]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
KVM: Handle writes to MCG_STATUS msr
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
43
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 struct kvm_arch_ops *kvm_arch_ops;
54 struct kvm_stat kvm_stat;
55 EXPORT_SYMBOL_GPL(kvm_stat);
56
57 static struct kvm_stats_debugfs_item {
58         const char *name;
59         u32 *data;
60         struct dentry *dentry;
61 } debugfs_entries[] = {
62         { "pf_fixed", &kvm_stat.pf_fixed },
63         { "pf_guest", &kvm_stat.pf_guest },
64         { "tlb_flush", &kvm_stat.tlb_flush },
65         { "invlpg", &kvm_stat.invlpg },
66         { "exits", &kvm_stat.exits },
67         { "io_exits", &kvm_stat.io_exits },
68         { "mmio_exits", &kvm_stat.mmio_exits },
69         { "signal_exits", &kvm_stat.signal_exits },
70         { "irq_window", &kvm_stat.irq_window_exits },
71         { "halt_exits", &kvm_stat.halt_exits },
72         { "request_irq", &kvm_stat.request_irq_exits },
73         { "irq_exits", &kvm_stat.irq_exits },
74         { NULL, NULL }
75 };
76
77 static struct dentry *debugfs_dir;
78
79 struct vfsmount *kvmfs_mnt;
80
81 #define MAX_IO_MSRS 256
82
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
88
89 #ifdef CONFIG_X86_64
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64 {
92         struct segment_descriptor s;
93         u32 base_higher;
94         u32 pad_zero;
95 };
96
97 #endif
98
99 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
100                            unsigned long arg);
101
102 static struct inode *kvmfs_inode(struct file_operations *fops)
103 {
104         int error = -ENOMEM;
105         struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
106
107         if (!inode)
108                 goto eexit_1;
109
110         inode->i_fop = fops;
111
112         /*
113          * Mark the inode dirty from the very beginning,
114          * that way it will never be moved to the dirty
115          * list because mark_inode_dirty() will think
116          * that it already _is_ on the dirty list.
117          */
118         inode->i_state = I_DIRTY;
119         inode->i_mode = S_IRUSR | S_IWUSR;
120         inode->i_uid = current->fsuid;
121         inode->i_gid = current->fsgid;
122         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
123         return inode;
124
125 eexit_1:
126         return ERR_PTR(error);
127 }
128
129 static struct file *kvmfs_file(struct inode *inode, void *private_data)
130 {
131         struct file *file = get_empty_filp();
132
133         if (!file)
134                 return ERR_PTR(-ENFILE);
135
136         file->f_path.mnt = mntget(kvmfs_mnt);
137         file->f_path.dentry = d_alloc_anon(inode);
138         if (!file->f_path.dentry)
139                 return ERR_PTR(-ENOMEM);
140         file->f_mapping = inode->i_mapping;
141
142         file->f_pos = 0;
143         file->f_flags = O_RDWR;
144         file->f_op = inode->i_fop;
145         file->f_mode = FMODE_READ | FMODE_WRITE;
146         file->f_version = 0;
147         file->private_data = private_data;
148         return file;
149 }
150
151 unsigned long segment_base(u16 selector)
152 {
153         struct descriptor_table gdt;
154         struct segment_descriptor *d;
155         unsigned long table_base;
156         typedef unsigned long ul;
157         unsigned long v;
158
159         if (selector == 0)
160                 return 0;
161
162         asm ("sgdt %0" : "=m"(gdt));
163         table_base = gdt.base;
164
165         if (selector & 4) {           /* from ldt */
166                 u16 ldt_selector;
167
168                 asm ("sldt %0" : "=g"(ldt_selector));
169                 table_base = segment_base(ldt_selector);
170         }
171         d = (struct segment_descriptor *)(table_base + (selector & ~7));
172         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
173 #ifdef CONFIG_X86_64
174         if (d->system == 0
175             && (d->type == 2 || d->type == 9 || d->type == 11))
176                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
177 #endif
178         return v;
179 }
180 EXPORT_SYMBOL_GPL(segment_base);
181
182 static inline int valid_vcpu(int n)
183 {
184         return likely(n >= 0 && n < KVM_MAX_VCPUS);
185 }
186
187 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
188                    void *dest)
189 {
190         unsigned char *host_buf = dest;
191         unsigned long req_size = size;
192
193         while (size) {
194                 hpa_t paddr;
195                 unsigned now;
196                 unsigned offset;
197                 hva_t guest_buf;
198
199                 paddr = gva_to_hpa(vcpu, addr);
200
201                 if (is_error_hpa(paddr))
202                         break;
203
204                 guest_buf = (hva_t)kmap_atomic(
205                                         pfn_to_page(paddr >> PAGE_SHIFT),
206                                         KM_USER0);
207                 offset = addr & ~PAGE_MASK;
208                 guest_buf |= offset;
209                 now = min(size, PAGE_SIZE - offset);
210                 memcpy(host_buf, (void*)guest_buf, now);
211                 host_buf += now;
212                 addr += now;
213                 size -= now;
214                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
215         }
216         return req_size - size;
217 }
218 EXPORT_SYMBOL_GPL(kvm_read_guest);
219
220 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
221                     void *data)
222 {
223         unsigned char *host_buf = data;
224         unsigned long req_size = size;
225
226         while (size) {
227                 hpa_t paddr;
228                 unsigned now;
229                 unsigned offset;
230                 hva_t guest_buf;
231                 gfn_t gfn;
232
233                 paddr = gva_to_hpa(vcpu, addr);
234
235                 if (is_error_hpa(paddr))
236                         break;
237
238                 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
239                 mark_page_dirty(vcpu->kvm, gfn);
240                 guest_buf = (hva_t)kmap_atomic(
241                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
242                 offset = addr & ~PAGE_MASK;
243                 guest_buf |= offset;
244                 now = min(size, PAGE_SIZE - offset);
245                 memcpy((void*)guest_buf, host_buf, now);
246                 host_buf += now;
247                 addr += now;
248                 size -= now;
249                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
250         }
251         return req_size - size;
252 }
253 EXPORT_SYMBOL_GPL(kvm_write_guest);
254
255 /*
256  * Switches to specified vcpu, until a matching vcpu_put()
257  */
258 static void vcpu_load(struct kvm_vcpu *vcpu)
259 {
260         mutex_lock(&vcpu->mutex);
261         kvm_arch_ops->vcpu_load(vcpu);
262 }
263
264 /*
265  * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266  * if the slot is not populated.
267  */
268 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
269 {
270         struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
271
272         mutex_lock(&vcpu->mutex);
273         if (!vcpu->vmcs) {
274                 mutex_unlock(&vcpu->mutex);
275                 return NULL;
276         }
277         kvm_arch_ops->vcpu_load(vcpu);
278         return vcpu;
279 }
280
281 static void vcpu_put(struct kvm_vcpu *vcpu)
282 {
283         kvm_arch_ops->vcpu_put(vcpu);
284         mutex_unlock(&vcpu->mutex);
285 }
286
287 static struct kvm *kvm_create_vm(void)
288 {
289         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290         int i;
291
292         if (!kvm)
293                 return ERR_PTR(-ENOMEM);
294
295         spin_lock_init(&kvm->lock);
296         INIT_LIST_HEAD(&kvm->active_mmu_pages);
297         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
298                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
299
300                 mutex_init(&vcpu->mutex);
301                 vcpu->cpu = -1;
302                 vcpu->kvm = kvm;
303                 vcpu->mmu.root_hpa = INVALID_PAGE;
304                 INIT_LIST_HEAD(&vcpu->free_pages);
305                 spin_lock(&kvm_lock);
306                 list_add(&kvm->vm_list, &vm_list);
307                 spin_unlock(&kvm_lock);
308         }
309         return kvm;
310 }
311
312 static int kvm_dev_open(struct inode *inode, struct file *filp)
313 {
314         return 0;
315 }
316
317 /*
318  * Free any memory in @free but not in @dont.
319  */
320 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
321                                   struct kvm_memory_slot *dont)
322 {
323         int i;
324
325         if (!dont || free->phys_mem != dont->phys_mem)
326                 if (free->phys_mem) {
327                         for (i = 0; i < free->npages; ++i)
328                                 if (free->phys_mem[i])
329                                         __free_page(free->phys_mem[i]);
330                         vfree(free->phys_mem);
331                 }
332
333         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
334                 vfree(free->dirty_bitmap);
335
336         free->phys_mem = NULL;
337         free->npages = 0;
338         free->dirty_bitmap = NULL;
339 }
340
341 static void kvm_free_physmem(struct kvm *kvm)
342 {
343         int i;
344
345         for (i = 0; i < kvm->nmemslots; ++i)
346                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
347 }
348
349 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
350 {
351         int i;
352
353         for (i = 0; i < 2; ++i)
354                 if (vcpu->pio.guest_pages[i]) {
355                         __free_page(vcpu->pio.guest_pages[i]);
356                         vcpu->pio.guest_pages[i] = NULL;
357                 }
358 }
359
360 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
361 {
362         if (!vcpu->vmcs)
363                 return;
364
365         vcpu_load(vcpu);
366         kvm_mmu_destroy(vcpu);
367         vcpu_put(vcpu);
368         kvm_arch_ops->vcpu_free(vcpu);
369         free_page((unsigned long)vcpu->run);
370         vcpu->run = NULL;
371         free_page((unsigned long)vcpu->pio_data);
372         vcpu->pio_data = NULL;
373         free_pio_guest_pages(vcpu);
374 }
375
376 static void kvm_free_vcpus(struct kvm *kvm)
377 {
378         unsigned int i;
379
380         for (i = 0; i < KVM_MAX_VCPUS; ++i)
381                 kvm_free_vcpu(&kvm->vcpus[i]);
382 }
383
384 static int kvm_dev_release(struct inode *inode, struct file *filp)
385 {
386         return 0;
387 }
388
389 static void kvm_destroy_vm(struct kvm *kvm)
390 {
391         spin_lock(&kvm_lock);
392         list_del(&kvm->vm_list);
393         spin_unlock(&kvm_lock);
394         kvm_free_vcpus(kvm);
395         kvm_free_physmem(kvm);
396         kfree(kvm);
397 }
398
399 static int kvm_vm_release(struct inode *inode, struct file *filp)
400 {
401         struct kvm *kvm = filp->private_data;
402
403         kvm_destroy_vm(kvm);
404         return 0;
405 }
406
407 static void inject_gp(struct kvm_vcpu *vcpu)
408 {
409         kvm_arch_ops->inject_gp(vcpu, 0);
410 }
411
412 /*
413  * Load the pae pdptrs.  Return true is they are all valid.
414  */
415 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
416 {
417         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
418         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
419         int i;
420         u64 pdpte;
421         u64 *pdpt;
422         int ret;
423         struct kvm_memory_slot *memslot;
424
425         spin_lock(&vcpu->kvm->lock);
426         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
427         /* FIXME: !memslot - emulate? 0xff? */
428         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
429
430         ret = 1;
431         for (i = 0; i < 4; ++i) {
432                 pdpte = pdpt[offset + i];
433                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
434                         ret = 0;
435                         goto out;
436                 }
437         }
438
439         for (i = 0; i < 4; ++i)
440                 vcpu->pdptrs[i] = pdpt[offset + i];
441
442 out:
443         kunmap_atomic(pdpt, KM_USER0);
444         spin_unlock(&vcpu->kvm->lock);
445
446         return ret;
447 }
448
449 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
450 {
451         if (cr0 & CR0_RESEVED_BITS) {
452                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
453                        cr0, vcpu->cr0);
454                 inject_gp(vcpu);
455                 return;
456         }
457
458         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
459                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
460                 inject_gp(vcpu);
461                 return;
462         }
463
464         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
465                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
466                        "and a clear PE flag\n");
467                 inject_gp(vcpu);
468                 return;
469         }
470
471         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
472 #ifdef CONFIG_X86_64
473                 if ((vcpu->shadow_efer & EFER_LME)) {
474                         int cs_db, cs_l;
475
476                         if (!is_pae(vcpu)) {
477                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
478                                        "in long mode while PAE is disabled\n");
479                                 inject_gp(vcpu);
480                                 return;
481                         }
482                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
483                         if (cs_l) {
484                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
485                                        "in long mode while CS.L == 1\n");
486                                 inject_gp(vcpu);
487                                 return;
488
489                         }
490                 } else
491 #endif
492                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
493                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
494                                "reserved bits\n");
495                         inject_gp(vcpu);
496                         return;
497                 }
498
499         }
500
501         kvm_arch_ops->set_cr0(vcpu, cr0);
502         vcpu->cr0 = cr0;
503
504         spin_lock(&vcpu->kvm->lock);
505         kvm_mmu_reset_context(vcpu);
506         spin_unlock(&vcpu->kvm->lock);
507         return;
508 }
509 EXPORT_SYMBOL_GPL(set_cr0);
510
511 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
512 {
513         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
514         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
515 }
516 EXPORT_SYMBOL_GPL(lmsw);
517
518 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
519 {
520         if (cr4 & CR4_RESEVED_BITS) {
521                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
522                 inject_gp(vcpu);
523                 return;
524         }
525
526         if (is_long_mode(vcpu)) {
527                 if (!(cr4 & CR4_PAE_MASK)) {
528                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
529                                "in long mode\n");
530                         inject_gp(vcpu);
531                         return;
532                 }
533         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
534                    && !load_pdptrs(vcpu, vcpu->cr3)) {
535                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
536                 inject_gp(vcpu);
537         }
538
539         if (cr4 & CR4_VMXE_MASK) {
540                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
541                 inject_gp(vcpu);
542                 return;
543         }
544         kvm_arch_ops->set_cr4(vcpu, cr4);
545         spin_lock(&vcpu->kvm->lock);
546         kvm_mmu_reset_context(vcpu);
547         spin_unlock(&vcpu->kvm->lock);
548 }
549 EXPORT_SYMBOL_GPL(set_cr4);
550
551 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
552 {
553         if (is_long_mode(vcpu)) {
554                 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
555                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
556                         inject_gp(vcpu);
557                         return;
558                 }
559         } else {
560                 if (cr3 & CR3_RESEVED_BITS) {
561                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
562                         inject_gp(vcpu);
563                         return;
564                 }
565                 if (is_paging(vcpu) && is_pae(vcpu) &&
566                     !load_pdptrs(vcpu, cr3)) {
567                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
568                                "reserved bits\n");
569                         inject_gp(vcpu);
570                         return;
571                 }
572         }
573
574         vcpu->cr3 = cr3;
575         spin_lock(&vcpu->kvm->lock);
576         /*
577          * Does the new cr3 value map to physical memory? (Note, we
578          * catch an invalid cr3 even in real-mode, because it would
579          * cause trouble later on when we turn on paging anyway.)
580          *
581          * A real CPU would silently accept an invalid cr3 and would
582          * attempt to use it - with largely undefined (and often hard
583          * to debug) behavior on the guest side.
584          */
585         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
586                 inject_gp(vcpu);
587         else
588                 vcpu->mmu.new_cr3(vcpu);
589         spin_unlock(&vcpu->kvm->lock);
590 }
591 EXPORT_SYMBOL_GPL(set_cr3);
592
593 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
594 {
595         if ( cr8 & CR8_RESEVED_BITS) {
596                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
597                 inject_gp(vcpu);
598                 return;
599         }
600         vcpu->cr8 = cr8;
601 }
602 EXPORT_SYMBOL_GPL(set_cr8);
603
604 void fx_init(struct kvm_vcpu *vcpu)
605 {
606         struct __attribute__ ((__packed__)) fx_image_s {
607                 u16 control; //fcw
608                 u16 status; //fsw
609                 u16 tag; // ftw
610                 u16 opcode; //fop
611                 u64 ip; // fpu ip
612                 u64 operand;// fpu dp
613                 u32 mxcsr;
614                 u32 mxcsr_mask;
615
616         } *fx_image;
617
618         fx_save(vcpu->host_fx_image);
619         fpu_init();
620         fx_save(vcpu->guest_fx_image);
621         fx_restore(vcpu->host_fx_image);
622
623         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
624         fx_image->mxcsr = 0x1f80;
625         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
626                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
627 }
628 EXPORT_SYMBOL_GPL(fx_init);
629
630 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
631 {
632         spin_lock(&vcpu->kvm->lock);
633         kvm_mmu_slot_remove_write_access(vcpu, slot);
634         spin_unlock(&vcpu->kvm->lock);
635 }
636
637 /*
638  * Allocate some memory and give it an address in the guest physical address
639  * space.
640  *
641  * Discontiguous memory is allowed, mostly for framebuffers.
642  */
643 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
644                                           struct kvm_memory_region *mem)
645 {
646         int r;
647         gfn_t base_gfn;
648         unsigned long npages;
649         unsigned long i;
650         struct kvm_memory_slot *memslot;
651         struct kvm_memory_slot old, new;
652         int memory_config_version;
653
654         r = -EINVAL;
655         /* General sanity checks */
656         if (mem->memory_size & (PAGE_SIZE - 1))
657                 goto out;
658         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
659                 goto out;
660         if (mem->slot >= KVM_MEMORY_SLOTS)
661                 goto out;
662         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
663                 goto out;
664
665         memslot = &kvm->memslots[mem->slot];
666         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
667         npages = mem->memory_size >> PAGE_SHIFT;
668
669         if (!npages)
670                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
671
672 raced:
673         spin_lock(&kvm->lock);
674
675         memory_config_version = kvm->memory_config_version;
676         new = old = *memslot;
677
678         new.base_gfn = base_gfn;
679         new.npages = npages;
680         new.flags = mem->flags;
681
682         /* Disallow changing a memory slot's size. */
683         r = -EINVAL;
684         if (npages && old.npages && npages != old.npages)
685                 goto out_unlock;
686
687         /* Check for overlaps */
688         r = -EEXIST;
689         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
690                 struct kvm_memory_slot *s = &kvm->memslots[i];
691
692                 if (s == memslot)
693                         continue;
694                 if (!((base_gfn + npages <= s->base_gfn) ||
695                       (base_gfn >= s->base_gfn + s->npages)))
696                         goto out_unlock;
697         }
698         /*
699          * Do memory allocations outside lock.  memory_config_version will
700          * detect any races.
701          */
702         spin_unlock(&kvm->lock);
703
704         /* Deallocate if slot is being removed */
705         if (!npages)
706                 new.phys_mem = NULL;
707
708         /* Free page dirty bitmap if unneeded */
709         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
710                 new.dirty_bitmap = NULL;
711
712         r = -ENOMEM;
713
714         /* Allocate if a slot is being created */
715         if (npages && !new.phys_mem) {
716                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
717
718                 if (!new.phys_mem)
719                         goto out_free;
720
721                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
722                 for (i = 0; i < npages; ++i) {
723                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
724                                                      | __GFP_ZERO);
725                         if (!new.phys_mem[i])
726                                 goto out_free;
727                         set_page_private(new.phys_mem[i],0);
728                 }
729         }
730
731         /* Allocate page dirty bitmap if needed */
732         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
733                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
734
735                 new.dirty_bitmap = vmalloc(dirty_bytes);
736                 if (!new.dirty_bitmap)
737                         goto out_free;
738                 memset(new.dirty_bitmap, 0, dirty_bytes);
739         }
740
741         spin_lock(&kvm->lock);
742
743         if (memory_config_version != kvm->memory_config_version) {
744                 spin_unlock(&kvm->lock);
745                 kvm_free_physmem_slot(&new, &old);
746                 goto raced;
747         }
748
749         r = -EAGAIN;
750         if (kvm->busy)
751                 goto out_unlock;
752
753         if (mem->slot >= kvm->nmemslots)
754                 kvm->nmemslots = mem->slot + 1;
755
756         *memslot = new;
757         ++kvm->memory_config_version;
758
759         spin_unlock(&kvm->lock);
760
761         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
762                 struct kvm_vcpu *vcpu;
763
764                 vcpu = vcpu_load_slot(kvm, i);
765                 if (!vcpu)
766                         continue;
767                 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
768                         do_remove_write_access(vcpu, mem->slot);
769                 kvm_mmu_reset_context(vcpu);
770                 vcpu_put(vcpu);
771         }
772
773         kvm_free_physmem_slot(&old, &new);
774         return 0;
775
776 out_unlock:
777         spin_unlock(&kvm->lock);
778 out_free:
779         kvm_free_physmem_slot(&new, &old);
780 out:
781         return r;
782 }
783
784 /*
785  * Get (and clear) the dirty memory log for a memory slot.
786  */
787 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
788                                       struct kvm_dirty_log *log)
789 {
790         struct kvm_memory_slot *memslot;
791         int r, i;
792         int n;
793         int cleared;
794         unsigned long any = 0;
795
796         spin_lock(&kvm->lock);
797
798         /*
799          * Prevent changes to guest memory configuration even while the lock
800          * is not taken.
801          */
802         ++kvm->busy;
803         spin_unlock(&kvm->lock);
804         r = -EINVAL;
805         if (log->slot >= KVM_MEMORY_SLOTS)
806                 goto out;
807
808         memslot = &kvm->memslots[log->slot];
809         r = -ENOENT;
810         if (!memslot->dirty_bitmap)
811                 goto out;
812
813         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
814
815         for (i = 0; !any && i < n/sizeof(long); ++i)
816                 any = memslot->dirty_bitmap[i];
817
818         r = -EFAULT;
819         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
820                 goto out;
821
822         if (any) {
823                 cleared = 0;
824                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
825                         struct kvm_vcpu *vcpu;
826
827                         vcpu = vcpu_load_slot(kvm, i);
828                         if (!vcpu)
829                                 continue;
830                         if (!cleared) {
831                                 do_remove_write_access(vcpu, log->slot);
832                                 memset(memslot->dirty_bitmap, 0, n);
833                                 cleared = 1;
834                         }
835                         kvm_arch_ops->tlb_flush(vcpu);
836                         vcpu_put(vcpu);
837                 }
838         }
839
840         r = 0;
841
842 out:
843         spin_lock(&kvm->lock);
844         --kvm->busy;
845         spin_unlock(&kvm->lock);
846         return r;
847 }
848
849 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
850 {
851         int i;
852
853         for (i = 0; i < kvm->nmemslots; ++i) {
854                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
855
856                 if (gfn >= memslot->base_gfn
857                     && gfn < memslot->base_gfn + memslot->npages)
858                         return memslot;
859         }
860         return NULL;
861 }
862 EXPORT_SYMBOL_GPL(gfn_to_memslot);
863
864 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
865 {
866         int i;
867         struct kvm_memory_slot *memslot = NULL;
868         unsigned long rel_gfn;
869
870         for (i = 0; i < kvm->nmemslots; ++i) {
871                 memslot = &kvm->memslots[i];
872
873                 if (gfn >= memslot->base_gfn
874                     && gfn < memslot->base_gfn + memslot->npages) {
875
876                         if (!memslot || !memslot->dirty_bitmap)
877                                 return;
878
879                         rel_gfn = gfn - memslot->base_gfn;
880
881                         /* avoid RMW */
882                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
883                                 set_bit(rel_gfn, memslot->dirty_bitmap);
884                         return;
885                 }
886         }
887 }
888
889 static int emulator_read_std(unsigned long addr,
890                              unsigned long *val,
891                              unsigned int bytes,
892                              struct x86_emulate_ctxt *ctxt)
893 {
894         struct kvm_vcpu *vcpu = ctxt->vcpu;
895         void *data = val;
896
897         while (bytes) {
898                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
899                 unsigned offset = addr & (PAGE_SIZE-1);
900                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
901                 unsigned long pfn;
902                 struct kvm_memory_slot *memslot;
903                 void *page;
904
905                 if (gpa == UNMAPPED_GVA)
906                         return X86EMUL_PROPAGATE_FAULT;
907                 pfn = gpa >> PAGE_SHIFT;
908                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
909                 if (!memslot)
910                         return X86EMUL_UNHANDLEABLE;
911                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
912
913                 memcpy(data, page + offset, tocopy);
914
915                 kunmap_atomic(page, KM_USER0);
916
917                 bytes -= tocopy;
918                 data += tocopy;
919                 addr += tocopy;
920         }
921
922         return X86EMUL_CONTINUE;
923 }
924
925 static int emulator_write_std(unsigned long addr,
926                               unsigned long val,
927                               unsigned int bytes,
928                               struct x86_emulate_ctxt *ctxt)
929 {
930         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
931                addr, bytes);
932         return X86EMUL_UNHANDLEABLE;
933 }
934
935 static int emulator_read_emulated(unsigned long addr,
936                                   unsigned long *val,
937                                   unsigned int bytes,
938                                   struct x86_emulate_ctxt *ctxt)
939 {
940         struct kvm_vcpu *vcpu = ctxt->vcpu;
941
942         if (vcpu->mmio_read_completed) {
943                 memcpy(val, vcpu->mmio_data, bytes);
944                 vcpu->mmio_read_completed = 0;
945                 return X86EMUL_CONTINUE;
946         } else if (emulator_read_std(addr, val, bytes, ctxt)
947                    == X86EMUL_CONTINUE)
948                 return X86EMUL_CONTINUE;
949         else {
950                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
951
952                 if (gpa == UNMAPPED_GVA)
953                         return X86EMUL_PROPAGATE_FAULT;
954                 vcpu->mmio_needed = 1;
955                 vcpu->mmio_phys_addr = gpa;
956                 vcpu->mmio_size = bytes;
957                 vcpu->mmio_is_write = 0;
958
959                 return X86EMUL_UNHANDLEABLE;
960         }
961 }
962
963 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
964                                unsigned long val, int bytes)
965 {
966         struct kvm_memory_slot *m;
967         struct page *page;
968         void *virt;
969
970         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
971                 return 0;
972         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
973         if (!m)
974                 return 0;
975         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
976         kvm_mmu_pre_write(vcpu, gpa, bytes);
977         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
978         virt = kmap_atomic(page, KM_USER0);
979         memcpy(virt + offset_in_page(gpa), &val, bytes);
980         kunmap_atomic(virt, KM_USER0);
981         kvm_mmu_post_write(vcpu, gpa, bytes);
982         return 1;
983 }
984
985 static int emulator_write_emulated(unsigned long addr,
986                                    unsigned long val,
987                                    unsigned int bytes,
988                                    struct x86_emulate_ctxt *ctxt)
989 {
990         struct kvm_vcpu *vcpu = ctxt->vcpu;
991         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
992
993         if (gpa == UNMAPPED_GVA)
994                 return X86EMUL_PROPAGATE_FAULT;
995
996         if (emulator_write_phys(vcpu, gpa, val, bytes))
997                 return X86EMUL_CONTINUE;
998
999         vcpu->mmio_needed = 1;
1000         vcpu->mmio_phys_addr = gpa;
1001         vcpu->mmio_size = bytes;
1002         vcpu->mmio_is_write = 1;
1003         memcpy(vcpu->mmio_data, &val, bytes);
1004
1005         return X86EMUL_CONTINUE;
1006 }
1007
1008 static int emulator_cmpxchg_emulated(unsigned long addr,
1009                                      unsigned long old,
1010                                      unsigned long new,
1011                                      unsigned int bytes,
1012                                      struct x86_emulate_ctxt *ctxt)
1013 {
1014         static int reported;
1015
1016         if (!reported) {
1017                 reported = 1;
1018                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1019         }
1020         return emulator_write_emulated(addr, new, bytes, ctxt);
1021 }
1022
1023 #ifdef CONFIG_X86_32
1024
1025 static int emulator_cmpxchg8b_emulated(unsigned long addr,
1026                                        unsigned long old_lo,
1027                                        unsigned long old_hi,
1028                                        unsigned long new_lo,
1029                                        unsigned long new_hi,
1030                                        struct x86_emulate_ctxt *ctxt)
1031 {
1032         static int reported;
1033         int r;
1034
1035         if (!reported) {
1036                 reported = 1;
1037                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
1038         }
1039         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
1040         if (r != X86EMUL_CONTINUE)
1041                 return r;
1042         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1043 }
1044
1045 #endif
1046
1047 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1048 {
1049         return kvm_arch_ops->get_segment_base(vcpu, seg);
1050 }
1051
1052 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1053 {
1054         return X86EMUL_CONTINUE;
1055 }
1056
1057 int emulate_clts(struct kvm_vcpu *vcpu)
1058 {
1059         unsigned long cr0;
1060
1061         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1062         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1063         kvm_arch_ops->set_cr0(vcpu, cr0);
1064         return X86EMUL_CONTINUE;
1065 }
1066
1067 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1068 {
1069         struct kvm_vcpu *vcpu = ctxt->vcpu;
1070
1071         switch (dr) {
1072         case 0 ... 3:
1073                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1074                 return X86EMUL_CONTINUE;
1075         default:
1076                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1077                        __FUNCTION__, dr);
1078                 return X86EMUL_UNHANDLEABLE;
1079         }
1080 }
1081
1082 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1083 {
1084         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1085         int exception;
1086
1087         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1088         if (exception) {
1089                 /* FIXME: better handling */
1090                 return X86EMUL_UNHANDLEABLE;
1091         }
1092         return X86EMUL_CONTINUE;
1093 }
1094
1095 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1096 {
1097         static int reported;
1098         u8 opcodes[4];
1099         unsigned long rip = ctxt->vcpu->rip;
1100         unsigned long rip_linear;
1101
1102         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1103
1104         if (reported)
1105                 return;
1106
1107         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1108
1109         printk(KERN_ERR "emulation failed but !mmio_needed?"
1110                " rip %lx %02x %02x %02x %02x\n",
1111                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1112         reported = 1;
1113 }
1114
1115 struct x86_emulate_ops emulate_ops = {
1116         .read_std            = emulator_read_std,
1117         .write_std           = emulator_write_std,
1118         .read_emulated       = emulator_read_emulated,
1119         .write_emulated      = emulator_write_emulated,
1120         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1121 #ifdef CONFIG_X86_32
1122         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1123 #endif
1124 };
1125
1126 int emulate_instruction(struct kvm_vcpu *vcpu,
1127                         struct kvm_run *run,
1128                         unsigned long cr2,
1129                         u16 error_code)
1130 {
1131         struct x86_emulate_ctxt emulate_ctxt;
1132         int r;
1133         int cs_db, cs_l;
1134
1135         kvm_arch_ops->cache_regs(vcpu);
1136
1137         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1138
1139         emulate_ctxt.vcpu = vcpu;
1140         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1141         emulate_ctxt.cr2 = cr2;
1142         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1143                 ? X86EMUL_MODE_REAL : cs_l
1144                 ? X86EMUL_MODE_PROT64 : cs_db
1145                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1146
1147         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1148                 emulate_ctxt.cs_base = 0;
1149                 emulate_ctxt.ds_base = 0;
1150                 emulate_ctxt.es_base = 0;
1151                 emulate_ctxt.ss_base = 0;
1152         } else {
1153                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1154                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1155                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1156                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1157         }
1158
1159         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1160         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1161
1162         vcpu->mmio_is_write = 0;
1163         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1164
1165         if ((r || vcpu->mmio_is_write) && run) {
1166                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1167                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1168                 run->mmio.len = vcpu->mmio_size;
1169                 run->mmio.is_write = vcpu->mmio_is_write;
1170         }
1171
1172         if (r) {
1173                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1174                         return EMULATE_DONE;
1175                 if (!vcpu->mmio_needed) {
1176                         report_emulation_failure(&emulate_ctxt);
1177                         return EMULATE_FAIL;
1178                 }
1179                 return EMULATE_DO_MMIO;
1180         }
1181
1182         kvm_arch_ops->decache_regs(vcpu);
1183         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1184
1185         if (vcpu->mmio_is_write)
1186                 return EMULATE_DO_MMIO;
1187
1188         return EMULATE_DONE;
1189 }
1190 EXPORT_SYMBOL_GPL(emulate_instruction);
1191
1192 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1193 {
1194         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1195
1196         kvm_arch_ops->cache_regs(vcpu);
1197         ret = -KVM_EINVAL;
1198 #ifdef CONFIG_X86_64
1199         if (is_long_mode(vcpu)) {
1200                 nr = vcpu->regs[VCPU_REGS_RAX];
1201                 a0 = vcpu->regs[VCPU_REGS_RDI];
1202                 a1 = vcpu->regs[VCPU_REGS_RSI];
1203                 a2 = vcpu->regs[VCPU_REGS_RDX];
1204                 a3 = vcpu->regs[VCPU_REGS_RCX];
1205                 a4 = vcpu->regs[VCPU_REGS_R8];
1206                 a5 = vcpu->regs[VCPU_REGS_R9];
1207         } else
1208 #endif
1209         {
1210                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1211                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1212                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1213                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1214                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1215                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1216                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1217         }
1218         switch (nr) {
1219         default:
1220                 run->hypercall.args[0] = a0;
1221                 run->hypercall.args[1] = a1;
1222                 run->hypercall.args[2] = a2;
1223                 run->hypercall.args[3] = a3;
1224                 run->hypercall.args[4] = a4;
1225                 run->hypercall.args[5] = a5;
1226                 run->hypercall.ret = ret;
1227                 run->hypercall.longmode = is_long_mode(vcpu);
1228                 kvm_arch_ops->decache_regs(vcpu);
1229                 return 0;
1230         }
1231         vcpu->regs[VCPU_REGS_RAX] = ret;
1232         kvm_arch_ops->decache_regs(vcpu);
1233         return 1;
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_hypercall);
1236
1237 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1238 {
1239         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1240 }
1241
1242 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1243 {
1244         struct descriptor_table dt = { limit, base };
1245
1246         kvm_arch_ops->set_gdt(vcpu, &dt);
1247 }
1248
1249 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1250 {
1251         struct descriptor_table dt = { limit, base };
1252
1253         kvm_arch_ops->set_idt(vcpu, &dt);
1254 }
1255
1256 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1257                    unsigned long *rflags)
1258 {
1259         lmsw(vcpu, msw);
1260         *rflags = kvm_arch_ops->get_rflags(vcpu);
1261 }
1262
1263 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1264 {
1265         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1266         switch (cr) {
1267         case 0:
1268                 return vcpu->cr0;
1269         case 2:
1270                 return vcpu->cr2;
1271         case 3:
1272                 return vcpu->cr3;
1273         case 4:
1274                 return vcpu->cr4;
1275         default:
1276                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1277                 return 0;
1278         }
1279 }
1280
1281 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1282                      unsigned long *rflags)
1283 {
1284         switch (cr) {
1285         case 0:
1286                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1287                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1288                 break;
1289         case 2:
1290                 vcpu->cr2 = val;
1291                 break;
1292         case 3:
1293                 set_cr3(vcpu, val);
1294                 break;
1295         case 4:
1296                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1297                 break;
1298         default:
1299                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1300         }
1301 }
1302
1303 /*
1304  * Register the para guest with the host:
1305  */
1306 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1307 {
1308         struct kvm_vcpu_para_state *para_state;
1309         hpa_t para_state_hpa, hypercall_hpa;
1310         struct page *para_state_page;
1311         unsigned char *hypercall;
1312         gpa_t hypercall_gpa;
1313
1314         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1315         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1316
1317         /*
1318          * Needs to be page aligned:
1319          */
1320         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1321                 goto err_gp;
1322
1323         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1324         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1325         if (is_error_hpa(para_state_hpa))
1326                 goto err_gp;
1327
1328         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1329         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1330         para_state = kmap_atomic(para_state_page, KM_USER0);
1331
1332         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1333         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1334
1335         para_state->host_version = KVM_PARA_API_VERSION;
1336         /*
1337          * We cannot support guests that try to register themselves
1338          * with a newer API version than the host supports:
1339          */
1340         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1341                 para_state->ret = -KVM_EINVAL;
1342                 goto err_kunmap_skip;
1343         }
1344
1345         hypercall_gpa = para_state->hypercall_gpa;
1346         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1347         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1348         if (is_error_hpa(hypercall_hpa)) {
1349                 para_state->ret = -KVM_EINVAL;
1350                 goto err_kunmap_skip;
1351         }
1352
1353         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1354         vcpu->para_state_page = para_state_page;
1355         vcpu->para_state_gpa = para_state_gpa;
1356         vcpu->hypercall_gpa = hypercall_gpa;
1357
1358         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1359         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1360                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1361         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1362         kunmap_atomic(hypercall, KM_USER1);
1363
1364         para_state->ret = 0;
1365 err_kunmap_skip:
1366         kunmap_atomic(para_state, KM_USER0);
1367         return 0;
1368 err_gp:
1369         return 1;
1370 }
1371
1372 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1373 {
1374         u64 data;
1375
1376         switch (msr) {
1377         case 0xc0010010: /* SYSCFG */
1378         case 0xc0010015: /* HWCR */
1379         case MSR_IA32_PLATFORM_ID:
1380         case MSR_IA32_P5_MC_ADDR:
1381         case MSR_IA32_P5_MC_TYPE:
1382         case MSR_IA32_MC0_CTL:
1383         case MSR_IA32_MCG_STATUS:
1384         case MSR_IA32_MCG_CAP:
1385         case MSR_IA32_MC0_MISC:
1386         case MSR_IA32_MC0_MISC+4:
1387         case MSR_IA32_MC0_MISC+8:
1388         case MSR_IA32_MC0_MISC+12:
1389         case MSR_IA32_MC0_MISC+16:
1390         case MSR_IA32_UCODE_REV:
1391         case MSR_IA32_PERF_STATUS:
1392                 /* MTRR registers */
1393         case 0xfe:
1394         case 0x200 ... 0x2ff:
1395                 data = 0;
1396                 break;
1397         case 0xcd: /* fsb frequency */
1398                 data = 3;
1399                 break;
1400         case MSR_IA32_APICBASE:
1401                 data = vcpu->apic_base;
1402                 break;
1403         case MSR_IA32_MISC_ENABLE:
1404                 data = vcpu->ia32_misc_enable_msr;
1405                 break;
1406 #ifdef CONFIG_X86_64
1407         case MSR_EFER:
1408                 data = vcpu->shadow_efer;
1409                 break;
1410 #endif
1411         default:
1412                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1413                 return 1;
1414         }
1415         *pdata = data;
1416         return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1419
1420 /*
1421  * Reads an msr value (of 'msr_index') into 'pdata'.
1422  * Returns 0 on success, non-0 otherwise.
1423  * Assumes vcpu_load() was already called.
1424  */
1425 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1426 {
1427         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1428 }
1429
1430 #ifdef CONFIG_X86_64
1431
1432 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1433 {
1434         if (efer & EFER_RESERVED_BITS) {
1435                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1436                        efer);
1437                 inject_gp(vcpu);
1438                 return;
1439         }
1440
1441         if (is_paging(vcpu)
1442             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1443                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1444                 inject_gp(vcpu);
1445                 return;
1446         }
1447
1448         kvm_arch_ops->set_efer(vcpu, efer);
1449
1450         efer &= ~EFER_LMA;
1451         efer |= vcpu->shadow_efer & EFER_LMA;
1452
1453         vcpu->shadow_efer = efer;
1454 }
1455
1456 #endif
1457
1458 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1459 {
1460         switch (msr) {
1461 #ifdef CONFIG_X86_64
1462         case MSR_EFER:
1463                 set_efer(vcpu, data);
1464                 break;
1465 #endif
1466         case MSR_IA32_MC0_STATUS:
1467                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1468                        __FUNCTION__, data);
1469                 break;
1470         case MSR_IA32_MCG_STATUS:
1471                 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1472                         __FUNCTION__, data);
1473                 break;
1474         case MSR_IA32_UCODE_REV:
1475         case MSR_IA32_UCODE_WRITE:
1476         case 0x200 ... 0x2ff: /* MTRRs */
1477                 break;
1478         case MSR_IA32_APICBASE:
1479                 vcpu->apic_base = data;
1480                 break;
1481         case MSR_IA32_MISC_ENABLE:
1482                 vcpu->ia32_misc_enable_msr = data;
1483                 break;
1484         /*
1485          * This is the 'probe whether the host is KVM' logic:
1486          */
1487         case MSR_KVM_API_MAGIC:
1488                 return vcpu_register_para(vcpu, data);
1489
1490         default:
1491                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1492                 return 1;
1493         }
1494         return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1497
1498 /*
1499  * Writes msr value into into the appropriate "register".
1500  * Returns 0 on success, non-0 otherwise.
1501  * Assumes vcpu_load() was already called.
1502  */
1503 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1504 {
1505         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1506 }
1507
1508 void kvm_resched(struct kvm_vcpu *vcpu)
1509 {
1510         vcpu_put(vcpu);
1511         cond_resched();
1512         vcpu_load(vcpu);
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_resched);
1515
1516 void load_msrs(struct vmx_msr_entry *e, int n)
1517 {
1518         int i;
1519
1520         for (i = 0; i < n; ++i)
1521                 wrmsrl(e[i].index, e[i].data);
1522 }
1523 EXPORT_SYMBOL_GPL(load_msrs);
1524
1525 void save_msrs(struct vmx_msr_entry *e, int n)
1526 {
1527         int i;
1528
1529         for (i = 0; i < n; ++i)
1530                 rdmsrl(e[i].index, e[i].data);
1531 }
1532 EXPORT_SYMBOL_GPL(save_msrs);
1533
1534 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1535 {
1536         int i;
1537         u32 function;
1538         struct kvm_cpuid_entry *e, *best;
1539
1540         kvm_arch_ops->cache_regs(vcpu);
1541         function = vcpu->regs[VCPU_REGS_RAX];
1542         vcpu->regs[VCPU_REGS_RAX] = 0;
1543         vcpu->regs[VCPU_REGS_RBX] = 0;
1544         vcpu->regs[VCPU_REGS_RCX] = 0;
1545         vcpu->regs[VCPU_REGS_RDX] = 0;
1546         best = NULL;
1547         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1548                 e = &vcpu->cpuid_entries[i];
1549                 if (e->function == function) {
1550                         best = e;
1551                         break;
1552                 }
1553                 /*
1554                  * Both basic or both extended?
1555                  */
1556                 if (((e->function ^ function) & 0x80000000) == 0)
1557                         if (!best || e->function > best->function)
1558                                 best = e;
1559         }
1560         if (best) {
1561                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1562                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1563                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1564                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1565         }
1566         kvm_arch_ops->decache_regs(vcpu);
1567         kvm_arch_ops->skip_emulated_instruction(vcpu);
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1570
1571 static int pio_copy_data(struct kvm_vcpu *vcpu)
1572 {
1573         void *p = vcpu->pio_data;
1574         void *q;
1575         unsigned bytes;
1576         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1577
1578         kvm_arch_ops->vcpu_put(vcpu);
1579         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1580                  PAGE_KERNEL);
1581         if (!q) {
1582                 kvm_arch_ops->vcpu_load(vcpu);
1583                 free_pio_guest_pages(vcpu);
1584                 return -ENOMEM;
1585         }
1586         q += vcpu->pio.guest_page_offset;
1587         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1588         if (vcpu->pio.in)
1589                 memcpy(q, p, bytes);
1590         else
1591                 memcpy(p, q, bytes);
1592         q -= vcpu->pio.guest_page_offset;
1593         vunmap(q);
1594         kvm_arch_ops->vcpu_load(vcpu);
1595         free_pio_guest_pages(vcpu);
1596         return 0;
1597 }
1598
1599 static int complete_pio(struct kvm_vcpu *vcpu)
1600 {
1601         struct kvm_pio_request *io = &vcpu->pio;
1602         long delta;
1603         int r;
1604
1605         kvm_arch_ops->cache_regs(vcpu);
1606
1607         if (!io->string) {
1608                 if (io->in)
1609                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1610                                io->size);
1611         } else {
1612                 if (io->in) {
1613                         r = pio_copy_data(vcpu);
1614                         if (r) {
1615                                 kvm_arch_ops->cache_regs(vcpu);
1616                                 return r;
1617                         }
1618                 }
1619
1620                 delta = 1;
1621                 if (io->rep) {
1622                         delta *= io->cur_count;
1623                         /*
1624                          * The size of the register should really depend on
1625                          * current address size.
1626                          */
1627                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1628                 }
1629                 if (io->down)
1630                         delta = -delta;
1631                 delta *= io->size;
1632                 if (io->in)
1633                         vcpu->regs[VCPU_REGS_RDI] += delta;
1634                 else
1635                         vcpu->regs[VCPU_REGS_RSI] += delta;
1636         }
1637
1638         vcpu->run->io_completed = 0;
1639
1640         kvm_arch_ops->decache_regs(vcpu);
1641
1642         io->count -= io->cur_count;
1643         io->cur_count = 0;
1644
1645         if (!io->count)
1646                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1647         return 0;
1648 }
1649
1650 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1651                   int size, unsigned long count, int string, int down,
1652                   gva_t address, int rep, unsigned port)
1653 {
1654         unsigned now, in_page;
1655         int i;
1656         int nr_pages = 1;
1657         struct page *page;
1658
1659         vcpu->run->exit_reason = KVM_EXIT_IO;
1660         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1661         vcpu->run->io.size = size;
1662         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1663         vcpu->run->io.count = count;
1664         vcpu->run->io.port = port;
1665         vcpu->pio.count = count;
1666         vcpu->pio.cur_count = count;
1667         vcpu->pio.size = size;
1668         vcpu->pio.in = in;
1669         vcpu->pio.string = string;
1670         vcpu->pio.down = down;
1671         vcpu->pio.guest_page_offset = offset_in_page(address);
1672         vcpu->pio.rep = rep;
1673
1674         if (!string) {
1675                 kvm_arch_ops->cache_regs(vcpu);
1676                 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1677                 kvm_arch_ops->decache_regs(vcpu);
1678                 return 0;
1679         }
1680
1681         if (!count) {
1682                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1683                 return 1;
1684         }
1685
1686         now = min(count, PAGE_SIZE / size);
1687
1688         if (!down)
1689                 in_page = PAGE_SIZE - offset_in_page(address);
1690         else
1691                 in_page = offset_in_page(address) + size;
1692         now = min(count, (unsigned long)in_page / size);
1693         if (!now) {
1694                 /*
1695                  * String I/O straddles page boundary.  Pin two guest pages
1696                  * so that we satisfy atomicity constraints.  Do just one
1697                  * transaction to avoid complexity.
1698                  */
1699                 nr_pages = 2;
1700                 now = 1;
1701         }
1702         if (down) {
1703                 /*
1704                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1705                  */
1706                 printk(KERN_ERR "kvm: guest string pio down\n");
1707                 inject_gp(vcpu);
1708                 return 1;
1709         }
1710         vcpu->run->io.count = now;
1711         vcpu->pio.cur_count = now;
1712
1713         for (i = 0; i < nr_pages; ++i) {
1714                 spin_lock(&vcpu->kvm->lock);
1715                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1716                 if (page)
1717                         get_page(page);
1718                 vcpu->pio.guest_pages[i] = page;
1719                 spin_unlock(&vcpu->kvm->lock);
1720                 if (!page) {
1721                         inject_gp(vcpu);
1722                         free_pio_guest_pages(vcpu);
1723                         return 1;
1724                 }
1725         }
1726
1727         if (!vcpu->pio.in)
1728                 return pio_copy_data(vcpu);
1729         return 0;
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1732
1733 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1734 {
1735         int r;
1736         sigset_t sigsaved;
1737
1738         vcpu_load(vcpu);
1739
1740         if (vcpu->sigset_active)
1741                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1742
1743         /* re-sync apic's tpr */
1744         vcpu->cr8 = kvm_run->cr8;
1745
1746         if (kvm_run->io_completed) {
1747                 if (vcpu->pio.cur_count) {
1748                         r = complete_pio(vcpu);
1749                         if (r)
1750                                 goto out;
1751                 } else {
1752                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1753                         vcpu->mmio_read_completed = 1;
1754                 }
1755         }
1756
1757         vcpu->mmio_needed = 0;
1758
1759         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1760                 kvm_arch_ops->cache_regs(vcpu);
1761                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1762                 kvm_arch_ops->decache_regs(vcpu);
1763         }
1764
1765         r = kvm_arch_ops->run(vcpu, kvm_run);
1766
1767 out:
1768         if (vcpu->sigset_active)
1769                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1770
1771         vcpu_put(vcpu);
1772         return r;
1773 }
1774
1775 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1776                                    struct kvm_regs *regs)
1777 {
1778         vcpu_load(vcpu);
1779
1780         kvm_arch_ops->cache_regs(vcpu);
1781
1782         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1783         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1784         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1785         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1786         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1787         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1788         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1789         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1790 #ifdef CONFIG_X86_64
1791         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1792         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1793         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1794         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1795         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1796         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1797         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1798         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1799 #endif
1800
1801         regs->rip = vcpu->rip;
1802         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1803
1804         /*
1805          * Don't leak debug flags in case they were set for guest debugging
1806          */
1807         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1808                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1809
1810         vcpu_put(vcpu);
1811
1812         return 0;
1813 }
1814
1815 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1816                                    struct kvm_regs *regs)
1817 {
1818         vcpu_load(vcpu);
1819
1820         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1821         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1822         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1823         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1824         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1825         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1826         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1827         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1828 #ifdef CONFIG_X86_64
1829         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1830         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1831         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1832         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1833         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1834         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1835         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1836         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1837 #endif
1838
1839         vcpu->rip = regs->rip;
1840         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1841
1842         kvm_arch_ops->decache_regs(vcpu);
1843
1844         vcpu_put(vcpu);
1845
1846         return 0;
1847 }
1848
1849 static void get_segment(struct kvm_vcpu *vcpu,
1850                         struct kvm_segment *var, int seg)
1851 {
1852         return kvm_arch_ops->get_segment(vcpu, var, seg);
1853 }
1854
1855 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1856                                     struct kvm_sregs *sregs)
1857 {
1858         struct descriptor_table dt;
1859
1860         vcpu_load(vcpu);
1861
1862         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1863         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1864         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1865         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1866         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1867         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1868
1869         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1870         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1871
1872         kvm_arch_ops->get_idt(vcpu, &dt);
1873         sregs->idt.limit = dt.limit;
1874         sregs->idt.base = dt.base;
1875         kvm_arch_ops->get_gdt(vcpu, &dt);
1876         sregs->gdt.limit = dt.limit;
1877         sregs->gdt.base = dt.base;
1878
1879         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1880         sregs->cr0 = vcpu->cr0;
1881         sregs->cr2 = vcpu->cr2;
1882         sregs->cr3 = vcpu->cr3;
1883         sregs->cr4 = vcpu->cr4;
1884         sregs->cr8 = vcpu->cr8;
1885         sregs->efer = vcpu->shadow_efer;
1886         sregs->apic_base = vcpu->apic_base;
1887
1888         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1889                sizeof sregs->interrupt_bitmap);
1890
1891         vcpu_put(vcpu);
1892
1893         return 0;
1894 }
1895
1896 static void set_segment(struct kvm_vcpu *vcpu,
1897                         struct kvm_segment *var, int seg)
1898 {
1899         return kvm_arch_ops->set_segment(vcpu, var, seg);
1900 }
1901
1902 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1903                                     struct kvm_sregs *sregs)
1904 {
1905         int mmu_reset_needed = 0;
1906         int i;
1907         struct descriptor_table dt;
1908
1909         vcpu_load(vcpu);
1910
1911         dt.limit = sregs->idt.limit;
1912         dt.base = sregs->idt.base;
1913         kvm_arch_ops->set_idt(vcpu, &dt);
1914         dt.limit = sregs->gdt.limit;
1915         dt.base = sregs->gdt.base;
1916         kvm_arch_ops->set_gdt(vcpu, &dt);
1917
1918         vcpu->cr2 = sregs->cr2;
1919         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1920         vcpu->cr3 = sregs->cr3;
1921
1922         vcpu->cr8 = sregs->cr8;
1923
1924         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1925 #ifdef CONFIG_X86_64
1926         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1927 #endif
1928         vcpu->apic_base = sregs->apic_base;
1929
1930         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1931
1932         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1933         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
1934
1935         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1936         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1937         if (!is_long_mode(vcpu) && is_pae(vcpu))
1938                 load_pdptrs(vcpu, vcpu->cr3);
1939
1940         if (mmu_reset_needed)
1941                 kvm_mmu_reset_context(vcpu);
1942
1943         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1944                sizeof vcpu->irq_pending);
1945         vcpu->irq_summary = 0;
1946         for (i = 0; i < NR_IRQ_WORDS; ++i)
1947                 if (vcpu->irq_pending[i])
1948                         __set_bit(i, &vcpu->irq_summary);
1949
1950         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1951         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1952         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1953         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1954         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1955         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1956
1957         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1958         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1959
1960         vcpu_put(vcpu);
1961
1962         return 0;
1963 }
1964
1965 /*
1966  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1967  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1968  *
1969  * This list is modified at module load time to reflect the
1970  * capabilities of the host cpu.
1971  */
1972 static u32 msrs_to_save[] = {
1973         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1974         MSR_K6_STAR,
1975 #ifdef CONFIG_X86_64
1976         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1977 #endif
1978         MSR_IA32_TIME_STAMP_COUNTER,
1979 };
1980
1981 static unsigned num_msrs_to_save;
1982
1983 static u32 emulated_msrs[] = {
1984         MSR_IA32_MISC_ENABLE,
1985 };
1986
1987 static __init void kvm_init_msr_list(void)
1988 {
1989         u32 dummy[2];
1990         unsigned i, j;
1991
1992         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1993                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1994                         continue;
1995                 if (j < i)
1996                         msrs_to_save[j] = msrs_to_save[i];
1997                 j++;
1998         }
1999         num_msrs_to_save = j;
2000 }
2001
2002 /*
2003  * Adapt set_msr() to msr_io()'s calling convention
2004  */
2005 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2006 {
2007         return set_msr(vcpu, index, *data);
2008 }
2009
2010 /*
2011  * Read or write a bunch of msrs. All parameters are kernel addresses.
2012  *
2013  * @return number of msrs set successfully.
2014  */
2015 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2016                     struct kvm_msr_entry *entries,
2017                     int (*do_msr)(struct kvm_vcpu *vcpu,
2018                                   unsigned index, u64 *data))
2019 {
2020         int i;
2021
2022         vcpu_load(vcpu);
2023
2024         for (i = 0; i < msrs->nmsrs; ++i)
2025                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2026                         break;
2027
2028         vcpu_put(vcpu);
2029
2030         return i;
2031 }
2032
2033 /*
2034  * Read or write a bunch of msrs. Parameters are user addresses.
2035  *
2036  * @return number of msrs set successfully.
2037  */
2038 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2039                   int (*do_msr)(struct kvm_vcpu *vcpu,
2040                                 unsigned index, u64 *data),
2041                   int writeback)
2042 {
2043         struct kvm_msrs msrs;
2044         struct kvm_msr_entry *entries;
2045         int r, n;
2046         unsigned size;
2047
2048         r = -EFAULT;
2049         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2050                 goto out;
2051
2052         r = -E2BIG;
2053         if (msrs.nmsrs >= MAX_IO_MSRS)
2054                 goto out;
2055
2056         r = -ENOMEM;
2057         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2058         entries = vmalloc(size);
2059         if (!entries)
2060                 goto out;
2061
2062         r = -EFAULT;
2063         if (copy_from_user(entries, user_msrs->entries, size))
2064                 goto out_free;
2065
2066         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2067         if (r < 0)
2068                 goto out_free;
2069
2070         r = -EFAULT;
2071         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2072                 goto out_free;
2073
2074         r = n;
2075
2076 out_free:
2077         vfree(entries);
2078 out:
2079         return r;
2080 }
2081
2082 /*
2083  * Translate a guest virtual address to a guest physical address.
2084  */
2085 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2086                                     struct kvm_translation *tr)
2087 {
2088         unsigned long vaddr = tr->linear_address;
2089         gpa_t gpa;
2090
2091         vcpu_load(vcpu);
2092         spin_lock(&vcpu->kvm->lock);
2093         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2094         tr->physical_address = gpa;
2095         tr->valid = gpa != UNMAPPED_GVA;
2096         tr->writeable = 1;
2097         tr->usermode = 0;
2098         spin_unlock(&vcpu->kvm->lock);
2099         vcpu_put(vcpu);
2100
2101         return 0;
2102 }
2103
2104 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2105                                     struct kvm_interrupt *irq)
2106 {
2107         if (irq->irq < 0 || irq->irq >= 256)
2108                 return -EINVAL;
2109         vcpu_load(vcpu);
2110
2111         set_bit(irq->irq, vcpu->irq_pending);
2112         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2113
2114         vcpu_put(vcpu);
2115
2116         return 0;
2117 }
2118
2119 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2120                                       struct kvm_debug_guest *dbg)
2121 {
2122         int r;
2123
2124         vcpu_load(vcpu);
2125
2126         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2127
2128         vcpu_put(vcpu);
2129
2130         return r;
2131 }
2132
2133 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2134                                     unsigned long address,
2135                                     int *type)
2136 {
2137         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2138         unsigned long pgoff;
2139         struct page *page;
2140
2141         *type = VM_FAULT_MINOR;
2142         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2143         if (pgoff == 0)
2144                 page = virt_to_page(vcpu->run);
2145         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2146                 page = virt_to_page(vcpu->pio_data);
2147         else
2148                 return NOPAGE_SIGBUS;
2149         get_page(page);
2150         return page;
2151 }
2152
2153 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2154         .nopage = kvm_vcpu_nopage,
2155 };
2156
2157 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2158 {
2159         vma->vm_ops = &kvm_vcpu_vm_ops;
2160         return 0;
2161 }
2162
2163 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2164 {
2165         struct kvm_vcpu *vcpu = filp->private_data;
2166
2167         fput(vcpu->kvm->filp);
2168         return 0;
2169 }
2170
2171 static struct file_operations kvm_vcpu_fops = {
2172         .release        = kvm_vcpu_release,
2173         .unlocked_ioctl = kvm_vcpu_ioctl,
2174         .compat_ioctl   = kvm_vcpu_ioctl,
2175         .mmap           = kvm_vcpu_mmap,
2176 };
2177
2178 /*
2179  * Allocates an inode for the vcpu.
2180  */
2181 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2182 {
2183         int fd, r;
2184         struct inode *inode;
2185         struct file *file;
2186
2187         atomic_inc(&vcpu->kvm->filp->f_count);
2188         inode = kvmfs_inode(&kvm_vcpu_fops);
2189         if (IS_ERR(inode)) {
2190                 r = PTR_ERR(inode);
2191                 goto out1;
2192         }
2193
2194         file = kvmfs_file(inode, vcpu);
2195         if (IS_ERR(file)) {
2196                 r = PTR_ERR(file);
2197                 goto out2;
2198         }
2199
2200         r = get_unused_fd();
2201         if (r < 0)
2202                 goto out3;
2203         fd = r;
2204         fd_install(fd, file);
2205
2206         return fd;
2207
2208 out3:
2209         fput(file);
2210 out2:
2211         iput(inode);
2212 out1:
2213         fput(vcpu->kvm->filp);
2214         return r;
2215 }
2216
2217 /*
2218  * Creates some virtual cpus.  Good luck creating more than one.
2219  */
2220 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2221 {
2222         int r;
2223         struct kvm_vcpu *vcpu;
2224         struct page *page;
2225
2226         r = -EINVAL;
2227         if (!valid_vcpu(n))
2228                 goto out;
2229
2230         vcpu = &kvm->vcpus[n];
2231
2232         mutex_lock(&vcpu->mutex);
2233
2234         if (vcpu->vmcs) {
2235                 mutex_unlock(&vcpu->mutex);
2236                 return -EEXIST;
2237         }
2238
2239         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2240         r = -ENOMEM;
2241         if (!page)
2242                 goto out_unlock;
2243         vcpu->run = page_address(page);
2244
2245         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2246         r = -ENOMEM;
2247         if (!page)
2248                 goto out_free_run;
2249         vcpu->pio_data = page_address(page);
2250
2251         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2252                                            FX_IMAGE_ALIGN);
2253         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2254
2255         r = kvm_arch_ops->vcpu_create(vcpu);
2256         if (r < 0)
2257                 goto out_free_vcpus;
2258
2259         r = kvm_mmu_create(vcpu);
2260         if (r < 0)
2261                 goto out_free_vcpus;
2262
2263         kvm_arch_ops->vcpu_load(vcpu);
2264         r = kvm_mmu_setup(vcpu);
2265         if (r >= 0)
2266                 r = kvm_arch_ops->vcpu_setup(vcpu);
2267         vcpu_put(vcpu);
2268
2269         if (r < 0)
2270                 goto out_free_vcpus;
2271
2272         r = create_vcpu_fd(vcpu);
2273         if (r < 0)
2274                 goto out_free_vcpus;
2275
2276         return r;
2277
2278 out_free_vcpus:
2279         kvm_free_vcpu(vcpu);
2280 out_free_run:
2281         free_page((unsigned long)vcpu->run);
2282         vcpu->run = NULL;
2283 out_unlock:
2284         mutex_unlock(&vcpu->mutex);
2285 out:
2286         return r;
2287 }
2288
2289 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2290                                     struct kvm_cpuid *cpuid,
2291                                     struct kvm_cpuid_entry __user *entries)
2292 {
2293         int r;
2294
2295         r = -E2BIG;
2296         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2297                 goto out;
2298         r = -EFAULT;
2299         if (copy_from_user(&vcpu->cpuid_entries, entries,
2300                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2301                 goto out;
2302         vcpu->cpuid_nent = cpuid->nent;
2303         return 0;
2304
2305 out:
2306         return r;
2307 }
2308
2309 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2310 {
2311         if (sigset) {
2312                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2313                 vcpu->sigset_active = 1;
2314                 vcpu->sigset = *sigset;
2315         } else
2316                 vcpu->sigset_active = 0;
2317         return 0;
2318 }
2319
2320 static long kvm_vcpu_ioctl(struct file *filp,
2321                            unsigned int ioctl, unsigned long arg)
2322 {
2323         struct kvm_vcpu *vcpu = filp->private_data;
2324         void __user *argp = (void __user *)arg;
2325         int r = -EINVAL;
2326
2327         switch (ioctl) {
2328         case KVM_RUN:
2329                 r = -EINVAL;
2330                 if (arg)
2331                         goto out;
2332                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2333                 break;
2334         case KVM_GET_REGS: {
2335                 struct kvm_regs kvm_regs;
2336
2337                 memset(&kvm_regs, 0, sizeof kvm_regs);
2338                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2339                 if (r)
2340                         goto out;
2341                 r = -EFAULT;
2342                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2343                         goto out;
2344                 r = 0;
2345                 break;
2346         }
2347         case KVM_SET_REGS: {
2348                 struct kvm_regs kvm_regs;
2349
2350                 r = -EFAULT;
2351                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2352                         goto out;
2353                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2354                 if (r)
2355                         goto out;
2356                 r = 0;
2357                 break;
2358         }
2359         case KVM_GET_SREGS: {
2360                 struct kvm_sregs kvm_sregs;
2361
2362                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2363                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2364                 if (r)
2365                         goto out;
2366                 r = -EFAULT;
2367                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2368                         goto out;
2369                 r = 0;
2370                 break;
2371         }
2372         case KVM_SET_SREGS: {
2373                 struct kvm_sregs kvm_sregs;
2374
2375                 r = -EFAULT;
2376                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2377                         goto out;
2378                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2379                 if (r)
2380                         goto out;
2381                 r = 0;
2382                 break;
2383         }
2384         case KVM_TRANSLATE: {
2385                 struct kvm_translation tr;
2386
2387                 r = -EFAULT;
2388                 if (copy_from_user(&tr, argp, sizeof tr))
2389                         goto out;
2390                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2391                 if (r)
2392                         goto out;
2393                 r = -EFAULT;
2394                 if (copy_to_user(argp, &tr, sizeof tr))
2395                         goto out;
2396                 r = 0;
2397                 break;
2398         }
2399         case KVM_INTERRUPT: {
2400                 struct kvm_interrupt irq;
2401
2402                 r = -EFAULT;
2403                 if (copy_from_user(&irq, argp, sizeof irq))
2404                         goto out;
2405                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2406                 if (r)
2407                         goto out;
2408                 r = 0;
2409                 break;
2410         }
2411         case KVM_DEBUG_GUEST: {
2412                 struct kvm_debug_guest dbg;
2413
2414                 r = -EFAULT;
2415                 if (copy_from_user(&dbg, argp, sizeof dbg))
2416                         goto out;
2417                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2418                 if (r)
2419                         goto out;
2420                 r = 0;
2421                 break;
2422         }
2423         case KVM_GET_MSRS:
2424                 r = msr_io(vcpu, argp, get_msr, 1);
2425                 break;
2426         case KVM_SET_MSRS:
2427                 r = msr_io(vcpu, argp, do_set_msr, 0);
2428                 break;
2429         case KVM_SET_CPUID: {
2430                 struct kvm_cpuid __user *cpuid_arg = argp;
2431                 struct kvm_cpuid cpuid;
2432
2433                 r = -EFAULT;
2434                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2435                         goto out;
2436                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2437                 if (r)
2438                         goto out;
2439                 break;
2440         }
2441         case KVM_SET_SIGNAL_MASK: {
2442                 struct kvm_signal_mask __user *sigmask_arg = argp;
2443                 struct kvm_signal_mask kvm_sigmask;
2444                 sigset_t sigset, *p;
2445
2446                 p = NULL;
2447                 if (argp) {
2448                         r = -EFAULT;
2449                         if (copy_from_user(&kvm_sigmask, argp,
2450                                            sizeof kvm_sigmask))
2451                                 goto out;
2452                         r = -EINVAL;
2453                         if (kvm_sigmask.len != sizeof sigset)
2454                                 goto out;
2455                         r = -EFAULT;
2456                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2457                                            sizeof sigset))
2458                                 goto out;
2459                         p = &sigset;
2460                 }
2461                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2462                 break;
2463         }
2464         default:
2465                 ;
2466         }
2467 out:
2468         return r;
2469 }
2470
2471 static long kvm_vm_ioctl(struct file *filp,
2472                            unsigned int ioctl, unsigned long arg)
2473 {
2474         struct kvm *kvm = filp->private_data;
2475         void __user *argp = (void __user *)arg;
2476         int r = -EINVAL;
2477
2478         switch (ioctl) {
2479         case KVM_CREATE_VCPU:
2480                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2481                 if (r < 0)
2482                         goto out;
2483                 break;
2484         case KVM_SET_MEMORY_REGION: {
2485                 struct kvm_memory_region kvm_mem;
2486
2487                 r = -EFAULT;
2488                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2489                         goto out;
2490                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2491                 if (r)
2492                         goto out;
2493                 break;
2494         }
2495         case KVM_GET_DIRTY_LOG: {
2496                 struct kvm_dirty_log log;
2497
2498                 r = -EFAULT;
2499                 if (copy_from_user(&log, argp, sizeof log))
2500                         goto out;
2501                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2502                 if (r)
2503                         goto out;
2504                 break;
2505         }
2506         default:
2507                 ;
2508         }
2509 out:
2510         return r;
2511 }
2512
2513 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2514                                   unsigned long address,
2515                                   int *type)
2516 {
2517         struct kvm *kvm = vma->vm_file->private_data;
2518         unsigned long pgoff;
2519         struct kvm_memory_slot *slot;
2520         struct page *page;
2521
2522         *type = VM_FAULT_MINOR;
2523         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2524         slot = gfn_to_memslot(kvm, pgoff);
2525         if (!slot)
2526                 return NOPAGE_SIGBUS;
2527         page = gfn_to_page(slot, pgoff);
2528         if (!page)
2529                 return NOPAGE_SIGBUS;
2530         get_page(page);
2531         return page;
2532 }
2533
2534 static struct vm_operations_struct kvm_vm_vm_ops = {
2535         .nopage = kvm_vm_nopage,
2536 };
2537
2538 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2539 {
2540         vma->vm_ops = &kvm_vm_vm_ops;
2541         return 0;
2542 }
2543
2544 static struct file_operations kvm_vm_fops = {
2545         .release        = kvm_vm_release,
2546         .unlocked_ioctl = kvm_vm_ioctl,
2547         .compat_ioctl   = kvm_vm_ioctl,
2548         .mmap           = kvm_vm_mmap,
2549 };
2550
2551 static int kvm_dev_ioctl_create_vm(void)
2552 {
2553         int fd, r;
2554         struct inode *inode;
2555         struct file *file;
2556         struct kvm *kvm;
2557
2558         inode = kvmfs_inode(&kvm_vm_fops);
2559         if (IS_ERR(inode)) {
2560                 r = PTR_ERR(inode);
2561                 goto out1;
2562         }
2563
2564         kvm = kvm_create_vm();
2565         if (IS_ERR(kvm)) {
2566                 r = PTR_ERR(kvm);
2567                 goto out2;
2568         }
2569
2570         file = kvmfs_file(inode, kvm);
2571         if (IS_ERR(file)) {
2572                 r = PTR_ERR(file);
2573                 goto out3;
2574         }
2575         kvm->filp = file;
2576
2577         r = get_unused_fd();
2578         if (r < 0)
2579                 goto out4;
2580         fd = r;
2581         fd_install(fd, file);
2582
2583         return fd;
2584
2585 out4:
2586         fput(file);
2587 out3:
2588         kvm_destroy_vm(kvm);
2589 out2:
2590         iput(inode);
2591 out1:
2592         return r;
2593 }
2594
2595 static long kvm_dev_ioctl(struct file *filp,
2596                           unsigned int ioctl, unsigned long arg)
2597 {
2598         void __user *argp = (void __user *)arg;
2599         long r = -EINVAL;
2600
2601         switch (ioctl) {
2602         case KVM_GET_API_VERSION:
2603                 r = -EINVAL;
2604                 if (arg)
2605                         goto out;
2606                 r = KVM_API_VERSION;
2607                 break;
2608         case KVM_CREATE_VM:
2609                 r = -EINVAL;
2610                 if (arg)
2611                         goto out;
2612                 r = kvm_dev_ioctl_create_vm();
2613                 break;
2614         case KVM_GET_MSR_INDEX_LIST: {
2615                 struct kvm_msr_list __user *user_msr_list = argp;
2616                 struct kvm_msr_list msr_list;
2617                 unsigned n;
2618
2619                 r = -EFAULT;
2620                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2621                         goto out;
2622                 n = msr_list.nmsrs;
2623                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2624                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2625                         goto out;
2626                 r = -E2BIG;
2627                 if (n < num_msrs_to_save)
2628                         goto out;
2629                 r = -EFAULT;
2630                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2631                                  num_msrs_to_save * sizeof(u32)))
2632                         goto out;
2633                 if (copy_to_user(user_msr_list->indices
2634                                  + num_msrs_to_save * sizeof(u32),
2635                                  &emulated_msrs,
2636                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2637                         goto out;
2638                 r = 0;
2639                 break;
2640         }
2641         case KVM_CHECK_EXTENSION:
2642                 /*
2643                  * No extensions defined at present.
2644                  */
2645                 r = 0;
2646                 break;
2647         case KVM_GET_VCPU_MMAP_SIZE:
2648                 r = -EINVAL;
2649                 if (arg)
2650                         goto out;
2651                 r = 2 * PAGE_SIZE;
2652                 break;
2653         default:
2654                 ;
2655         }
2656 out:
2657         return r;
2658 }
2659
2660 static struct file_operations kvm_chardev_ops = {
2661         .open           = kvm_dev_open,
2662         .release        = kvm_dev_release,
2663         .unlocked_ioctl = kvm_dev_ioctl,
2664         .compat_ioctl   = kvm_dev_ioctl,
2665 };
2666
2667 static struct miscdevice kvm_dev = {
2668         KVM_MINOR,
2669         "kvm",
2670         &kvm_chardev_ops,
2671 };
2672
2673 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2674                        void *v)
2675 {
2676         if (val == SYS_RESTART) {
2677                 /*
2678                  * Some (well, at least mine) BIOSes hang on reboot if
2679                  * in vmx root mode.
2680                  */
2681                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2682                 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2683         }
2684         return NOTIFY_OK;
2685 }
2686
2687 static struct notifier_block kvm_reboot_notifier = {
2688         .notifier_call = kvm_reboot,
2689         .priority = 0,
2690 };
2691
2692 /*
2693  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2694  * cached on it.
2695  */
2696 static void decache_vcpus_on_cpu(int cpu)
2697 {
2698         struct kvm *vm;
2699         struct kvm_vcpu *vcpu;
2700         int i;
2701
2702         spin_lock(&kvm_lock);
2703         list_for_each_entry(vm, &vm_list, vm_list)
2704                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2705                         vcpu = &vm->vcpus[i];
2706                         /*
2707                          * If the vcpu is locked, then it is running on some
2708                          * other cpu and therefore it is not cached on the
2709                          * cpu in question.
2710                          *
2711                          * If it's not locked, check the last cpu it executed
2712                          * on.
2713                          */
2714                         if (mutex_trylock(&vcpu->mutex)) {
2715                                 if (vcpu->cpu == cpu) {
2716                                         kvm_arch_ops->vcpu_decache(vcpu);
2717                                         vcpu->cpu = -1;
2718                                 }
2719                                 mutex_unlock(&vcpu->mutex);
2720                         }
2721                 }
2722         spin_unlock(&kvm_lock);
2723 }
2724
2725 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2726                            void *v)
2727 {
2728         int cpu = (long)v;
2729
2730         switch (val) {
2731         case CPU_DOWN_PREPARE:
2732         case CPU_UP_CANCELED:
2733                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2734                        cpu);
2735                 decache_vcpus_on_cpu(cpu);
2736                 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2737                                          NULL, 0, 1);
2738                 break;
2739         case CPU_ONLINE:
2740                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2741                        cpu);
2742                 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2743                                          NULL, 0, 1);
2744                 break;
2745         }
2746         return NOTIFY_OK;
2747 }
2748
2749 static struct notifier_block kvm_cpu_notifier = {
2750         .notifier_call = kvm_cpu_hotplug,
2751         .priority = 20, /* must be > scheduler priority */
2752 };
2753
2754 static __init void kvm_init_debug(void)
2755 {
2756         struct kvm_stats_debugfs_item *p;
2757
2758         debugfs_dir = debugfs_create_dir("kvm", NULL);
2759         for (p = debugfs_entries; p->name; ++p)
2760                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2761                                                p->data);
2762 }
2763
2764 static void kvm_exit_debug(void)
2765 {
2766         struct kvm_stats_debugfs_item *p;
2767
2768         for (p = debugfs_entries; p->name; ++p)
2769                 debugfs_remove(p->dentry);
2770         debugfs_remove(debugfs_dir);
2771 }
2772
2773 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2774 {
2775         decache_vcpus_on_cpu(raw_smp_processor_id());
2776         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2777         return 0;
2778 }
2779
2780 static int kvm_resume(struct sys_device *dev)
2781 {
2782         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2783         return 0;
2784 }
2785
2786 static struct sysdev_class kvm_sysdev_class = {
2787         set_kset_name("kvm"),
2788         .suspend = kvm_suspend,
2789         .resume = kvm_resume,
2790 };
2791
2792 static struct sys_device kvm_sysdev = {
2793         .id = 0,
2794         .cls = &kvm_sysdev_class,
2795 };
2796
2797 hpa_t bad_page_address;
2798
2799 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2800                         const char *dev_name, void *data, struct vfsmount *mnt)
2801 {
2802         return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
2803 }
2804
2805 static struct file_system_type kvm_fs_type = {
2806         .name           = "kvmfs",
2807         .get_sb         = kvmfs_get_sb,
2808         .kill_sb        = kill_anon_super,
2809 };
2810
2811 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2812 {
2813         int r;
2814
2815         if (kvm_arch_ops) {
2816                 printk(KERN_ERR "kvm: already loaded the other module\n");
2817                 return -EEXIST;
2818         }
2819
2820         if (!ops->cpu_has_kvm_support()) {
2821                 printk(KERN_ERR "kvm: no hardware support\n");
2822                 return -EOPNOTSUPP;
2823         }
2824         if (ops->disabled_by_bios()) {
2825                 printk(KERN_ERR "kvm: disabled by bios\n");
2826                 return -EOPNOTSUPP;
2827         }
2828
2829         kvm_arch_ops = ops;
2830
2831         r = kvm_arch_ops->hardware_setup();
2832         if (r < 0)
2833                 goto out;
2834
2835         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2836         r = register_cpu_notifier(&kvm_cpu_notifier);
2837         if (r)
2838                 goto out_free_1;
2839         register_reboot_notifier(&kvm_reboot_notifier);
2840
2841         r = sysdev_class_register(&kvm_sysdev_class);
2842         if (r)
2843                 goto out_free_2;
2844
2845         r = sysdev_register(&kvm_sysdev);
2846         if (r)
2847                 goto out_free_3;
2848
2849         kvm_chardev_ops.owner = module;
2850
2851         r = misc_register(&kvm_dev);
2852         if (r) {
2853                 printk (KERN_ERR "kvm: misc device register failed\n");
2854                 goto out_free;
2855         }
2856
2857         return r;
2858
2859 out_free:
2860         sysdev_unregister(&kvm_sysdev);
2861 out_free_3:
2862         sysdev_class_unregister(&kvm_sysdev_class);
2863 out_free_2:
2864         unregister_reboot_notifier(&kvm_reboot_notifier);
2865         unregister_cpu_notifier(&kvm_cpu_notifier);
2866 out_free_1:
2867         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2868         kvm_arch_ops->hardware_unsetup();
2869 out:
2870         kvm_arch_ops = NULL;
2871         return r;
2872 }
2873
2874 void kvm_exit_arch(void)
2875 {
2876         misc_deregister(&kvm_dev);
2877         sysdev_unregister(&kvm_sysdev);
2878         sysdev_class_unregister(&kvm_sysdev_class);
2879         unregister_reboot_notifier(&kvm_reboot_notifier);
2880         unregister_cpu_notifier(&kvm_cpu_notifier);
2881         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2882         kvm_arch_ops->hardware_unsetup();
2883         kvm_arch_ops = NULL;
2884 }
2885
2886 static __init int kvm_init(void)
2887 {
2888         static struct page *bad_page;
2889         int r;
2890
2891         r = register_filesystem(&kvm_fs_type);
2892         if (r)
2893                 goto out3;
2894
2895         kvmfs_mnt = kern_mount(&kvm_fs_type);
2896         r = PTR_ERR(kvmfs_mnt);
2897         if (IS_ERR(kvmfs_mnt))
2898                 goto out2;
2899         kvm_init_debug();
2900
2901         kvm_init_msr_list();
2902
2903         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2904                 r = -ENOMEM;
2905                 goto out;
2906         }
2907
2908         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2909         memset(__va(bad_page_address), 0, PAGE_SIZE);
2910
2911         return 0;
2912
2913 out:
2914         kvm_exit_debug();
2915         mntput(kvmfs_mnt);
2916 out2:
2917         unregister_filesystem(&kvm_fs_type);
2918 out3:
2919         return r;
2920 }
2921
2922 static __exit void kvm_exit(void)
2923 {
2924         kvm_exit_debug();
2925         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2926         mntput(kvmfs_mnt);
2927         unregister_filesystem(&kvm_fs_type);
2928 }
2929
2930 module_init(kvm_init)
2931 module_exit(kvm_exit)
2932
2933 EXPORT_SYMBOL_GPL(kvm_init_arch);
2934 EXPORT_SYMBOL_GPL(kvm_exit_arch);