]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
ide: use ->data_phase to set ->handler in do_rw_taskfile()
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 HWGROUP(drive)->hwif->ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->ide_dma_on == NULL)
223                         break;
224                 drive->hwif->dma_off_quietly(drive);
225                 /*
226                  * TODO: respect ->using_dma setting
227                  */
228                 ide_set_dma(drive);
229                 break;
230         }
231         pm->pm_step = ide_pm_state_completed;
232         return ide_stopped;
233
234 out_do_tf:
235         args->tf_flags   = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236         args->data_phase = TASKFILE_NO_DATA;
237         return do_rw_taskfile(drive, args);
238 }
239
240 /**
241  *      ide_end_dequeued_request        -       complete an IDE I/O
242  *      @drive: IDE device for the I/O
243  *      @uptodate:
244  *      @nr_sectors: number of sectors completed
245  *
246  *      Complete an I/O that is no longer on the request queue. This
247  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
248  *      We must still finish the old request but we must not tamper with the
249  *      queue in the meantime.
250  *
251  *      NOTE: This path does not handle barrier, but barrier is not supported
252  *      on ide-cd anyway.
253  */
254
255 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256                              int uptodate, int nr_sectors)
257 {
258         unsigned long flags;
259         int ret;
260
261         spin_lock_irqsave(&ide_lock, flags);
262         BUG_ON(!blk_rq_started(rq));
263         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264         spin_unlock_irqrestore(&ide_lock, flags);
265
266         return ret;
267 }
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
269
270
271 /**
272  *      ide_complete_pm_request - end the current Power Management request
273  *      @drive: target drive
274  *      @rq: request
275  *
276  *      This function cleans up the current PM request and stops the queue
277  *      if necessary.
278  */
279 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
280 {
281         unsigned long flags;
282
283 #ifdef DEBUG_PM
284         printk("%s: completing PM request, %s\n", drive->name,
285                blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 #endif
287         spin_lock_irqsave(&ide_lock, flags);
288         if (blk_pm_suspend_request(rq)) {
289                 blk_stop_queue(drive->queue);
290         } else {
291                 drive->blocked = 0;
292                 blk_start_queue(drive->queue);
293         }
294         blkdev_dequeue_request(rq);
295         HWGROUP(drive)->rq = NULL;
296         end_that_request_last(rq, 1);
297         spin_unlock_irqrestore(&ide_lock, flags);
298 }
299
300 /**
301  *      ide_end_drive_cmd       -       end an explicit drive command
302  *      @drive: command 
303  *      @stat: status bits
304  *      @err: error bits
305  *
306  *      Clean up after success/failure of an explicit drive command.
307  *      These get thrown onto the queue so they are synchronized with
308  *      real I/O operations on the drive.
309  *
310  *      In LBA48 mode we have to read the register set twice to get
311  *      all the extra information out.
312  */
313  
314 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
315 {
316         ide_hwif_t *hwif = HWIF(drive);
317         unsigned long flags;
318         struct request *rq;
319
320         spin_lock_irqsave(&ide_lock, flags);
321         rq = HWGROUP(drive)->rq;
322         spin_unlock_irqrestore(&ide_lock, flags);
323
324         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
325                 u8 *args = (u8 *) rq->buffer;
326                 if (rq->errors == 0)
327                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
328
329                 if (args) {
330                         args[0] = stat;
331                         args[1] = err;
332                         args[2] = hwif->INB(IDE_NSECTOR_REG);
333                 }
334         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
335                 ide_task_t *args = (ide_task_t *) rq->special;
336                 if (rq->errors == 0)
337                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
338                         
339                 if (args) {
340                         struct ide_taskfile *tf = &args->tf;
341
342                         if (args->tf_flags & IDE_TFLAG_IN_DATA) {
343                                 u16 data = hwif->INW(IDE_DATA_REG);
344
345                                 tf->data = data & 0xff;
346                                 tf->hob_data = (data >> 8) & 0xff;
347                         }
348                         tf->error = err;
349                         /* be sure we're looking at the low order bits */
350                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
351                         tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
352                         tf->lbal   = hwif->INB(IDE_SECTOR_REG);
353                         tf->lbam   = hwif->INB(IDE_LCYL_REG);
354                         tf->lbah   = hwif->INB(IDE_HCYL_REG);
355                         tf->device = hwif->INB(IDE_SELECT_REG);
356                         tf->status = stat;
357
358                         if (args->tf_flags & IDE_TFLAG_LBA48) {
359                                 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
360                                 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
361                                 tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
362                                 tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
363                                 tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
364                                 tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
365                         }
366                 }
367         } else if (blk_pm_request(rq)) {
368                 struct request_pm_state *pm = rq->data;
369 #ifdef DEBUG_PM
370                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371                         drive->name, rq->pm->pm_step, stat, err);
372 #endif
373                 ide_complete_power_step(drive, rq, stat, err);
374                 if (pm->pm_step == ide_pm_state_completed)
375                         ide_complete_pm_request(drive, rq);
376                 return;
377         }
378
379         spin_lock_irqsave(&ide_lock, flags);
380         blkdev_dequeue_request(rq);
381         HWGROUP(drive)->rq = NULL;
382         rq->errors = err;
383         end_that_request_last(rq, !rq->errors);
384         spin_unlock_irqrestore(&ide_lock, flags);
385 }
386
387 EXPORT_SYMBOL(ide_end_drive_cmd);
388
389 /**
390  *      try_to_flush_leftover_data      -       flush junk
391  *      @drive: drive to flush
392  *
393  *      try_to_flush_leftover_data() is invoked in response to a drive
394  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
395  *      resetting the drive, this routine tries to clear the condition
396  *      by read a sector's worth of data from the drive.  Of course,
397  *      this may not help if the drive is *waiting* for data from *us*.
398  */
399 static void try_to_flush_leftover_data (ide_drive_t *drive)
400 {
401         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
402
403         if (drive->media != ide_disk)
404                 return;
405         while (i > 0) {
406                 u32 buffer[16];
407                 u32 wcount = (i > 16) ? 16 : i;
408
409                 i -= wcount;
410                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
411         }
412 }
413
414 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
415 {
416         if (rq->rq_disk) {
417                 ide_driver_t *drv;
418
419                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
420                 drv->end_request(drive, 0, 0);
421         } else
422                 ide_end_request(drive, 0, 0);
423 }
424
425 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
426 {
427         ide_hwif_t *hwif = drive->hwif;
428
429         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
430                 /* other bits are useless when BUSY */
431                 rq->errors |= ERROR_RESET;
432         } else if (stat & ERR_STAT) {
433                 /* err has different meaning on cdrom and tape */
434                 if (err == ABRT_ERR) {
435                         if (drive->select.b.lba &&
436                             /* some newer drives don't support WIN_SPECIFY */
437                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
438                                 return ide_stopped;
439                 } else if ((err & BAD_CRC) == BAD_CRC) {
440                         /* UDMA crc error, just retry the operation */
441                         drive->crc_count++;
442                 } else if (err & (BBD_ERR | ECC_ERR)) {
443                         /* retries won't help these */
444                         rq->errors = ERROR_MAX;
445                 } else if (err & TRK0_ERR) {
446                         /* help it find track zero */
447                         rq->errors |= ERROR_RECAL;
448                 }
449         }
450
451         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
452             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
453                 try_to_flush_leftover_data(drive);
454
455         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
456                 ide_kill_rq(drive, rq);
457                 return ide_stopped;
458         }
459
460         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
461                 rq->errors |= ERROR_RESET;
462
463         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
464                 ++rq->errors;
465                 return ide_do_reset(drive);
466         }
467
468         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
469                 drive->special.b.recalibrate = 1;
470
471         ++rq->errors;
472
473         return ide_stopped;
474 }
475
476 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
477 {
478         ide_hwif_t *hwif = drive->hwif;
479
480         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
481                 /* other bits are useless when BUSY */
482                 rq->errors |= ERROR_RESET;
483         } else {
484                 /* add decoding error stuff */
485         }
486
487         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
488                 /* force an abort */
489                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
490
491         if (rq->errors >= ERROR_MAX) {
492                 ide_kill_rq(drive, rq);
493         } else {
494                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
495                         ++rq->errors;
496                         return ide_do_reset(drive);
497                 }
498                 ++rq->errors;
499         }
500
501         return ide_stopped;
502 }
503
504 ide_startstop_t
505 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
506 {
507         if (drive->media == ide_disk)
508                 return ide_ata_error(drive, rq, stat, err);
509         return ide_atapi_error(drive, rq, stat, err);
510 }
511
512 EXPORT_SYMBOL_GPL(__ide_error);
513
514 /**
515  *      ide_error       -       handle an error on the IDE
516  *      @drive: drive the error occurred on
517  *      @msg: message to report
518  *      @stat: status bits
519  *
520  *      ide_error() takes action based on the error returned by the drive.
521  *      For normal I/O that may well include retries. We deal with
522  *      both new-style (taskfile) and old style command handling here.
523  *      In the case of taskfile command handling there is work left to
524  *      do
525  */
526  
527 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
528 {
529         struct request *rq;
530         u8 err;
531
532         err = ide_dump_status(drive, msg, stat);
533
534         if ((rq = HWGROUP(drive)->rq) == NULL)
535                 return ide_stopped;
536
537         /* retry only "normal" I/O: */
538         if (!blk_fs_request(rq)) {
539                 rq->errors = 1;
540                 ide_end_drive_cmd(drive, stat, err);
541                 return ide_stopped;
542         }
543
544         if (rq->rq_disk) {
545                 ide_driver_t *drv;
546
547                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
548                 return drv->error(drive, rq, stat, err);
549         } else
550                 return __ide_error(drive, rq, stat, err);
551 }
552
553 EXPORT_SYMBOL_GPL(ide_error);
554
555 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
556 {
557         if (drive->media != ide_disk)
558                 rq->errors |= ERROR_RESET;
559
560         ide_kill_rq(drive, rq);
561
562         return ide_stopped;
563 }
564
565 EXPORT_SYMBOL_GPL(__ide_abort);
566
567 /**
568  *      ide_abort       -       abort pending IDE operations
569  *      @drive: drive the error occurred on
570  *      @msg: message to report
571  *
572  *      ide_abort kills and cleans up when we are about to do a 
573  *      host initiated reset on active commands. Longer term we
574  *      want handlers to have sensible abort handling themselves
575  *
576  *      This differs fundamentally from ide_error because in 
577  *      this case the command is doing just fine when we
578  *      blow it away.
579  */
580  
581 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
582 {
583         struct request *rq;
584
585         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
586                 return ide_stopped;
587
588         /* retry only "normal" I/O: */
589         if (!blk_fs_request(rq)) {
590                 rq->errors = 1;
591                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
592                 return ide_stopped;
593         }
594
595         if (rq->rq_disk) {
596                 ide_driver_t *drv;
597
598                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
599                 return drv->abort(drive, rq);
600         } else
601                 return __ide_abort(drive, rq);
602 }
603
604 /**
605  *      drive_cmd_intr          -       drive command completion interrupt
606  *      @drive: drive the completion interrupt occurred on
607  *
608  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
609  *      We do any necessary data reading and then wait for the drive to
610  *      go non busy. At that point we may read the error data and complete
611  *      the request
612  */
613  
614 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
615 {
616         struct request *rq = HWGROUP(drive)->rq;
617         ide_hwif_t *hwif = HWIF(drive);
618         u8 *args = (u8 *) rq->buffer;
619         u8 stat = hwif->INB(IDE_STATUS_REG);
620         int retries = 10;
621
622         local_irq_enable_in_hardirq();
623         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
624             (stat & DRQ_STAT) && args && args[3]) {
625                 u8 io_32bit = drive->io_32bit;
626                 drive->io_32bit = 0;
627                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
628                 drive->io_32bit = io_32bit;
629                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
630                         udelay(100);
631         }
632
633         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
634                 return ide_error(drive, "drive_cmd", stat);
635                 /* calls ide_end_drive_cmd */
636         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
637         return ide_stopped;
638 }
639
640 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
641 {
642         task->tf.nsect   = drive->sect;
643         task->tf.lbal    = drive->sect;
644         task->tf.lbam    = drive->cyl;
645         task->tf.lbah    = drive->cyl >> 8;
646         task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
647         task->tf.command = WIN_SPECIFY;
648
649         task->handler = &set_geometry_intr;
650 }
651
652 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
653 {
654         task->tf.nsect   = drive->sect;
655         task->tf.command = WIN_RESTORE;
656
657         task->handler = &recal_intr;
658 }
659
660 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
661 {
662         task->tf.nsect   = drive->mult_req;
663         task->tf.command = WIN_SETMULT;
664
665         task->handler = &set_multmode_intr;
666 }
667
668 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
669 {
670         special_t *s = &drive->special;
671         ide_task_t args;
672
673         memset(&args, 0, sizeof(ide_task_t));
674         args.data_phase = TASKFILE_NO_DATA;
675
676         if (s->b.set_geometry) {
677                 s->b.set_geometry = 0;
678                 ide_init_specify_cmd(drive, &args);
679         } else if (s->b.recalibrate) {
680                 s->b.recalibrate = 0;
681                 ide_init_restore_cmd(drive, &args);
682         } else if (s->b.set_multmode) {
683                 s->b.set_multmode = 0;
684                 if (drive->mult_req > drive->id->max_multsect)
685                         drive->mult_req = drive->id->max_multsect;
686                 ide_init_setmult_cmd(drive, &args);
687         } else if (s->all) {
688                 int special = s->all;
689                 s->all = 0;
690                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
691                 return ide_stopped;
692         }
693
694         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
695
696         do_rw_taskfile(drive, &args);
697
698         return ide_started;
699 }
700
701 /*
702  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
703  */
704 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
705 {
706         switch (req_pio) {
707         case 202:
708         case 201:
709         case 200:
710         case 102:
711         case 101:
712         case 100:
713                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
714         case 9:
715         case 8:
716                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
717         case 7:
718         case 6:
719                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
720         default:
721                 return 0;
722         }
723 }
724
725 /**
726  *      do_special              -       issue some special commands
727  *      @drive: drive the command is for
728  *
729  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
730  *      commands to a drive.  It used to do much more, but has been scaled
731  *      back.
732  */
733
734 static ide_startstop_t do_special (ide_drive_t *drive)
735 {
736         special_t *s = &drive->special;
737
738 #ifdef DEBUG
739         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
740 #endif
741         if (s->b.set_tune) {
742                 ide_hwif_t *hwif = drive->hwif;
743                 u8 req_pio = drive->tune_req;
744
745                 s->b.set_tune = 0;
746
747                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
748
749                         if (hwif->set_pio_mode == NULL)
750                                 return ide_stopped;
751
752                         /*
753                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
754                          */
755                         if (req_pio == 8 || req_pio == 9) {
756                                 unsigned long flags;
757
758                                 spin_lock_irqsave(&ide_lock, flags);
759                                 hwif->set_pio_mode(drive, req_pio);
760                                 spin_unlock_irqrestore(&ide_lock, flags);
761                         } else
762                                 hwif->set_pio_mode(drive, req_pio);
763                 } else {
764                         int keep_dma = drive->using_dma;
765
766                         ide_set_pio(drive, req_pio);
767
768                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
769                                 if (keep_dma)
770                                         hwif->ide_dma_on(drive);
771                         }
772                 }
773
774                 return ide_stopped;
775         } else {
776                 if (drive->media == ide_disk)
777                         return ide_disk_special(drive);
778
779                 s->all = 0;
780                 drive->mult_req = 0;
781                 return ide_stopped;
782         }
783 }
784
785 void ide_map_sg(ide_drive_t *drive, struct request *rq)
786 {
787         ide_hwif_t *hwif = drive->hwif;
788         struct scatterlist *sg = hwif->sg_table;
789
790         if (hwif->sg_mapped)    /* needed by ide-scsi */
791                 return;
792
793         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
794                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
795         } else {
796                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
797                 hwif->sg_nents = 1;
798         }
799 }
800
801 EXPORT_SYMBOL_GPL(ide_map_sg);
802
803 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
804 {
805         ide_hwif_t *hwif = drive->hwif;
806
807         hwif->nsect = hwif->nleft = rq->nr_sectors;
808         hwif->cursg_ofs = 0;
809         hwif->cursg = NULL;
810 }
811
812 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
813
814 /**
815  *      execute_drive_command   -       issue special drive command
816  *      @drive: the drive to issue the command on
817  *      @rq: the request structure holding the command
818  *
819  *      execute_drive_cmd() issues a special drive command,  usually 
820  *      initiated by ioctl() from the external hdparm program. The
821  *      command can be a drive command, drive task or taskfile 
822  *      operation. Weirdly you can call it with NULL to wait for
823  *      all commands to finish. Don't do this as that is due to change
824  */
825
826 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
827                 struct request *rq)
828 {
829         ide_hwif_t *hwif = HWIF(drive);
830         u8 *args = rq->buffer;
831         ide_task_t ltask;
832         struct ide_taskfile *tf = &ltask.tf;
833
834         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
835                 ide_task_t *task = rq->special;
836  
837                 if (task == NULL)
838                         goto done;
839
840                 hwif->data_phase = task->data_phase;
841
842                 switch (hwif->data_phase) {
843                 case TASKFILE_MULTI_OUT:
844                 case TASKFILE_OUT:
845                 case TASKFILE_MULTI_IN:
846                 case TASKFILE_IN:
847                         ide_init_sg_cmd(drive, rq);
848                         ide_map_sg(drive, rq);
849                 default:
850                         break;
851                 }
852
853                 return do_rw_taskfile(drive, task);
854         }
855
856         if (args == NULL)
857                 goto done;
858
859         memset(&ltask, 0, sizeof(ltask));
860         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
861 #ifdef DEBUG
862                 printk("%s: DRIVE_CMD\n", drive->name);
863 #endif
864                 tf->feature = args[2];
865                 if (args[0] == WIN_SMART) {
866                         tf->nsect = args[3];
867                         tf->lbal  = args[1];
868                         tf->lbam  = 0x4f;
869                         tf->lbah  = 0xc2;
870                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
871                 } else {
872                         tf->nsect = args[1];
873                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
874                                          IDE_TFLAG_OUT_NSECT;
875                 }
876         }
877         tf->command = args[0];
878         ide_tf_load(drive, &ltask);
879         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
880         return ide_started;
881
882 done:
883         /*
884          * NULL is actually a valid way of waiting for
885          * all current requests to be flushed from the queue.
886          */
887 #ifdef DEBUG
888         printk("%s: DRIVE_CMD (null)\n", drive->name);
889 #endif
890         ide_end_drive_cmd(drive,
891                         hwif->INB(IDE_STATUS_REG),
892                         hwif->INB(IDE_ERROR_REG));
893         return ide_stopped;
894 }
895
896 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
897 {
898         struct request_pm_state *pm = rq->data;
899
900         if (blk_pm_suspend_request(rq) &&
901             pm->pm_step == ide_pm_state_start_suspend)
902                 /* Mark drive blocked when starting the suspend sequence. */
903                 drive->blocked = 1;
904         else if (blk_pm_resume_request(rq) &&
905                  pm->pm_step == ide_pm_state_start_resume) {
906                 /* 
907                  * The first thing we do on wakeup is to wait for BSY bit to
908                  * go away (with a looong timeout) as a drive on this hwif may
909                  * just be POSTing itself.
910                  * We do that before even selecting as the "other" device on
911                  * the bus may be broken enough to walk on our toes at this
912                  * point.
913                  */
914                 int rc;
915 #ifdef DEBUG_PM
916                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
917 #endif
918                 rc = ide_wait_not_busy(HWIF(drive), 35000);
919                 if (rc)
920                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
921                 SELECT_DRIVE(drive);
922                 if (IDE_CONTROL_REG)
923                         HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
924                 rc = ide_wait_not_busy(HWIF(drive), 100000);
925                 if (rc)
926                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
927         }
928 }
929
930 /**
931  *      start_request   -       start of I/O and command issuing for IDE
932  *
933  *      start_request() initiates handling of a new I/O request. It
934  *      accepts commands and I/O (read/write) requests. It also does
935  *      the final remapping for weird stuff like EZDrive. Once 
936  *      device mapper can work sector level the EZDrive stuff can go away
937  *
938  *      FIXME: this function needs a rename
939  */
940  
941 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
942 {
943         ide_startstop_t startstop;
944         sector_t block;
945
946         BUG_ON(!blk_rq_started(rq));
947
948 #ifdef DEBUG
949         printk("%s: start_request: current=0x%08lx\n",
950                 HWIF(drive)->name, (unsigned long) rq);
951 #endif
952
953         /* bail early if we've exceeded max_failures */
954         if (drive->max_failures && (drive->failures > drive->max_failures)) {
955                 rq->cmd_flags |= REQ_FAILED;
956                 goto kill_rq;
957         }
958
959         block    = rq->sector;
960         if (blk_fs_request(rq) &&
961             (drive->media == ide_disk || drive->media == ide_floppy)) {
962                 block += drive->sect0;
963         }
964         /* Yecch - this will shift the entire interval,
965            possibly killing some innocent following sector */
966         if (block == 0 && drive->remap_0_to_1 == 1)
967                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
968
969         if (blk_pm_request(rq))
970                 ide_check_pm_state(drive, rq);
971
972         SELECT_DRIVE(drive);
973         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
974                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
975                 return startstop;
976         }
977         if (!drive->special.all) {
978                 ide_driver_t *drv;
979
980                 /*
981                  * We reset the drive so we need to issue a SETFEATURES.
982                  * Do it _after_ do_special() restored device parameters.
983                  */
984                 if (drive->current_speed == 0xff)
985                         ide_config_drive_speed(drive, drive->desired_speed);
986
987                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
988                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
989                         return execute_drive_cmd(drive, rq);
990                 else if (blk_pm_request(rq)) {
991                         struct request_pm_state *pm = rq->data;
992 #ifdef DEBUG_PM
993                         printk("%s: start_power_step(step: %d)\n",
994                                 drive->name, rq->pm->pm_step);
995 #endif
996                         startstop = ide_start_power_step(drive, rq);
997                         if (startstop == ide_stopped &&
998                             pm->pm_step == ide_pm_state_completed)
999                                 ide_complete_pm_request(drive, rq);
1000                         return startstop;
1001                 }
1002
1003                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1004                 return drv->do_request(drive, rq, block);
1005         }
1006         return do_special(drive);
1007 kill_rq:
1008         ide_kill_rq(drive, rq);
1009         return ide_stopped;
1010 }
1011
1012 /**
1013  *      ide_stall_queue         -       pause an IDE device
1014  *      @drive: drive to stall
1015  *      @timeout: time to stall for (jiffies)
1016  *
1017  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1018  *      to the hwgroup by sleeping for timeout jiffies.
1019  */
1020  
1021 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1022 {
1023         if (timeout > WAIT_WORSTCASE)
1024                 timeout = WAIT_WORSTCASE;
1025         drive->sleep = timeout + jiffies;
1026         drive->sleeping = 1;
1027 }
1028
1029 EXPORT_SYMBOL(ide_stall_queue);
1030
1031 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1032
1033 /**
1034  *      choose_drive            -       select a drive to service
1035  *      @hwgroup: hardware group to select on
1036  *
1037  *      choose_drive() selects the next drive which will be serviced.
1038  *      This is necessary because the IDE layer can't issue commands
1039  *      to both drives on the same cable, unlike SCSI.
1040  */
1041  
1042 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1043 {
1044         ide_drive_t *drive, *best;
1045
1046 repeat: 
1047         best = NULL;
1048         drive = hwgroup->drive;
1049
1050         /*
1051          * drive is doing pre-flush, ordered write, post-flush sequence. even
1052          * though that is 3 requests, it must be seen as a single transaction.
1053          * we must not preempt this drive until that is complete
1054          */
1055         if (blk_queue_flushing(drive->queue)) {
1056                 /*
1057                  * small race where queue could get replugged during
1058                  * the 3-request flush cycle, just yank the plug since
1059                  * we want it to finish asap
1060                  */
1061                 blk_remove_plug(drive->queue);
1062                 return drive;
1063         }
1064
1065         do {
1066                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1067                     && !elv_queue_empty(drive->queue)) {
1068                         if (!best
1069                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1070                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1071                         {
1072                                 if (!blk_queue_plugged(drive->queue))
1073                                         best = drive;
1074                         }
1075                 }
1076         } while ((drive = drive->next) != hwgroup->drive);
1077         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1078                 long t = (signed long)(WAKEUP(best) - jiffies);
1079                 if (t >= WAIT_MIN_SLEEP) {
1080                 /*
1081                  * We *may* have some time to spare, but first let's see if
1082                  * someone can potentially benefit from our nice mood today..
1083                  */
1084                         drive = best->next;
1085                         do {
1086                                 if (!drive->sleeping
1087                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1088                                  && time_before(WAKEUP(drive), jiffies + t))
1089                                 {
1090                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1091                                         goto repeat;
1092                                 }
1093                         } while ((drive = drive->next) != best);
1094                 }
1095         }
1096         return best;
1097 }
1098
1099 /*
1100  * Issue a new request to a drive from hwgroup
1101  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1102  *
1103  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1104  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1105  * may have both interfaces in a single hwgroup to "serialize" access.
1106  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1107  * together into one hwgroup for serialized access.
1108  *
1109  * Note also that several hwgroups can end up sharing a single IRQ,
1110  * possibly along with many other devices.  This is especially common in
1111  * PCI-based systems with off-board IDE controller cards.
1112  *
1113  * The IDE driver uses the single global ide_lock spinlock to protect
1114  * access to the request queues, and to protect the hwgroup->busy flag.
1115  *
1116  * The first thread into the driver for a particular hwgroup sets the
1117  * hwgroup->busy flag to indicate that this hwgroup is now active,
1118  * and then initiates processing of the top request from the request queue.
1119  *
1120  * Other threads attempting entry notice the busy setting, and will simply
1121  * queue their new requests and exit immediately.  Note that hwgroup->busy
1122  * remains set even when the driver is merely awaiting the next interrupt.
1123  * Thus, the meaning is "this hwgroup is busy processing a request".
1124  *
1125  * When processing of a request completes, the completing thread or IRQ-handler
1126  * will start the next request from the queue.  If no more work remains,
1127  * the driver will clear the hwgroup->busy flag and exit.
1128  *
1129  * The ide_lock (spinlock) is used to protect all access to the
1130  * hwgroup->busy flag, but is otherwise not needed for most processing in
1131  * the driver.  This makes the driver much more friendlier to shared IRQs
1132  * than previous designs, while remaining 100% (?) SMP safe and capable.
1133  */
1134 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1135 {
1136         ide_drive_t     *drive;
1137         ide_hwif_t      *hwif;
1138         struct request  *rq;
1139         ide_startstop_t startstop;
1140         int             loops = 0;
1141
1142         /* for atari only: POSSIBLY BROKEN HERE(?) */
1143         ide_get_lock(ide_intr, hwgroup);
1144
1145         /* caller must own ide_lock */
1146         BUG_ON(!irqs_disabled());
1147
1148         while (!hwgroup->busy) {
1149                 hwgroup->busy = 1;
1150                 drive = choose_drive(hwgroup);
1151                 if (drive == NULL) {
1152                         int sleeping = 0;
1153                         unsigned long sleep = 0; /* shut up, gcc */
1154                         hwgroup->rq = NULL;
1155                         drive = hwgroup->drive;
1156                         do {
1157                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1158                                         sleeping = 1;
1159                                         sleep = drive->sleep;
1160                                 }
1161                         } while ((drive = drive->next) != hwgroup->drive);
1162                         if (sleeping) {
1163                 /*
1164                  * Take a short snooze, and then wake up this hwgroup again.
1165                  * This gives other hwgroups on the same a chance to
1166                  * play fairly with us, just in case there are big differences
1167                  * in relative throughputs.. don't want to hog the cpu too much.
1168                  */
1169                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1170                                         sleep = jiffies + WAIT_MIN_SLEEP;
1171 #if 1
1172                                 if (timer_pending(&hwgroup->timer))
1173                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1174 #endif
1175                                 /* so that ide_timer_expiry knows what to do */
1176                                 hwgroup->sleeping = 1;
1177                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1178                                 mod_timer(&hwgroup->timer, sleep);
1179                                 /* we purposely leave hwgroup->busy==1
1180                                  * while sleeping */
1181                         } else {
1182                                 /* Ugly, but how can we sleep for the lock
1183                                  * otherwise? perhaps from tq_disk?
1184                                  */
1185
1186                                 /* for atari only */
1187                                 ide_release_lock();
1188                                 hwgroup->busy = 0;
1189                         }
1190
1191                         /* no more work for this hwgroup (for now) */
1192                         return;
1193                 }
1194         again:
1195                 hwif = HWIF(drive);
1196                 if (hwgroup->hwif->sharing_irq &&
1197                     hwif != hwgroup->hwif &&
1198                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
1199                         /*
1200                          * set nIEN for previous hwif, drives in the
1201                          * quirk_list may not like intr setups/cleanups
1202                          */
1203                         if (drive->quirk_list != 1)
1204                                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
1205                 }
1206                 hwgroup->hwif = hwif;
1207                 hwgroup->drive = drive;
1208                 drive->sleeping = 0;
1209                 drive->service_start = jiffies;
1210
1211                 if (blk_queue_plugged(drive->queue)) {
1212                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1213                         break;
1214                 }
1215
1216                 /*
1217                  * we know that the queue isn't empty, but this can happen
1218                  * if the q->prep_rq_fn() decides to kill a request
1219                  */
1220                 rq = elv_next_request(drive->queue);
1221                 if (!rq) {
1222                         hwgroup->busy = 0;
1223                         break;
1224                 }
1225
1226                 /*
1227                  * Sanity: don't accept a request that isn't a PM request
1228                  * if we are currently power managed. This is very important as
1229                  * blk_stop_queue() doesn't prevent the elv_next_request()
1230                  * above to return us whatever is in the queue. Since we call
1231                  * ide_do_request() ourselves, we end up taking requests while
1232                  * the queue is blocked...
1233                  * 
1234                  * We let requests forced at head of queue with ide-preempt
1235                  * though. I hope that doesn't happen too much, hopefully not
1236                  * unless the subdriver triggers such a thing in its own PM
1237                  * state machine.
1238                  *
1239                  * We count how many times we loop here to make sure we service
1240                  * all drives in the hwgroup without looping for ever
1241                  */
1242                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1243                         drive = drive->next ? drive->next : hwgroup->drive;
1244                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1245                                 goto again;
1246                         /* We clear busy, there should be no pending ATA command at this point. */
1247                         hwgroup->busy = 0;
1248                         break;
1249                 }
1250
1251                 hwgroup->rq = rq;
1252
1253                 /*
1254                  * Some systems have trouble with IDE IRQs arriving while
1255                  * the driver is still setting things up.  So, here we disable
1256                  * the IRQ used by this interface while the request is being started.
1257                  * This may look bad at first, but pretty much the same thing
1258                  * happens anyway when any interrupt comes in, IDE or otherwise
1259                  *  -- the kernel masks the IRQ while it is being handled.
1260                  */
1261                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1262                         disable_irq_nosync(hwif->irq);
1263                 spin_unlock(&ide_lock);
1264                 local_irq_enable_in_hardirq();
1265                         /* allow other IRQs while we start this request */
1266                 startstop = start_request(drive, rq);
1267                 spin_lock_irq(&ide_lock);
1268                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1269                         enable_irq(hwif->irq);
1270                 if (startstop == ide_stopped)
1271                         hwgroup->busy = 0;
1272         }
1273 }
1274
1275 /*
1276  * Passes the stuff to ide_do_request
1277  */
1278 void do_ide_request(struct request_queue *q)
1279 {
1280         ide_drive_t *drive = q->queuedata;
1281
1282         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1283 }
1284
1285 /*
1286  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1287  * retry the current request in pio mode instead of risking tossing it
1288  * all away
1289  */
1290 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1291 {
1292         ide_hwif_t *hwif = HWIF(drive);
1293         struct request *rq;
1294         ide_startstop_t ret = ide_stopped;
1295
1296         /*
1297          * end current dma transaction
1298          */
1299
1300         if (error < 0) {
1301                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1302                 (void)HWIF(drive)->ide_dma_end(drive);
1303                 ret = ide_error(drive, "dma timeout error",
1304                                                 hwif->INB(IDE_STATUS_REG));
1305         } else {
1306                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1307                 hwif->dma_timeout(drive);
1308         }
1309
1310         /*
1311          * disable dma for now, but remember that we did so because of
1312          * a timeout -- we'll reenable after we finish this next request
1313          * (or rather the first chunk of it) in pio.
1314          */
1315         drive->retry_pio++;
1316         drive->state = DMA_PIO_RETRY;
1317         hwif->dma_off_quietly(drive);
1318
1319         /*
1320          * un-busy drive etc (hwgroup->busy is cleared on return) and
1321          * make sure request is sane
1322          */
1323         rq = HWGROUP(drive)->rq;
1324
1325         if (!rq)
1326                 goto out;
1327
1328         HWGROUP(drive)->rq = NULL;
1329
1330         rq->errors = 0;
1331
1332         if (!rq->bio)
1333                 goto out;
1334
1335         rq->sector = rq->bio->bi_sector;
1336         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1337         rq->hard_cur_sectors = rq->current_nr_sectors;
1338         rq->buffer = bio_data(rq->bio);
1339 out:
1340         return ret;
1341 }
1342
1343 /**
1344  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1345  *      @data: timer callback magic (hwgroup)
1346  *
1347  *      An IDE command has timed out before the expected drive return
1348  *      occurred. At this point we attempt to clean up the current
1349  *      mess. If the current handler includes an expiry handler then
1350  *      we invoke the expiry handler, and providing it is happy the
1351  *      work is done. If that fails we apply generic recovery rules
1352  *      invoking the handler and checking the drive DMA status. We
1353  *      have an excessively incestuous relationship with the DMA
1354  *      logic that wants cleaning up.
1355  */
1356  
1357 void ide_timer_expiry (unsigned long data)
1358 {
1359         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1360         ide_handler_t   *handler;
1361         ide_expiry_t    *expiry;
1362         unsigned long   flags;
1363         unsigned long   wait = -1;
1364
1365         spin_lock_irqsave(&ide_lock, flags);
1366
1367         if (((handler = hwgroup->handler) == NULL) ||
1368             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1369                 /*
1370                  * Either a marginal timeout occurred
1371                  * (got the interrupt just as timer expired),
1372                  * or we were "sleeping" to give other devices a chance.
1373                  * Either way, we don't really want to complain about anything.
1374                  */
1375                 if (hwgroup->sleeping) {
1376                         hwgroup->sleeping = 0;
1377                         hwgroup->busy = 0;
1378                 }
1379         } else {
1380                 ide_drive_t *drive = hwgroup->drive;
1381                 if (!drive) {
1382                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1383                         hwgroup->handler = NULL;
1384                 } else {
1385                         ide_hwif_t *hwif;
1386                         ide_startstop_t startstop = ide_stopped;
1387                         if (!hwgroup->busy) {
1388                                 hwgroup->busy = 1;      /* paranoia */
1389                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1390                         }
1391                         if ((expiry = hwgroup->expiry) != NULL) {
1392                                 /* continue */
1393                                 if ((wait = expiry(drive)) > 0) {
1394                                         /* reset timer */
1395                                         hwgroup->timer.expires  = jiffies + wait;
1396                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1397                                         add_timer(&hwgroup->timer);
1398                                         spin_unlock_irqrestore(&ide_lock, flags);
1399                                         return;
1400                                 }
1401                         }
1402                         hwgroup->handler = NULL;
1403                         /*
1404                          * We need to simulate a real interrupt when invoking
1405                          * the handler() function, which means we need to
1406                          * globally mask the specific IRQ:
1407                          */
1408                         spin_unlock(&ide_lock);
1409                         hwif  = HWIF(drive);
1410                         /* disable_irq_nosync ?? */
1411                         disable_irq(hwif->irq);
1412                         /* local CPU only,
1413                          * as if we were handling an interrupt */
1414                         local_irq_disable();
1415                         if (hwgroup->polling) {
1416                                 startstop = handler(drive);
1417                         } else if (drive_is_ready(drive)) {
1418                                 if (drive->waiting_for_dma)
1419                                         hwgroup->hwif->dma_lost_irq(drive);
1420                                 (void)ide_ack_intr(hwif);
1421                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1422                                 startstop = handler(drive);
1423                         } else {
1424                                 if (drive->waiting_for_dma) {
1425                                         startstop = ide_dma_timeout_retry(drive, wait);
1426                                 } else
1427                                         startstop =
1428                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1429                         }
1430                         drive->service_time = jiffies - drive->service_start;
1431                         spin_lock_irq(&ide_lock);
1432                         enable_irq(hwif->irq);
1433                         if (startstop == ide_stopped)
1434                                 hwgroup->busy = 0;
1435                 }
1436         }
1437         ide_do_request(hwgroup, IDE_NO_IRQ);
1438         spin_unlock_irqrestore(&ide_lock, flags);
1439 }
1440
1441 /**
1442  *      unexpected_intr         -       handle an unexpected IDE interrupt
1443  *      @irq: interrupt line
1444  *      @hwgroup: hwgroup being processed
1445  *
1446  *      There's nothing really useful we can do with an unexpected interrupt,
1447  *      other than reading the status register (to clear it), and logging it.
1448  *      There should be no way that an irq can happen before we're ready for it,
1449  *      so we needn't worry much about losing an "important" interrupt here.
1450  *
1451  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1452  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1453  *      looks "good", we just ignore the interrupt completely.
1454  *
1455  *      This routine assumes __cli() is in effect when called.
1456  *
1457  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1458  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1459  *      we could screw up by interfering with a new request being set up for 
1460  *      irq15.
1461  *
1462  *      In reality, this is a non-issue.  The new command is not sent unless 
1463  *      the drive is ready to accept one, in which case we know the drive is
1464  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1465  *      before completing the issuance of any new drive command, so we will not
1466  *      be accidentally invoked as a result of any valid command completion
1467  *      interrupt.
1468  *
1469  *      Note that we must walk the entire hwgroup here. We know which hwif
1470  *      is doing the current command, but we don't know which hwif burped
1471  *      mysteriously.
1472  */
1473  
1474 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1475 {
1476         u8 stat;
1477         ide_hwif_t *hwif = hwgroup->hwif;
1478
1479         /*
1480          * handle the unexpected interrupt
1481          */
1482         do {
1483                 if (hwif->irq == irq) {
1484                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1485                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1486                                 /* Try to not flood the console with msgs */
1487                                 static unsigned long last_msgtime, count;
1488                                 ++count;
1489                                 if (time_after(jiffies, last_msgtime + HZ)) {
1490                                         last_msgtime = jiffies;
1491                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1492                                                 "status=0x%02x, count=%ld\n",
1493                                                 hwif->name,
1494                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1495                                 }
1496                         }
1497                 }
1498         } while ((hwif = hwif->next) != hwgroup->hwif);
1499 }
1500
1501 /**
1502  *      ide_intr        -       default IDE interrupt handler
1503  *      @irq: interrupt number
1504  *      @dev_id: hwif group
1505  *      @regs: unused weirdness from the kernel irq layer
1506  *
1507  *      This is the default IRQ handler for the IDE layer. You should
1508  *      not need to override it. If you do be aware it is subtle in
1509  *      places
1510  *
1511  *      hwgroup->hwif is the interface in the group currently performing
1512  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1513  *      the IRQ handler to call. As we issue a command the handlers
1514  *      step through multiple states, reassigning the handler to the
1515  *      next step in the process. Unlike a smart SCSI controller IDE
1516  *      expects the main processor to sequence the various transfer
1517  *      stages. We also manage a poll timer to catch up with most
1518  *      timeout situations. There are still a few where the handlers
1519  *      don't ever decide to give up.
1520  *
1521  *      The handler eventually returns ide_stopped to indicate the
1522  *      request completed. At this point we issue the next request
1523  *      on the hwgroup and the process begins again.
1524  */
1525  
1526 irqreturn_t ide_intr (int irq, void *dev_id)
1527 {
1528         unsigned long flags;
1529         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1530         ide_hwif_t *hwif;
1531         ide_drive_t *drive;
1532         ide_handler_t *handler;
1533         ide_startstop_t startstop;
1534
1535         spin_lock_irqsave(&ide_lock, flags);
1536         hwif = hwgroup->hwif;
1537
1538         if (!ide_ack_intr(hwif)) {
1539                 spin_unlock_irqrestore(&ide_lock, flags);
1540                 return IRQ_NONE;
1541         }
1542
1543         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1544                 /*
1545                  * Not expecting an interrupt from this drive.
1546                  * That means this could be:
1547                  *      (1) an interrupt from another PCI device
1548                  *      sharing the same PCI INT# as us.
1549                  * or   (2) a drive just entered sleep or standby mode,
1550                  *      and is interrupting to let us know.
1551                  * or   (3) a spurious interrupt of unknown origin.
1552                  *
1553                  * For PCI, we cannot tell the difference,
1554                  * so in that case we just ignore it and hope it goes away.
1555                  *
1556                  * FIXME: unexpected_intr should be hwif-> then we can
1557                  * remove all the ifdef PCI crap
1558                  */
1559 #ifdef CONFIG_BLK_DEV_IDEPCI
1560                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1561 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1562                 {
1563                         /*
1564                          * Probably not a shared PCI interrupt,
1565                          * so we can safely try to do something about it:
1566                          */
1567                         unexpected_intr(irq, hwgroup);
1568 #ifdef CONFIG_BLK_DEV_IDEPCI
1569                 } else {
1570                         /*
1571                          * Whack the status register, just in case
1572                          * we have a leftover pending IRQ.
1573                          */
1574                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1575 #endif /* CONFIG_BLK_DEV_IDEPCI */
1576                 }
1577                 spin_unlock_irqrestore(&ide_lock, flags);
1578                 return IRQ_NONE;
1579         }
1580         drive = hwgroup->drive;
1581         if (!drive) {
1582                 /*
1583                  * This should NEVER happen, and there isn't much
1584                  * we could do about it here.
1585                  *
1586                  * [Note - this can occur if the drive is hot unplugged]
1587                  */
1588                 spin_unlock_irqrestore(&ide_lock, flags);
1589                 return IRQ_HANDLED;
1590         }
1591         if (!drive_is_ready(drive)) {
1592                 /*
1593                  * This happens regularly when we share a PCI IRQ with
1594                  * another device.  Unfortunately, it can also happen
1595                  * with some buggy drives that trigger the IRQ before
1596                  * their status register is up to date.  Hopefully we have
1597                  * enough advance overhead that the latter isn't a problem.
1598                  */
1599                 spin_unlock_irqrestore(&ide_lock, flags);
1600                 return IRQ_NONE;
1601         }
1602         if (!hwgroup->busy) {
1603                 hwgroup->busy = 1;      /* paranoia */
1604                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1605         }
1606         hwgroup->handler = NULL;
1607         hwgroup->req_gen++;
1608         del_timer(&hwgroup->timer);
1609         spin_unlock(&ide_lock);
1610
1611         /* Some controllers might set DMA INTR no matter DMA or PIO;
1612          * bmdma status might need to be cleared even for
1613          * PIO interrupts to prevent spurious/lost irq.
1614          */
1615         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1616                 /* ide_dma_end() needs bmdma status for error checking.
1617                  * So, skip clearing bmdma status here and leave it
1618                  * to ide_dma_end() if this is dma interrupt.
1619                  */
1620                 hwif->ide_dma_clear_irq(drive);
1621
1622         if (drive->unmask)
1623                 local_irq_enable_in_hardirq();
1624         /* service this interrupt, may set handler for next interrupt */
1625         startstop = handler(drive);
1626         spin_lock_irq(&ide_lock);
1627
1628         /*
1629          * Note that handler() may have set things up for another
1630          * interrupt to occur soon, but it cannot happen until
1631          * we exit from this routine, because it will be the
1632          * same irq as is currently being serviced here, and Linux
1633          * won't allow another of the same (on any CPU) until we return.
1634          */
1635         drive->service_time = jiffies - drive->service_start;
1636         if (startstop == ide_stopped) {
1637                 if (hwgroup->handler == NULL) { /* paranoia */
1638                         hwgroup->busy = 0;
1639                         ide_do_request(hwgroup, hwif->irq);
1640                 } else {
1641                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1642                                 "on exit\n", drive->name);
1643                 }
1644         }
1645         spin_unlock_irqrestore(&ide_lock, flags);
1646         return IRQ_HANDLED;
1647 }
1648
1649 /**
1650  *      ide_init_drive_cmd      -       initialize a drive command request
1651  *      @rq: request object
1652  *
1653  *      Initialize a request before we fill it in and send it down to
1654  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1655  *      now it doesn't do a lot, but if that changes abusers will have a
1656  *      nasty surprise.
1657  */
1658
1659 void ide_init_drive_cmd (struct request *rq)
1660 {
1661         memset(rq, 0, sizeof(*rq));
1662         rq->cmd_type = REQ_TYPE_ATA_CMD;
1663         rq->ref_count = 1;
1664 }
1665
1666 EXPORT_SYMBOL(ide_init_drive_cmd);
1667
1668 /**
1669  *      ide_do_drive_cmd        -       issue IDE special command
1670  *      @drive: device to issue command
1671  *      @rq: request to issue
1672  *      @action: action for processing
1673  *
1674  *      This function issues a special IDE device request
1675  *      onto the request queue.
1676  *
1677  *      If action is ide_wait, then the rq is queued at the end of the
1678  *      request queue, and the function sleeps until it has been processed.
1679  *      This is for use when invoked from an ioctl handler.
1680  *
1681  *      If action is ide_preempt, then the rq is queued at the head of
1682  *      the request queue, displacing the currently-being-processed
1683  *      request and this function returns immediately without waiting
1684  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1685  *      intended for careful use by the ATAPI tape/cdrom driver code.
1686  *
1687  *      If action is ide_end, then the rq is queued at the end of the
1688  *      request queue, and the function returns immediately without waiting
1689  *      for the new rq to be completed. This is again intended for careful
1690  *      use by the ATAPI tape/cdrom driver code.
1691  */
1692  
1693 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1694 {
1695         unsigned long flags;
1696         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1697         DECLARE_COMPLETION_ONSTACK(wait);
1698         int where = ELEVATOR_INSERT_BACK, err;
1699         int must_wait = (action == ide_wait || action == ide_head_wait);
1700
1701         rq->errors = 0;
1702
1703         /*
1704          * we need to hold an extra reference to request for safe inspection
1705          * after completion
1706          */
1707         if (must_wait) {
1708                 rq->ref_count++;
1709                 rq->end_io_data = &wait;
1710                 rq->end_io = blk_end_sync_rq;
1711         }
1712
1713         spin_lock_irqsave(&ide_lock, flags);
1714         if (action == ide_preempt)
1715                 hwgroup->rq = NULL;
1716         if (action == ide_preempt || action == ide_head_wait) {
1717                 where = ELEVATOR_INSERT_FRONT;
1718                 rq->cmd_flags |= REQ_PREEMPT;
1719         }
1720         __elv_add_request(drive->queue, rq, where, 0);
1721         ide_do_request(hwgroup, IDE_NO_IRQ);
1722         spin_unlock_irqrestore(&ide_lock, flags);
1723
1724         err = 0;
1725         if (must_wait) {
1726                 wait_for_completion(&wait);
1727                 if (rq->errors)
1728                         err = -EIO;
1729
1730                 blk_put_request(rq);
1731         }
1732
1733         return err;
1734 }
1735
1736 EXPORT_SYMBOL(ide_do_drive_cmd);
1737
1738 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1739 {
1740         ide_task_t task;
1741
1742         memset(&task, 0, sizeof(task));
1743         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1744                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1745         task.tf.feature = dma;          /* Use PIO/DMA */
1746         task.tf.lbam    = bcount & 0xff;
1747         task.tf.lbah    = (bcount >> 8) & 0xff;
1748
1749         ide_tf_load(drive, &task);
1750 }
1751
1752 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);