]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ieee1394/eth1394.c
Pull bugzilla-8768 into release branch
[linux-2.6-omap-h63xx.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, void *daddr, void *saddr,
163                             unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168                                           struct net_device *dev,
169                                           unsigned char *haddr);
170 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
171 static void ether1394_iso(struct hpsb_iso *iso);
172
173 static struct ethtool_ops ethtool_ops;
174
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176                            quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
180
181 /* Function for incoming 1394 packets */
182 static struct hpsb_address_ops addr_ops = {
183         .write =        ether1394_write,
184 };
185
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188         .name =         driver_name,
189         .add_host =     ether1394_add_host,
190         .remove_host =  ether1394_remove_host,
191         .host_reset =   ether1394_host_reset,
192 };
193
194 static int ether1394_recv_init(struct eth1394_priv *priv)
195 {
196         unsigned int iso_buf_size;
197
198         /* FIXME: rawiso limits us to PAGE_SIZE */
199         iso_buf_size = min((unsigned int)PAGE_SIZE,
200                            2 * (1U << (priv->host->csr.max_rec + 1)));
201
202         priv->iso = hpsb_iso_recv_init(priv->host,
203                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
204                                        ETHER1394_GASP_BUFFERS,
205                                        priv->broadcast_channel,
206                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
207                                        1, ether1394_iso);
208         if (priv->iso == NULL) {
209                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210                 priv->bc_state = ETHER1394_BC_ERROR;
211                 return -EAGAIN;
212         }
213
214         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215                 priv->bc_state = ETHER1394_BC_STOPPED;
216         else
217                 priv->bc_state = ETHER1394_BC_RUNNING;
218         return 0;
219 }
220
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
223 {
224         struct eth1394_priv *priv = netdev_priv(dev);
225         int ret;
226
227         if (priv->bc_state == ETHER1394_BC_ERROR) {
228                 ret = ether1394_recv_init(priv);
229                 if (ret)
230                         return ret;
231         }
232         netif_start_queue(dev);
233         return 0;
234 }
235
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
238 {
239         /* flush priv->wake */
240         flush_scheduled_work();
241
242         netif_stop_queue(dev);
243         return 0;
244 }
245
246 /* Return statistics to the caller */
247 static struct net_device_stats *ether1394_stats(struct net_device *dev)
248 {
249         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
250 }
251
252 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
253  * so that's what we do. Should we increment the stat counters too?  */
254 static void ether1394_tx_timeout(struct net_device *dev)
255 {
256         struct hpsb_host *host =
257                         ((struct eth1394_priv *)netdev_priv(dev))->host;
258
259         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
260         ether1394_host_reset(host);
261 }
262
263 static inline int ether1394_max_mtu(struct hpsb_host* host)
264 {
265         return (1 << (host->csr.max_rec + 1))
266                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
267 }
268
269 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
270 {
271         int max_mtu;
272
273         if (new_mtu < 68)
274                 return -EINVAL;
275
276         max_mtu = ether1394_max_mtu(
277                         ((struct eth1394_priv *)netdev_priv(dev))->host);
278         if (new_mtu > max_mtu) {
279                 ETH1394_PRINT(KERN_INFO, dev->name,
280                               "Local node constrains MTU to %d\n", max_mtu);
281                 return -ERANGE;
282         }
283
284         dev->mtu = new_mtu;
285         return 0;
286 }
287
288 static void purge_partial_datagram(struct list_head *old)
289 {
290         struct partial_datagram *pd;
291         struct list_head *lh, *n;
292         struct fragment_info *fi;
293
294         pd = list_entry(old, struct partial_datagram, list);
295
296         list_for_each_safe(lh, n, &pd->frag_info) {
297                 fi = list_entry(lh, struct fragment_info, list);
298                 list_del(lh);
299                 kfree(fi);
300         }
301         list_del(old);
302         kfree_skb(pd->skb);
303         kfree(pd);
304 }
305
306 /******************************************
307  * 1394 bus activity functions
308  ******************************************/
309
310 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
311                                                   struct unit_directory *ud)
312 {
313         struct eth1394_node_ref *node;
314
315         list_for_each_entry(node, inl, list)
316                 if (node->ud == ud)
317                         return node;
318
319         return NULL;
320 }
321
322 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
323                                                        u64 guid)
324 {
325         struct eth1394_node_ref *node;
326
327         list_for_each_entry(node, inl, list)
328                 if (node->ud->ne->guid == guid)
329                         return node;
330
331         return NULL;
332 }
333
334 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
335                                                          nodeid_t nodeid)
336 {
337         struct eth1394_node_ref *node;
338
339         list_for_each_entry(node, inl, list)
340                 if (node->ud->ne->nodeid == nodeid)
341                         return node;
342
343         return NULL;
344 }
345
346 static int eth1394_new_node(struct eth1394_host_info *hi,
347                             struct unit_directory *ud)
348 {
349         struct eth1394_priv *priv;
350         struct eth1394_node_ref *new_node;
351         struct eth1394_node_info *node_info;
352
353         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
354         if (!new_node)
355                 return -ENOMEM;
356
357         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
358         if (!node_info) {
359                 kfree(new_node);
360                 return -ENOMEM;
361         }
362
363         spin_lock_init(&node_info->pdg.lock);
364         INIT_LIST_HEAD(&node_info->pdg.list);
365         node_info->pdg.sz = 0;
366         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
367
368         ud->device.driver_data = node_info;
369         new_node->ud = ud;
370
371         priv = netdev_priv(hi->dev);
372         list_add_tail(&new_node->list, &priv->ip_node_list);
373         return 0;
374 }
375
376 static int eth1394_probe(struct device *dev)
377 {
378         struct unit_directory *ud;
379         struct eth1394_host_info *hi;
380
381         ud = container_of(dev, struct unit_directory, device);
382         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
383         if (!hi)
384                 return -ENOENT;
385
386         return eth1394_new_node(hi, ud);
387 }
388
389 static int eth1394_remove(struct device *dev)
390 {
391         struct unit_directory *ud;
392         struct eth1394_host_info *hi;
393         struct eth1394_priv *priv;
394         struct eth1394_node_ref *old_node;
395         struct eth1394_node_info *node_info;
396         struct list_head *lh, *n;
397         unsigned long flags;
398
399         ud = container_of(dev, struct unit_directory, device);
400         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
401         if (!hi)
402                 return -ENOENT;
403
404         priv = netdev_priv(hi->dev);
405
406         old_node = eth1394_find_node(&priv->ip_node_list, ud);
407         if (!old_node)
408                 return 0;
409
410         list_del(&old_node->list);
411         kfree(old_node);
412
413         node_info = (struct eth1394_node_info*)ud->device.driver_data;
414
415         spin_lock_irqsave(&node_info->pdg.lock, flags);
416         /* The partial datagram list should be empty, but we'll just
417          * make sure anyway... */
418         list_for_each_safe(lh, n, &node_info->pdg.list)
419                 purge_partial_datagram(lh);
420         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
421
422         kfree(node_info);
423         ud->device.driver_data = NULL;
424         return 0;
425 }
426
427 static int eth1394_update(struct unit_directory *ud)
428 {
429         struct eth1394_host_info *hi;
430         struct eth1394_priv *priv;
431         struct eth1394_node_ref *node;
432
433         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
434         if (!hi)
435                 return -ENOENT;
436
437         priv = netdev_priv(hi->dev);
438         node = eth1394_find_node(&priv->ip_node_list, ud);
439         if (node)
440                 return 0;
441
442         return eth1394_new_node(hi, ud);
443 }
444
445 static struct ieee1394_device_id eth1394_id_table[] = {
446         {
447                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
448                                 IEEE1394_MATCH_VERSION),
449                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
450                 .version = ETHER1394_GASP_VERSION,
451         },
452         {}
453 };
454
455 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
456
457 static struct hpsb_protocol_driver eth1394_proto_driver = {
458         .name           = driver_name,
459         .id_table       = eth1394_id_table,
460         .update         = eth1394_update,
461         .driver         = {
462                 .probe          = eth1394_probe,
463                 .remove         = eth1394_remove,
464         },
465 };
466
467 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
468 {
469         unsigned long flags;
470         int i;
471         struct eth1394_priv *priv = netdev_priv(dev);
472         struct hpsb_host *host = priv->host;
473         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
474         int max_speed = IEEE1394_SPEED_MAX;
475
476         spin_lock_irqsave(&priv->lock, flags);
477
478         memset(priv->ud_list, 0, sizeof(priv->ud_list));
479         priv->bc_maxpayload = 512;
480
481         /* Determine speed limit */
482         /* FIXME: This is broken for nodes with link speed < PHY speed,
483          * and it is suboptimal for S200B...S800B hardware.
484          * The result of nodemgr's speed probe should be used somehow. */
485         for (i = 0; i < host->node_count; i++) {
486                 /* take care of S100B...S400B PHY ports */
487                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
488                         max_speed = IEEE1394_SPEED_100;
489                         break;
490                 }
491                 if (max_speed > host->speed[i])
492                         max_speed = host->speed[i];
493         }
494         priv->bc_sspd = max_speed;
495
496         if (set_mtu) {
497                 /* Use the RFC 2734 default 1500 octets or the maximum payload
498                  * as initial MTU */
499                 dev->mtu = min(1500, ether1394_max_mtu(host));
500
501                 /* Set our hardware address while we're at it */
502                 memcpy(dev->dev_addr, &guid, sizeof(u64));
503                 memset(dev->broadcast, 0xff, sizeof(u64));
504         }
505
506         spin_unlock_irqrestore(&priv->lock, flags);
507 }
508
509 static void ether1394_init_dev(struct net_device *dev)
510 {
511         dev->open               = ether1394_open;
512         dev->stop               = ether1394_stop;
513         dev->hard_start_xmit    = ether1394_tx;
514         dev->get_stats          = ether1394_stats;
515         dev->tx_timeout         = ether1394_tx_timeout;
516         dev->change_mtu         = ether1394_change_mtu;
517
518         dev->hard_header        = ether1394_header;
519         dev->rebuild_header     = ether1394_rebuild_header;
520         dev->hard_header_cache  = ether1394_header_cache;
521         dev->header_cache_update= ether1394_header_cache_update;
522         dev->hard_header_parse  = ether1394_header_parse;
523
524         SET_ETHTOOL_OPS(dev, &ethtool_ops);
525
526         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
527         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
528         dev->features           = NETIF_F_HIGHDMA;
529         dev->addr_len           = ETH1394_ALEN;
530         dev->hard_header_len    = ETH1394_HLEN;
531         dev->type               = ARPHRD_IEEE1394;
532
533         /* FIXME: This value was copied from ether_setup(). Is it too much? */
534         dev->tx_queue_len       = 1000;
535 }
536
537 /*
538  * Wake the queue up after commonly encountered transmit failure conditions are
539  * hopefully over.  Currently only tlabel exhaustion is accounted for.
540  */
541 static void ether1394_wake_queue(struct work_struct *work)
542 {
543         struct eth1394_priv *priv;
544         struct hpsb_packet *packet;
545
546         priv = container_of(work, struct eth1394_priv, wake);
547         packet = hpsb_alloc_packet(0);
548
549         /* This is really bad, but unjam the queue anyway. */
550         if (!packet)
551                 goto out;
552
553         packet->host = priv->host;
554         packet->node_id = priv->wake_node;
555         /*
556          * A transaction label is all we really want.  If we get one, it almost
557          * always means we can get a lot more because the ieee1394 core recycled
558          * a whole batch of tlabels, at last.
559          */
560         if (hpsb_get_tlabel(packet) == 0)
561                 hpsb_free_tlabel(packet);
562
563         hpsb_free_packet(packet);
564 out:
565         netif_wake_queue(priv->wake_dev);
566 }
567
568 /*
569  * This function is called every time a card is found. It is generally called
570  * when the module is installed. This is where we add all of our ethernet
571  * devices. One for each host.
572  */
573 static void ether1394_add_host(struct hpsb_host *host)
574 {
575         struct eth1394_host_info *hi = NULL;
576         struct net_device *dev = NULL;
577         struct eth1394_priv *priv;
578         u64 fifo_addr;
579
580         if (hpsb_config_rom_ip1394_add(host) != 0) {
581                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
582                 return;
583         }
584
585         fifo_addr = hpsb_allocate_and_register_addrspace(
586                         &eth1394_highlevel, host, &addr_ops,
587                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
588                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
589         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
590                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
591                 hpsb_config_rom_ip1394_remove(host);
592                 return;
593         }
594
595         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
596         if (dev == NULL) {
597                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
598                 goto out;
599         }
600
601         SET_MODULE_OWNER(dev);
602         SET_NETDEV_DEV(dev, &host->device);
603
604         priv = netdev_priv(dev);
605         INIT_LIST_HEAD(&priv->ip_node_list);
606         spin_lock_init(&priv->lock);
607         priv->host = host;
608         priv->local_fifo = fifo_addr;
609         INIT_WORK(&priv->wake, ether1394_wake_queue);
610         priv->wake_dev = dev;
611
612         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
613         if (hi == NULL) {
614                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
615                 goto out;
616         }
617
618         ether1394_reset_priv(dev, 1);
619
620         if (register_netdev(dev)) {
621                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
622                 goto out;
623         }
624
625         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
626                       host->id);
627
628         hi->host = host;
629         hi->dev = dev;
630
631         /* Ignore validity in hopes that it will be set in the future.  It'll
632          * be checked when the eth device is opened. */
633         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
634
635         ether1394_recv_init(priv);
636         return;
637 out:
638         if (dev)
639                 free_netdev(dev);
640         if (hi)
641                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
642         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
643         hpsb_config_rom_ip1394_remove(host);
644 }
645
646 /* Remove a card from our list */
647 static void ether1394_remove_host(struct hpsb_host *host)
648 {
649         struct eth1394_host_info *hi;
650         struct eth1394_priv *priv;
651
652         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
653         if (!hi)
654                 return;
655         priv = netdev_priv(hi->dev);
656         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
657         hpsb_config_rom_ip1394_remove(host);
658         if (priv->iso)
659                 hpsb_iso_shutdown(priv->iso);
660         unregister_netdev(hi->dev);
661         free_netdev(hi->dev);
662 }
663
664 /* A bus reset happened */
665 static void ether1394_host_reset(struct hpsb_host *host)
666 {
667         struct eth1394_host_info *hi;
668         struct eth1394_priv *priv;
669         struct net_device *dev;
670         struct list_head *lh, *n;
671         struct eth1394_node_ref *node;
672         struct eth1394_node_info *node_info;
673         unsigned long flags;
674
675         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
676
677         /* This can happen for hosts that we don't use */
678         if (!hi)
679                 return;
680
681         dev = hi->dev;
682         priv = netdev_priv(dev);
683
684         /* Reset our private host data, but not our MTU */
685         netif_stop_queue(dev);
686         ether1394_reset_priv(dev, 0);
687
688         list_for_each_entry(node, &priv->ip_node_list, list) {
689                 node_info = node->ud->device.driver_data;
690
691                 spin_lock_irqsave(&node_info->pdg.lock, flags);
692
693                 list_for_each_safe(lh, n, &node_info->pdg.list)
694                         purge_partial_datagram(lh);
695
696                 INIT_LIST_HEAD(&(node_info->pdg.list));
697                 node_info->pdg.sz = 0;
698
699                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
700         }
701
702         netif_wake_queue(dev);
703 }
704
705 /******************************************
706  * HW Header net device functions
707  ******************************************/
708 /* These functions have been adapted from net/ethernet/eth.c */
709
710 /* Create a fake MAC header for an arbitrary protocol layer.
711  * saddr=NULL means use device source address
712  * daddr=NULL means leave destination address (eg unresolved arp). */
713 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
714                             unsigned short type, void *daddr, void *saddr,
715                             unsigned len)
716 {
717         struct eth1394hdr *eth =
718                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
719
720         eth->h_proto = htons(type);
721
722         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
723                 memset(eth->h_dest, 0, dev->addr_len);
724                 return dev->hard_header_len;
725         }
726
727         if (daddr) {
728                 memcpy(eth->h_dest, daddr, dev->addr_len);
729                 return dev->hard_header_len;
730         }
731
732         return -dev->hard_header_len;
733 }
734
735 /* Rebuild the faked MAC header. This is called after an ARP
736  * (or in future other address resolution) has completed on this
737  * sk_buff. We now let ARP fill in the other fields.
738  *
739  * This routine CANNOT use cached dst->neigh!
740  * Really, it is used only when dst->neigh is wrong.
741  */
742 static int ether1394_rebuild_header(struct sk_buff *skb)
743 {
744         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
745
746         if (eth->h_proto == htons(ETH_P_IP))
747                 return arp_find((unsigned char *)&eth->h_dest, skb);
748
749         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
750                       "unable to resolve type %04x addresses\n",
751                       ntohs(eth->h_proto));
752         return 0;
753 }
754
755 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
756 {
757         struct net_device *dev = skb->dev;
758
759         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
760         return ETH1394_ALEN;
761 }
762
763 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
764 {
765         unsigned short type = hh->hh_type;
766         struct net_device *dev = neigh->dev;
767         struct eth1394hdr *eth =
768                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
769
770         if (type == htons(ETH_P_802_3))
771                 return -1;
772
773         eth->h_proto = type;
774         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
775
776         hh->hh_len = ETH1394_HLEN;
777         return 0;
778 }
779
780 /* Called by Address Resolution module to notify changes in address. */
781 static void ether1394_header_cache_update(struct hh_cache *hh,
782                                           struct net_device *dev,
783                                           unsigned char * haddr)
784 {
785         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
786 }
787
788 /******************************************
789  * Datagram reception code
790  ******************************************/
791
792 /* Copied from net/ethernet/eth.c */
793 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
794 {
795         struct eth1394hdr *eth;
796         unsigned char *rawp;
797
798         skb_reset_mac_header(skb);
799         skb_pull(skb, ETH1394_HLEN);
800         eth = eth1394_hdr(skb);
801
802         if (*eth->h_dest & 1) {
803                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
804                         skb->pkt_type = PACKET_BROADCAST;
805 #if 0
806                 else
807                         skb->pkt_type = PACKET_MULTICAST;
808 #endif
809         } else {
810                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
811                         skb->pkt_type = PACKET_OTHERHOST;
812         }
813
814         if (ntohs(eth->h_proto) >= 1536)
815                 return eth->h_proto;
816
817         rawp = skb->data;
818
819         if (*(unsigned short *)rawp == 0xFFFF)
820                 return htons(ETH_P_802_3);
821
822         return htons(ETH_P_802_2);
823 }
824
825 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
826  * We also perform ARP translation here, if need be.  */
827 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
828                                  nodeid_t srcid, nodeid_t destid,
829                                  u16 ether_type)
830 {
831         struct eth1394_priv *priv = netdev_priv(dev);
832         u64 dest_hw;
833         unsigned short ret = 0;
834
835         /* Setup our hw addresses. We use these to build the ethernet header. */
836         if (destid == (LOCAL_BUS | ALL_NODES))
837                 dest_hw = ~0ULL;  /* broadcast */
838         else
839                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
840                                       priv->host->csr.guid_lo);
841
842         /* If this is an ARP packet, convert it. First, we want to make
843          * use of some of the fields, since they tell us a little bit
844          * about the sending machine.  */
845         if (ether_type == htons(ETH_P_ARP)) {
846                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
847                 struct arphdr *arp = (struct arphdr *)skb->data;
848                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
849                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
850                                            ntohl(arp1394->fifo_lo);
851                 u8 max_rec = min(priv->host->csr.max_rec,
852                                  (u8)(arp1394->max_rec));
853                 int sspd = arp1394->sspd;
854                 u16 maxpayload;
855                 struct eth1394_node_ref *node;
856                 struct eth1394_node_info *node_info;
857                 __be64 guid;
858
859                 /* Sanity check. MacOSX seems to be sending us 131 in this
860                  * field (atleast on my Panther G5). Not sure why. */
861                 if (sspd > 5 || sspd < 0)
862                         sspd = 0;
863
864                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
865                                  (u16)(1 << (max_rec + 1)));
866
867                 guid = get_unaligned(&arp1394->s_uniq_id);
868                 node = eth1394_find_node_guid(&priv->ip_node_list,
869                                               be64_to_cpu(guid));
870                 if (!node)
871                         return 0;
872
873                 node_info =
874                     (struct eth1394_node_info *)node->ud->device.driver_data;
875
876                 /* Update our speed/payload/fifo_offset table */
877                 node_info->maxpayload = maxpayload;
878                 node_info->sspd =       sspd;
879                 node_info->fifo =       fifo_addr;
880
881                 /* Now that we're done with the 1394 specific stuff, we'll
882                  * need to alter some of the data.  Believe it or not, all
883                  * that needs to be done is sender_IP_address needs to be
884                  * moved, the destination hardware address get stuffed
885                  * in and the hardware address length set to 8.
886                  *
887                  * IMPORTANT: The code below overwrites 1394 specific data
888                  * needed above so keep the munging of the data for the
889                  * higher level IP stack last. */
890
891                 arp->ar_hln = 8;
892                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
893                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
894                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
895
896                 if (arp->ar_op == htons(ARPOP_REQUEST))
897                         memset(arp_ptr, 0, sizeof(u64));
898                 else
899                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
900         }
901
902         /* Now add the ethernet header. */
903         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
904                              skb->len) >= 0)
905                 ret = ether1394_type_trans(skb, dev);
906
907         return ret;
908 }
909
910 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
911 {
912         struct fragment_info *fi;
913         int end = offset + len;
914
915         list_for_each_entry(fi, frag_list, list)
916                 if (offset < fi->offset + fi->len && end > fi->offset)
917                         return 1;
918
919         return 0;
920 }
921
922 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
923 {
924         struct partial_datagram *pd;
925
926         list_for_each_entry(pd, pdgl, list)
927                 if (pd->dgl == dgl)
928                         return &pd->list;
929
930         return NULL;
931 }
932
933 /* Assumes that new fragment does not overlap any existing fragments */
934 static int new_fragment(struct list_head *frag_info, int offset, int len)
935 {
936         struct list_head *lh;
937         struct fragment_info *fi, *fi2, *new;
938
939         list_for_each(lh, frag_info) {
940                 fi = list_entry(lh, struct fragment_info, list);
941                 if (fi->offset + fi->len == offset) {
942                         /* The new fragment can be tacked on to the end */
943                         fi->len += len;
944                         /* Did the new fragment plug a hole? */
945                         fi2 = list_entry(lh->next, struct fragment_info, list);
946                         if (fi->offset + fi->len == fi2->offset) {
947                                 /* glue fragments together */
948                                 fi->len += fi2->len;
949                                 list_del(lh->next);
950                                 kfree(fi2);
951                         }
952                         return 0;
953                 } else if (offset + len == fi->offset) {
954                         /* The new fragment can be tacked on to the beginning */
955                         fi->offset = offset;
956                         fi->len += len;
957                         /* Did the new fragment plug a hole? */
958                         fi2 = list_entry(lh->prev, struct fragment_info, list);
959                         if (fi2->offset + fi2->len == fi->offset) {
960                                 /* glue fragments together */
961                                 fi2->len += fi->len;
962                                 list_del(lh);
963                                 kfree(fi);
964                         }
965                         return 0;
966                 } else if (offset > fi->offset + fi->len) {
967                         break;
968                 } else if (offset + len < fi->offset) {
969                         lh = lh->prev;
970                         break;
971                 }
972         }
973
974         new = kmalloc(sizeof(*new), GFP_ATOMIC);
975         if (!new)
976                 return -ENOMEM;
977
978         new->offset = offset;
979         new->len = len;
980
981         list_add(&new->list, lh);
982         return 0;
983 }
984
985 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
986                                 int dgl, int dg_size, char *frag_buf,
987                                 int frag_off, int frag_len)
988 {
989         struct partial_datagram *new;
990
991         new = kmalloc(sizeof(*new), GFP_ATOMIC);
992         if (!new)
993                 return -ENOMEM;
994
995         INIT_LIST_HEAD(&new->frag_info);
996
997         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
998                 kfree(new);
999                 return -ENOMEM;
1000         }
1001
1002         new->dgl = dgl;
1003         new->dg_size = dg_size;
1004
1005         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1006         if (!new->skb) {
1007                 struct fragment_info *fi = list_entry(new->frag_info.next,
1008                                                       struct fragment_info,
1009                                                       list);
1010                 kfree(fi);
1011                 kfree(new);
1012                 return -ENOMEM;
1013         }
1014
1015         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1016         new->pbuf = skb_put(new->skb, dg_size);
1017         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1018
1019         list_add(&new->list, pdgl);
1020         return 0;
1021 }
1022
1023 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1024                                    char *frag_buf, int frag_off, int frag_len)
1025 {
1026         struct partial_datagram *pd =
1027                         list_entry(lh, struct partial_datagram, list);
1028
1029         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1030                 return -ENOMEM;
1031
1032         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1033
1034         /* Move list entry to beginnig of list so that oldest partial
1035          * datagrams percolate to the end of the list */
1036         list_move(lh, pdgl);
1037         return 0;
1038 }
1039
1040 static int is_datagram_complete(struct list_head *lh, int dg_size)
1041 {
1042         struct partial_datagram *pd;
1043         struct fragment_info *fi;
1044
1045         pd = list_entry(lh, struct partial_datagram, list);
1046         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1047
1048         return (fi->len == dg_size);
1049 }
1050
1051 /* Packet reception. We convert the IP1394 encapsulation header to an
1052  * ethernet header, and fill it with some of our other fields. This is
1053  * an incoming packet from the 1394 bus.  */
1054 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1055                                   char *buf, int len)
1056 {
1057         struct sk_buff *skb;
1058         unsigned long flags;
1059         struct eth1394_priv *priv = netdev_priv(dev);
1060         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1061         u16 ether_type = 0;  /* initialized to clear warning */
1062         int hdr_len;
1063         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1064         struct eth1394_node_info *node_info;
1065
1066         if (!ud) {
1067                 struct eth1394_node_ref *node;
1068                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1069                 if (unlikely(!node)) {
1070                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1071                                    "lookup failure: " NODE_BUS_FMT,
1072                                    NODE_BUS_ARGS(priv->host, srcid));
1073                         priv->stats.rx_dropped++;
1074                         return -1;
1075                 }
1076                 ud = node->ud;
1077
1078                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1079         }
1080
1081         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1082
1083         /* First, did we receive a fragmented or unfragmented datagram? */
1084         hdr->words.word1 = ntohs(hdr->words.word1);
1085
1086         hdr_len = hdr_type_len[hdr->common.lf];
1087
1088         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1089                 /* An unfragmented datagram has been received by the ieee1394
1090                  * bus. Build an skbuff around it so we can pass it to the
1091                  * high level network layer. */
1092
1093                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1094                 if (unlikely(!skb)) {
1095                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1096                         priv->stats.rx_dropped++;
1097                         return -1;
1098                 }
1099                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1100                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1101                        len - hdr_len);
1102                 ether_type = hdr->uf.ether_type;
1103         } else {
1104                 /* A datagram fragment has been received, now the fun begins. */
1105
1106                 struct list_head *pdgl, *lh;
1107                 struct partial_datagram *pd;
1108                 int fg_off;
1109                 int fg_len = len - hdr_len;
1110                 int dg_size;
1111                 int dgl;
1112                 int retval;
1113                 struct pdg_list *pdg = &(node_info->pdg);
1114
1115                 hdr->words.word3 = ntohs(hdr->words.word3);
1116                 /* The 4th header word is reserved so no need to do ntohs() */
1117
1118                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1119                         ether_type = hdr->ff.ether_type;
1120                         dgl = hdr->ff.dgl;
1121                         dg_size = hdr->ff.dg_size + 1;
1122                         fg_off = 0;
1123                 } else {
1124                         hdr->words.word2 = ntohs(hdr->words.word2);
1125                         dgl = hdr->sf.dgl;
1126                         dg_size = hdr->sf.dg_size + 1;
1127                         fg_off = hdr->sf.fg_off;
1128                 }
1129                 spin_lock_irqsave(&pdg->lock, flags);
1130
1131                 pdgl = &(pdg->list);
1132                 lh = find_partial_datagram(pdgl, dgl);
1133
1134                 if (lh == NULL) {
1135                         while (pdg->sz >= max_partial_datagrams) {
1136                                 /* remove the oldest */
1137                                 purge_partial_datagram(pdgl->prev);
1138                                 pdg->sz--;
1139                         }
1140
1141                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1142                                                       buf + hdr_len, fg_off,
1143                                                       fg_len);
1144                         if (retval < 0) {
1145                                 spin_unlock_irqrestore(&pdg->lock, flags);
1146                                 goto bad_proto;
1147                         }
1148                         pdg->sz++;
1149                         lh = find_partial_datagram(pdgl, dgl);
1150                 } else {
1151                         struct partial_datagram *pd;
1152
1153                         pd = list_entry(lh, struct partial_datagram, list);
1154
1155                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1156                                 /* Overlapping fragments, obliterate old
1157                                  * datagram and start new one. */
1158                                 purge_partial_datagram(lh);
1159                                 retval = new_partial_datagram(dev, pdgl, dgl,
1160                                                               dg_size,
1161                                                               buf + hdr_len,
1162                                                               fg_off, fg_len);
1163                                 if (retval < 0) {
1164                                         pdg->sz--;
1165                                         spin_unlock_irqrestore(&pdg->lock, flags);
1166                                         goto bad_proto;
1167                                 }
1168                         } else {
1169                                 retval = update_partial_datagram(pdgl, lh,
1170                                                                  buf + hdr_len,
1171                                                                  fg_off, fg_len);
1172                                 if (retval < 0) {
1173                                         /* Couldn't save off fragment anyway
1174                                          * so might as well obliterate the
1175                                          * datagram now. */
1176                                         purge_partial_datagram(lh);
1177                                         pdg->sz--;
1178                                         spin_unlock_irqrestore(&pdg->lock, flags);
1179                                         goto bad_proto;
1180                                 }
1181                         } /* fragment overlap */
1182                 } /* new datagram or add to existing one */
1183
1184                 pd = list_entry(lh, struct partial_datagram, list);
1185
1186                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1187                         pd->ether_type = ether_type;
1188
1189                 if (is_datagram_complete(lh, dg_size)) {
1190                         ether_type = pd->ether_type;
1191                         pdg->sz--;
1192                         skb = skb_get(pd->skb);
1193                         purge_partial_datagram(lh);
1194                         spin_unlock_irqrestore(&pdg->lock, flags);
1195                 } else {
1196                         /* Datagram is not complete, we're done for the
1197                          * moment. */
1198                         spin_unlock_irqrestore(&pdg->lock, flags);
1199                         return 0;
1200                 }
1201         } /* unframgented datagram or fragmented one */
1202
1203         /* Write metadata, and then pass to the receive level */
1204         skb->dev = dev;
1205         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1206
1207         /* Parse the encapsulation header. This actually does the job of
1208          * converting to an ethernet frame header, aswell as arp
1209          * conversion if needed. ARP conversion is easier in this
1210          * direction, since we are using ethernet as our backend.  */
1211         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1212                                               ether_type);
1213
1214         spin_lock_irqsave(&priv->lock, flags);
1215
1216         if (!skb->protocol) {
1217                 priv->stats.rx_errors++;
1218                 priv->stats.rx_dropped++;
1219                 dev_kfree_skb_any(skb);
1220                 goto bad_proto;
1221         }
1222
1223         if (netif_rx(skb) == NET_RX_DROP) {
1224                 priv->stats.rx_errors++;
1225                 priv->stats.rx_dropped++;
1226                 goto bad_proto;
1227         }
1228
1229         /* Statistics */
1230         priv->stats.rx_packets++;
1231         priv->stats.rx_bytes += skb->len;
1232
1233 bad_proto:
1234         if (netif_queue_stopped(dev))
1235                 netif_wake_queue(dev);
1236         spin_unlock_irqrestore(&priv->lock, flags);
1237
1238         dev->last_rx = jiffies;
1239
1240         return 0;
1241 }
1242
1243 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1244                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1245 {
1246         struct eth1394_host_info *hi;
1247
1248         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1249         if (unlikely(!hi)) {
1250                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1251                                 host->id);
1252                 return RCODE_ADDRESS_ERROR;
1253         }
1254
1255         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1256                 return RCODE_ADDRESS_ERROR;
1257         else
1258                 return RCODE_COMPLETE;
1259 }
1260
1261 static void ether1394_iso(struct hpsb_iso *iso)
1262 {
1263         quadlet_t *data;
1264         char *buf;
1265         struct eth1394_host_info *hi;
1266         struct net_device *dev;
1267         struct eth1394_priv *priv;
1268         unsigned int len;
1269         u32 specifier_id;
1270         u16 source_id;
1271         int i;
1272         int nready;
1273
1274         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1275         if (unlikely(!hi)) {
1276                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1277                                 iso->host->id);
1278                 return;
1279         }
1280
1281         dev = hi->dev;
1282
1283         nready = hpsb_iso_n_ready(iso);
1284         for (i = 0; i < nready; i++) {
1285                 struct hpsb_iso_packet_info *info =
1286                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1287                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1288
1289                 /* skip over GASP header */
1290                 buf = (char *)data + 8;
1291                 len = info->len - 8;
1292
1293                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1294                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1295                 source_id = be32_to_cpu(data[0]) >> 16;
1296
1297                 priv = netdev_priv(dev);
1298
1299                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1300                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1301                         /* This packet is not for us */
1302                         continue;
1303                 }
1304                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1305                                        buf, len);
1306         }
1307
1308         hpsb_iso_recv_release_packets(iso, i);
1309
1310         dev->last_rx = jiffies;
1311 }
1312
1313 /******************************************
1314  * Datagram transmission code
1315  ******************************************/
1316
1317 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1318  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1319  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1320  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1321  * judge.
1322  *
1323  * Now that the EUI is used for the hardware address all we need to do to make
1324  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1325  * speed, and unicast FIFO address information between the sender_unique_id
1326  * and the IP addresses.
1327  */
1328 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1329                                      struct net_device *dev)
1330 {
1331         struct eth1394_priv *priv = netdev_priv(dev);
1332         struct arphdr *arp = (struct arphdr *)skb->data;
1333         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1334         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1335
1336         arp1394->hw_addr_len    = 16;
1337         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1338         arp1394->max_rec        = priv->host->csr.max_rec;
1339         arp1394->sspd           = priv->host->csr.lnk_spd;
1340         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1341         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1342 }
1343
1344 /* We need to encapsulate the standard header with our own. We use the
1345  * ethernet header's proto for our own. */
1346 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1347                                                __be16 proto,
1348                                                union eth1394_hdr *hdr,
1349                                                u16 dg_size, u16 dgl)
1350 {
1351         unsigned int adj_max_payload =
1352                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1353
1354         /* Does it all fit in one packet? */
1355         if (dg_size <= adj_max_payload) {
1356                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1357                 hdr->uf.ether_type = proto;
1358         } else {
1359                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1360                 hdr->ff.ether_type = proto;
1361                 hdr->ff.dg_size = dg_size - 1;
1362                 hdr->ff.dgl = dgl;
1363                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1364         }
1365         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1366 }
1367
1368 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1369                                           unsigned int max_payload,
1370                                           union eth1394_hdr *hdr)
1371 {
1372         union eth1394_hdr *bufhdr;
1373         int ftype = hdr->common.lf;
1374         int hdrsz = hdr_type_len[ftype];
1375         unsigned int adj_max_payload = max_payload - hdrsz;
1376
1377         switch (ftype) {
1378         case ETH1394_HDR_LF_UF:
1379                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1380                 bufhdr->words.word1 = htons(hdr->words.word1);
1381                 bufhdr->words.word2 = hdr->words.word2;
1382                 break;
1383
1384         case ETH1394_HDR_LF_FF:
1385                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1386                 bufhdr->words.word1 = htons(hdr->words.word1);
1387                 bufhdr->words.word2 = hdr->words.word2;
1388                 bufhdr->words.word3 = htons(hdr->words.word3);
1389                 bufhdr->words.word4 = 0;
1390
1391                 /* Set frag type here for future interior fragments */
1392                 hdr->common.lf = ETH1394_HDR_LF_IF;
1393                 hdr->sf.fg_off = 0;
1394                 break;
1395
1396         default:
1397                 hdr->sf.fg_off += adj_max_payload;
1398                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1399                 if (max_payload >= skb->len)
1400                         hdr->common.lf = ETH1394_HDR_LF_LF;
1401                 bufhdr->words.word1 = htons(hdr->words.word1);
1402                 bufhdr->words.word2 = htons(hdr->words.word2);
1403                 bufhdr->words.word3 = htons(hdr->words.word3);
1404                 bufhdr->words.word4 = 0;
1405         }
1406         return min(max_payload, skb->len);
1407 }
1408
1409 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1410 {
1411         struct hpsb_packet *p;
1412
1413         p = hpsb_alloc_packet(0);
1414         if (p) {
1415                 p->host = host;
1416                 p->generation = get_hpsb_generation(host);
1417                 p->type = hpsb_async;
1418         }
1419         return p;
1420 }
1421
1422 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1423                                        struct hpsb_host *host, nodeid_t node,
1424                                        u64 addr, void *data, int tx_len)
1425 {
1426         p->node_id = node;
1427
1428         if (hpsb_get_tlabel(p))
1429                 return -EAGAIN;
1430
1431         p->tcode = TCODE_WRITEB;
1432         p->header_size = 16;
1433         p->expect_response = 1;
1434         p->header[0] =
1435                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1436         p->header[1] = host->node_id << 16 | addr >> 32;
1437         p->header[2] = addr & 0xffffffff;
1438         p->header[3] = tx_len << 16;
1439         p->data_size = (tx_len + 3) & ~3;
1440         p->data = data;
1441
1442         return 0;
1443 }
1444
1445 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1446                                        struct eth1394_priv *priv,
1447                                        struct sk_buff *skb, int length)
1448 {
1449         p->header_size = 4;
1450         p->tcode = TCODE_STREAM_DATA;
1451
1452         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1453                        TCODE_STREAM_DATA << 4;
1454         p->data_size = length;
1455         p->data = (quadlet_t *)skb->data - 2;
1456         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1457                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1458         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1459                                  ETHER1394_GASP_VERSION);
1460
1461         p->speed_code = priv->bc_sspd;
1462
1463         /* prevent hpsb_send_packet() from overriding our speed code */
1464         p->node_id = LOCAL_BUS | ALL_NODES;
1465 }
1466
1467 static void ether1394_free_packet(struct hpsb_packet *packet)
1468 {
1469         if (packet->tcode != TCODE_STREAM_DATA)
1470                 hpsb_free_tlabel(packet);
1471         hpsb_free_packet(packet);
1472 }
1473
1474 static void ether1394_complete_cb(void *__ptask);
1475
1476 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1477 {
1478         struct eth1394_priv *priv = ptask->priv;
1479         struct hpsb_packet *packet = NULL;
1480
1481         packet = ether1394_alloc_common_packet(priv->host);
1482         if (!packet)
1483                 return -ENOMEM;
1484
1485         if (ptask->tx_type == ETH1394_GASP) {
1486                 int length = tx_len + 2 * sizeof(quadlet_t);
1487
1488                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1489         } else if (ether1394_prep_write_packet(packet, priv->host,
1490                                                ptask->dest_node,
1491                                                ptask->addr, ptask->skb->data,
1492                                                tx_len)) {
1493                 hpsb_free_packet(packet);
1494                 return -EAGAIN;
1495         }
1496
1497         ptask->packet = packet;
1498         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1499                                       ptask);
1500
1501         if (hpsb_send_packet(packet) < 0) {
1502                 ether1394_free_packet(packet);
1503                 return -EIO;
1504         }
1505
1506         return 0;
1507 }
1508
1509 /* Task function to be run when a datagram transmission is completed */
1510 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1511 {
1512         struct sk_buff *skb = ptask->skb;
1513         struct eth1394_priv *priv = netdev_priv(skb->dev);
1514         unsigned long flags;
1515
1516         /* Statistics */
1517         spin_lock_irqsave(&priv->lock, flags);
1518         if (fail) {
1519                 priv->stats.tx_dropped++;
1520                 priv->stats.tx_errors++;
1521         } else {
1522                 priv->stats.tx_bytes += skb->len;
1523                 priv->stats.tx_packets++;
1524         }
1525         spin_unlock_irqrestore(&priv->lock, flags);
1526
1527         dev_kfree_skb_any(skb);
1528         kmem_cache_free(packet_task_cache, ptask);
1529 }
1530
1531 /* Callback for when a packet has been sent and the status of that packet is
1532  * known */
1533 static void ether1394_complete_cb(void *__ptask)
1534 {
1535         struct packet_task *ptask = (struct packet_task *)__ptask;
1536         struct hpsb_packet *packet = ptask->packet;
1537         int fail = 0;
1538
1539         if (packet->tcode != TCODE_STREAM_DATA)
1540                 fail = hpsb_packet_success(packet);
1541
1542         ether1394_free_packet(packet);
1543
1544         ptask->outstanding_pkts--;
1545         if (ptask->outstanding_pkts > 0 && !fail) {
1546                 int tx_len, err;
1547
1548                 /* Add the encapsulation header to the fragment */
1549                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1550                                                &ptask->hdr);
1551                 err = ether1394_send_packet(ptask, tx_len);
1552                 if (err) {
1553                         if (err == -EAGAIN)
1554                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1555
1556                         ether1394_dg_complete(ptask, 1);
1557                 }
1558         } else {
1559                 ether1394_dg_complete(ptask, fail);
1560         }
1561 }
1562
1563 /* Transmit a packet (called by kernel) */
1564 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1565 {
1566         struct eth1394hdr hdr_buf;
1567         struct eth1394_priv *priv = netdev_priv(dev);
1568         __be16 proto;
1569         unsigned long flags;
1570         nodeid_t dest_node;
1571         eth1394_tx_type tx_type;
1572         unsigned int tx_len;
1573         unsigned int max_payload;
1574         u16 dg_size;
1575         u16 dgl;
1576         struct packet_task *ptask;
1577         struct eth1394_node_ref *node;
1578         struct eth1394_node_info *node_info = NULL;
1579
1580         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1581         if (ptask == NULL)
1582                 goto fail;
1583
1584         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1585          * it does not set our validity bit. We need to compensate for
1586          * that somewhere else, but not in eth1394. */
1587 #if 0
1588         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1589                 goto fail;
1590 #endif
1591
1592         skb = skb_share_check(skb, GFP_ATOMIC);
1593         if (!skb)
1594                 goto fail;
1595
1596         /* Get rid of the fake eth1394 header, but first make a copy.
1597          * We might need to rebuild the header on tx failure. */
1598         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1599         skb_pull(skb, ETH1394_HLEN);
1600
1601         proto = hdr_buf.h_proto;
1602         dg_size = skb->len;
1603
1604         /* Set the transmission type for the packet.  ARP packets and IP
1605          * broadcast packets are sent via GASP. */
1606         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1607             proto == htons(ETH_P_ARP) ||
1608             (proto == htons(ETH_P_IP) &&
1609              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1610                 tx_type = ETH1394_GASP;
1611                 dest_node = LOCAL_BUS | ALL_NODES;
1612                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1613                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1614                 dgl = priv->bc_dgl;
1615                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1616                         priv->bc_dgl++;
1617         } else {
1618                 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1619
1620                 node = eth1394_find_node_guid(&priv->ip_node_list,
1621                                               be64_to_cpu(guid));
1622                 if (!node)
1623                         goto fail;
1624
1625                 node_info =
1626                     (struct eth1394_node_info *)node->ud->device.driver_data;
1627                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1628                         goto fail;
1629
1630                 dest_node = node->ud->ne->nodeid;
1631                 max_payload = node_info->maxpayload;
1632                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1633
1634                 dgl = node_info->dgl;
1635                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1636                         node_info->dgl++;
1637                 tx_type = ETH1394_WRREQ;
1638         }
1639
1640         /* If this is an ARP packet, convert it */
1641         if (proto == htons(ETH_P_ARP))
1642                 ether1394_arp_to_1394arp(skb, dev);
1643
1644         ptask->hdr.words.word1 = 0;
1645         ptask->hdr.words.word2 = 0;
1646         ptask->hdr.words.word3 = 0;
1647         ptask->hdr.words.word4 = 0;
1648         ptask->skb = skb;
1649         ptask->priv = priv;
1650         ptask->tx_type = tx_type;
1651
1652         if (tx_type != ETH1394_GASP) {
1653                 u64 addr;
1654
1655                 spin_lock_irqsave(&priv->lock, flags);
1656                 addr = node_info->fifo;
1657                 spin_unlock_irqrestore(&priv->lock, flags);
1658
1659                 ptask->addr = addr;
1660                 ptask->dest_node = dest_node;
1661         }
1662
1663         ptask->tx_type = tx_type;
1664         ptask->max_payload = max_payload;
1665         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1666                                         proto, &ptask->hdr, dg_size, dgl);
1667
1668         /* Add the encapsulation header to the fragment */
1669         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1670         dev->trans_start = jiffies;
1671         if (ether1394_send_packet(ptask, tx_len)) {
1672                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1673                         goto fail;
1674
1675                 /* At this point we want to restore the packet.  When we return
1676                  * here with NETDEV_TX_BUSY we will get another entrance in this
1677                  * routine with the same skb and we need it to look the same.
1678                  * So we pull 4 more bytes, then build the header again. */
1679                 skb_pull(skb, 4);
1680                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1681                                  hdr_buf.h_dest, NULL, 0);
1682
1683                 /* Most failures of ether1394_send_packet are recoverable. */
1684                 netif_stop_queue(dev);
1685                 priv->wake_node = dest_node;
1686                 schedule_work(&priv->wake);
1687                 kmem_cache_free(packet_task_cache, ptask);
1688                 return NETDEV_TX_BUSY;
1689         }
1690
1691         return NETDEV_TX_OK;
1692 fail:
1693         if (ptask)
1694                 kmem_cache_free(packet_task_cache, ptask);
1695
1696         if (skb != NULL)
1697                 dev_kfree_skb(skb);
1698
1699         spin_lock_irqsave(&priv->lock, flags);
1700         priv->stats.tx_dropped++;
1701         priv->stats.tx_errors++;
1702         spin_unlock_irqrestore(&priv->lock, flags);
1703
1704         /*
1705          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1706          * causes serious problems" here, allegedly.  Before that patch,
1707          * -ERRNO was returned which is not appropriate under Linux 2.6.
1708          * Perhaps more needs to be done?  Stop the queue in serious
1709          * conditions and restart it elsewhere?
1710          */
1711         /* return NETDEV_TX_BUSY; */
1712         return NETDEV_TX_OK;
1713 }
1714
1715 static void ether1394_get_drvinfo(struct net_device *dev,
1716                                   struct ethtool_drvinfo *info)
1717 {
1718         strcpy(info->driver, driver_name);
1719         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1720 }
1721
1722 static struct ethtool_ops ethtool_ops = {
1723         .get_drvinfo = ether1394_get_drvinfo
1724 };
1725
1726 static int __init ether1394_init_module(void)
1727 {
1728         int err;
1729
1730         packet_task_cache = kmem_cache_create("packet_task",
1731                                               sizeof(struct packet_task),
1732                                               0, 0, NULL);
1733         if (!packet_task_cache)
1734                 return -ENOMEM;
1735
1736         hpsb_register_highlevel(&eth1394_highlevel);
1737         err = hpsb_register_protocol(&eth1394_proto_driver);
1738         if (err) {
1739                 hpsb_unregister_highlevel(&eth1394_highlevel);
1740                 kmem_cache_destroy(packet_task_cache);
1741         }
1742         return err;
1743 }
1744
1745 static void __exit ether1394_exit_module(void)
1746 {
1747         hpsb_unregister_protocol(&eth1394_proto_driver);
1748         hpsb_unregister_highlevel(&eth1394_highlevel);
1749         kmem_cache_destroy(packet_task_cache);
1750 }
1751
1752 module_init(ether1394_init_module);
1753 module_exit(ether1394_exit_module);