]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ide/ide-io.c
Merge branches 'pxa' and 'orion-fixes1'
[linux-2.6-omap-h63xx.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81                 drive->state = 0;
82                 ide_dma_on(drive);
83         }
84
85         if (!__blk_end_request(rq, error, nr_bytes)) {
86                 if (dequeue)
87                         HWGROUP(drive)->rq = NULL;
88                 ret = 0;
89         }
90
91         return ret;
92 }
93
94 /**
95  *      ide_end_request         -       complete an IDE I/O
96  *      @drive: IDE device for the I/O
97  *      @uptodate:
98  *      @nr_sectors: number of sectors completed
99  *
100  *      This is our end_request wrapper function. We complete the I/O
101  *      update random number input and dequeue the request, which if
102  *      it was tagged may be out of order.
103  */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107         unsigned int nr_bytes = nr_sectors << 9;
108         struct request *rq;
109         unsigned long flags;
110         int ret = 1;
111
112         /*
113          * room for locking improvements here, the calls below don't
114          * need the queue lock held at all
115          */
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_bytes) {
120                 if (blk_pc_request(rq))
121                         nr_bytes = rq->data_len;
122                 else
123                         nr_bytes = rq->hard_cur_sectors << 9;
124         }
125
126         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128         spin_unlock_irqrestore(&ide_lock, flags);
129         return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134  * Power Management state machine. This one is rather trivial for now,
135  * we should probably add more, like switching back to PIO on suspend
136  * to help some BIOSes, re-do the door locking on resume, etc...
137  */
138
139 enum {
140         ide_pm_flush_cache      = ide_pm_state_start_suspend,
141         idedisk_pm_standby,
142
143         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
144         idedisk_pm_idle,
145         ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150         struct request_pm_state *pm = rq->data;
151
152         if (drive->media != ide_disk)
153                 return;
154
155         switch (pm->pm_step) {
156         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
157                 if (pm->pm_state == PM_EVENT_FREEZE)
158                         pm->pm_step = ide_pm_state_completed;
159                 else
160                         pm->pm_step = idedisk_pm_standby;
161                 break;
162         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
163                 pm->pm_step = ide_pm_state_completed;
164                 break;
165         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
166                 pm->pm_step = idedisk_pm_idle;
167                 break;
168         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
169                 pm->pm_step = ide_pm_restore_dma;
170                 break;
171         }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176         struct request_pm_state *pm = rq->data;
177         ide_task_t *args = rq->special;
178
179         memset(args, 0, sizeof(*args));
180
181         switch (pm->pm_step) {
182         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
183                 if (drive->media != ide_disk)
184                         break;
185                 /* Not supported? Switch to next step now. */
186                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187                         ide_complete_power_step(drive, rq, 0, 0);
188                         return ide_stopped;
189                 }
190                 if (ide_id_has_flush_cache_ext(drive->id))
191                         args->tf.command = WIN_FLUSH_CACHE_EXT;
192                 else
193                         args->tf.command = WIN_FLUSH_CACHE;
194                 goto out_do_tf;
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tf.command = WIN_STANDBYNOW1;
198                 goto out_do_tf;
199
200         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
201                 ide_set_max_pio(drive);
202                 /*
203                  * skip idedisk_pm_idle for ATAPI devices
204                  */
205                 if (drive->media != ide_disk)
206                         pm->pm_step = ide_pm_restore_dma;
207                 else
208                         ide_complete_power_step(drive, rq, 0, 0);
209                 return ide_stopped;
210
211         case idedisk_pm_idle:           /* Resume step 2 (idle) */
212                 args->tf.command = WIN_IDLEIMMEDIATE;
213                 goto out_do_tf;
214
215         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
216                 /*
217                  * Right now, all we do is call ide_set_dma(drive),
218                  * we could be smarter and check for current xfer_speed
219                  * in struct drive etc...
220                  */
221                 if (drive->hwif->dma_ops == NULL)
222                         break;
223                 /*
224                  * TODO: respect ->using_dma setting
225                  */
226                 ide_set_dma(drive);
227                 break;
228         }
229         pm->pm_step = ide_pm_state_completed;
230         return ide_stopped;
231
232 out_do_tf:
233         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234         args->data_phase = TASKFILE_NO_DATA;
235         return do_rw_taskfile(drive, args);
236 }
237
238 /**
239  *      ide_end_dequeued_request        -       complete an IDE I/O
240  *      @drive: IDE device for the I/O
241  *      @uptodate:
242  *      @nr_sectors: number of sectors completed
243  *
244  *      Complete an I/O that is no longer on the request queue. This
245  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
246  *      We must still finish the old request but we must not tamper with the
247  *      queue in the meantime.
248  *
249  *      NOTE: This path does not handle barrier, but barrier is not supported
250  *      on ide-cd anyway.
251  */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254                              int uptodate, int nr_sectors)
255 {
256         unsigned long flags;
257         int ret;
258
259         spin_lock_irqsave(&ide_lock, flags);
260         BUG_ON(!blk_rq_started(rq));
261         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262         spin_unlock_irqrestore(&ide_lock, flags);
263
264         return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270  *      ide_complete_pm_request - end the current Power Management request
271  *      @drive: target drive
272  *      @rq: request
273  *
274  *      This function cleans up the current PM request and stops the queue
275  *      if necessary.
276  */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279         unsigned long flags;
280
281 #ifdef DEBUG_PM
282         printk("%s: completing PM request, %s\n", drive->name,
283                blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285         spin_lock_irqsave(&ide_lock, flags);
286         if (blk_pm_suspend_request(rq)) {
287                 blk_stop_queue(drive->queue);
288         } else {
289                 drive->blocked = 0;
290                 blk_start_queue(drive->queue);
291         }
292         HWGROUP(drive)->rq = NULL;
293         if (__blk_end_request(rq, 0, 0))
294                 BUG();
295         spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299 {
300         ide_hwif_t *hwif = drive->hwif;
301         struct ide_io_ports *io_ports = &hwif->io_ports;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(io_ports->data_addr);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, io_ports->ctl_addr);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(io_ports->nsect_addr);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(io_ports->lbal_addr);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(io_ports->lbam_addr);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(io_ports->lbah_addr);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(io_ports->device_addr);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, io_ports->ctl_addr);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(io_ports->feature_addr);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(io_ports->nsect_addr);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(io_ports->lbal_addr);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(io_ports->lbam_addr);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(io_ports->lbah_addr);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         unsigned long flags;
358         struct request *rq;
359
360         spin_lock_irqsave(&ide_lock, flags);
361         rq = HWGROUP(drive)->rq;
362         spin_unlock_irqrestore(&ide_lock, flags);
363
364         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
365                 ide_task_t *task = (ide_task_t *)rq->special;
366
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
369
370                 if (task) {
371                         struct ide_taskfile *tf = &task->tf;
372
373                         tf->error = err;
374                         tf->status = stat;
375
376                         ide_tf_read(drive, task);
377
378                         if (task->tf_flags & IDE_TFLAG_DYN)
379                                 kfree(task);
380                 }
381         } else if (blk_pm_request(rq)) {
382                 struct request_pm_state *pm = rq->data;
383 #ifdef DEBUG_PM
384                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
385                         drive->name, rq->pm->pm_step, stat, err);
386 #endif
387                 ide_complete_power_step(drive, rq, stat, err);
388                 if (pm->pm_step == ide_pm_state_completed)
389                         ide_complete_pm_request(drive, rq);
390                 return;
391         }
392
393         spin_lock_irqsave(&ide_lock, flags);
394         HWGROUP(drive)->rq = NULL;
395         rq->errors = err;
396         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
397                                        blk_rq_bytes(rq))))
398                 BUG();
399         spin_unlock_irqrestore(&ide_lock, flags);
400 }
401
402 EXPORT_SYMBOL(ide_end_drive_cmd);
403
404 /**
405  *      try_to_flush_leftover_data      -       flush junk
406  *      @drive: drive to flush
407  *
408  *      try_to_flush_leftover_data() is invoked in response to a drive
409  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
410  *      resetting the drive, this routine tries to clear the condition
411  *      by read a sector's worth of data from the drive.  Of course,
412  *      this may not help if the drive is *waiting* for data from *us*.
413  */
414 static void try_to_flush_leftover_data (ide_drive_t *drive)
415 {
416         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
417
418         if (drive->media != ide_disk)
419                 return;
420         while (i > 0) {
421                 u32 buffer[16];
422                 u32 wcount = (i > 16) ? 16 : i;
423
424                 i -= wcount;
425                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
426         }
427 }
428
429 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
430 {
431         if (rq->rq_disk) {
432                 ide_driver_t *drv;
433
434                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
435                 drv->end_request(drive, 0, 0);
436         } else
437                 ide_end_request(drive, 0, 0);
438 }
439
440 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
441 {
442         ide_hwif_t *hwif = drive->hwif;
443
444         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
445                 /* other bits are useless when BUSY */
446                 rq->errors |= ERROR_RESET;
447         } else if (stat & ERR_STAT) {
448                 /* err has different meaning on cdrom and tape */
449                 if (err == ABRT_ERR) {
450                         if (drive->select.b.lba &&
451                             /* some newer drives don't support WIN_SPECIFY */
452                             hwif->INB(hwif->io_ports.command_addr) ==
453                                 WIN_SPECIFY)
454                                 return ide_stopped;
455                 } else if ((err & BAD_CRC) == BAD_CRC) {
456                         /* UDMA crc error, just retry the operation */
457                         drive->crc_count++;
458                 } else if (err & (BBD_ERR | ECC_ERR)) {
459                         /* retries won't help these */
460                         rq->errors = ERROR_MAX;
461                 } else if (err & TRK0_ERR) {
462                         /* help it find track zero */
463                         rq->errors |= ERROR_RECAL;
464                 }
465         }
466
467         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
468             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
469                 try_to_flush_leftover_data(drive);
470
471         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
472                 ide_kill_rq(drive, rq);
473                 return ide_stopped;
474         }
475
476         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
477                 rq->errors |= ERROR_RESET;
478
479         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
480                 ++rq->errors;
481                 return ide_do_reset(drive);
482         }
483
484         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
485                 drive->special.b.recalibrate = 1;
486
487         ++rq->errors;
488
489         return ide_stopped;
490 }
491
492 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
493 {
494         ide_hwif_t *hwif = drive->hwif;
495
496         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
497                 /* other bits are useless when BUSY */
498                 rq->errors |= ERROR_RESET;
499         } else {
500                 /* add decoding error stuff */
501         }
502
503         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
504                 /* force an abort */
505                 hwif->OUTB(WIN_IDLEIMMEDIATE, hwif->io_ports.command_addr);
506
507         if (rq->errors >= ERROR_MAX) {
508                 ide_kill_rq(drive, rq);
509         } else {
510                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
511                         ++rq->errors;
512                         return ide_do_reset(drive);
513                 }
514                 ++rq->errors;
515         }
516
517         return ide_stopped;
518 }
519
520 ide_startstop_t
521 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
522 {
523         if (drive->media == ide_disk)
524                 return ide_ata_error(drive, rq, stat, err);
525         return ide_atapi_error(drive, rq, stat, err);
526 }
527
528 EXPORT_SYMBOL_GPL(__ide_error);
529
530 /**
531  *      ide_error       -       handle an error on the IDE
532  *      @drive: drive the error occurred on
533  *      @msg: message to report
534  *      @stat: status bits
535  *
536  *      ide_error() takes action based on the error returned by the drive.
537  *      For normal I/O that may well include retries. We deal with
538  *      both new-style (taskfile) and old style command handling here.
539  *      In the case of taskfile command handling there is work left to
540  *      do
541  */
542  
543 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
544 {
545         struct request *rq;
546         u8 err;
547
548         err = ide_dump_status(drive, msg, stat);
549
550         if ((rq = HWGROUP(drive)->rq) == NULL)
551                 return ide_stopped;
552
553         /* retry only "normal" I/O: */
554         if (!blk_fs_request(rq)) {
555                 rq->errors = 1;
556                 ide_end_drive_cmd(drive, stat, err);
557                 return ide_stopped;
558         }
559
560         if (rq->rq_disk) {
561                 ide_driver_t *drv;
562
563                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
564                 return drv->error(drive, rq, stat, err);
565         } else
566                 return __ide_error(drive, rq, stat, err);
567 }
568
569 EXPORT_SYMBOL_GPL(ide_error);
570
571 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
572 {
573         if (drive->media != ide_disk)
574                 rq->errors |= ERROR_RESET;
575
576         ide_kill_rq(drive, rq);
577
578         return ide_stopped;
579 }
580
581 EXPORT_SYMBOL_GPL(__ide_abort);
582
583 /**
584  *      ide_abort       -       abort pending IDE operations
585  *      @drive: drive the error occurred on
586  *      @msg: message to report
587  *
588  *      ide_abort kills and cleans up when we are about to do a 
589  *      host initiated reset on active commands. Longer term we
590  *      want handlers to have sensible abort handling themselves
591  *
592  *      This differs fundamentally from ide_error because in 
593  *      this case the command is doing just fine when we
594  *      blow it away.
595  */
596  
597 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
598 {
599         struct request *rq;
600
601         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
602                 return ide_stopped;
603
604         /* retry only "normal" I/O: */
605         if (!blk_fs_request(rq)) {
606                 rq->errors = 1;
607                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
608                 return ide_stopped;
609         }
610
611         if (rq->rq_disk) {
612                 ide_driver_t *drv;
613
614                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
615                 return drv->abort(drive, rq);
616         } else
617                 return __ide_abort(drive, rq);
618 }
619
620 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
621 {
622         tf->nsect   = drive->sect;
623         tf->lbal    = drive->sect;
624         tf->lbam    = drive->cyl;
625         tf->lbah    = drive->cyl >> 8;
626         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
627         tf->command = WIN_SPECIFY;
628 }
629
630 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
631 {
632         tf->nsect   = drive->sect;
633         tf->command = WIN_RESTORE;
634 }
635
636 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
637 {
638         tf->nsect   = drive->mult_req;
639         tf->command = WIN_SETMULT;
640 }
641
642 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
643 {
644         special_t *s = &drive->special;
645         ide_task_t args;
646
647         memset(&args, 0, sizeof(ide_task_t));
648         args.data_phase = TASKFILE_NO_DATA;
649
650         if (s->b.set_geometry) {
651                 s->b.set_geometry = 0;
652                 ide_tf_set_specify_cmd(drive, &args.tf);
653         } else if (s->b.recalibrate) {
654                 s->b.recalibrate = 0;
655                 ide_tf_set_restore_cmd(drive, &args.tf);
656         } else if (s->b.set_multmode) {
657                 s->b.set_multmode = 0;
658                 if (drive->mult_req > drive->id->max_multsect)
659                         drive->mult_req = drive->id->max_multsect;
660                 ide_tf_set_setmult_cmd(drive, &args.tf);
661         } else if (s->all) {
662                 int special = s->all;
663                 s->all = 0;
664                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
665                 return ide_stopped;
666         }
667
668         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
669                         IDE_TFLAG_CUSTOM_HANDLER;
670
671         do_rw_taskfile(drive, &args);
672
673         return ide_started;
674 }
675
676 /*
677  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
678  */
679 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
680 {
681         switch (req_pio) {
682         case 202:
683         case 201:
684         case 200:
685         case 102:
686         case 101:
687         case 100:
688                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
689         case 9:
690         case 8:
691                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
692         case 7:
693         case 6:
694                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
695         default:
696                 return 0;
697         }
698 }
699
700 /**
701  *      do_special              -       issue some special commands
702  *      @drive: drive the command is for
703  *
704  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
705  *      commands to a drive.  It used to do much more, but has been scaled
706  *      back.
707  */
708
709 static ide_startstop_t do_special (ide_drive_t *drive)
710 {
711         special_t *s = &drive->special;
712
713 #ifdef DEBUG
714         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
715 #endif
716         if (s->b.set_tune) {
717                 ide_hwif_t *hwif = drive->hwif;
718                 const struct ide_port_ops *port_ops = hwif->port_ops;
719                 u8 req_pio = drive->tune_req;
720
721                 s->b.set_tune = 0;
722
723                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
724                         /*
725                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
726                          */
727                         if (req_pio == 8 || req_pio == 9) {
728                                 unsigned long flags;
729
730                                 spin_lock_irqsave(&ide_lock, flags);
731                                 port_ops->set_pio_mode(drive, req_pio);
732                                 spin_unlock_irqrestore(&ide_lock, flags);
733                         } else
734                                 port_ops->set_pio_mode(drive, req_pio);
735                 } else {
736                         int keep_dma = drive->using_dma;
737
738                         ide_set_pio(drive, req_pio);
739
740                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
741                                 if (keep_dma)
742                                         ide_dma_on(drive);
743                         }
744                 }
745
746                 return ide_stopped;
747         } else {
748                 if (drive->media == ide_disk)
749                         return ide_disk_special(drive);
750
751                 s->all = 0;
752                 drive->mult_req = 0;
753                 return ide_stopped;
754         }
755 }
756
757 void ide_map_sg(ide_drive_t *drive, struct request *rq)
758 {
759         ide_hwif_t *hwif = drive->hwif;
760         struct scatterlist *sg = hwif->sg_table;
761
762         if (hwif->sg_mapped)    /* needed by ide-scsi */
763                 return;
764
765         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
766                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
767         } else {
768                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
769                 hwif->sg_nents = 1;
770         }
771 }
772
773 EXPORT_SYMBOL_GPL(ide_map_sg);
774
775 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
776 {
777         ide_hwif_t *hwif = drive->hwif;
778
779         hwif->nsect = hwif->nleft = rq->nr_sectors;
780         hwif->cursg_ofs = 0;
781         hwif->cursg = NULL;
782 }
783
784 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
785
786 /**
787  *      execute_drive_command   -       issue special drive command
788  *      @drive: the drive to issue the command on
789  *      @rq: the request structure holding the command
790  *
791  *      execute_drive_cmd() issues a special drive command,  usually 
792  *      initiated by ioctl() from the external hdparm program. The
793  *      command can be a drive command, drive task or taskfile 
794  *      operation. Weirdly you can call it with NULL to wait for
795  *      all commands to finish. Don't do this as that is due to change
796  */
797
798 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
799                 struct request *rq)
800 {
801         ide_hwif_t *hwif = HWIF(drive);
802         ide_task_t *task = rq->special;
803
804         if (task) {
805                 hwif->data_phase = task->data_phase;
806
807                 switch (hwif->data_phase) {
808                 case TASKFILE_MULTI_OUT:
809                 case TASKFILE_OUT:
810                 case TASKFILE_MULTI_IN:
811                 case TASKFILE_IN:
812                         ide_init_sg_cmd(drive, rq);
813                         ide_map_sg(drive, rq);
814                 default:
815                         break;
816                 }
817
818                 return do_rw_taskfile(drive, task);
819         }
820
821         /*
822          * NULL is actually a valid way of waiting for
823          * all current requests to be flushed from the queue.
824          */
825 #ifdef DEBUG
826         printk("%s: DRIVE_CMD (null)\n", drive->name);
827 #endif
828         ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
829
830         return ide_stopped;
831 }
832
833 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
834 {
835         struct request_pm_state *pm = rq->data;
836
837         if (blk_pm_suspend_request(rq) &&
838             pm->pm_step == ide_pm_state_start_suspend)
839                 /* Mark drive blocked when starting the suspend sequence. */
840                 drive->blocked = 1;
841         else if (blk_pm_resume_request(rq) &&
842                  pm->pm_step == ide_pm_state_start_resume) {
843                 /* 
844                  * The first thing we do on wakeup is to wait for BSY bit to
845                  * go away (with a looong timeout) as a drive on this hwif may
846                  * just be POSTing itself.
847                  * We do that before even selecting as the "other" device on
848                  * the bus may be broken enough to walk on our toes at this
849                  * point.
850                  */
851                 int rc;
852 #ifdef DEBUG_PM
853                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
854 #endif
855                 rc = ide_wait_not_busy(HWIF(drive), 35000);
856                 if (rc)
857                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
858                 SELECT_DRIVE(drive);
859                 ide_set_irq(drive, 1);
860                 rc = ide_wait_not_busy(HWIF(drive), 100000);
861                 if (rc)
862                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
863         }
864 }
865
866 /**
867  *      start_request   -       start of I/O and command issuing for IDE
868  *
869  *      start_request() initiates handling of a new I/O request. It
870  *      accepts commands and I/O (read/write) requests. It also does
871  *      the final remapping for weird stuff like EZDrive. Once 
872  *      device mapper can work sector level the EZDrive stuff can go away
873  *
874  *      FIXME: this function needs a rename
875  */
876  
877 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
878 {
879         ide_startstop_t startstop;
880         sector_t block;
881
882         BUG_ON(!blk_rq_started(rq));
883
884 #ifdef DEBUG
885         printk("%s: start_request: current=0x%08lx\n",
886                 HWIF(drive)->name, (unsigned long) rq);
887 #endif
888
889         /* bail early if we've exceeded max_failures */
890         if (drive->max_failures && (drive->failures > drive->max_failures)) {
891                 rq->cmd_flags |= REQ_FAILED;
892                 goto kill_rq;
893         }
894
895         block    = rq->sector;
896         if (blk_fs_request(rq) &&
897             (drive->media == ide_disk || drive->media == ide_floppy)) {
898                 block += drive->sect0;
899         }
900         /* Yecch - this will shift the entire interval,
901            possibly killing some innocent following sector */
902         if (block == 0 && drive->remap_0_to_1 == 1)
903                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
904
905         if (blk_pm_request(rq))
906                 ide_check_pm_state(drive, rq);
907
908         SELECT_DRIVE(drive);
909         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
910                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
911                 return startstop;
912         }
913         if (!drive->special.all) {
914                 ide_driver_t *drv;
915
916                 /*
917                  * We reset the drive so we need to issue a SETFEATURES.
918                  * Do it _after_ do_special() restored device parameters.
919                  */
920                 if (drive->current_speed == 0xff)
921                         ide_config_drive_speed(drive, drive->desired_speed);
922
923                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
924                         return execute_drive_cmd(drive, rq);
925                 else if (blk_pm_request(rq)) {
926                         struct request_pm_state *pm = rq->data;
927 #ifdef DEBUG_PM
928                         printk("%s: start_power_step(step: %d)\n",
929                                 drive->name, rq->pm->pm_step);
930 #endif
931                         startstop = ide_start_power_step(drive, rq);
932                         if (startstop == ide_stopped &&
933                             pm->pm_step == ide_pm_state_completed)
934                                 ide_complete_pm_request(drive, rq);
935                         return startstop;
936                 }
937
938                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
939                 return drv->do_request(drive, rq, block);
940         }
941         return do_special(drive);
942 kill_rq:
943         ide_kill_rq(drive, rq);
944         return ide_stopped;
945 }
946
947 /**
948  *      ide_stall_queue         -       pause an IDE device
949  *      @drive: drive to stall
950  *      @timeout: time to stall for (jiffies)
951  *
952  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
953  *      to the hwgroup by sleeping for timeout jiffies.
954  */
955  
956 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
957 {
958         if (timeout > WAIT_WORSTCASE)
959                 timeout = WAIT_WORSTCASE;
960         drive->sleep = timeout + jiffies;
961         drive->sleeping = 1;
962 }
963
964 EXPORT_SYMBOL(ide_stall_queue);
965
966 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
967
968 /**
969  *      choose_drive            -       select a drive to service
970  *      @hwgroup: hardware group to select on
971  *
972  *      choose_drive() selects the next drive which will be serviced.
973  *      This is necessary because the IDE layer can't issue commands
974  *      to both drives on the same cable, unlike SCSI.
975  */
976  
977 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
978 {
979         ide_drive_t *drive, *best;
980
981 repeat: 
982         best = NULL;
983         drive = hwgroup->drive;
984
985         /*
986          * drive is doing pre-flush, ordered write, post-flush sequence. even
987          * though that is 3 requests, it must be seen as a single transaction.
988          * we must not preempt this drive until that is complete
989          */
990         if (blk_queue_flushing(drive->queue)) {
991                 /*
992                  * small race where queue could get replugged during
993                  * the 3-request flush cycle, just yank the plug since
994                  * we want it to finish asap
995                  */
996                 blk_remove_plug(drive->queue);
997                 return drive;
998         }
999
1000         do {
1001                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1002                     && !elv_queue_empty(drive->queue)) {
1003                         if (!best
1004                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1005                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1006                         {
1007                                 if (!blk_queue_plugged(drive->queue))
1008                                         best = drive;
1009                         }
1010                 }
1011         } while ((drive = drive->next) != hwgroup->drive);
1012         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1013                 long t = (signed long)(WAKEUP(best) - jiffies);
1014                 if (t >= WAIT_MIN_SLEEP) {
1015                 /*
1016                  * We *may* have some time to spare, but first let's see if
1017                  * someone can potentially benefit from our nice mood today..
1018                  */
1019                         drive = best->next;
1020                         do {
1021                                 if (!drive->sleeping
1022                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1023                                  && time_before(WAKEUP(drive), jiffies + t))
1024                                 {
1025                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1026                                         goto repeat;
1027                                 }
1028                         } while ((drive = drive->next) != best);
1029                 }
1030         }
1031         return best;
1032 }
1033
1034 /*
1035  * Issue a new request to a drive from hwgroup
1036  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1037  *
1038  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1039  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1040  * may have both interfaces in a single hwgroup to "serialize" access.
1041  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1042  * together into one hwgroup for serialized access.
1043  *
1044  * Note also that several hwgroups can end up sharing a single IRQ,
1045  * possibly along with many other devices.  This is especially common in
1046  * PCI-based systems with off-board IDE controller cards.
1047  *
1048  * The IDE driver uses the single global ide_lock spinlock to protect
1049  * access to the request queues, and to protect the hwgroup->busy flag.
1050  *
1051  * The first thread into the driver for a particular hwgroup sets the
1052  * hwgroup->busy flag to indicate that this hwgroup is now active,
1053  * and then initiates processing of the top request from the request queue.
1054  *
1055  * Other threads attempting entry notice the busy setting, and will simply
1056  * queue their new requests and exit immediately.  Note that hwgroup->busy
1057  * remains set even when the driver is merely awaiting the next interrupt.
1058  * Thus, the meaning is "this hwgroup is busy processing a request".
1059  *
1060  * When processing of a request completes, the completing thread or IRQ-handler
1061  * will start the next request from the queue.  If no more work remains,
1062  * the driver will clear the hwgroup->busy flag and exit.
1063  *
1064  * The ide_lock (spinlock) is used to protect all access to the
1065  * hwgroup->busy flag, but is otherwise not needed for most processing in
1066  * the driver.  This makes the driver much more friendlier to shared IRQs
1067  * than previous designs, while remaining 100% (?) SMP safe and capable.
1068  */
1069 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1070 {
1071         ide_drive_t     *drive;
1072         ide_hwif_t      *hwif;
1073         struct request  *rq;
1074         ide_startstop_t startstop;
1075         int             loops = 0;
1076
1077         /* for atari only: POSSIBLY BROKEN HERE(?) */
1078         ide_get_lock(ide_intr, hwgroup);
1079
1080         /* caller must own ide_lock */
1081         BUG_ON(!irqs_disabled());
1082
1083         while (!hwgroup->busy) {
1084                 hwgroup->busy = 1;
1085                 drive = choose_drive(hwgroup);
1086                 if (drive == NULL) {
1087                         int sleeping = 0;
1088                         unsigned long sleep = 0; /* shut up, gcc */
1089                         hwgroup->rq = NULL;
1090                         drive = hwgroup->drive;
1091                         do {
1092                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1093                                         sleeping = 1;
1094                                         sleep = drive->sleep;
1095                                 }
1096                         } while ((drive = drive->next) != hwgroup->drive);
1097                         if (sleeping) {
1098                 /*
1099                  * Take a short snooze, and then wake up this hwgroup again.
1100                  * This gives other hwgroups on the same a chance to
1101                  * play fairly with us, just in case there are big differences
1102                  * in relative throughputs.. don't want to hog the cpu too much.
1103                  */
1104                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1105                                         sleep = jiffies + WAIT_MIN_SLEEP;
1106 #if 1
1107                                 if (timer_pending(&hwgroup->timer))
1108                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1109 #endif
1110                                 /* so that ide_timer_expiry knows what to do */
1111                                 hwgroup->sleeping = 1;
1112                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1113                                 mod_timer(&hwgroup->timer, sleep);
1114                                 /* we purposely leave hwgroup->busy==1
1115                                  * while sleeping */
1116                         } else {
1117                                 /* Ugly, but how can we sleep for the lock
1118                                  * otherwise? perhaps from tq_disk?
1119                                  */
1120
1121                                 /* for atari only */
1122                                 ide_release_lock();
1123                                 hwgroup->busy = 0;
1124                         }
1125
1126                         /* no more work for this hwgroup (for now) */
1127                         return;
1128                 }
1129         again:
1130                 hwif = HWIF(drive);
1131                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1132                         /*
1133                          * set nIEN for previous hwif, drives in the
1134                          * quirk_list may not like intr setups/cleanups
1135                          */
1136                         if (drive->quirk_list != 1)
1137                                 ide_set_irq(drive, 0);
1138                 }
1139                 hwgroup->hwif = hwif;
1140                 hwgroup->drive = drive;
1141                 drive->sleeping = 0;
1142                 drive->service_start = jiffies;
1143
1144                 if (blk_queue_plugged(drive->queue)) {
1145                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1146                         break;
1147                 }
1148
1149                 /*
1150                  * we know that the queue isn't empty, but this can happen
1151                  * if the q->prep_rq_fn() decides to kill a request
1152                  */
1153                 rq = elv_next_request(drive->queue);
1154                 if (!rq) {
1155                         hwgroup->busy = 0;
1156                         break;
1157                 }
1158
1159                 /*
1160                  * Sanity: don't accept a request that isn't a PM request
1161                  * if we are currently power managed. This is very important as
1162                  * blk_stop_queue() doesn't prevent the elv_next_request()
1163                  * above to return us whatever is in the queue. Since we call
1164                  * ide_do_request() ourselves, we end up taking requests while
1165                  * the queue is blocked...
1166                  * 
1167                  * We let requests forced at head of queue with ide-preempt
1168                  * though. I hope that doesn't happen too much, hopefully not
1169                  * unless the subdriver triggers such a thing in its own PM
1170                  * state machine.
1171                  *
1172                  * We count how many times we loop here to make sure we service
1173                  * all drives in the hwgroup without looping for ever
1174                  */
1175                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1176                         drive = drive->next ? drive->next : hwgroup->drive;
1177                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1178                                 goto again;
1179                         /* We clear busy, there should be no pending ATA command at this point. */
1180                         hwgroup->busy = 0;
1181                         break;
1182                 }
1183
1184                 hwgroup->rq = rq;
1185
1186                 /*
1187                  * Some systems have trouble with IDE IRQs arriving while
1188                  * the driver is still setting things up.  So, here we disable
1189                  * the IRQ used by this interface while the request is being started.
1190                  * This may look bad at first, but pretty much the same thing
1191                  * happens anyway when any interrupt comes in, IDE or otherwise
1192                  *  -- the kernel masks the IRQ while it is being handled.
1193                  */
1194                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1195                         disable_irq_nosync(hwif->irq);
1196                 spin_unlock(&ide_lock);
1197                 local_irq_enable_in_hardirq();
1198                         /* allow other IRQs while we start this request */
1199                 startstop = start_request(drive, rq);
1200                 spin_lock_irq(&ide_lock);
1201                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1202                         enable_irq(hwif->irq);
1203                 if (startstop == ide_stopped)
1204                         hwgroup->busy = 0;
1205         }
1206 }
1207
1208 /*
1209  * Passes the stuff to ide_do_request
1210  */
1211 void do_ide_request(struct request_queue *q)
1212 {
1213         ide_drive_t *drive = q->queuedata;
1214
1215         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1216 }
1217
1218 /*
1219  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1220  * retry the current request in pio mode instead of risking tossing it
1221  * all away
1222  */
1223 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1224 {
1225         ide_hwif_t *hwif = HWIF(drive);
1226         struct request *rq;
1227         ide_startstop_t ret = ide_stopped;
1228
1229         /*
1230          * end current dma transaction
1231          */
1232
1233         if (error < 0) {
1234                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1235                 (void)hwif->dma_ops->dma_end(drive);
1236                 ret = ide_error(drive, "dma timeout error",
1237                                 ide_read_status(drive));
1238         } else {
1239                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1240                 hwif->dma_ops->dma_timeout(drive);
1241         }
1242
1243         /*
1244          * disable dma for now, but remember that we did so because of
1245          * a timeout -- we'll reenable after we finish this next request
1246          * (or rather the first chunk of it) in pio.
1247          */
1248         drive->retry_pio++;
1249         drive->state = DMA_PIO_RETRY;
1250         ide_dma_off_quietly(drive);
1251
1252         /*
1253          * un-busy drive etc (hwgroup->busy is cleared on return) and
1254          * make sure request is sane
1255          */
1256         rq = HWGROUP(drive)->rq;
1257
1258         if (!rq)
1259                 goto out;
1260
1261         HWGROUP(drive)->rq = NULL;
1262
1263         rq->errors = 0;
1264
1265         if (!rq->bio)
1266                 goto out;
1267
1268         rq->sector = rq->bio->bi_sector;
1269         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1270         rq->hard_cur_sectors = rq->current_nr_sectors;
1271         rq->buffer = bio_data(rq->bio);
1272 out:
1273         return ret;
1274 }
1275
1276 /**
1277  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1278  *      @data: timer callback magic (hwgroup)
1279  *
1280  *      An IDE command has timed out before the expected drive return
1281  *      occurred. At this point we attempt to clean up the current
1282  *      mess. If the current handler includes an expiry handler then
1283  *      we invoke the expiry handler, and providing it is happy the
1284  *      work is done. If that fails we apply generic recovery rules
1285  *      invoking the handler and checking the drive DMA status. We
1286  *      have an excessively incestuous relationship with the DMA
1287  *      logic that wants cleaning up.
1288  */
1289  
1290 void ide_timer_expiry (unsigned long data)
1291 {
1292         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1293         ide_handler_t   *handler;
1294         ide_expiry_t    *expiry;
1295         unsigned long   flags;
1296         unsigned long   wait = -1;
1297
1298         spin_lock_irqsave(&ide_lock, flags);
1299
1300         if (((handler = hwgroup->handler) == NULL) ||
1301             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1302                 /*
1303                  * Either a marginal timeout occurred
1304                  * (got the interrupt just as timer expired),
1305                  * or we were "sleeping" to give other devices a chance.
1306                  * Either way, we don't really want to complain about anything.
1307                  */
1308                 if (hwgroup->sleeping) {
1309                         hwgroup->sleeping = 0;
1310                         hwgroup->busy = 0;
1311                 }
1312         } else {
1313                 ide_drive_t *drive = hwgroup->drive;
1314                 if (!drive) {
1315                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1316                         hwgroup->handler = NULL;
1317                 } else {
1318                         ide_hwif_t *hwif;
1319                         ide_startstop_t startstop = ide_stopped;
1320                         if (!hwgroup->busy) {
1321                                 hwgroup->busy = 1;      /* paranoia */
1322                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1323                         }
1324                         if ((expiry = hwgroup->expiry) != NULL) {
1325                                 /* continue */
1326                                 if ((wait = expiry(drive)) > 0) {
1327                                         /* reset timer */
1328                                         hwgroup->timer.expires  = jiffies + wait;
1329                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1330                                         add_timer(&hwgroup->timer);
1331                                         spin_unlock_irqrestore(&ide_lock, flags);
1332                                         return;
1333                                 }
1334                         }
1335                         hwgroup->handler = NULL;
1336                         /*
1337                          * We need to simulate a real interrupt when invoking
1338                          * the handler() function, which means we need to
1339                          * globally mask the specific IRQ:
1340                          */
1341                         spin_unlock(&ide_lock);
1342                         hwif  = HWIF(drive);
1343                         /* disable_irq_nosync ?? */
1344                         disable_irq(hwif->irq);
1345                         /* local CPU only,
1346                          * as if we were handling an interrupt */
1347                         local_irq_disable();
1348                         if (hwgroup->polling) {
1349                                 startstop = handler(drive);
1350                         } else if (drive_is_ready(drive)) {
1351                                 if (drive->waiting_for_dma)
1352                                         hwif->dma_ops->dma_lost_irq(drive);
1353                                 (void)ide_ack_intr(hwif);
1354                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1355                                 startstop = handler(drive);
1356                         } else {
1357                                 if (drive->waiting_for_dma) {
1358                                         startstop = ide_dma_timeout_retry(drive, wait);
1359                                 } else
1360                                         startstop =
1361                                         ide_error(drive, "irq timeout",
1362                                                   ide_read_status(drive));
1363                         }
1364                         drive->service_time = jiffies - drive->service_start;
1365                         spin_lock_irq(&ide_lock);
1366                         enable_irq(hwif->irq);
1367                         if (startstop == ide_stopped)
1368                                 hwgroup->busy = 0;
1369                 }
1370         }
1371         ide_do_request(hwgroup, IDE_NO_IRQ);
1372         spin_unlock_irqrestore(&ide_lock, flags);
1373 }
1374
1375 /**
1376  *      unexpected_intr         -       handle an unexpected IDE interrupt
1377  *      @irq: interrupt line
1378  *      @hwgroup: hwgroup being processed
1379  *
1380  *      There's nothing really useful we can do with an unexpected interrupt,
1381  *      other than reading the status register (to clear it), and logging it.
1382  *      There should be no way that an irq can happen before we're ready for it,
1383  *      so we needn't worry much about losing an "important" interrupt here.
1384  *
1385  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1386  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1387  *      looks "good", we just ignore the interrupt completely.
1388  *
1389  *      This routine assumes __cli() is in effect when called.
1390  *
1391  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1392  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1393  *      we could screw up by interfering with a new request being set up for 
1394  *      irq15.
1395  *
1396  *      In reality, this is a non-issue.  The new command is not sent unless 
1397  *      the drive is ready to accept one, in which case we know the drive is
1398  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1399  *      before completing the issuance of any new drive command, so we will not
1400  *      be accidentally invoked as a result of any valid command completion
1401  *      interrupt.
1402  *
1403  *      Note that we must walk the entire hwgroup here. We know which hwif
1404  *      is doing the current command, but we don't know which hwif burped
1405  *      mysteriously.
1406  */
1407  
1408 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1409 {
1410         u8 stat;
1411         ide_hwif_t *hwif = hwgroup->hwif;
1412
1413         /*
1414          * handle the unexpected interrupt
1415          */
1416         do {
1417                 if (hwif->irq == irq) {
1418                         stat = hwif->INB(hwif->io_ports.status_addr);
1419                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1420                                 /* Try to not flood the console with msgs */
1421                                 static unsigned long last_msgtime, count;
1422                                 ++count;
1423                                 if (time_after(jiffies, last_msgtime + HZ)) {
1424                                         last_msgtime = jiffies;
1425                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1426                                                 "status=0x%02x, count=%ld\n",
1427                                                 hwif->name,
1428                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1429                                 }
1430                         }
1431                 }
1432         } while ((hwif = hwif->next) != hwgroup->hwif);
1433 }
1434
1435 /**
1436  *      ide_intr        -       default IDE interrupt handler
1437  *      @irq: interrupt number
1438  *      @dev_id: hwif group
1439  *      @regs: unused weirdness from the kernel irq layer
1440  *
1441  *      This is the default IRQ handler for the IDE layer. You should
1442  *      not need to override it. If you do be aware it is subtle in
1443  *      places
1444  *
1445  *      hwgroup->hwif is the interface in the group currently performing
1446  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1447  *      the IRQ handler to call. As we issue a command the handlers
1448  *      step through multiple states, reassigning the handler to the
1449  *      next step in the process. Unlike a smart SCSI controller IDE
1450  *      expects the main processor to sequence the various transfer
1451  *      stages. We also manage a poll timer to catch up with most
1452  *      timeout situations. There are still a few where the handlers
1453  *      don't ever decide to give up.
1454  *
1455  *      The handler eventually returns ide_stopped to indicate the
1456  *      request completed. At this point we issue the next request
1457  *      on the hwgroup and the process begins again.
1458  */
1459  
1460 irqreturn_t ide_intr (int irq, void *dev_id)
1461 {
1462         unsigned long flags;
1463         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1464         ide_hwif_t *hwif;
1465         ide_drive_t *drive;
1466         ide_handler_t *handler;
1467         ide_startstop_t startstop;
1468
1469         spin_lock_irqsave(&ide_lock, flags);
1470         hwif = hwgroup->hwif;
1471
1472         if (!ide_ack_intr(hwif)) {
1473                 spin_unlock_irqrestore(&ide_lock, flags);
1474                 return IRQ_NONE;
1475         }
1476
1477         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1478                 /*
1479                  * Not expecting an interrupt from this drive.
1480                  * That means this could be:
1481                  *      (1) an interrupt from another PCI device
1482                  *      sharing the same PCI INT# as us.
1483                  * or   (2) a drive just entered sleep or standby mode,
1484                  *      and is interrupting to let us know.
1485                  * or   (3) a spurious interrupt of unknown origin.
1486                  *
1487                  * For PCI, we cannot tell the difference,
1488                  * so in that case we just ignore it and hope it goes away.
1489                  *
1490                  * FIXME: unexpected_intr should be hwif-> then we can
1491                  * remove all the ifdef PCI crap
1492                  */
1493 #ifdef CONFIG_BLK_DEV_IDEPCI
1494                 if (hwif->chipset != ide_pci)
1495 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1496                 {
1497                         /*
1498                          * Probably not a shared PCI interrupt,
1499                          * so we can safely try to do something about it:
1500                          */
1501                         unexpected_intr(irq, hwgroup);
1502 #ifdef CONFIG_BLK_DEV_IDEPCI
1503                 } else {
1504                         /*
1505                          * Whack the status register, just in case
1506                          * we have a leftover pending IRQ.
1507                          */
1508                         (void) hwif->INB(hwif->io_ports.status_addr);
1509 #endif /* CONFIG_BLK_DEV_IDEPCI */
1510                 }
1511                 spin_unlock_irqrestore(&ide_lock, flags);
1512                 return IRQ_NONE;
1513         }
1514         drive = hwgroup->drive;
1515         if (!drive) {
1516                 /*
1517                  * This should NEVER happen, and there isn't much
1518                  * we could do about it here.
1519                  *
1520                  * [Note - this can occur if the drive is hot unplugged]
1521                  */
1522                 spin_unlock_irqrestore(&ide_lock, flags);
1523                 return IRQ_HANDLED;
1524         }
1525         if (!drive_is_ready(drive)) {
1526                 /*
1527                  * This happens regularly when we share a PCI IRQ with
1528                  * another device.  Unfortunately, it can also happen
1529                  * with some buggy drives that trigger the IRQ before
1530                  * their status register is up to date.  Hopefully we have
1531                  * enough advance overhead that the latter isn't a problem.
1532                  */
1533                 spin_unlock_irqrestore(&ide_lock, flags);
1534                 return IRQ_NONE;
1535         }
1536         if (!hwgroup->busy) {
1537                 hwgroup->busy = 1;      /* paranoia */
1538                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1539         }
1540         hwgroup->handler = NULL;
1541         hwgroup->req_gen++;
1542         del_timer(&hwgroup->timer);
1543         spin_unlock(&ide_lock);
1544
1545         /* Some controllers might set DMA INTR no matter DMA or PIO;
1546          * bmdma status might need to be cleared even for
1547          * PIO interrupts to prevent spurious/lost irq.
1548          */
1549         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1550                 /* ide_dma_end() needs bmdma status for error checking.
1551                  * So, skip clearing bmdma status here and leave it
1552                  * to ide_dma_end() if this is dma interrupt.
1553                  */
1554                 hwif->ide_dma_clear_irq(drive);
1555
1556         if (drive->unmask)
1557                 local_irq_enable_in_hardirq();
1558         /* service this interrupt, may set handler for next interrupt */
1559         startstop = handler(drive);
1560         spin_lock_irq(&ide_lock);
1561
1562         /*
1563          * Note that handler() may have set things up for another
1564          * interrupt to occur soon, but it cannot happen until
1565          * we exit from this routine, because it will be the
1566          * same irq as is currently being serviced here, and Linux
1567          * won't allow another of the same (on any CPU) until we return.
1568          */
1569         drive->service_time = jiffies - drive->service_start;
1570         if (startstop == ide_stopped) {
1571                 if (hwgroup->handler == NULL) { /* paranoia */
1572                         hwgroup->busy = 0;
1573                         ide_do_request(hwgroup, hwif->irq);
1574                 } else {
1575                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1576                                 "on exit\n", drive->name);
1577                 }
1578         }
1579         spin_unlock_irqrestore(&ide_lock, flags);
1580         return IRQ_HANDLED;
1581 }
1582
1583 /**
1584  *      ide_init_drive_cmd      -       initialize a drive command request
1585  *      @rq: request object
1586  *
1587  *      Initialize a request before we fill it in and send it down to
1588  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1589  *      now it doesn't do a lot, but if that changes abusers will have a
1590  *      nasty surprise.
1591  */
1592
1593 void ide_init_drive_cmd (struct request *rq)
1594 {
1595         memset(rq, 0, sizeof(*rq));
1596         rq->ref_count = 1;
1597 }
1598
1599 EXPORT_SYMBOL(ide_init_drive_cmd);
1600
1601 /**
1602  *      ide_do_drive_cmd        -       issue IDE special command
1603  *      @drive: device to issue command
1604  *      @rq: request to issue
1605  *      @action: action for processing
1606  *
1607  *      This function issues a special IDE device request
1608  *      onto the request queue.
1609  *
1610  *      If action is ide_wait, then the rq is queued at the end of the
1611  *      request queue, and the function sleeps until it has been processed.
1612  *      This is for use when invoked from an ioctl handler.
1613  *
1614  *      If action is ide_preempt, then the rq is queued at the head of
1615  *      the request queue, displacing the currently-being-processed
1616  *      request and this function returns immediately without waiting
1617  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1618  *      intended for careful use by the ATAPI tape/cdrom driver code.
1619  *
1620  *      If action is ide_end, then the rq is queued at the end of the
1621  *      request queue, and the function returns immediately without waiting
1622  *      for the new rq to be completed. This is again intended for careful
1623  *      use by the ATAPI tape/cdrom driver code.
1624  */
1625  
1626 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1627 {
1628         unsigned long flags;
1629         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1630         DECLARE_COMPLETION_ONSTACK(wait);
1631         int where = ELEVATOR_INSERT_BACK, err;
1632         int must_wait = (action == ide_wait || action == ide_head_wait);
1633
1634         rq->errors = 0;
1635
1636         /*
1637          * we need to hold an extra reference to request for safe inspection
1638          * after completion
1639          */
1640         if (must_wait) {
1641                 rq->ref_count++;
1642                 rq->end_io_data = &wait;
1643                 rq->end_io = blk_end_sync_rq;
1644         }
1645
1646         spin_lock_irqsave(&ide_lock, flags);
1647         if (action == ide_preempt)
1648                 hwgroup->rq = NULL;
1649         if (action == ide_preempt || action == ide_head_wait) {
1650                 where = ELEVATOR_INSERT_FRONT;
1651                 rq->cmd_flags |= REQ_PREEMPT;
1652         }
1653         __elv_add_request(drive->queue, rq, where, 0);
1654         ide_do_request(hwgroup, IDE_NO_IRQ);
1655         spin_unlock_irqrestore(&ide_lock, flags);
1656
1657         err = 0;
1658         if (must_wait) {
1659                 wait_for_completion(&wait);
1660                 if (rq->errors)
1661                         err = -EIO;
1662
1663                 blk_put_request(rq);
1664         }
1665
1666         return err;
1667 }
1668
1669 EXPORT_SYMBOL(ide_do_drive_cmd);
1670
1671 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1672 {
1673         ide_task_t task;
1674
1675         memset(&task, 0, sizeof(task));
1676         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1677                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1678         task.tf.feature = dma;          /* Use PIO/DMA */
1679         task.tf.lbam    = bcount & 0xff;
1680         task.tf.lbah    = (bcount >> 8) & 0xff;
1681
1682         ide_tf_load(drive, &task);
1683 }
1684
1685 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);