4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
87 if (!__blk_end_request(rq, error, nr_bytes)) {
89 HWGROUP(drive)->rq = NULL;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
109 unsigned int nr_bytes = nr_sectors << 9;
115 * room for locking improvements here, the calls below don't
116 * need the queue lock held at all
118 spin_lock_irqsave(&ide_lock, flags);
119 rq = HWGROUP(drive)->rq;
122 if (blk_pc_request(rq))
123 nr_bytes = rq->data_len;
125 nr_bytes = rq->hard_cur_sectors << 9;
128 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
130 spin_unlock_irqrestore(&ide_lock, flags);
133 EXPORT_SYMBOL(ide_end_request);
135 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
137 struct request_pm_state *pm = rq->data;
140 printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
141 drive->name, pm->pm_step);
143 if (drive->media != ide_disk)
146 switch (pm->pm_step) {
147 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
148 if (pm->pm_state == PM_EVENT_FREEZE)
149 pm->pm_step = IDE_PM_COMPLETED;
151 pm->pm_step = IDE_PM_STANDBY;
153 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
154 pm->pm_step = IDE_PM_COMPLETED;
156 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
157 pm->pm_step = IDE_PM_IDLE;
159 case IDE_PM_IDLE: /* Resume step 2 (idle)*/
160 pm->pm_step = IDE_PM_RESTORE_DMA;
165 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
167 struct request_pm_state *pm = rq->data;
168 ide_task_t *args = rq->special;
170 memset(args, 0, sizeof(*args));
172 switch (pm->pm_step) {
173 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
174 if (drive->media != ide_disk)
176 /* Not supported? Switch to next step now. */
177 if (ata_id_flush_enabled(drive->id) == 0 ||
178 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
179 ide_complete_power_step(drive, rq);
182 if (ata_id_flush_ext_enabled(drive->id))
183 args->tf.command = ATA_CMD_FLUSH_EXT;
185 args->tf.command = ATA_CMD_FLUSH;
187 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
188 args->tf.command = ATA_CMD_STANDBYNOW1;
190 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
191 ide_set_max_pio(drive);
193 * skip IDE_PM_IDLE for ATAPI devices
195 if (drive->media != ide_disk)
196 pm->pm_step = IDE_PM_RESTORE_DMA;
198 ide_complete_power_step(drive, rq);
200 case IDE_PM_IDLE: /* Resume step 2 (idle) */
201 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
203 case IDE_PM_RESTORE_DMA: /* Resume step 3 (restore DMA) */
205 * Right now, all we do is call ide_set_dma(drive),
206 * we could be smarter and check for current xfer_speed
207 * in struct drive etc...
209 if (drive->hwif->dma_ops == NULL)
212 * TODO: respect IDE_DFLAG_USING_DMA
218 pm->pm_step = IDE_PM_COMPLETED;
222 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
223 args->data_phase = TASKFILE_NO_DATA;
224 return do_rw_taskfile(drive, args);
228 * ide_end_dequeued_request - complete an IDE I/O
229 * @drive: IDE device for the I/O
231 * @nr_sectors: number of sectors completed
233 * Complete an I/O that is no longer on the request queue. This
234 * typically occurs when we pull the request and issue a REQUEST_SENSE.
235 * We must still finish the old request but we must not tamper with the
236 * queue in the meantime.
238 * NOTE: This path does not handle barrier, but barrier is not supported
242 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
243 int uptodate, int nr_sectors)
248 spin_lock_irqsave(&ide_lock, flags);
249 BUG_ON(!blk_rq_started(rq));
250 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
251 spin_unlock_irqrestore(&ide_lock, flags);
255 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
259 * ide_complete_pm_request - end the current Power Management request
260 * @drive: target drive
263 * This function cleans up the current PM request and stops the queue
266 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
271 printk("%s: completing PM request, %s\n", drive->name,
272 blk_pm_suspend_request(rq) ? "suspend" : "resume");
274 spin_lock_irqsave(&ide_lock, flags);
275 if (blk_pm_suspend_request(rq)) {
276 blk_stop_queue(drive->queue);
278 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
279 blk_start_queue(drive->queue);
281 HWGROUP(drive)->rq = NULL;
282 if (__blk_end_request(rq, 0, 0))
284 spin_unlock_irqrestore(&ide_lock, flags);
288 * ide_end_drive_cmd - end an explicit drive command
293 * Clean up after success/failure of an explicit drive command.
294 * These get thrown onto the queue so they are synchronized with
295 * real I/O operations on the drive.
297 * In LBA48 mode we have to read the register set twice to get
298 * all the extra information out.
301 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
306 spin_lock_irqsave(&ide_lock, flags);
307 rq = HWGROUP(drive)->rq;
308 spin_unlock_irqrestore(&ide_lock, flags);
310 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
311 ide_task_t *task = (ide_task_t *)rq->special;
314 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
317 struct ide_taskfile *tf = &task->tf;
322 drive->hwif->tp_ops->tf_read(drive, task);
324 if (task->tf_flags & IDE_TFLAG_DYN)
327 } else if (blk_pm_request(rq)) {
328 struct request_pm_state *pm = rq->data;
330 ide_complete_power_step(drive, rq);
331 if (pm->pm_step == IDE_PM_COMPLETED)
332 ide_complete_pm_request(drive, rq);
336 spin_lock_irqsave(&ide_lock, flags);
337 HWGROUP(drive)->rq = NULL;
339 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
342 spin_unlock_irqrestore(&ide_lock, flags);
345 EXPORT_SYMBOL(ide_end_drive_cmd);
347 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
352 drv = *(ide_driver_t **)rq->rq_disk->private_data;
353 drv->end_request(drive, 0, 0);
355 ide_end_request(drive, 0, 0);
358 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
360 ide_hwif_t *hwif = drive->hwif;
362 if ((stat & ATA_BUSY) ||
363 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
364 /* other bits are useless when BUSY */
365 rq->errors |= ERROR_RESET;
366 } else if (stat & ATA_ERR) {
367 /* err has different meaning on cdrom and tape */
368 if (err == ATA_ABORTED) {
369 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
370 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
371 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
373 } else if ((err & BAD_CRC) == BAD_CRC) {
374 /* UDMA crc error, just retry the operation */
376 } else if (err & (ATA_BBK | ATA_UNC)) {
377 /* retries won't help these */
378 rq->errors = ERROR_MAX;
379 } else if (err & ATA_TRK0NF) {
380 /* help it find track zero */
381 rq->errors |= ERROR_RECAL;
385 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
386 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
387 int nsect = drive->mult_count ? drive->mult_count : 1;
389 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
392 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
393 ide_kill_rq(drive, rq);
397 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
398 rq->errors |= ERROR_RESET;
400 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
402 return ide_do_reset(drive);
405 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
406 drive->special.b.recalibrate = 1;
413 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
415 ide_hwif_t *hwif = drive->hwif;
417 if ((stat & ATA_BUSY) ||
418 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
419 /* other bits are useless when BUSY */
420 rq->errors |= ERROR_RESET;
422 /* add decoding error stuff */
425 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
427 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
429 if (rq->errors >= ERROR_MAX) {
430 ide_kill_rq(drive, rq);
432 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
434 return ide_do_reset(drive);
443 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
445 if (drive->media == ide_disk)
446 return ide_ata_error(drive, rq, stat, err);
447 return ide_atapi_error(drive, rq, stat, err);
450 EXPORT_SYMBOL_GPL(__ide_error);
453 * ide_error - handle an error on the IDE
454 * @drive: drive the error occurred on
455 * @msg: message to report
458 * ide_error() takes action based on the error returned by the drive.
459 * For normal I/O that may well include retries. We deal with
460 * both new-style (taskfile) and old style command handling here.
461 * In the case of taskfile command handling there is work left to
465 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
470 err = ide_dump_status(drive, msg, stat);
472 if ((rq = HWGROUP(drive)->rq) == NULL)
475 /* retry only "normal" I/O: */
476 if (!blk_fs_request(rq)) {
478 ide_end_drive_cmd(drive, stat, err);
485 drv = *(ide_driver_t **)rq->rq_disk->private_data;
486 return drv->error(drive, rq, stat, err);
488 return __ide_error(drive, rq, stat, err);
491 EXPORT_SYMBOL_GPL(ide_error);
493 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
495 tf->nsect = drive->sect;
496 tf->lbal = drive->sect;
497 tf->lbam = drive->cyl;
498 tf->lbah = drive->cyl >> 8;
499 tf->device = (drive->head - 1) | drive->select;
500 tf->command = ATA_CMD_INIT_DEV_PARAMS;
503 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
505 tf->nsect = drive->sect;
506 tf->command = ATA_CMD_RESTORE;
509 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
511 tf->nsect = drive->mult_req;
512 tf->command = ATA_CMD_SET_MULTI;
515 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
517 special_t *s = &drive->special;
520 memset(&args, 0, sizeof(ide_task_t));
521 args.data_phase = TASKFILE_NO_DATA;
523 if (s->b.set_geometry) {
524 s->b.set_geometry = 0;
525 ide_tf_set_specify_cmd(drive, &args.tf);
526 } else if (s->b.recalibrate) {
527 s->b.recalibrate = 0;
528 ide_tf_set_restore_cmd(drive, &args.tf);
529 } else if (s->b.set_multmode) {
530 s->b.set_multmode = 0;
531 ide_tf_set_setmult_cmd(drive, &args.tf);
533 int special = s->all;
535 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
539 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
540 IDE_TFLAG_CUSTOM_HANDLER;
542 do_rw_taskfile(drive, &args);
548 * do_special - issue some special commands
549 * @drive: drive the command is for
551 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
552 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
554 * It used to do much more, but has been scaled back.
557 static ide_startstop_t do_special (ide_drive_t *drive)
559 special_t *s = &drive->special;
562 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
564 if (drive->media == ide_disk)
565 return ide_disk_special(drive);
572 void ide_map_sg(ide_drive_t *drive, struct request *rq)
574 ide_hwif_t *hwif = drive->hwif;
575 struct scatterlist *sg = hwif->sg_table;
577 if (hwif->sg_mapped) /* needed by ide-scsi */
580 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
581 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
583 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
588 EXPORT_SYMBOL_GPL(ide_map_sg);
590 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
592 ide_hwif_t *hwif = drive->hwif;
594 hwif->nsect = hwif->nleft = rq->nr_sectors;
599 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
602 * execute_drive_command - issue special drive command
603 * @drive: the drive to issue the command on
604 * @rq: the request structure holding the command
606 * execute_drive_cmd() issues a special drive command, usually
607 * initiated by ioctl() from the external hdparm program. The
608 * command can be a drive command, drive task or taskfile
609 * operation. Weirdly you can call it with NULL to wait for
610 * all commands to finish. Don't do this as that is due to change
613 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
616 ide_hwif_t *hwif = HWIF(drive);
617 ide_task_t *task = rq->special;
620 hwif->data_phase = task->data_phase;
622 switch (hwif->data_phase) {
623 case TASKFILE_MULTI_OUT:
625 case TASKFILE_MULTI_IN:
627 ide_init_sg_cmd(drive, rq);
628 ide_map_sg(drive, rq);
633 return do_rw_taskfile(drive, task);
637 * NULL is actually a valid way of waiting for
638 * all current requests to be flushed from the queue.
641 printk("%s: DRIVE_CMD (null)\n", drive->name);
643 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
644 ide_read_error(drive));
649 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
652 struct request_queue *q = drive->queue;
656 if (!(setting->flags & DS_SYNC))
657 return setting->set(drive, arg);
659 rq = blk_get_request(q, READ, __GFP_WAIT);
660 rq->cmd_type = REQ_TYPE_SPECIAL;
662 rq->cmd[0] = REQ_DEVSET_EXEC;
663 *(int *)&rq->cmd[1] = arg;
664 rq->special = setting->set;
666 if (blk_execute_rq(q, NULL, rq, 0))
672 EXPORT_SYMBOL_GPL(ide_devset_execute);
674 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
678 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
680 struct ide_taskfile *tf = &task.tf;
682 memset(&task, 0, sizeof(task));
683 if (cmd == REQ_PARK_HEADS) {
684 drive->sleep = *(unsigned long *)rq->special;
685 drive->dev_flags |= IDE_DFLAG_SLEEPING;
686 tf->command = ATA_CMD_IDLEIMMEDIATE;
691 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
692 } else /* cmd == REQ_UNPARK_HEADS */
693 tf->command = ATA_CMD_CHK_POWER;
695 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
697 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
698 return do_rw_taskfile(drive, &task);
702 case REQ_DEVSET_EXEC:
704 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
706 err = setfunc(drive, *(int *)&rq->cmd[1]);
711 ide_end_request(drive, err, 0);
714 case REQ_DRIVE_RESET:
715 return ide_do_reset(drive);
717 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
718 ide_end_request(drive, 0, 0);
723 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
725 struct request_pm_state *pm = rq->data;
727 if (blk_pm_suspend_request(rq) &&
728 pm->pm_step == IDE_PM_START_SUSPEND)
729 /* Mark drive blocked when starting the suspend sequence. */
730 drive->dev_flags |= IDE_DFLAG_BLOCKED;
731 else if (blk_pm_resume_request(rq) &&
732 pm->pm_step == IDE_PM_START_RESUME) {
734 * The first thing we do on wakeup is to wait for BSY bit to
735 * go away (with a looong timeout) as a drive on this hwif may
736 * just be POSTing itself.
737 * We do that before even selecting as the "other" device on
738 * the bus may be broken enough to walk on our toes at this
741 ide_hwif_t *hwif = drive->hwif;
744 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
746 rc = ide_wait_not_busy(hwif, 35000);
748 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
750 hwif->tp_ops->set_irq(hwif, 1);
751 rc = ide_wait_not_busy(hwif, 100000);
753 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
758 * start_request - start of I/O and command issuing for IDE
760 * start_request() initiates handling of a new I/O request. It
761 * accepts commands and I/O (read/write) requests.
763 * FIXME: this function needs a rename
766 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
768 ide_startstop_t startstop;
770 BUG_ON(!blk_rq_started(rq));
773 printk("%s: start_request: current=0x%08lx\n",
774 HWIF(drive)->name, (unsigned long) rq);
777 /* bail early if we've exceeded max_failures */
778 if (drive->max_failures && (drive->failures > drive->max_failures)) {
779 rq->cmd_flags |= REQ_FAILED;
783 if (blk_pm_request(rq))
784 ide_check_pm_state(drive, rq);
787 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
788 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
789 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
792 if (!drive->special.all) {
796 * We reset the drive so we need to issue a SETFEATURES.
797 * Do it _after_ do_special() restored device parameters.
799 if (drive->current_speed == 0xff)
800 ide_config_drive_speed(drive, drive->desired_speed);
802 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
803 return execute_drive_cmd(drive, rq);
804 else if (blk_pm_request(rq)) {
805 struct request_pm_state *pm = rq->data;
807 printk("%s: start_power_step(step: %d)\n",
808 drive->name, pm->pm_step);
810 startstop = ide_start_power_step(drive, rq);
811 if (startstop == ide_stopped &&
812 pm->pm_step == IDE_PM_COMPLETED)
813 ide_complete_pm_request(drive, rq);
815 } else if (!rq->rq_disk && blk_special_request(rq))
817 * TODO: Once all ULDs have been modified to
818 * check for specific op codes rather than
819 * blindly accepting any special request, the
820 * check for ->rq_disk above may be replaced
821 * by a more suitable mechanism or even
824 return ide_special_rq(drive, rq);
826 drv = *(ide_driver_t **)rq->rq_disk->private_data;
828 return drv->do_request(drive, rq, rq->sector);
830 return do_special(drive);
832 ide_kill_rq(drive, rq);
837 * ide_stall_queue - pause an IDE device
838 * @drive: drive to stall
839 * @timeout: time to stall for (jiffies)
841 * ide_stall_queue() can be used by a drive to give excess bandwidth back
842 * to the hwgroup by sleeping for timeout jiffies.
845 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
847 if (timeout > WAIT_WORSTCASE)
848 timeout = WAIT_WORSTCASE;
849 drive->sleep = timeout + jiffies;
850 drive->dev_flags |= IDE_DFLAG_SLEEPING;
853 EXPORT_SYMBOL(ide_stall_queue);
855 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
858 * choose_drive - select a drive to service
859 * @hwgroup: hardware group to select on
861 * choose_drive() selects the next drive which will be serviced.
862 * This is necessary because the IDE layer can't issue commands
863 * to both drives on the same cable, unlike SCSI.
866 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
868 ide_drive_t *drive, *best;
872 drive = hwgroup->drive;
875 * drive is doing pre-flush, ordered write, post-flush sequence. even
876 * though that is 3 requests, it must be seen as a single transaction.
877 * we must not preempt this drive until that is complete
879 if (blk_queue_flushing(drive->queue)) {
881 * small race where queue could get replugged during
882 * the 3-request flush cycle, just yank the plug since
883 * we want it to finish asap
885 blk_remove_plug(drive->queue);
890 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
891 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
893 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
894 !elv_queue_empty(drive->queue)) {
896 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
897 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
898 if (!blk_queue_plugged(drive->queue))
902 } while ((drive = drive->next) != hwgroup->drive);
904 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
905 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
906 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
907 long t = (signed long)(WAKEUP(best) - jiffies);
908 if (t >= WAIT_MIN_SLEEP) {
910 * We *may* have some time to spare, but first let's see if
911 * someone can potentially benefit from our nice mood today..
915 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
916 && time_before(jiffies - best->service_time, WAKEUP(drive))
917 && time_before(WAKEUP(drive), jiffies + t))
919 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
922 } while ((drive = drive->next) != best);
929 * Issue a new request to a drive from hwgroup
930 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
932 * A hwgroup is a serialized group of IDE interfaces. Usually there is
933 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
934 * may have both interfaces in a single hwgroup to "serialize" access.
935 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
936 * together into one hwgroup for serialized access.
938 * Note also that several hwgroups can end up sharing a single IRQ,
939 * possibly along with many other devices. This is especially common in
940 * PCI-based systems with off-board IDE controller cards.
942 * The IDE driver uses the single global ide_lock spinlock to protect
943 * access to the request queues, and to protect the hwgroup->busy flag.
945 * The first thread into the driver for a particular hwgroup sets the
946 * hwgroup->busy flag to indicate that this hwgroup is now active,
947 * and then initiates processing of the top request from the request queue.
949 * Other threads attempting entry notice the busy setting, and will simply
950 * queue their new requests and exit immediately. Note that hwgroup->busy
951 * remains set even when the driver is merely awaiting the next interrupt.
952 * Thus, the meaning is "this hwgroup is busy processing a request".
954 * When processing of a request completes, the completing thread or IRQ-handler
955 * will start the next request from the queue. If no more work remains,
956 * the driver will clear the hwgroup->busy flag and exit.
958 * The ide_lock (spinlock) is used to protect all access to the
959 * hwgroup->busy flag, but is otherwise not needed for most processing in
960 * the driver. This makes the driver much more friendlier to shared IRQs
961 * than previous designs, while remaining 100% (?) SMP safe and capable.
963 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
968 ide_startstop_t startstop;
971 /* caller must own ide_lock */
972 BUG_ON(!irqs_disabled());
974 while (!hwgroup->busy) {
977 ide_get_lock(ide_intr, hwgroup);
978 drive = choose_drive(hwgroup);
981 unsigned long sleep = 0; /* shut up, gcc */
983 drive = hwgroup->drive;
985 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
987 time_before(drive->sleep, sleep))) {
989 sleep = drive->sleep;
991 } while ((drive = drive->next) != hwgroup->drive);
994 * Take a short snooze, and then wake up this hwgroup again.
995 * This gives other hwgroups on the same a chance to
996 * play fairly with us, just in case there are big differences
997 * in relative throughputs.. don't want to hog the cpu too much.
999 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1000 sleep = jiffies + WAIT_MIN_SLEEP;
1002 if (timer_pending(&hwgroup->timer))
1003 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1005 /* so that ide_timer_expiry knows what to do */
1006 hwgroup->sleeping = 1;
1007 hwgroup->req_gen_timer = hwgroup->req_gen;
1008 mod_timer(&hwgroup->timer, sleep);
1009 /* we purposely leave hwgroup->busy==1
1012 /* Ugly, but how can we sleep for the lock
1013 * otherwise? perhaps from tq_disk?
1016 /* for atari only */
1021 /* no more work for this hwgroup (for now) */
1026 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1028 * set nIEN for previous hwif, drives in the
1029 * quirk_list may not like intr setups/cleanups
1031 if (drive->quirk_list != 1)
1032 hwif->tp_ops->set_irq(hwif, 0);
1034 hwgroup->hwif = hwif;
1035 hwgroup->drive = drive;
1036 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1037 drive->service_start = jiffies;
1039 if (blk_queue_plugged(drive->queue)) {
1040 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1045 * we know that the queue isn't empty, but this can happen
1046 * if the q->prep_rq_fn() decides to kill a request
1048 rq = elv_next_request(drive->queue);
1055 * Sanity: don't accept a request that isn't a PM request
1056 * if we are currently power managed. This is very important as
1057 * blk_stop_queue() doesn't prevent the elv_next_request()
1058 * above to return us whatever is in the queue. Since we call
1059 * ide_do_request() ourselves, we end up taking requests while
1060 * the queue is blocked...
1062 * We let requests forced at head of queue with ide-preempt
1063 * though. I hope that doesn't happen too much, hopefully not
1064 * unless the subdriver triggers such a thing in its own PM
1067 * We count how many times we loop here to make sure we service
1068 * all drives in the hwgroup without looping for ever
1070 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1071 blk_pm_request(rq) == 0 &&
1072 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1073 drive = drive->next ? drive->next : hwgroup->drive;
1074 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1076 /* We clear busy, there should be no pending ATA command at this point. */
1084 * Some systems have trouble with IDE IRQs arriving while
1085 * the driver is still setting things up. So, here we disable
1086 * the IRQ used by this interface while the request is being started.
1087 * This may look bad at first, but pretty much the same thing
1088 * happens anyway when any interrupt comes in, IDE or otherwise
1089 * -- the kernel masks the IRQ while it is being handled.
1091 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1092 disable_irq_nosync(hwif->irq);
1093 spin_unlock(&ide_lock);
1094 local_irq_enable_in_hardirq();
1095 /* allow other IRQs while we start this request */
1096 startstop = start_request(drive, rq);
1097 spin_lock_irq(&ide_lock);
1098 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1099 enable_irq(hwif->irq);
1100 if (startstop == ide_stopped)
1106 * Passes the stuff to ide_do_request
1108 void do_ide_request(struct request_queue *q)
1110 ide_drive_t *drive = q->queuedata;
1112 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1116 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1117 * retry the current request in pio mode instead of risking tossing it
1120 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1122 ide_hwif_t *hwif = HWIF(drive);
1124 ide_startstop_t ret = ide_stopped;
1127 * end current dma transaction
1131 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1132 (void)hwif->dma_ops->dma_end(drive);
1133 ret = ide_error(drive, "dma timeout error",
1134 hwif->tp_ops->read_status(hwif));
1136 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1137 hwif->dma_ops->dma_timeout(drive);
1141 * disable dma for now, but remember that we did so because of
1142 * a timeout -- we'll reenable after we finish this next request
1143 * (or rather the first chunk of it) in pio.
1145 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1147 ide_dma_off_quietly(drive);
1150 * un-busy drive etc (hwgroup->busy is cleared on return) and
1151 * make sure request is sane
1153 rq = HWGROUP(drive)->rq;
1158 HWGROUP(drive)->rq = NULL;
1165 rq->sector = rq->bio->bi_sector;
1166 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1167 rq->hard_cur_sectors = rq->current_nr_sectors;
1168 rq->buffer = bio_data(rq->bio);
1174 * ide_timer_expiry - handle lack of an IDE interrupt
1175 * @data: timer callback magic (hwgroup)
1177 * An IDE command has timed out before the expected drive return
1178 * occurred. At this point we attempt to clean up the current
1179 * mess. If the current handler includes an expiry handler then
1180 * we invoke the expiry handler, and providing it is happy the
1181 * work is done. If that fails we apply generic recovery rules
1182 * invoking the handler and checking the drive DMA status. We
1183 * have an excessively incestuous relationship with the DMA
1184 * logic that wants cleaning up.
1187 void ide_timer_expiry (unsigned long data)
1189 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1190 ide_handler_t *handler;
1191 ide_expiry_t *expiry;
1192 unsigned long flags;
1193 unsigned long wait = -1;
1195 spin_lock_irqsave(&ide_lock, flags);
1197 if (((handler = hwgroup->handler) == NULL) ||
1198 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1200 * Either a marginal timeout occurred
1201 * (got the interrupt just as timer expired),
1202 * or we were "sleeping" to give other devices a chance.
1203 * Either way, we don't really want to complain about anything.
1205 if (hwgroup->sleeping) {
1206 hwgroup->sleeping = 0;
1210 ide_drive_t *drive = hwgroup->drive;
1212 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1213 hwgroup->handler = NULL;
1216 ide_startstop_t startstop = ide_stopped;
1217 if (!hwgroup->busy) {
1218 hwgroup->busy = 1; /* paranoia */
1219 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1221 if ((expiry = hwgroup->expiry) != NULL) {
1223 if ((wait = expiry(drive)) > 0) {
1225 hwgroup->timer.expires = jiffies + wait;
1226 hwgroup->req_gen_timer = hwgroup->req_gen;
1227 add_timer(&hwgroup->timer);
1228 spin_unlock_irqrestore(&ide_lock, flags);
1232 hwgroup->handler = NULL;
1234 * We need to simulate a real interrupt when invoking
1235 * the handler() function, which means we need to
1236 * globally mask the specific IRQ:
1238 spin_unlock(&ide_lock);
1240 /* disable_irq_nosync ?? */
1241 disable_irq(hwif->irq);
1243 * as if we were handling an interrupt */
1244 local_irq_disable();
1245 if (hwgroup->polling) {
1246 startstop = handler(drive);
1247 } else if (drive_is_ready(drive)) {
1248 if (drive->waiting_for_dma)
1249 hwif->dma_ops->dma_lost_irq(drive);
1250 (void)ide_ack_intr(hwif);
1251 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1252 startstop = handler(drive);
1254 if (drive->waiting_for_dma) {
1255 startstop = ide_dma_timeout_retry(drive, wait);
1258 ide_error(drive, "irq timeout",
1259 hwif->tp_ops->read_status(hwif));
1261 drive->service_time = jiffies - drive->service_start;
1262 spin_lock_irq(&ide_lock);
1263 enable_irq(hwif->irq);
1264 if (startstop == ide_stopped)
1268 ide_do_request(hwgroup, IDE_NO_IRQ);
1269 spin_unlock_irqrestore(&ide_lock, flags);
1273 * unexpected_intr - handle an unexpected IDE interrupt
1274 * @irq: interrupt line
1275 * @hwgroup: hwgroup being processed
1277 * There's nothing really useful we can do with an unexpected interrupt,
1278 * other than reading the status register (to clear it), and logging it.
1279 * There should be no way that an irq can happen before we're ready for it,
1280 * so we needn't worry much about losing an "important" interrupt here.
1282 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1283 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1284 * looks "good", we just ignore the interrupt completely.
1286 * This routine assumes __cli() is in effect when called.
1288 * If an unexpected interrupt happens on irq15 while we are handling irq14
1289 * and if the two interfaces are "serialized" (CMD640), then it looks like
1290 * we could screw up by interfering with a new request being set up for
1293 * In reality, this is a non-issue. The new command is not sent unless
1294 * the drive is ready to accept one, in which case we know the drive is
1295 * not trying to interrupt us. And ide_set_handler() is always invoked
1296 * before completing the issuance of any new drive command, so we will not
1297 * be accidentally invoked as a result of any valid command completion
1300 * Note that we must walk the entire hwgroup here. We know which hwif
1301 * is doing the current command, but we don't know which hwif burped
1305 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1308 ide_hwif_t *hwif = hwgroup->hwif;
1311 * handle the unexpected interrupt
1314 if (hwif->irq == irq) {
1315 stat = hwif->tp_ops->read_status(hwif);
1317 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1318 /* Try to not flood the console with msgs */
1319 static unsigned long last_msgtime, count;
1321 if (time_after(jiffies, last_msgtime + HZ)) {
1322 last_msgtime = jiffies;
1323 printk(KERN_ERR "%s%s: unexpected interrupt, "
1324 "status=0x%02x, count=%ld\n",
1326 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1330 } while ((hwif = hwif->next) != hwgroup->hwif);
1334 * ide_intr - default IDE interrupt handler
1335 * @irq: interrupt number
1336 * @dev_id: hwif group
1337 * @regs: unused weirdness from the kernel irq layer
1339 * This is the default IRQ handler for the IDE layer. You should
1340 * not need to override it. If you do be aware it is subtle in
1343 * hwgroup->hwif is the interface in the group currently performing
1344 * a command. hwgroup->drive is the drive and hwgroup->handler is
1345 * the IRQ handler to call. As we issue a command the handlers
1346 * step through multiple states, reassigning the handler to the
1347 * next step in the process. Unlike a smart SCSI controller IDE
1348 * expects the main processor to sequence the various transfer
1349 * stages. We also manage a poll timer to catch up with most
1350 * timeout situations. There are still a few where the handlers
1351 * don't ever decide to give up.
1353 * The handler eventually returns ide_stopped to indicate the
1354 * request completed. At this point we issue the next request
1355 * on the hwgroup and the process begins again.
1358 irqreturn_t ide_intr (int irq, void *dev_id)
1360 unsigned long flags;
1361 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1364 ide_handler_t *handler;
1365 ide_startstop_t startstop;
1367 spin_lock_irqsave(&ide_lock, flags);
1368 hwif = hwgroup->hwif;
1370 if (!ide_ack_intr(hwif)) {
1371 spin_unlock_irqrestore(&ide_lock, flags);
1375 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1377 * Not expecting an interrupt from this drive.
1378 * That means this could be:
1379 * (1) an interrupt from another PCI device
1380 * sharing the same PCI INT# as us.
1381 * or (2) a drive just entered sleep or standby mode,
1382 * and is interrupting to let us know.
1383 * or (3) a spurious interrupt of unknown origin.
1385 * For PCI, we cannot tell the difference,
1386 * so in that case we just ignore it and hope it goes away.
1388 * FIXME: unexpected_intr should be hwif-> then we can
1389 * remove all the ifdef PCI crap
1391 #ifdef CONFIG_BLK_DEV_IDEPCI
1392 if (hwif->chipset != ide_pci)
1393 #endif /* CONFIG_BLK_DEV_IDEPCI */
1396 * Probably not a shared PCI interrupt,
1397 * so we can safely try to do something about it:
1399 unexpected_intr(irq, hwgroup);
1400 #ifdef CONFIG_BLK_DEV_IDEPCI
1403 * Whack the status register, just in case
1404 * we have a leftover pending IRQ.
1406 (void)hwif->tp_ops->read_status(hwif);
1407 #endif /* CONFIG_BLK_DEV_IDEPCI */
1409 spin_unlock_irqrestore(&ide_lock, flags);
1412 drive = hwgroup->drive;
1415 * This should NEVER happen, and there isn't much
1416 * we could do about it here.
1418 * [Note - this can occur if the drive is hot unplugged]
1420 spin_unlock_irqrestore(&ide_lock, flags);
1423 if (!drive_is_ready(drive)) {
1425 * This happens regularly when we share a PCI IRQ with
1426 * another device. Unfortunately, it can also happen
1427 * with some buggy drives that trigger the IRQ before
1428 * their status register is up to date. Hopefully we have
1429 * enough advance overhead that the latter isn't a problem.
1431 spin_unlock_irqrestore(&ide_lock, flags);
1434 if (!hwgroup->busy) {
1435 hwgroup->busy = 1; /* paranoia */
1436 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1438 hwgroup->handler = NULL;
1440 del_timer(&hwgroup->timer);
1441 spin_unlock(&ide_lock);
1443 if (hwif->port_ops && hwif->port_ops->clear_irq)
1444 hwif->port_ops->clear_irq(drive);
1446 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1447 local_irq_enable_in_hardirq();
1449 /* service this interrupt, may set handler for next interrupt */
1450 startstop = handler(drive);
1452 spin_lock_irq(&ide_lock);
1454 * Note that handler() may have set things up for another
1455 * interrupt to occur soon, but it cannot happen until
1456 * we exit from this routine, because it will be the
1457 * same irq as is currently being serviced here, and Linux
1458 * won't allow another of the same (on any CPU) until we return.
1460 drive->service_time = jiffies - drive->service_start;
1461 if (startstop == ide_stopped) {
1462 if (hwgroup->handler == NULL) { /* paranoia */
1464 ide_do_request(hwgroup, hwif->irq);
1466 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1467 "on exit\n", drive->name);
1470 spin_unlock_irqrestore(&ide_lock, flags);
1475 * ide_do_drive_cmd - issue IDE special command
1476 * @drive: device to issue command
1477 * @rq: request to issue
1479 * This function issues a special IDE device request
1480 * onto the request queue.
1482 * the rq is queued at the head of the request queue, displacing
1483 * the currently-being-processed request and this function
1484 * returns immediately without waiting for the new rq to be
1485 * completed. This is VERY DANGEROUS, and is intended for
1486 * careful use by the ATAPI tape/cdrom driver code.
1489 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1491 unsigned long flags;
1492 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1494 spin_lock_irqsave(&ide_lock, flags);
1496 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1497 blk_start_queueing(drive->queue);
1498 spin_unlock_irqrestore(&ide_lock, flags);
1501 EXPORT_SYMBOL(ide_do_drive_cmd);
1503 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1505 ide_hwif_t *hwif = drive->hwif;
1508 memset(&task, 0, sizeof(task));
1509 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1510 IDE_TFLAG_OUT_FEATURE | tf_flags;
1511 task.tf.feature = dma; /* Use PIO/DMA */
1512 task.tf.lbam = bcount & 0xff;
1513 task.tf.lbah = (bcount >> 8) & 0xff;
1515 ide_tf_dump(drive->name, &task.tf);
1516 hwif->tp_ops->set_irq(hwif, 1);
1517 SELECT_MASK(drive, 0);
1518 hwif->tp_ops->tf_load(drive, &task);
1521 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1523 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1525 ide_hwif_t *hwif = drive->hwif;
1530 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1532 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1536 EXPORT_SYMBOL_GPL(ide_pad_transfer);