]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/ieee1394/ieee1394_core.c
ieee1394: ieee1394_core printk format
[linux-2.6-omap-h63xx.git] / drivers / ieee1394 / ieee1394_core.c
1 /*
2  * IEEE 1394 for Linux
3  *
4  * Core support: hpsb_packet management, packet handling and forwarding to
5  *               highlevel or lowlevel code
6  *
7  * Copyright (C) 1999, 2000 Andreas E. Bombe
8  *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
9  *
10  * This code is licensed under the GPL.  See the file COPYING in the root
11  * directory of the kernel sources for details.
12  *
13  *
14  * Contributions:
15  *
16  * Manfred Weihs <weihs@ict.tuwien.ac.at>
17  *        loopback functionality in hpsb_send_packet
18  *        allow highlevel drivers to disable automatic response generation
19  *              and to generate responses themselves (deferred)
20  *
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/bitops.h>
32 #include <linux/kdev_t.h>
33 #include <linux/suspend.h>
34 #include <linux/kthread.h>
35 #include <linux/preempt.h>
36 #include <linux/time.h>
37
38 #include <asm/system.h>
39 #include <asm/byteorder.h>
40
41 #include "ieee1394_types.h"
42 #include "ieee1394.h"
43 #include "hosts.h"
44 #include "ieee1394_core.h"
45 #include "highlevel.h"
46 #include "ieee1394_transactions.h"
47 #include "csr.h"
48 #include "nodemgr.h"
49 #include "dma.h"
50 #include "iso.h"
51 #include "config_roms.h"
52
53 /*
54  * Disable the nodemgr detection and config rom reading functionality.
55  */
56 static int disable_nodemgr;
57 module_param(disable_nodemgr, int, 0444);
58 MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
59
60 /* Disable Isochronous Resource Manager functionality */
61 int hpsb_disable_irm = 0;
62 module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
63 MODULE_PARM_DESC(disable_irm,
64                  "Disable Isochronous Resource Manager functionality.");
65
66 /* We are GPL, so treat us special */
67 MODULE_LICENSE("GPL");
68
69 /* Some globals used */
70 const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
71 struct class *hpsb_protocol_class;
72
73 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
74 static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
75 {
76         int i;
77
78         size /= 4;
79         size = (size > 4 ? 4 : size);
80
81         printk(KERN_DEBUG "ieee1394: %s", text);
82         if (speed > -1 && speed < 6)
83                 printk(" at %s", hpsb_speedto_str[speed]);
84         printk(":");
85         for (i = 0; i < size; i++)
86                 printk(" %08x", data[i]);
87         printk("\n");
88 }
89 #else
90 #define dump_packet(a,b,c,d) do {} while (0)
91 #endif
92
93 static void abort_requests(struct hpsb_host *host);
94 static void queue_packet_complete(struct hpsb_packet *packet);
95
96
97 /**
98  * hpsb_set_packet_complete_task - set task that runs when a packet completes
99  * @packet: the packet whose completion we want the task added to
100  * @routine: function to call
101  * @data: data (if any) to pass to the above function
102  *
103  * Set the task that runs when a packet completes. You cannot call this more
104  * than once on a single packet before it is sent.
105  *
106  * Typically, the complete @routine is responsible to call hpsb_free_packet().
107  */
108 void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
109                                    void (*routine)(void *), void *data)
110 {
111         WARN_ON(packet->complete_routine != NULL);
112         packet->complete_routine = routine;
113         packet->complete_data = data;
114         return;
115 }
116
117 /**
118  * hpsb_alloc_packet - allocate new packet structure
119  * @data_size: size of the data block to be allocated, in bytes
120  *
121  * This function allocates, initializes and returns a new &struct hpsb_packet.
122  * It can be used in interrupt context.  A header block is always included and
123  * initialized with zeros.  Its size is big enough to contain all possible 1394
124  * headers.  The data block is only allocated if @data_size is not zero.
125  *
126  * For packets for which responses will be received the @data_size has to be big
127  * enough to contain the response's data block since no further allocation
128  * occurs at response matching time.
129  *
130  * The packet's generation value will be set to the current generation number
131  * for ease of use.  Remember to overwrite it with your own recorded generation
132  * number if you can not be sure that your code will not race with a bus reset.
133  *
134  * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
135  * failure.
136  */
137 struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
138 {
139         struct hpsb_packet *packet;
140
141         data_size = ((data_size + 3) & ~3);
142
143         packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
144         if (!packet)
145                 return NULL;
146
147         packet->state = hpsb_unused;
148         packet->generation = -1;
149         INIT_LIST_HEAD(&packet->driver_list);
150         INIT_LIST_HEAD(&packet->queue);
151         atomic_set(&packet->refcnt, 1);
152
153         if (data_size) {
154                 packet->data = packet->embedded_data;
155                 packet->allocated_data_size = data_size;
156         }
157         return packet;
158 }
159
160 /**
161  * hpsb_free_packet - free packet and data associated with it
162  * @packet: packet to free (is NULL safe)
163  *
164  * Frees @packet->data only if it was allocated through hpsb_alloc_packet().
165  */
166 void hpsb_free_packet(struct hpsb_packet *packet)
167 {
168         if (packet && atomic_dec_and_test(&packet->refcnt)) {
169                 BUG_ON(!list_empty(&packet->driver_list) ||
170                        !list_empty(&packet->queue));
171                 kfree(packet);
172         }
173 }
174
175 /**
176  * hpsb_reset_bus - initiate bus reset on the given host
177  * @host: host controller whose bus to reset
178  * @type: one of enum reset_types
179  *
180  * Returns 1 if bus reset already in progress, 0 otherwise.
181  */
182 int hpsb_reset_bus(struct hpsb_host *host, int type)
183 {
184         if (!host->in_bus_reset) {
185                 host->driver->devctl(host, RESET_BUS, type);
186                 return 0;
187         } else {
188                 return 1;
189         }
190 }
191
192 /**
193  * hpsb_read_cycle_timer - read cycle timer register and system time
194  * @host: host whose isochronous cycle timer register is read
195  * @cycle_timer: address of bitfield to return the register contents
196  * @local_time: address to return the system time
197  *
198  * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
199  * format is also read from non-OHCI controllers. * @local_time contains the
200  * system time in microseconds since the Epoch, read at the moment when the
201  * cycle timer was read.
202  *
203  * Return value: 0 for success or error number otherwise.
204  */
205 int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
206                           u64 *local_time)
207 {
208         int ctr;
209         struct timeval tv;
210         unsigned long flags;
211
212         if (!host || !cycle_timer || !local_time)
213                 return -EINVAL;
214
215         preempt_disable();
216         local_irq_save(flags);
217
218         ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
219         if (ctr)
220                 do_gettimeofday(&tv);
221
222         local_irq_restore(flags);
223         preempt_enable();
224
225         if (!ctr)
226                 return -EIO;
227         *cycle_timer = ctr;
228         *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
229         return 0;
230 }
231
232 /**
233  * hpsb_bus_reset - notify a bus reset to the core
234  *
235  * For host driver module usage.  Safe to use in interrupt context, although
236  * quite complex; so you may want to run it in the bottom rather than top half.
237  *
238  * Returns 1 if bus reset already in progress, 0 otherwise.
239  */
240 int hpsb_bus_reset(struct hpsb_host *host)
241 {
242         if (host->in_bus_reset) {
243                 HPSB_NOTICE("%s called while bus reset already in progress",
244                             __FUNCTION__);
245                 return 1;
246         }
247
248         abort_requests(host);
249         host->in_bus_reset = 1;
250         host->irm_id = -1;
251         host->is_irm = 0;
252         host->busmgr_id = -1;
253         host->is_busmgr = 0;
254         host->is_cycmst = 0;
255         host->node_count = 0;
256         host->selfid_count = 0;
257
258         return 0;
259 }
260
261
262 /*
263  * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
264  * case verification failed.
265  */
266 static int check_selfids(struct hpsb_host *host)
267 {
268         int nodeid = -1;
269         int rest_of_selfids = host->selfid_count;
270         struct selfid *sid = (struct selfid *)host->topology_map;
271         struct ext_selfid *esid;
272         int esid_seq = 23;
273
274         host->nodes_active = 0;
275
276         while (rest_of_selfids--) {
277                 if (!sid->extended) {
278                         nodeid++;
279                         esid_seq = 0;
280
281                         if (sid->phy_id != nodeid) {
282                                 HPSB_INFO("SelfIDs failed monotony check with "
283                                           "%d", sid->phy_id);
284                                 return 0;
285                         }
286
287                         if (sid->link_active) {
288                                 host->nodes_active++;
289                                 if (sid->contender)
290                                         host->irm_id = LOCAL_BUS | sid->phy_id;
291                         }
292                 } else {
293                         esid = (struct ext_selfid *)sid;
294
295                         if ((esid->phy_id != nodeid)
296                             || (esid->seq_nr != esid_seq)) {
297                                 HPSB_INFO("SelfIDs failed monotony check with "
298                                           "%d/%d", esid->phy_id, esid->seq_nr);
299                                 return 0;
300                         }
301                         esid_seq++;
302                 }
303                 sid++;
304         }
305
306         esid = (struct ext_selfid *)(sid - 1);
307         while (esid->extended) {
308                 if ((esid->porta == SELFID_PORT_PARENT) ||
309                     (esid->portb == SELFID_PORT_PARENT) ||
310                     (esid->portc == SELFID_PORT_PARENT) ||
311                     (esid->portd == SELFID_PORT_PARENT) ||
312                     (esid->porte == SELFID_PORT_PARENT) ||
313                     (esid->portf == SELFID_PORT_PARENT) ||
314                     (esid->portg == SELFID_PORT_PARENT) ||
315                     (esid->porth == SELFID_PORT_PARENT)) {
316                         HPSB_INFO("SelfIDs failed root check on "
317                                   "extended SelfID");
318                         return 0;
319                 }
320                 esid--;
321         }
322
323         sid = (struct selfid *)esid;
324         if ((sid->port0 == SELFID_PORT_PARENT) ||
325             (sid->port1 == SELFID_PORT_PARENT) ||
326             (sid->port2 == SELFID_PORT_PARENT)) {
327                 HPSB_INFO("SelfIDs failed root check");
328                 return 0;
329         }
330
331         host->node_count = nodeid + 1;
332         return 1;
333 }
334
335 static void build_speed_map(struct hpsb_host *host, int nodecount)
336 {
337         u8 cldcnt[nodecount];
338         u8 *map = host->speed_map;
339         u8 *speedcap = host->speed;
340         struct selfid *sid;
341         struct ext_selfid *esid;
342         int i, j, n;
343
344         for (i = 0; i < (nodecount * 64); i += 64) {
345                 for (j = 0; j < nodecount; j++) {
346                         map[i+j] = IEEE1394_SPEED_MAX;
347                 }
348         }
349
350         for (i = 0; i < nodecount; i++) {
351                 cldcnt[i] = 0;
352         }
353
354         /* find direct children count and speed */
355         for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
356                      n = nodecount - 1;
357              (void *)sid >= (void *)host->topology_map; sid--) {
358                 if (sid->extended) {
359                         esid = (struct ext_selfid *)sid;
360
361                         if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
362                         if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
363                         if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
364                         if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
365                         if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
366                         if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
367                         if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
368                         if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
369                 } else {
370                         if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
371                         if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
372                         if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
373
374                         speedcap[n] = sid->speed;
375                         n--;
376                 }
377         }
378
379         /* set self mapping */
380         for (i = 0; i < nodecount; i++) {
381                 map[64*i + i] = speedcap[i];
382         }
383
384         /* fix up direct children count to total children count;
385          * also fix up speedcaps for sibling and parent communication */
386         for (i = 1; i < nodecount; i++) {
387                 for (j = cldcnt[i], n = i - 1; j > 0; j--) {
388                         cldcnt[i] += cldcnt[n];
389                         speedcap[n] = min(speedcap[n], speedcap[i]);
390                         n -= cldcnt[n] + 1;
391                 }
392         }
393
394         for (n = 0; n < nodecount; n++) {
395                 for (i = n - cldcnt[n]; i <= n; i++) {
396                         for (j = 0; j < (n - cldcnt[n]); j++) {
397                                 map[j*64 + i] = map[i*64 + j] =
398                                         min(map[i*64 + j], speedcap[n]);
399                         }
400                         for (j = n + 1; j < nodecount; j++) {
401                                 map[j*64 + i] = map[i*64 + j] =
402                                         min(map[i*64 + j], speedcap[n]);
403                         }
404                 }
405         }
406
407 #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
408         /* assume maximum speed for 1394b PHYs, nodemgr will correct it */
409         for (n = 0; n < nodecount; n++)
410                 if (speedcap[n] == SELFID_SPEED_UNKNOWN)
411                         speedcap[n] = IEEE1394_SPEED_MAX;
412 #endif
413 }
414
415
416 /**
417  * hpsb_selfid_received - hand over received selfid packet to the core
418  *
419  * For host driver module usage.  Safe to use in interrupt context.
420  *
421  * The host driver should have done a successful complement check (second
422  * quadlet is complement of first) beforehand.
423  */
424 void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
425 {
426         if (host->in_bus_reset) {
427                 HPSB_VERBOSE("Including SelfID 0x%x", sid);
428                 host->topology_map[host->selfid_count++] = sid;
429         } else {
430                 HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
431                             sid, NODEID_TO_BUS(host->node_id));
432         }
433 }
434
435 /**
436  * hpsb_selfid_complete - notify completion of SelfID stage to the core
437  *
438  * For host driver module usage.  Safe to use in interrupt context, although
439  * quite complex; so you may want to run it in the bottom rather than top half.
440  *
441  * Notify completion of SelfID stage to the core and report new physical ID
442  * and whether host is root now.
443  */
444 void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
445 {
446         if (!host->in_bus_reset)
447                 HPSB_NOTICE("SelfID completion called outside of bus reset!");
448
449         host->node_id = LOCAL_BUS | phyid;
450         host->is_root = isroot;
451
452         if (!check_selfids(host)) {
453                 if (host->reset_retries++ < 20) {
454                         /* selfid stage did not complete without error */
455                         HPSB_NOTICE("Error in SelfID stage, resetting");
456                         host->in_bus_reset = 0;
457                         /* this should work from ohci1394 now... */
458                         hpsb_reset_bus(host, LONG_RESET);
459                         return;
460                 } else {
461                         HPSB_NOTICE("Stopping out-of-control reset loop");
462                         HPSB_NOTICE("Warning - topology map and speed map will not be valid");
463                         host->reset_retries = 0;
464                 }
465         } else {
466                 host->reset_retries = 0;
467                 build_speed_map(host, host->node_count);
468         }
469
470         HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
471                      "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
472
473         /* irm_id is kept up to date by check_selfids() */
474         if (host->irm_id == host->node_id) {
475                 host->is_irm = 1;
476         } else {
477                 host->is_busmgr = 0;
478                 host->is_irm = 0;
479         }
480
481         if (isroot) {
482                 host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
483                 host->is_cycmst = 1;
484         }
485         atomic_inc(&host->generation);
486         host->in_bus_reset = 0;
487         highlevel_host_reset(host);
488 }
489
490 static spinlock_t pending_packets_lock = SPIN_LOCK_UNLOCKED;
491
492 /**
493  * hpsb_packet_sent - notify core of sending a packet
494  *
495  * For host driver module usage.  Safe to call from within a transmit packet
496  * routine.
497  *
498  * Notify core of sending a packet.  Ackcode is the ack code returned for async
499  * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
500  * for other cases (internal errors that don't justify a panic).
501  */
502 void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
503                       int ackcode)
504 {
505         unsigned long flags;
506
507         spin_lock_irqsave(&pending_packets_lock, flags);
508
509         packet->ack_code = ackcode;
510
511         if (packet->no_waiter || packet->state == hpsb_complete) {
512                 /* if packet->no_waiter, must not have a tlabel allocated */
513                 spin_unlock_irqrestore(&pending_packets_lock, flags);
514                 hpsb_free_packet(packet);
515                 return;
516         }
517
518         atomic_dec(&packet->refcnt);    /* drop HC's reference */
519         /* here the packet must be on the host->pending_packets queue */
520
521         if (ackcode != ACK_PENDING || !packet->expect_response) {
522                 packet->state = hpsb_complete;
523                 list_del_init(&packet->queue);
524                 spin_unlock_irqrestore(&pending_packets_lock, flags);
525                 queue_packet_complete(packet);
526                 return;
527         }
528
529         packet->state = hpsb_pending;
530         packet->sendtime = jiffies;
531
532         spin_unlock_irqrestore(&pending_packets_lock, flags);
533
534         mod_timer(&host->timeout, jiffies + host->timeout_interval);
535 }
536
537 /**
538  * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
539  * @host: host that PHY config packet gets sent through
540  * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
541  * @gapcnt: gap count value to set (-1 = don't set gap count)
542  *
543  * This function sends a PHY config packet on the bus through the specified
544  * host.
545  *
546  * Return value: 0 for success or negative error number otherwise.
547  */
548 int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
549 {
550         struct hpsb_packet *packet;
551         quadlet_t d = 0;
552         int retval = 0;
553
554         if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
555            (rootid == -1 && gapcnt == -1)) {
556                 HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
557                            rootid, gapcnt);
558                 return -EINVAL;
559         }
560
561         if (rootid != -1)
562                 d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
563         if (gapcnt != -1)
564                 d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
565
566         packet = hpsb_make_phypacket(host, d);
567         if (!packet)
568                 return -ENOMEM;
569
570         packet->generation = get_hpsb_generation(host);
571         retval = hpsb_send_packet_and_wait(packet);
572         hpsb_free_packet(packet);
573
574         return retval;
575 }
576
577 /**
578  * hpsb_send_packet - transmit a packet on the bus
579  * @packet: packet to send
580  *
581  * The packet is sent through the host specified in the packet->host field.
582  * Before sending, the packet's transmit speed is automatically determined
583  * using the local speed map when it is an async, non-broadcast packet.
584  *
585  * Possibilities for failure are that host is either not initialized, in bus
586  * reset, the packet's generation number doesn't match the current generation
587  * number or the host reports a transmit error.
588  *
589  * Return value: 0 on success, negative errno on failure.
590  */
591 int hpsb_send_packet(struct hpsb_packet *packet)
592 {
593         struct hpsb_host *host = packet->host;
594
595         if (host->is_shutdown)
596                 return -EINVAL;
597         if (host->in_bus_reset ||
598             (packet->generation != get_hpsb_generation(host)))
599                 return -EAGAIN;
600
601         packet->state = hpsb_queued;
602
603         /* This just seems silly to me */
604         WARN_ON(packet->no_waiter && packet->expect_response);
605
606         if (!packet->no_waiter || packet->expect_response) {
607                 unsigned long flags;
608
609                 atomic_inc(&packet->refcnt);
610                 /* Set the initial "sendtime" to 10 seconds from now, to
611                    prevent premature expiry.  If a packet takes more than
612                    10 seconds to hit the wire, we have bigger problems :) */
613                 packet->sendtime = jiffies + 10 * HZ;
614                 spin_lock_irqsave(&pending_packets_lock, flags);
615                 list_add_tail(&packet->queue, &host->pending_packets);
616                 spin_unlock_irqrestore(&pending_packets_lock, flags);
617         }
618
619         if (packet->node_id == host->node_id) {
620                 /* it is a local request, so handle it locally */
621
622                 quadlet_t *data;
623                 size_t size = packet->data_size + packet->header_size;
624
625                 data = kmalloc(size, GFP_ATOMIC);
626                 if (!data) {
627                         HPSB_ERR("unable to allocate memory for concatenating header and data");
628                         return -ENOMEM;
629                 }
630
631                 memcpy(data, packet->header, packet->header_size);
632
633                 if (packet->data_size)
634                         memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
635
636                 dump_packet("send packet local", packet->header, packet->header_size, -1);
637
638                 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
639                 hpsb_packet_received(host, data, size, 0);
640
641                 kfree(data);
642
643                 return 0;
644         }
645
646         if (packet->type == hpsb_async &&
647             NODEID_TO_NODE(packet->node_id) != ALL_NODES)
648                 packet->speed_code =
649                         host->speed[NODEID_TO_NODE(packet->node_id)];
650
651         dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
652
653         return host->driver->transmit_packet(host, packet);
654 }
655
656 /* We could just use complete() directly as the packet complete
657  * callback, but this is more typesafe, in the sense that we get a
658  * compiler error if the prototype for complete() changes. */
659
660 static void complete_packet(void *data)
661 {
662         complete((struct completion *) data);
663 }
664
665 /**
666  * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
667  * @packet: packet to send
668  *
669  * Return value: 0 on success, negative errno on failure.
670  */
671 int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
672 {
673         struct completion done;
674         int retval;
675
676         init_completion(&done);
677         hpsb_set_packet_complete_task(packet, complete_packet, &done);
678         retval = hpsb_send_packet(packet);
679         if (retval == 0)
680                 wait_for_completion(&done);
681
682         return retval;
683 }
684
685 static void send_packet_nocare(struct hpsb_packet *packet)
686 {
687         if (hpsb_send_packet(packet) < 0) {
688                 hpsb_free_packet(packet);
689         }
690 }
691
692 static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
693                                        size_t buffer_size, int tcode)
694 {
695         size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;
696
697         if (unlikely(ret > buffer_size))
698                 ret = buffer_size;
699
700         if (unlikely(ret + header_size != packet_size))
701                 HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
702                          packet_size, tcode);
703         return ret;
704 }
705
706 static void handle_packet_response(struct hpsb_host *host, int tcode,
707                                    quadlet_t *data, size_t size)
708 {
709         struct hpsb_packet *packet;
710         int tlabel = (data[0] >> 10) & 0x3f;
711         size_t header_size;
712         unsigned long flags;
713
714         spin_lock_irqsave(&pending_packets_lock, flags);
715
716         list_for_each_entry(packet, &host->pending_packets, queue)
717                 if (packet->tlabel == tlabel &&
718                     packet->node_id == (data[1] >> 16))
719                         goto found;
720
721         spin_unlock_irqrestore(&pending_packets_lock, flags);
722         HPSB_DEBUG("unsolicited response packet received - %s",
723                    "no tlabel match");
724         dump_packet("contents", data, 16, -1);
725         return;
726
727 found:
728         switch (packet->tcode) {
729         case TCODE_WRITEQ:
730         case TCODE_WRITEB:
731                 if (unlikely(tcode != TCODE_WRITE_RESPONSE))
732                         break;
733                 header_size = 12;
734                 size = 0;
735                 goto dequeue;
736
737         case TCODE_READQ:
738                 if (unlikely(tcode != TCODE_READQ_RESPONSE))
739                         break;
740                 header_size = 16;
741                 size = 0;
742                 goto dequeue;
743
744         case TCODE_READB:
745                 if (unlikely(tcode != TCODE_READB_RESPONSE))
746                         break;
747                 header_size = 16;
748                 size = packet_size_to_data_size(size, header_size,
749                                                 packet->allocated_data_size,
750                                                 tcode);
751                 goto dequeue;
752
753         case TCODE_LOCK_REQUEST:
754                 if (unlikely(tcode != TCODE_LOCK_RESPONSE))
755                         break;
756                 header_size = 16;
757                 size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
758                                                 header_size,
759                                                 packet->allocated_data_size,
760                                                 tcode);
761                 goto dequeue;
762         }
763
764         spin_unlock_irqrestore(&pending_packets_lock, flags);
765         HPSB_DEBUG("unsolicited response packet received - %s",
766                    "tcode mismatch");
767         dump_packet("contents", data, 16, -1);
768         return;
769
770 dequeue:
771         list_del_init(&packet->queue);
772         spin_unlock_irqrestore(&pending_packets_lock, flags);
773
774         if (packet->state == hpsb_queued) {
775                 packet->sendtime = jiffies;
776                 packet->ack_code = ACK_PENDING;
777         }
778         packet->state = hpsb_complete;
779
780         memcpy(packet->header, data, header_size);
781         if (size)
782                 memcpy(packet->data, data + 4, size);
783
784         queue_packet_complete(packet);
785 }
786
787
788 static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
789                                                quadlet_t *data, size_t dsize)
790 {
791         struct hpsb_packet *p;
792
793         p = hpsb_alloc_packet(dsize);
794         if (unlikely(p == NULL)) {
795                 /* FIXME - send data_error response */
796                 HPSB_ERR("out of memory, cannot send response packet");
797                 return NULL;
798         }
799
800         p->type = hpsb_async;
801         p->state = hpsb_unused;
802         p->host = host;
803         p->node_id = data[1] >> 16;
804         p->tlabel = (data[0] >> 10) & 0x3f;
805         p->no_waiter = 1;
806
807         p->generation = get_hpsb_generation(host);
808
809         if (dsize % 4)
810                 p->data[dsize / 4] = 0;
811
812         return p;
813 }
814
815 #define PREP_ASYNC_HEAD_RCODE(tc) \
816         packet->tcode = tc; \
817         packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
818                 | (1 << 8) | (tc << 4); \
819         packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
820         packet->header[2] = 0
821
822 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
823                               quadlet_t data)
824 {
825         PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
826         packet->header[3] = data;
827         packet->header_size = 16;
828         packet->data_size = 0;
829 }
830
831 static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
832                                int length)
833 {
834         if (rcode != RCODE_COMPLETE)
835                 length = 0;
836
837         PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
838         packet->header[3] = length << 16;
839         packet->header_size = 16;
840         packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
841 }
842
843 static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
844 {
845         PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
846         packet->header_size = 12;
847         packet->data_size = 0;
848 }
849
850 static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
851                           int length)
852 {
853         if (rcode != RCODE_COMPLETE)
854                 length = 0;
855
856         PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
857         packet->header[3] = (length << 16) | extcode;
858         packet->header_size = 16;
859         packet->data_size = length;
860 }
861
862 #define PREP_REPLY_PACKET(length) \
863                 packet = create_reply_packet(host, data, length); \
864                 if (packet == NULL) break
865
866 static void handle_incoming_packet(struct hpsb_host *host, int tcode,
867                                    quadlet_t *data, size_t size, int write_acked)
868 {
869         struct hpsb_packet *packet;
870         int length, rcode, extcode;
871         quadlet_t buffer;
872         nodeid_t source = data[1] >> 16;
873         nodeid_t dest = data[0] >> 16;
874         u16 flags = (u16) data[0];
875         u64 addr;
876
877         /* big FIXME - no error checking is done for an out of bounds length */
878
879         switch (tcode) {
880         case TCODE_WRITEQ:
881                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
882                 rcode = highlevel_write(host, source, dest, data+3,
883                                         addr, 4, flags);
884
885                 if (!write_acked
886                     && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
887                     && (rcode >= 0)) {
888                         /* not a broadcast write, reply */
889                         PREP_REPLY_PACKET(0);
890                         fill_async_write_resp(packet, rcode);
891                         send_packet_nocare(packet);
892                 }
893                 break;
894
895         case TCODE_WRITEB:
896                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
897                 rcode = highlevel_write(host, source, dest, data+4,
898                                         addr, data[3]>>16, flags);
899
900                 if (!write_acked
901                     && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
902                     && (rcode >= 0)) {
903                         /* not a broadcast write, reply */
904                         PREP_REPLY_PACKET(0);
905                         fill_async_write_resp(packet, rcode);
906                         send_packet_nocare(packet);
907                 }
908                 break;
909
910         case TCODE_READQ:
911                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
912                 rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
913
914                 if (rcode >= 0) {
915                         PREP_REPLY_PACKET(0);
916                         fill_async_readquad_resp(packet, rcode, buffer);
917                         send_packet_nocare(packet);
918                 }
919                 break;
920
921         case TCODE_READB:
922                 length = data[3] >> 16;
923                 PREP_REPLY_PACKET(length);
924
925                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
926                 rcode = highlevel_read(host, source, packet->data, addr,
927                                        length, flags);
928
929                 if (rcode >= 0) {
930                         fill_async_readblock_resp(packet, rcode, length);
931                         send_packet_nocare(packet);
932                 } else {
933                         hpsb_free_packet(packet);
934                 }
935                 break;
936
937         case TCODE_LOCK_REQUEST:
938                 length = data[3] >> 16;
939                 extcode = data[3] & 0xffff;
940                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
941
942                 PREP_REPLY_PACKET(8);
943
944                 if ((extcode == 0) || (extcode >= 7)) {
945                         /* let switch default handle error */
946                         length = 0;
947                 }
948
949                 switch (length) {
950                 case 4:
951                         rcode = highlevel_lock(host, source, packet->data, addr,
952                                                data[4], 0, extcode,flags);
953                         fill_async_lock_resp(packet, rcode, extcode, 4);
954                         break;
955                 case 8:
956                         if ((extcode != EXTCODE_FETCH_ADD)
957                             && (extcode != EXTCODE_LITTLE_ADD)) {
958                                 rcode = highlevel_lock(host, source,
959                                                        packet->data, addr,
960                                                        data[5], data[4],
961                                                        extcode, flags);
962                                 fill_async_lock_resp(packet, rcode, extcode, 4);
963                         } else {
964                                 rcode = highlevel_lock64(host, source,
965                                              (octlet_t *)packet->data, addr,
966                                              *(octlet_t *)(data + 4), 0ULL,
967                                              extcode, flags);
968                                 fill_async_lock_resp(packet, rcode, extcode, 8);
969                         }
970                         break;
971                 case 16:
972                         rcode = highlevel_lock64(host, source,
973                                                  (octlet_t *)packet->data, addr,
974                                                  *(octlet_t *)(data + 6),
975                                                  *(octlet_t *)(data + 4),
976                                                  extcode, flags);
977                         fill_async_lock_resp(packet, rcode, extcode, 8);
978                         break;
979                 default:
980                         rcode = RCODE_TYPE_ERROR;
981                         fill_async_lock_resp(packet, rcode,
982                                              extcode, 0);
983                 }
984
985                 if (rcode >= 0) {
986                         send_packet_nocare(packet);
987                 } else {
988                         hpsb_free_packet(packet);
989                 }
990                 break;
991         }
992
993 }
994 #undef PREP_REPLY_PACKET
995
996 /**
997  * hpsb_packet_received - hand over received packet to the core
998  *
999  * For host driver module usage.
1000  *
1001  * The contents of data are expected to be the full packet but with the CRCs
1002  * left out (data block follows header immediately), with the header (i.e. the
1003  * first four quadlets) in machine byte order and the data block in big endian.
1004  * *@data can be safely overwritten after this call.
1005  *
1006  * If the packet is a write request, @write_acked is to be set to true if it was
1007  * ack_complete'd already, false otherwise.  This argument is ignored for any
1008  * other packet type.
1009  */
1010 void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
1011                           int write_acked)
1012 {
1013         int tcode;
1014
1015         if (unlikely(host->in_bus_reset)) {
1016                 HPSB_DEBUG("received packet during reset; ignoring");
1017                 return;
1018         }
1019
1020         dump_packet("received packet", data, size, -1);
1021
1022         tcode = (data[0] >> 4) & 0xf;
1023
1024         switch (tcode) {
1025         case TCODE_WRITE_RESPONSE:
1026         case TCODE_READQ_RESPONSE:
1027         case TCODE_READB_RESPONSE:
1028         case TCODE_LOCK_RESPONSE:
1029                 handle_packet_response(host, tcode, data, size);
1030                 break;
1031
1032         case TCODE_WRITEQ:
1033         case TCODE_WRITEB:
1034         case TCODE_READQ:
1035         case TCODE_READB:
1036         case TCODE_LOCK_REQUEST:
1037                 handle_incoming_packet(host, tcode, data, size, write_acked);
1038                 break;
1039
1040
1041         case TCODE_ISO_DATA:
1042                 highlevel_iso_receive(host, data, size);
1043                 break;
1044
1045         case TCODE_CYCLE_START:
1046                 /* simply ignore this packet if it is passed on */
1047                 break;
1048
1049         default:
1050                 HPSB_DEBUG("received packet with bogus transaction code %d",
1051                            tcode);
1052                 break;
1053         }
1054 }
1055
1056 static void abort_requests(struct hpsb_host *host)
1057 {
1058         struct hpsb_packet *packet, *p;
1059         struct list_head tmp;
1060         unsigned long flags;
1061
1062         host->driver->devctl(host, CANCEL_REQUESTS, 0);
1063
1064         INIT_LIST_HEAD(&tmp);
1065         spin_lock_irqsave(&pending_packets_lock, flags);
1066         list_splice_init(&host->pending_packets, &tmp);
1067         spin_unlock_irqrestore(&pending_packets_lock, flags);
1068
1069         list_for_each_entry_safe(packet, p, &tmp, queue) {
1070                 list_del_init(&packet->queue);
1071                 packet->state = hpsb_complete;
1072                 packet->ack_code = ACKX_ABORTED;
1073                 queue_packet_complete(packet);
1074         }
1075 }
1076
1077 void abort_timedouts(unsigned long __opaque)
1078 {
1079         struct hpsb_host *host = (struct hpsb_host *)__opaque;
1080         struct hpsb_packet *packet, *p;
1081         struct list_head tmp;
1082         unsigned long flags, expire, j;
1083
1084         spin_lock_irqsave(&host->csr.lock, flags);
1085         expire = host->csr.expire;
1086         spin_unlock_irqrestore(&host->csr.lock, flags);
1087
1088         j = jiffies;
1089         INIT_LIST_HEAD(&tmp);
1090         spin_lock_irqsave(&pending_packets_lock, flags);
1091
1092         list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
1093                 if (time_before(packet->sendtime + expire, j))
1094                         list_move_tail(&packet->queue, &tmp);
1095                 else
1096                         /* Since packets are added to the tail, the oldest
1097                          * ones are first, always. When we get to one that
1098                          * isn't timed out, the rest aren't either. */
1099                         break;
1100         }
1101         if (!list_empty(&host->pending_packets))
1102                 mod_timer(&host->timeout, j + host->timeout_interval);
1103
1104         spin_unlock_irqrestore(&pending_packets_lock, flags);
1105
1106         list_for_each_entry_safe(packet, p, &tmp, queue) {
1107                 list_del_init(&packet->queue);
1108                 packet->state = hpsb_complete;
1109                 packet->ack_code = ACKX_TIMEOUT;
1110                 queue_packet_complete(packet);
1111         }
1112 }
1113
1114 static struct task_struct *khpsbpkt_thread;
1115 static LIST_HEAD(hpsbpkt_queue);
1116
1117 static void queue_packet_complete(struct hpsb_packet *packet)
1118 {
1119         unsigned long flags;
1120
1121         if (packet->no_waiter) {
1122                 hpsb_free_packet(packet);
1123                 return;
1124         }
1125         if (packet->complete_routine != NULL) {
1126                 spin_lock_irqsave(&pending_packets_lock, flags);
1127                 list_add_tail(&packet->queue, &hpsbpkt_queue);
1128                 spin_unlock_irqrestore(&pending_packets_lock, flags);
1129                 wake_up_process(khpsbpkt_thread);
1130         }
1131         return;
1132 }
1133
1134 /*
1135  * Kernel thread which handles packets that are completed.  This way the
1136  * packet's "complete" function is asynchronously run in process context.
1137  * Only packets which have a "complete" function may be sent here.
1138  */
1139 static int hpsbpkt_thread(void *__hi)
1140 {
1141         struct hpsb_packet *packet, *p;
1142         struct list_head tmp;
1143         int may_schedule;
1144
1145         current->flags |= PF_NOFREEZE;
1146
1147         while (!kthread_should_stop()) {
1148
1149                 INIT_LIST_HEAD(&tmp);
1150                 spin_lock_irq(&pending_packets_lock);
1151                 list_splice_init(&hpsbpkt_queue, &tmp);
1152                 spin_unlock_irq(&pending_packets_lock);
1153
1154                 list_for_each_entry_safe(packet, p, &tmp, queue) {
1155                         list_del_init(&packet->queue);
1156                         packet->complete_routine(packet->complete_data);
1157                 }
1158
1159                 set_current_state(TASK_INTERRUPTIBLE);
1160                 spin_lock_irq(&pending_packets_lock);
1161                 may_schedule = list_empty(&hpsbpkt_queue);
1162                 spin_unlock_irq(&pending_packets_lock);
1163                 if (may_schedule)
1164                         schedule();
1165                 __set_current_state(TASK_RUNNING);
1166         }
1167         return 0;
1168 }
1169
1170 static int __init ieee1394_init(void)
1171 {
1172         int i, ret;
1173
1174         /* non-fatal error */
1175         if (hpsb_init_config_roms()) {
1176                 HPSB_ERR("Failed to initialize some config rom entries.\n");
1177                 HPSB_ERR("Some features may not be available\n");
1178         }
1179
1180         khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
1181         if (IS_ERR(khpsbpkt_thread)) {
1182                 HPSB_ERR("Failed to start hpsbpkt thread!\n");
1183                 ret = PTR_ERR(khpsbpkt_thread);
1184                 goto exit_cleanup_config_roms;
1185         }
1186
1187         if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1188                 HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1189                 ret = -ENODEV;
1190                 goto exit_release_kernel_thread;
1191         }
1192
1193         ret = bus_register(&ieee1394_bus_type);
1194         if (ret < 0) {
1195                 HPSB_INFO("bus register failed");
1196                 goto release_chrdev;
1197         }
1198
1199         for (i = 0; fw_bus_attrs[i]; i++) {
1200                 ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1201                 if (ret < 0) {
1202                         while (i >= 0) {
1203                                 bus_remove_file(&ieee1394_bus_type,
1204                                                 fw_bus_attrs[i--]);
1205                         }
1206                         bus_unregister(&ieee1394_bus_type);
1207                         goto release_chrdev;
1208                 }
1209         }
1210
1211         ret = class_register(&hpsb_host_class);
1212         if (ret < 0)
1213                 goto release_all_bus;
1214
1215         hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1216         if (IS_ERR(hpsb_protocol_class)) {
1217                 ret = PTR_ERR(hpsb_protocol_class);
1218                 goto release_class_host;
1219         }
1220
1221         ret = init_csr();
1222         if (ret) {
1223                 HPSB_INFO("init csr failed");
1224                 ret = -ENOMEM;
1225                 goto release_class_protocol;
1226         }
1227
1228         if (disable_nodemgr) {
1229                 HPSB_INFO("nodemgr and IRM functionality disabled");
1230                 /* We shouldn't contend for IRM with nodemgr disabled, since
1231                    nodemgr implements functionality required of ieee1394a-2000
1232                    IRMs */
1233                 hpsb_disable_irm = 1;
1234
1235                 return 0;
1236         }
1237
1238         if (hpsb_disable_irm) {
1239                 HPSB_INFO("IRM functionality disabled");
1240         }
1241
1242         ret = init_ieee1394_nodemgr();
1243         if (ret < 0) {
1244                 HPSB_INFO("init nodemgr failed");
1245                 goto cleanup_csr;
1246         }
1247
1248         return 0;
1249
1250 cleanup_csr:
1251         cleanup_csr();
1252 release_class_protocol:
1253         class_destroy(hpsb_protocol_class);
1254 release_class_host:
1255         class_unregister(&hpsb_host_class);
1256 release_all_bus:
1257         for (i = 0; fw_bus_attrs[i]; i++)
1258                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1259         bus_unregister(&ieee1394_bus_type);
1260 release_chrdev:
1261         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1262 exit_release_kernel_thread:
1263         kthread_stop(khpsbpkt_thread);
1264 exit_cleanup_config_roms:
1265         hpsb_cleanup_config_roms();
1266         return ret;
1267 }
1268
1269 static void __exit ieee1394_cleanup(void)
1270 {
1271         int i;
1272
1273         if (!disable_nodemgr)
1274                 cleanup_ieee1394_nodemgr();
1275
1276         cleanup_csr();
1277
1278         class_destroy(hpsb_protocol_class);
1279         class_unregister(&hpsb_host_class);
1280         for (i = 0; fw_bus_attrs[i]; i++)
1281                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1282         bus_unregister(&ieee1394_bus_type);
1283
1284         kthread_stop(khpsbpkt_thread);
1285
1286         hpsb_cleanup_config_roms();
1287
1288         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1289 }
1290
1291 fs_initcall(ieee1394_init); /* same as ohci1394 */
1292 module_exit(ieee1394_cleanup);
1293
1294 /* Exported symbols */
1295
1296 /** hosts.c **/
1297 EXPORT_SYMBOL(hpsb_alloc_host);
1298 EXPORT_SYMBOL(hpsb_add_host);
1299 EXPORT_SYMBOL(hpsb_resume_host);
1300 EXPORT_SYMBOL(hpsb_remove_host);
1301 EXPORT_SYMBOL(hpsb_update_config_rom_image);
1302
1303 /** ieee1394_core.c **/
1304 EXPORT_SYMBOL(hpsb_speedto_str);
1305 EXPORT_SYMBOL(hpsb_protocol_class);
1306 EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1307 EXPORT_SYMBOL(hpsb_alloc_packet);
1308 EXPORT_SYMBOL(hpsb_free_packet);
1309 EXPORT_SYMBOL(hpsb_send_packet);
1310 EXPORT_SYMBOL(hpsb_reset_bus);
1311 EXPORT_SYMBOL(hpsb_read_cycle_timer);
1312 EXPORT_SYMBOL(hpsb_bus_reset);
1313 EXPORT_SYMBOL(hpsb_selfid_received);
1314 EXPORT_SYMBOL(hpsb_selfid_complete);
1315 EXPORT_SYMBOL(hpsb_packet_sent);
1316 EXPORT_SYMBOL(hpsb_packet_received);
1317 EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1318
1319 /** ieee1394_transactions.c **/
1320 EXPORT_SYMBOL(hpsb_get_tlabel);
1321 EXPORT_SYMBOL(hpsb_free_tlabel);
1322 EXPORT_SYMBOL(hpsb_make_readpacket);
1323 EXPORT_SYMBOL(hpsb_make_writepacket);
1324 EXPORT_SYMBOL(hpsb_make_streampacket);
1325 EXPORT_SYMBOL(hpsb_make_lockpacket);
1326 EXPORT_SYMBOL(hpsb_make_lock64packet);
1327 EXPORT_SYMBOL(hpsb_make_phypacket);
1328 EXPORT_SYMBOL(hpsb_make_isopacket);
1329 EXPORT_SYMBOL(hpsb_read);
1330 EXPORT_SYMBOL(hpsb_write);
1331 EXPORT_SYMBOL(hpsb_packet_success);
1332
1333 /** highlevel.c **/
1334 EXPORT_SYMBOL(hpsb_register_highlevel);
1335 EXPORT_SYMBOL(hpsb_unregister_highlevel);
1336 EXPORT_SYMBOL(hpsb_register_addrspace);
1337 EXPORT_SYMBOL(hpsb_unregister_addrspace);
1338 EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1339 EXPORT_SYMBOL(hpsb_listen_channel);
1340 EXPORT_SYMBOL(hpsb_unlisten_channel);
1341 EXPORT_SYMBOL(hpsb_get_hostinfo);
1342 EXPORT_SYMBOL(hpsb_create_hostinfo);
1343 EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1344 EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1345 EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1346 EXPORT_SYMBOL(hpsb_set_hostinfo);
1347 EXPORT_SYMBOL(highlevel_host_reset);
1348
1349 /** nodemgr.c **/
1350 EXPORT_SYMBOL(hpsb_node_fill_packet);
1351 EXPORT_SYMBOL(hpsb_node_write);
1352 EXPORT_SYMBOL(__hpsb_register_protocol);
1353 EXPORT_SYMBOL(hpsb_unregister_protocol);
1354
1355 /** csr.c **/
1356 EXPORT_SYMBOL(hpsb_update_config_rom);
1357
1358 /** dma.c **/
1359 EXPORT_SYMBOL(dma_prog_region_init);
1360 EXPORT_SYMBOL(dma_prog_region_alloc);
1361 EXPORT_SYMBOL(dma_prog_region_free);
1362 EXPORT_SYMBOL(dma_region_init);
1363 EXPORT_SYMBOL(dma_region_alloc);
1364 EXPORT_SYMBOL(dma_region_free);
1365 EXPORT_SYMBOL(dma_region_sync_for_cpu);
1366 EXPORT_SYMBOL(dma_region_sync_for_device);
1367 EXPORT_SYMBOL(dma_region_mmap);
1368 EXPORT_SYMBOL(dma_region_offset_to_bus);
1369
1370 /** iso.c **/
1371 EXPORT_SYMBOL(hpsb_iso_xmit_init);
1372 EXPORT_SYMBOL(hpsb_iso_recv_init);
1373 EXPORT_SYMBOL(hpsb_iso_xmit_start);
1374 EXPORT_SYMBOL(hpsb_iso_recv_start);
1375 EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1376 EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1377 EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1378 EXPORT_SYMBOL(hpsb_iso_stop);
1379 EXPORT_SYMBOL(hpsb_iso_shutdown);
1380 EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1381 EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1382 EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1383 EXPORT_SYMBOL(hpsb_iso_n_ready);
1384 EXPORT_SYMBOL(hpsb_iso_packet_sent);
1385 EXPORT_SYMBOL(hpsb_iso_packet_received);
1386 EXPORT_SYMBOL(hpsb_iso_wake);
1387 EXPORT_SYMBOL(hpsb_iso_recv_flush);
1388
1389 /** csr1212.c **/
1390 EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1391 EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1392 EXPORT_SYMBOL(csr1212_get_keyval);
1393 EXPORT_SYMBOL(csr1212_new_directory);
1394 EXPORT_SYMBOL(csr1212_parse_keyval);
1395 EXPORT_SYMBOL(csr1212_read);
1396 EXPORT_SYMBOL(csr1212_release_keyval);