_release_target(struct kref *kref)
632 {
633         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
634         struct sbp2_logical_unit *lu, *next;
635         struct Scsi_Host *shost =
636                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
637
638         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
639                 if (lu->sdev)
640                         scsi_remove_device(lu->sdev);
641
642                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
643                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
644
645                 fw_core_remove_address_handler(&lu->address_handler);
646                 list_del(&lu->link);
647                 kfree(lu);
648         }
649         scsi_remove_host(shost);
650         fw_notify("released %s\n", tgt->unit->device.bus_id);
651
652         put_device(&tgt->unit->device);
653         scsi_host_put(shost);
654 }
655
656 static struct workqueue_struct *sbp2_wq;
657
658 /*
659  * Always get the target's kref when scheduling work on one its units.
660  * Each workqueue job is responsible to call sbp2_target_put() upon return.
661  */
662 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
663 {
664         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
665                 kref_get(&lu->tgt->kref);
666 }
667
668 static void sbp2_target_put(struct sbp2_target *tgt)
669 {
670         kref_put(&tgt->kref, sbp2_release_target);
671 }
672
673 static void sbp2_reconnect(struct work_struct *work);
674
675 static void sbp2_login(struct work_struct *work)
676 {
677         struct sbp2_logical_unit *lu =
678                 container_of(work, struct sbp2_logical_unit, work.work);
679         struct Scsi_Host *shost =
680                 container_of((void *)lu->tgt, struct Scsi_Host, hostdata[0]);
681         struct scsi_device *sdev;
682         struct scsi_lun eight_bytes_lun;
683         struct fw_unit *unit = lu->tgt->unit;
684         struct fw_device *device = fw_device(unit->device.parent);
685         struct sbp2_login_response response;
686         int generation, node_id, local_node_id;
687
688         if (fw_device_is_shutdown(device))
689                 goto out;
690
691         generation    = device->generation;
692         smp_rmb();    /* node_id must not be older than generation */
693         node_id       = device->node_id;
694         local_node_id = device->card->node_id;
695
696         if (sbp2_send_management_orb(lu, node_id, generation,
697                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
698                 if (lu->retries++ < 5)
699                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
700                 else
701                         fw_error("failed to login to %s LUN %04x\n",
702                                  unit->device.bus_id, lu->lun);
703                 goto out;
704         }
705
706         lu->generation        = generation;
707         lu->tgt->node_id      = node_id;
708         lu->tgt->address_high = local_node_id << 16;
709
710         /* Get command block agent offset and login id. */
711         lu->command_block_agent_address =
712                 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
713                 response.command_block_agent.low;
714         lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
715
716         fw_notify("logged in to %s LUN %04x (%d retries)\n",
717                   unit->device.bus_id, lu->lun, lu->retries);
718
719 #if 0
720         /* FIXME: The linux1394 sbp2 does this last step. */
721         sbp2_set_busy_timeout(scsi_id);
722 #endif
723
724         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
725         sbp2_agent_reset(lu);
726
727         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
728                 ssleep(SBP2_INQUIRY_DELAY);
729
730         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
731         eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
732         eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
733
734         sdev = __scsi_add_device(shost, 0, 0,
735                                  scsilun_to_int(&eight_bytes_lun), lu);
736         if (IS_ERR(sdev)) {
737                 smp_rmb(); /* generation may have changed */
738                 generation = device->generation;
739                 smp_rmb(); /* node_id must not be older than generation */
740
741                 sbp2_send_management_orb(lu, device->node_id, generation,
742                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
743                 /*
744                  * Set this back to sbp2_login so we fall back and
745                  * retry login on bus reset.
746                  */
747                 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
748         } else {
749                 lu->sdev = sdev;
750                 scsi_device_put(sdev);
751         }
752  out:
753         sbp2_target_put(lu->tgt);
754 }
755
756 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
757 {
758         struct sbp2_logical_unit *lu;
759
760         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
761         if (!lu)
762                 return -ENOMEM;
763
764         lu->address_handler.length           = 0x100;
765         lu->address_handler.address_callback = sbp2_status_write;
766         lu->address_handler.callback_data    = lu;
767
768         if (fw_core_add_address_handler(&lu->address_handler,
769                                         &fw_high_memory_region) < 0) {
770                 kfree(lu);
771                 return -ENOMEM;
772         }
773
774         lu->tgt  = tgt;
775         lu->sdev = NULL;
776         lu->lun  = lun_entry & 0xffff;
777         lu->retries = 0;
778         INIT_LIST_HEAD(&lu->orb_list);
779         INIT_DELAYED_WORK(&lu->work, sbp2_login);
780
781         list_add_tail(&lu->link, &tgt->lu_list);
782         return 0;
783 }
784
785 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
786 {
787         struct fw_csr_iterator ci;
788         int key, value;
789
790         fw_csr_iterator_init(&ci, directory);
791         while (fw_csr_iterator_next(&ci, &key, &value))
792                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
793                     sbp2_add_logical_unit(tgt, value) < 0)
794                         return -ENOMEM;
795         return 0;
796 }
797
798 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
799                               u32 *model, u32 *firmware_revision)
800 {
801         struct fw_csr_iterator ci;
802         int key, value;
803         unsigned int timeout;
804
805         fw_csr_iterator_init(&ci, directory);
806         while (fw_csr_iterator_next(&ci, &key, &value)) {
807                 switch (key) {
808
809                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
810                         tgt->management_agent_address =
811                                         CSR_REGISTER_BASE + 4 * value;
812                         break;
813
814                 case CSR_DIRECTORY_ID:
815                         tgt->directory_id = value;
816                         break;
817
818                 case CSR_MODEL:
819                         *model = value;
820                         break;
821
822                 case SBP2_CSR_FIRMWARE_REVISION:
823                         *firmware_revision = value;
824                         break;
825
826                 case SBP2_CSR_UNIT_CHARACTERISTICS:
827                         /* the timeout value is stored in 500ms units */
828                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
829                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
830                         tgt->mgt_orb_timeout =
831                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
832
833                         if (timeout > tgt->mgt_orb_timeout)
834                                 fw_notify("%s: config rom contains %ds "
835                                           "management ORB timeout, limiting "
836                                           "to %ds\n", tgt->unit->device.bus_id,
837                                           timeout / 1000,
838                                           tgt->mgt_orb_timeout / 1000);
839                         break;
840
841                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
842                         if (sbp2_add_logical_unit(tgt, value) < 0)
843                                 return -ENOMEM;
844                         break;
845
846                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
847                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
848                                 return -ENOMEM;
849                         break;
850                 }
851         }
852         return 0;
853 }
854
855 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
856                                   u32 firmware_revision)
857 {
858         int i;
859         unsigned int w = sbp2_param_workarounds;
860
861         if (w)
862                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
863                           "if you need the workarounds parameter for %s\n",
864                           tgt->unit->device.bus_id);
865
866         if (w & SBP2_WORKAROUND_OVERRIDE)
867                 goto out;
868
869         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
870
871                 if (sbp2_workarounds_table[i].firmware_revision !=
872                     (firmware_revision & 0xffffff00))
873                         continue;
874
875                 if (sbp2_workarounds_table[i].model != model &&
876                     sbp2_workarounds_table[i].model != ~0)
877                         continue;
878
879                 w |= sbp2_workarounds_table[i].workarounds;
880                 break;
881         }
882  out:
883         if (w)
884                 fw_notify("Workarounds for %s: 0x%x "
885                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
886                           tgt->unit->device.bus_id,
887                           w, firmware_revision, model);
888         tgt->workarounds = w;
889 }
890
891 static struct scsi_host_template scsi_driver_template;
892
893 static int sbp2_probe(struct device *dev)
894 {
895         struct fw_unit *unit = fw_unit(dev);
896         struct fw_device *device = fw_device(unit->device.parent);
897         struct sbp2_target *tgt;
898         struct sbp2_logical_unit *lu;
899         struct Scsi_Host *shost;
900         u32 model, firmware_revision;
901
902         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
903         if (shost == NULL)
904                 return -ENOMEM;
905
906         tgt = (struct sbp2_target *)shost->hostdata;
907         unit->device.driver_data = tgt;
908         tgt->unit = unit;
909         kref_init(&tgt->kref);
910         INIT_LIST_HEAD(&tgt->lu_list);
911
912         if (fw_device_enable_phys_dma(device) < 0)
913                 goto fail_shost_put;
914
915         if (scsi_add_host(shost, &unit->device) < 0)
916                 goto fail_shost_put;
917
918         /* Initialize to values that won't match anything in our table. */
919         firmware_revision = 0xff000000;
920         model = 0xff000000;
921
922         /* implicit directory ID */
923         tgt->directory_id = ((unit->directory - device->config_rom) * 4
924                              + CSR_CONFIG_ROM) & 0xffffff;
925
926         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
927                                &firmware_revision) < 0)
928                 goto fail_tgt_put;
929
930         sbp2_init_workarounds(tgt, model, firmware_revision);
931
932         get_device(&unit->device);
933
934         /* Do the login in a workqueue so we can easily reschedule retries. */
935         list_for_each_entry(lu, &tgt->lu_list, link)
936                 sbp2_queue_work(lu, 0);
937         return 0;
938
939  fail_tgt_put:
940         sbp2_target_put(tgt);
941         return -ENOMEM;
942
943  fail_shost_put:
944         scsi_host_put(shost);
945         return -ENOMEM;
946 }
947
948 static int sbp2_remove(struct device *dev)
949 {
950         struct fw_unit *unit = fw_unit(dev);
951         struct sbp2_target *tgt = unit->device.driver_data;
952
953         sbp2_target_put(tgt);
954         return 0;
955 }
956
957 static void sbp2_reconnect(struct work_struct *work)
958 {
959         struct sbp2_logical_unit *lu =
960                 container_of(work, struct sbp2_logical_unit, work.work);
961         struct fw_unit *unit = lu->tgt->unit;
962         struct fw_device *device = fw_device(unit->device.parent);
963         int generation, node_id, local_node_id;
964
965         if (fw_device_is_shutdown(device))
966                 goto out;
967
968         generation    = device->generation;
969         smp_rmb();    /* node_id must not be older than generation */
970         node_id       = device->node_id;
971         local_node_id = device->card->node_id;
972
973         if (sbp2_send_management_orb(lu, node_id, generation,
974                                      SBP2_RECONNECT_REQUEST,
975                                      lu->login_id, NULL) < 0) {
976                 if (lu->retries++ >= 5) {
977                         fw_error("failed to reconnect to %s\n",
978                                  unit->device.bus_id);
979                         /* Fall back and try to log in again. */
980                         lu->retries = 0;
981                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
982                 }
983                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
984                 goto out;
985         }
986
987         lu->generation        = generation;
988         lu->tgt->node_id      = node_id;
989         lu->tgt->address_high = local_node_id << 16;
990
991         fw_notify("reconnected to %s LUN %04x (%d retries)\n",
992                   unit->device.bus_id, lu->lun, lu->retries);
993
994         sbp2_agent_reset(lu);
995         sbp2_cancel_orbs(lu);
996  out:
997         sbp2_target_put(lu->tgt);
998 }
999
1000 static void sbp2_update(struct fw_unit *unit)
1001 {
1002         struct sbp2_target *tgt = unit->device.driver_data;
1003         struct sbp2_logical_unit *lu;
1004
1005         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1006
1007         /*
1008          * Fw-core serializes sbp2_update() against sbp2_remove().
1009          * Iteration over tgt->lu_list is therefore safe here.
1010          */
1011         list_for_each_entry(lu, &tgt->lu_list, link) {
1012                 lu->retries = 0;
1013                 sbp2_queue_work(lu, 0);
1014         }
1015 }
1016
1017 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1018 #define SBP2_SW_VERSION_ENTRY   0x00010483
1019
1020 static const struct fw_device_id sbp2_id_table[] = {
1021         {
1022                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1023                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1024                 .version      = SBP2_SW_VERSION_ENTRY,
1025         },
1026         { }
1027 };
1028
1029 static struct fw_driver sbp2_driver = {
1030         .driver   = {
1031                 .owner  = THIS_MODULE,
1032                 .name   = sbp2_driver_name,
1033                 .bus    = &fw_bus_type,
1034                 .probe  = sbp2_probe,
1035                 .remove = sbp2_remove,
1036         },
1037         .update   = sbp2_update,
1038         .id_table = sbp2_id_table,
1039 };
1040
1041 static unsigned int
1042 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1043 {
1044         int sam_status;
1045
1046         sense_data[0] = 0x70;
1047         sense_data[1] = 0x0;
1048         sense_data[2] = sbp2_status[1];
1049         sense_data[3] = sbp2_status[4];
1050         sense_data[4] = sbp2_status[5];
1051         sense_data[5] = sbp2_status[6];
1052         sense_data[6] = sbp2_status[7];
1053         sense_data[7] = 10;
1054         sense_data[8] = sbp2_status[8];
1055         sense_data[9] = sbp2_status[9];
1056         sense_data[10] = sbp2_status[10];
1057         sense_data[11] = sbp2_status[11];
1058         sense_data[12] = sbp2_status[2];
1059         sense_data[13] = sbp2_status[3];
1060         sense_data[14] = sbp2_status[12];
1061         sense_data[15] = sbp2_status[13];
1062
1063         sam_status = sbp2_status[0] & 0x3f;
1064
1065         switch (sam_status) {
1066         case SAM_STAT_GOOD:
1067         case SAM_STAT_CHECK_CONDITION:
1068         case SAM_STAT_CONDITION_MET:
1069         case SAM_STAT_BUSY:
1070         case SAM_STAT_RESERVATION_CONFLICT:
1071         case SAM_STAT_COMMAND_TERMINATED:
1072                 return DID_OK << 16 | sam_status;
1073
1074         default:
1075                 return DID_ERROR << 16;
1076         }
1077 }
1078
1079 static void
1080 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1081 {
1082         struct sbp2_command_orb *orb =
1083                 container_of(base_orb, struct sbp2_command_orb, base);
1084         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1085         int result;
1086
1087         if (status != NULL) {
1088                 if (STATUS_GET_DEAD(*status))
1089                         sbp2_agent_reset(orb->lu);
1090
1091                 switch (STATUS_GET_RESPONSE(*status)) {
1092                 case SBP2_STATUS_REQUEST_COMPLETE:
1093                         result = DID_OK << 16;
1094                         break;
1095                 case SBP2_STATUS_TRANSPORT_FAILURE:
1096                         result = DID_BUS_BUSY << 16;
1097                         break;
1098                 case SBP2_STATUS_ILLEGAL_REQUEST:
1099                 case SBP2_STATUS_VENDOR_DEPENDENT:
1100                 default:
1101                         result = DID_ERROR << 16;
1102                         break;
1103                 }
1104
1105                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1106                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1107                                                            orb->cmd->sense_buffer);
1108         } else {
1109                 /*
1110                  * If the orb completes with status == NULL, something
1111                  * went wrong, typically a bus reset happened mid-orb
1112                  * or when sending the write (less likely).
1113                  */
1114                 result = DID_BUS_BUSY << 16;
1115         }
1116
1117         dma_unmap_single(device->card->device, orb->base.request_bus,
1118                          sizeof(orb->request), DMA_TO_DEVICE);
1119
1120         if (scsi_sg_count(orb->cmd) > 0)
1121                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1122                              scsi_sg_count(orb->cmd),
1123                              orb->cmd->sc_data_direction);
1124
1125         if (orb->page_table_bus != 0)
1126                 dma_unmap_single(device->card->device, orb->page_table_bus,
1127                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1128
1129         orb->cmd->result = result;
1130         orb->done(orb->cmd);
1131 }
1132
1133 static int
1134 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1135                      struct sbp2_logical_unit *lu)
1136 {
1137         struct scatterlist *sg;
1138         int sg_len, l, i, j, count;
1139         dma_addr_t sg_addr;
1140
1141         sg = scsi_sglist(orb->cmd);
1142         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1143                            orb->cmd->sc_data_direction);
1144         if (count == 0)
1145                 goto fail;
1146
1147         /*
1148          * Handle the special case where there is only one element in
1149          * the scatter list by converting it to an immediate block
1150          * request. This is also a workaround for broken devices such
1151          * as the second generation iPod which doesn't support page
1152          * tables.
1153          */
1154         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1155                 orb->request.data_descriptor.high = lu->tgt->address_high;
1156                 orb->request.data_descriptor.low  = sg_dma_address(sg);
1157                 orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1158                 return 0;
1159         }
1160
1161         /*
1162          * Convert the scatterlist to an sbp2 page table.  If any
1163          * scatterlist entries are too big for sbp2, we split them as we
1164          * go.  Even if we ask the block I/O layer to not give us sg
1165          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1166          * during DMA mapping, and Linux currently doesn't prevent this.
1167          */
1168         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1169                 sg_len = sg_dma_len(sg);
1170                 sg_addr = sg_dma_address(sg);
1171                 while (sg_len) {
1172                         /* FIXME: This won't get us out of the pinch. */
1173                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1174                                 fw_error("page table overflow\n");
1175                                 goto fail_page_table;
1176                         }
1177                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1178                         orb->page_table[j].low = sg_addr;
1179                         orb->page_table[j].high = (l << 16);
1180                         sg_addr += l;
1181                         sg_len -= l;
1182                         j++;
1183                 }
1184         }
1185
1186         fw_memcpy_to_be32(orb->page_table, orb->page_table,
1187                           sizeof(orb->page_table[0]) * j);
1188         orb->page_table_bus =
1189                 dma_map_single(device->card->device, orb->page_table,
1190                                sizeof(orb->page_table), DMA_TO_DEVICE);
1191         if (dma_mapping_error(orb->page_table_bus))
1192                 goto fail_page_table;
1193
1194         /*
1195          * The data_descriptor pointer is the one case where we need
1196          * to fill in the node ID part of the address.  All other
1197          * pointers assume that the data referenced reside on the
1198          * initiator (i.e. us), but data_descriptor can refer to data
1199          * on other nodes so we need to put our ID in descriptor.high.
1200          */
1201         orb->request.data_descriptor.high = lu->tgt->address_high;
1202         orb->request.data_descriptor.low  = orb->page_table_bus;
1203         orb->request.misc |=
1204                 COMMAND_ORB_PAGE_TABLE_PRESENT |
1205                 COMMAND_ORB_DATA_SIZE(j);
1206
1207         return 0;
1208
1209  fail_page_table:
1210         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1211                      orb->cmd->sc_data_direction);
1212  fail:
1213         return -ENOMEM;
1214 }
1215
1216 /* SCSI stack integration */
1217
1218 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1219 {
1220         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1221         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1222         struct sbp2_command_orb *orb;
1223         unsigned int max_payload;
1224         int retval = SCSI_MLQUEUE_HOST_BUSY;
1225
1226         /*
1227          * Bidirectional commands are not yet implemented, and unknown
1228          * transfer direction not handled.
1229          */
1230         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1231                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1232                 cmd->result = DID_ERROR << 16;
1233                 done(cmd);
1234                 return 0;
1235         }
1236
1237         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1238         if (orb == NULL) {
1239                 fw_notify("failed to alloc orb\n");
1240                 return SCSI_MLQUEUE_HOST_BUSY;
1241         }
1242
1243         /* Initialize rcode to something not RCODE_COMPLETE. */
1244         orb->base.rcode = -1;
1245         kref_init(&orb->base.kref);
1246
1247         orb->lu   = lu;
1248         orb->done = done;
1249         orb->cmd  = cmd;
1250
1251         orb->request.next.high   = SBP2_ORB_NULL;
1252         orb->request.next.low    = 0x0;
1253         /*
1254          * At speed 100 we can do 512 bytes per packet, at speed 200,
1255          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1256          * specifies the max payload size as 2 ^ (max_payload + 2), so
1257          * if we set this to max_speed + 7, we get the right value.
1258          */
1259         max_payload = min(device->max_speed + 7,
1260                           device->card->max_receive - 1);
1261         orb->request.misc =
1262                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1263                 COMMAND_ORB_SPEED(device->max_speed) |
1264                 COMMAND_ORB_NOTIFY;
1265
1266         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1267                 orb->request.misc |=
1268                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1269         else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1270                 orb->request.misc |=
1271                         COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1272
1273         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1274                 goto out;
1275
1276         fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1277
1278         memset(orb->request.command_block,
1279                0, sizeof(orb->request.command_block));
1280         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1281
1282         orb->base.callback = complete_command_orb;
1283         orb->base.request_bus =
1284                 dma_map_single(device->card->device, &orb->request,
1285                                sizeof(orb->request), DMA_TO_DEVICE);
1286         if (dma_mapping_error(orb->base.request_bus))
1287                 goto out;
1288
1289         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1290                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1291         retval = 0;
1292  out:
1293         kref_put(&orb->base.kref, free_orb);
1294         return retval;
1295 }
1296
1297 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1298 {
1299         struct sbp2_logical_unit *lu = sdev->hostdata;
1300
1301         sdev->allow_restart = 1;
1302
1303         /*
1304          * Update the dma alignment (minimum alignment requirements for
1305          * start and end of DMA transfers) to be a sector
1306          */
1307         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1308
1309         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1310                 sdev->inquiry_len = 36;
1311
1312         return 0;
1313 }
1314
1315 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1316 {
1317         struct sbp2_logical_unit *lu = sdev->hostdata;
1318
1319         sdev->use_10_for_rw = 1;
1320
1321         if (sdev->type == TYPE_ROM)
1322                 sdev->use_10_for_ms = 1;
1323
1324         if (sdev->type == TYPE_DISK &&
1325             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1326                 sdev->skip_ms_page_8 = 1;
1327
1328         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1329                 sdev->fix_capacity = 1;
1330
1331         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1332                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1333
1334         return 0;
1335 }
1336
1337 /*
1338  * Called by scsi stack when something has really gone wrong.  Usually
1339  * called when a command has timed-out for some reason.
1340  */
1341 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1342 {
1343         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1344
1345         fw_notify("sbp2_scsi_abort\n");
1346         sbp2_agent_reset(lu);
1347         sbp2_cancel_orbs(lu);
1348
1349         return SUCCESS;
1350 }
1351
1352 /*
1353  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1354  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1355  *
1356  * This is the concatenation of target port identifier and logical unit
1357  * identifier as per SAM-2...SAM-4 annex A.
1358  */
1359 static ssize_t
1360 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1361                             char *buf)
1362 {
1363         struct scsi_device *sdev = to_scsi_device(dev);
1364         struct sbp2_logical_unit *lu;
1365         struct fw_device *device;
1366
1367         if (!sdev)
1368                 return 0;
1369
1370         lu = sdev->hostdata;
1371         device = fw_device(lu->tgt->unit->device.parent);
1372
1373         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1374                         device->config_rom[3], device->config_rom[4],
1375                         lu->tgt->directory_id, lu->lun);
1376 }
1377
1378 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1379
1380 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1381         &dev_attr_ieee1394_id,
1382         NULL
1383 };
1384
1385 static struct scsi_host_template scsi_driver_template = {
1386         .module                 = THIS_MODULE,
1387         .name                   = "SBP-2 IEEE-1394",
1388         .proc_name              = sbp2_driver_name,
1389         .queuecommand           = sbp2_scsi_queuecommand,
1390         .slave_alloc            = sbp2_scsi_slave_alloc,
1391         .slave_configure        = sbp2_scsi_slave_configure,
1392         .eh_abort_handler       = sbp2_scsi_abort,
1393         .this_id                = -1,
1394         .sg_tablesize           = SG_ALL,
1395         .use_clustering         = ENABLE_CLUSTERING,
1396         .cmd_per_lun            = 1,
1397         .can_queue              = 1,
1398         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1399 };
1400
1401 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1402 MODULE_DESCRIPTION("SCSI over IEEE1394");
1403 MODULE_LICENSE("GPL");
1404 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1405
1406 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1407 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1408 MODULE_ALIAS("sbp2");
1409 #endif
1410
1411 static int __init sbp2_init(void)
1412 {
1413         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1414         if (!sbp2_wq)
1415                 return -ENOMEM;
1416
1417         return driver_register(&sbp2_driver.driver);
1418 }
1419
1420 static void __exit sbp2_cleanup(void)
1421 {
1422         driver_unregister(&sbp2_driver.driver);
1423         destroy_workqueue(sbp2_wq);
1424 }
1425
1426 module_init(sbp2_init);
1427 module_exit(sbp2_cleanup);