]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
KVM: Remove arch specific components from the general code
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40
41 #include <asm/processor.h>
42 #include <asm/msr.h>
43 #include <asm/io.h>
44 #include <asm/uaccess.h>
45 #include <asm/desc.h>
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 static cpumask_t cpus_hardware_enabled;
54
55 struct kvm_arch_ops *kvm_arch_ops;
56
57 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
58
59 static struct kvm_stats_debugfs_item {
60         const char *name;
61         int offset;
62         struct dentry *dentry;
63 } debugfs_entries[] = {
64         { "pf_fixed", STAT_OFFSET(pf_fixed) },
65         { "pf_guest", STAT_OFFSET(pf_guest) },
66         { "tlb_flush", STAT_OFFSET(tlb_flush) },
67         { "invlpg", STAT_OFFSET(invlpg) },
68         { "exits", STAT_OFFSET(exits) },
69         { "io_exits", STAT_OFFSET(io_exits) },
70         { "mmio_exits", STAT_OFFSET(mmio_exits) },
71         { "signal_exits", STAT_OFFSET(signal_exits) },
72         { "irq_window", STAT_OFFSET(irq_window_exits) },
73         { "halt_exits", STAT_OFFSET(halt_exits) },
74         { "request_irq", STAT_OFFSET(request_irq_exits) },
75         { "irq_exits", STAT_OFFSET(irq_exits) },
76         { "light_exits", STAT_OFFSET(light_exits) },
77         { "efer_reload", STAT_OFFSET(efer_reload) },
78         { NULL }
79 };
80
81 static struct dentry *debugfs_dir;
82
83 #define MAX_IO_MSRS 256
84
85 #define CR0_RESERVED_BITS                                               \
86         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
87                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
88                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
89 #define CR4_RESERVED_BITS                                               \
90         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
91                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
92                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
93                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
94
95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
96 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
97
98 #ifdef CONFIG_X86_64
99 // LDT or TSS descriptor in the GDT. 16 bytes.
100 struct segment_descriptor_64 {
101         struct segment_descriptor s;
102         u32 base_higher;
103         u32 pad_zero;
104 };
105
106 #endif
107
108 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
109                            unsigned long arg);
110
111 unsigned long segment_base(u16 selector)
112 {
113         struct descriptor_table gdt;
114         struct segment_descriptor *d;
115         unsigned long table_base;
116         typedef unsigned long ul;
117         unsigned long v;
118
119         if (selector == 0)
120                 return 0;
121
122         asm ("sgdt %0" : "=m"(gdt));
123         table_base = gdt.base;
124
125         if (selector & 4) {           /* from ldt */
126                 u16 ldt_selector;
127
128                 asm ("sldt %0" : "=g"(ldt_selector));
129                 table_base = segment_base(ldt_selector);
130         }
131         d = (struct segment_descriptor *)(table_base + (selector & ~7));
132         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
133 #ifdef CONFIG_X86_64
134         if (d->system == 0
135             && (d->type == 2 || d->type == 9 || d->type == 11))
136                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
137 #endif
138         return v;
139 }
140 EXPORT_SYMBOL_GPL(segment_base);
141
142 static inline int valid_vcpu(int n)
143 {
144         return likely(n >= 0 && n < KVM_MAX_VCPUS);
145 }
146
147 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
148                    void *dest)
149 {
150         unsigned char *host_buf = dest;
151         unsigned long req_size = size;
152
153         while (size) {
154                 hpa_t paddr;
155                 unsigned now;
156                 unsigned offset;
157                 hva_t guest_buf;
158
159                 paddr = gva_to_hpa(vcpu, addr);
160
161                 if (is_error_hpa(paddr))
162                         break;
163
164                 guest_buf = (hva_t)kmap_atomic(
165                                         pfn_to_page(paddr >> PAGE_SHIFT),
166                                         KM_USER0);
167                 offset = addr & ~PAGE_MASK;
168                 guest_buf |= offset;
169                 now = min(size, PAGE_SIZE - offset);
170                 memcpy(host_buf, (void*)guest_buf, now);
171                 host_buf += now;
172                 addr += now;
173                 size -= now;
174                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
175         }
176         return req_size - size;
177 }
178 EXPORT_SYMBOL_GPL(kvm_read_guest);
179
180 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
181                     void *data)
182 {
183         unsigned char *host_buf = data;
184         unsigned long req_size = size;
185
186         while (size) {
187                 hpa_t paddr;
188                 unsigned now;
189                 unsigned offset;
190                 hva_t guest_buf;
191                 gfn_t gfn;
192
193                 paddr = gva_to_hpa(vcpu, addr);
194
195                 if (is_error_hpa(paddr))
196                         break;
197
198                 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
199                 mark_page_dirty(vcpu->kvm, gfn);
200                 guest_buf = (hva_t)kmap_atomic(
201                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
202                 offset = addr & ~PAGE_MASK;
203                 guest_buf |= offset;
204                 now = min(size, PAGE_SIZE - offset);
205                 memcpy((void*)guest_buf, host_buf, now);
206                 host_buf += now;
207                 addr += now;
208                 size -= now;
209                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
210         }
211         return req_size - size;
212 }
213 EXPORT_SYMBOL_GPL(kvm_write_guest);
214
215 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
216 {
217         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
218                 return;
219
220         vcpu->guest_fpu_loaded = 1;
221         fx_save(vcpu->host_fx_image);
222         fx_restore(vcpu->guest_fx_image);
223 }
224 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
225
226 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
227 {
228         if (!vcpu->guest_fpu_loaded)
229                 return;
230
231         vcpu->guest_fpu_loaded = 0;
232         fx_save(vcpu->guest_fx_image);
233         fx_restore(vcpu->host_fx_image);
234 }
235 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
236
237 /*
238  * Switches to specified vcpu, until a matching vcpu_put()
239  */
240 static void vcpu_load(struct kvm_vcpu *vcpu)
241 {
242         mutex_lock(&vcpu->mutex);
243         kvm_arch_ops->vcpu_load(vcpu);
244 }
245
246 static void vcpu_put(struct kvm_vcpu *vcpu)
247 {
248         kvm_arch_ops->vcpu_put(vcpu);
249         mutex_unlock(&vcpu->mutex);
250 }
251
252 static void ack_flush(void *_completed)
253 {
254         atomic_t *completed = _completed;
255
256         atomic_inc(completed);
257 }
258
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261         int i, cpu, needed;
262         cpumask_t cpus;
263         struct kvm_vcpu *vcpu;
264         atomic_t completed;
265
266         atomic_set(&completed, 0);
267         cpus_clear(cpus);
268         needed = 0;
269         for (i = 0; i < kvm->nvcpus; ++i) {
270                 vcpu = &kvm->vcpus[i];
271                 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
272                         continue;
273                 cpu = vcpu->cpu;
274                 if (cpu != -1 && cpu != raw_smp_processor_id())
275                         if (!cpu_isset(cpu, cpus)) {
276                                 cpu_set(cpu, cpus);
277                                 ++needed;
278                         }
279         }
280
281         /*
282          * We really want smp_call_function_mask() here.  But that's not
283          * available, so ipi all cpus in parallel and wait for them
284          * to complete.
285          */
286         for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
287                 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
288         while (atomic_read(&completed) != needed) {
289                 cpu_relax();
290                 barrier();
291         }
292 }
293
294 static struct kvm *kvm_create_vm(void)
295 {
296         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
297         int i;
298
299         if (!kvm)
300                 return ERR_PTR(-ENOMEM);
301
302         kvm_io_bus_init(&kvm->pio_bus);
303         spin_lock_init(&kvm->lock);
304         INIT_LIST_HEAD(&kvm->active_mmu_pages);
305         kvm_io_bus_init(&kvm->mmio_bus);
306         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
307                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
308
309                 mutex_init(&vcpu->mutex);
310                 vcpu->cpu = -1;
311                 vcpu->kvm = kvm;
312                 vcpu->mmu.root_hpa = INVALID_PAGE;
313         }
314         spin_lock(&kvm_lock);
315         list_add(&kvm->vm_list, &vm_list);
316         spin_unlock(&kvm_lock);
317         return kvm;
318 }
319
320 static int kvm_dev_open(struct inode *inode, struct file *filp)
321 {
322         return 0;
323 }
324
325 /*
326  * Free any memory in @free but not in @dont.
327  */
328 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
329                                   struct kvm_memory_slot *dont)
330 {
331         int i;
332
333         if (!dont || free->phys_mem != dont->phys_mem)
334                 if (free->phys_mem) {
335                         for (i = 0; i < free->npages; ++i)
336                                 if (free->phys_mem[i])
337                                         __free_page(free->phys_mem[i]);
338                         vfree(free->phys_mem);
339                 }
340
341         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
342                 vfree(free->dirty_bitmap);
343
344         free->phys_mem = NULL;
345         free->npages = 0;
346         free->dirty_bitmap = NULL;
347 }
348
349 static void kvm_free_physmem(struct kvm *kvm)
350 {
351         int i;
352
353         for (i = 0; i < kvm->nmemslots; ++i)
354                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
355 }
356
357 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
358 {
359         int i;
360
361         for (i = 0; i < 2; ++i)
362                 if (vcpu->pio.guest_pages[i]) {
363                         __free_page(vcpu->pio.guest_pages[i]);
364                         vcpu->pio.guest_pages[i] = NULL;
365                 }
366 }
367
368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
369 {
370         if (!vcpu->valid)
371                 return;
372
373         vcpu_load(vcpu);
374         kvm_mmu_unload(vcpu);
375         vcpu_put(vcpu);
376 }
377
378 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
379 {
380         if (!vcpu->valid)
381                 return;
382
383         vcpu_load(vcpu);
384         kvm_mmu_destroy(vcpu);
385         vcpu_put(vcpu);
386         kvm_arch_ops->vcpu_free(vcpu);
387         free_page((unsigned long)vcpu->run);
388         vcpu->run = NULL;
389         free_page((unsigned long)vcpu->pio_data);
390         vcpu->pio_data = NULL;
391         free_pio_guest_pages(vcpu);
392 }
393
394 static void kvm_free_vcpus(struct kvm *kvm)
395 {
396         unsigned int i;
397
398         /*
399          * Unpin any mmu pages first.
400          */
401         for (i = 0; i < KVM_MAX_VCPUS; ++i)
402                 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
403         for (i = 0; i < KVM_MAX_VCPUS; ++i)
404                 kvm_free_vcpu(&kvm->vcpus[i]);
405 }
406
407 static int kvm_dev_release(struct inode *inode, struct file *filp)
408 {
409         return 0;
410 }
411
412 static void kvm_destroy_vm(struct kvm *kvm)
413 {
414         spin_lock(&kvm_lock);
415         list_del(&kvm->vm_list);
416         spin_unlock(&kvm_lock);
417         kvm_io_bus_destroy(&kvm->pio_bus);
418         kvm_io_bus_destroy(&kvm->mmio_bus);
419         kvm_free_vcpus(kvm);
420         kvm_free_physmem(kvm);
421         kfree(kvm);
422 }
423
424 static int kvm_vm_release(struct inode *inode, struct file *filp)
425 {
426         struct kvm *kvm = filp->private_data;
427
428         kvm_destroy_vm(kvm);
429         return 0;
430 }
431
432 static void inject_gp(struct kvm_vcpu *vcpu)
433 {
434         kvm_arch_ops->inject_gp(vcpu, 0);
435 }
436
437 /*
438  * Load the pae pdptrs.  Return true is they are all valid.
439  */
440 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
441 {
442         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
443         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
444         int i;
445         u64 *pdpt;
446         int ret;
447         struct page *page;
448         u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
449
450         spin_lock(&vcpu->kvm->lock);
451         page = gfn_to_page(vcpu->kvm, pdpt_gfn);
452         if (!page) {
453                 ret = 0;
454                 goto out;
455         }
456
457         pdpt = kmap_atomic(page, KM_USER0);
458         memcpy(pdpte, pdpt+offset, sizeof(pdpte));
459         kunmap_atomic(pdpt, KM_USER0);
460
461         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
462                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
463                         ret = 0;
464                         goto out;
465                 }
466         }
467         ret = 1;
468
469         memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
470 out:
471         spin_unlock(&vcpu->kvm->lock);
472
473         return ret;
474 }
475
476 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
477 {
478         if (cr0 & CR0_RESERVED_BITS) {
479                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
480                        cr0, vcpu->cr0);
481                 inject_gp(vcpu);
482                 return;
483         }
484
485         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
486                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
487                 inject_gp(vcpu);
488                 return;
489         }
490
491         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
492                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
493                        "and a clear PE flag\n");
494                 inject_gp(vcpu);
495                 return;
496         }
497
498         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
499 #ifdef CONFIG_X86_64
500                 if ((vcpu->shadow_efer & EFER_LME)) {
501                         int cs_db, cs_l;
502
503                         if (!is_pae(vcpu)) {
504                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
505                                        "in long mode while PAE is disabled\n");
506                                 inject_gp(vcpu);
507                                 return;
508                         }
509                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
510                         if (cs_l) {
511                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
512                                        "in long mode while CS.L == 1\n");
513                                 inject_gp(vcpu);
514                                 return;
515
516                         }
517                 } else
518 #endif
519                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
520                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
521                                "reserved bits\n");
522                         inject_gp(vcpu);
523                         return;
524                 }
525
526         }
527
528         kvm_arch_ops->set_cr0(vcpu, cr0);
529         vcpu->cr0 = cr0;
530
531         spin_lock(&vcpu->kvm->lock);
532         kvm_mmu_reset_context(vcpu);
533         spin_unlock(&vcpu->kvm->lock);
534         return;
535 }
536 EXPORT_SYMBOL_GPL(set_cr0);
537
538 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
539 {
540         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
541 }
542 EXPORT_SYMBOL_GPL(lmsw);
543
544 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
545 {
546         if (cr4 & CR4_RESERVED_BITS) {
547                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
548                 inject_gp(vcpu);
549                 return;
550         }
551
552         if (is_long_mode(vcpu)) {
553                 if (!(cr4 & X86_CR4_PAE)) {
554                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
555                                "in long mode\n");
556                         inject_gp(vcpu);
557                         return;
558                 }
559         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
560                    && !load_pdptrs(vcpu, vcpu->cr3)) {
561                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
562                 inject_gp(vcpu);
563                 return;
564         }
565
566         if (cr4 & X86_CR4_VMXE) {
567                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
568                 inject_gp(vcpu);
569                 return;
570         }
571         kvm_arch_ops->set_cr4(vcpu, cr4);
572         spin_lock(&vcpu->kvm->lock);
573         kvm_mmu_reset_context(vcpu);
574         spin_unlock(&vcpu->kvm->lock);
575 }
576 EXPORT_SYMBOL_GPL(set_cr4);
577
578 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
579 {
580         if (is_long_mode(vcpu)) {
581                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
582                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
583                         inject_gp(vcpu);
584                         return;
585                 }
586         } else {
587                 if (is_pae(vcpu)) {
588                         if (cr3 & CR3_PAE_RESERVED_BITS) {
589                                 printk(KERN_DEBUG
590                                        "set_cr3: #GP, reserved bits\n");
591                                 inject_gp(vcpu);
592                                 return;
593                         }
594                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
595                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
596                                        "reserved bits\n");
597                                 inject_gp(vcpu);
598                                 return;
599                         }
600                 } else {
601                         if (cr3 & CR3_NONPAE_RESERVED_BITS) {
602                                 printk(KERN_DEBUG
603                                        "set_cr3: #GP, reserved bits\n");
604                                 inject_gp(vcpu);
605                                 return;
606                         }
607                 }
608         }
609
610         vcpu->cr3 = cr3;
611         spin_lock(&vcpu->kvm->lock);
612         /*
613          * Does the new cr3 value map to physical memory? (Note, we
614          * catch an invalid cr3 even in real-mode, because it would
615          * cause trouble later on when we turn on paging anyway.)
616          *
617          * A real CPU would silently accept an invalid cr3 and would
618          * attempt to use it - with largely undefined (and often hard
619          * to debug) behavior on the guest side.
620          */
621         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
622                 inject_gp(vcpu);
623         else
624                 vcpu->mmu.new_cr3(vcpu);
625         spin_unlock(&vcpu->kvm->lock);
626 }
627 EXPORT_SYMBOL_GPL(set_cr3);
628
629 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
630 {
631         if (cr8 & CR8_RESERVED_BITS) {
632                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
633                 inject_gp(vcpu);
634                 return;
635         }
636         vcpu->cr8 = cr8;
637 }
638 EXPORT_SYMBOL_GPL(set_cr8);
639
640 void fx_init(struct kvm_vcpu *vcpu)
641 {
642         struct __attribute__ ((__packed__)) fx_image_s {
643                 u16 control; //fcw
644                 u16 status; //fsw
645                 u16 tag; // ftw
646                 u16 opcode; //fop
647                 u64 ip; // fpu ip
648                 u64 operand;// fpu dp
649                 u32 mxcsr;
650                 u32 mxcsr_mask;
651
652         } *fx_image;
653
654         fx_save(vcpu->host_fx_image);
655         fpu_init();
656         fx_save(vcpu->guest_fx_image);
657         fx_restore(vcpu->host_fx_image);
658
659         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
660         fx_image->mxcsr = 0x1f80;
661         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
662                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
663 }
664 EXPORT_SYMBOL_GPL(fx_init);
665
666 /*
667  * Allocate some memory and give it an address in the guest physical address
668  * space.
669  *
670  * Discontiguous memory is allowed, mostly for framebuffers.
671  */
672 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
673                                           struct kvm_memory_region *mem)
674 {
675         int r;
676         gfn_t base_gfn;
677         unsigned long npages;
678         unsigned long i;
679         struct kvm_memory_slot *memslot;
680         struct kvm_memory_slot old, new;
681         int memory_config_version;
682
683         r = -EINVAL;
684         /* General sanity checks */
685         if (mem->memory_size & (PAGE_SIZE - 1))
686                 goto out;
687         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
688                 goto out;
689         if (mem->slot >= KVM_MEMORY_SLOTS)
690                 goto out;
691         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
692                 goto out;
693
694         memslot = &kvm->memslots[mem->slot];
695         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
696         npages = mem->memory_size >> PAGE_SHIFT;
697
698         if (!npages)
699                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
700
701 raced:
702         spin_lock(&kvm->lock);
703
704         memory_config_version = kvm->memory_config_version;
705         new = old = *memslot;
706
707         new.base_gfn = base_gfn;
708         new.npages = npages;
709         new.flags = mem->flags;
710
711         /* Disallow changing a memory slot's size. */
712         r = -EINVAL;
713         if (npages && old.npages && npages != old.npages)
714                 goto out_unlock;
715
716         /* Check for overlaps */
717         r = -EEXIST;
718         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
719                 struct kvm_memory_slot *s = &kvm->memslots[i];
720
721                 if (s == memslot)
722                         continue;
723                 if (!((base_gfn + npages <= s->base_gfn) ||
724                       (base_gfn >= s->base_gfn + s->npages)))
725                         goto out_unlock;
726         }
727         /*
728          * Do memory allocations outside lock.  memory_config_version will
729          * detect any races.
730          */
731         spin_unlock(&kvm->lock);
732
733         /* Deallocate if slot is being removed */
734         if (!npages)
735                 new.phys_mem = NULL;
736
737         /* Free page dirty bitmap if unneeded */
738         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
739                 new.dirty_bitmap = NULL;
740
741         r = -ENOMEM;
742
743         /* Allocate if a slot is being created */
744         if (npages && !new.phys_mem) {
745                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
746
747                 if (!new.phys_mem)
748                         goto out_free;
749
750                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
751                 for (i = 0; i < npages; ++i) {
752                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
753                                                      | __GFP_ZERO);
754                         if (!new.phys_mem[i])
755                                 goto out_free;
756                         set_page_private(new.phys_mem[i],0);
757                 }
758         }
759
760         /* Allocate page dirty bitmap if needed */
761         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
762                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
763
764                 new.dirty_bitmap = vmalloc(dirty_bytes);
765                 if (!new.dirty_bitmap)
766                         goto out_free;
767                 memset(new.dirty_bitmap, 0, dirty_bytes);
768         }
769
770         spin_lock(&kvm->lock);
771
772         if (memory_config_version != kvm->memory_config_version) {
773                 spin_unlock(&kvm->lock);
774                 kvm_free_physmem_slot(&new, &old);
775                 goto raced;
776         }
777
778         r = -EAGAIN;
779         if (kvm->busy)
780                 goto out_unlock;
781
782         if (mem->slot >= kvm->nmemslots)
783                 kvm->nmemslots = mem->slot + 1;
784
785         *memslot = new;
786         ++kvm->memory_config_version;
787
788         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
789         kvm_flush_remote_tlbs(kvm);
790
791         spin_unlock(&kvm->lock);
792
793         kvm_free_physmem_slot(&old, &new);
794         return 0;
795
796 out_unlock:
797         spin_unlock(&kvm->lock);
798 out_free:
799         kvm_free_physmem_slot(&new, &old);
800 out:
801         return r;
802 }
803
804 /*
805  * Get (and clear) the dirty memory log for a memory slot.
806  */
807 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
808                                       struct kvm_dirty_log *log)
809 {
810         struct kvm_memory_slot *memslot;
811         int r, i;
812         int n;
813         unsigned long any = 0;
814
815         spin_lock(&kvm->lock);
816
817         /*
818          * Prevent changes to guest memory configuration even while the lock
819          * is not taken.
820          */
821         ++kvm->busy;
822         spin_unlock(&kvm->lock);
823         r = -EINVAL;
824         if (log->slot >= KVM_MEMORY_SLOTS)
825                 goto out;
826
827         memslot = &kvm->memslots[log->slot];
828         r = -ENOENT;
829         if (!memslot->dirty_bitmap)
830                 goto out;
831
832         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
833
834         for (i = 0; !any && i < n/sizeof(long); ++i)
835                 any = memslot->dirty_bitmap[i];
836
837         r = -EFAULT;
838         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
839                 goto out;
840
841         spin_lock(&kvm->lock);
842         kvm_mmu_slot_remove_write_access(kvm, log->slot);
843         kvm_flush_remote_tlbs(kvm);
844         memset(memslot->dirty_bitmap, 0, n);
845         spin_unlock(&kvm->lock);
846
847         r = 0;
848
849 out:
850         spin_lock(&kvm->lock);
851         --kvm->busy;
852         spin_unlock(&kvm->lock);
853         return r;
854 }
855
856 /*
857  * Set a new alias region.  Aliases map a portion of physical memory into
858  * another portion.  This is useful for memory windows, for example the PC
859  * VGA region.
860  */
861 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
862                                          struct kvm_memory_alias *alias)
863 {
864         int r, n;
865         struct kvm_mem_alias *p;
866
867         r = -EINVAL;
868         /* General sanity checks */
869         if (alias->memory_size & (PAGE_SIZE - 1))
870                 goto out;
871         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
872                 goto out;
873         if (alias->slot >= KVM_ALIAS_SLOTS)
874                 goto out;
875         if (alias->guest_phys_addr + alias->memory_size
876             < alias->guest_phys_addr)
877                 goto out;
878         if (alias->target_phys_addr + alias->memory_size
879             < alias->target_phys_addr)
880                 goto out;
881
882         spin_lock(&kvm->lock);
883
884         p = &kvm->aliases[alias->slot];
885         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
886         p->npages = alias->memory_size >> PAGE_SHIFT;
887         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
888
889         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
890                 if (kvm->aliases[n - 1].npages)
891                         break;
892         kvm->naliases = n;
893
894         kvm_mmu_zap_all(kvm);
895
896         spin_unlock(&kvm->lock);
897
898         return 0;
899
900 out:
901         return r;
902 }
903
904 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
905 {
906         int i;
907         struct kvm_mem_alias *alias;
908
909         for (i = 0; i < kvm->naliases; ++i) {
910                 alias = &kvm->aliases[i];
911                 if (gfn >= alias->base_gfn
912                     && gfn < alias->base_gfn + alias->npages)
913                         return alias->target_gfn + gfn - alias->base_gfn;
914         }
915         return gfn;
916 }
917
918 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
919 {
920         int i;
921
922         for (i = 0; i < kvm->nmemslots; ++i) {
923                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
924
925                 if (gfn >= memslot->base_gfn
926                     && gfn < memslot->base_gfn + memslot->npages)
927                         return memslot;
928         }
929         return NULL;
930 }
931
932 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
933 {
934         gfn = unalias_gfn(kvm, gfn);
935         return __gfn_to_memslot(kvm, gfn);
936 }
937
938 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
939 {
940         struct kvm_memory_slot *slot;
941
942         gfn = unalias_gfn(kvm, gfn);
943         slot = __gfn_to_memslot(kvm, gfn);
944         if (!slot)
945                 return NULL;
946         return slot->phys_mem[gfn - slot->base_gfn];
947 }
948 EXPORT_SYMBOL_GPL(gfn_to_page);
949
950 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
951 {
952         int i;
953         struct kvm_memory_slot *memslot;
954         unsigned long rel_gfn;
955
956         for (i = 0; i < kvm->nmemslots; ++i) {
957                 memslot = &kvm->memslots[i];
958
959                 if (gfn >= memslot->base_gfn
960                     && gfn < memslot->base_gfn + memslot->npages) {
961
962                         if (!memslot->dirty_bitmap)
963                                 return;
964
965                         rel_gfn = gfn - memslot->base_gfn;
966
967                         /* avoid RMW */
968                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
969                                 set_bit(rel_gfn, memslot->dirty_bitmap);
970                         return;
971                 }
972         }
973 }
974
975 static int emulator_read_std(unsigned long addr,
976                              void *val,
977                              unsigned int bytes,
978                              struct x86_emulate_ctxt *ctxt)
979 {
980         struct kvm_vcpu *vcpu = ctxt->vcpu;
981         void *data = val;
982
983         while (bytes) {
984                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
985                 unsigned offset = addr & (PAGE_SIZE-1);
986                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
987                 unsigned long pfn;
988                 struct page *page;
989                 void *page_virt;
990
991                 if (gpa == UNMAPPED_GVA)
992                         return X86EMUL_PROPAGATE_FAULT;
993                 pfn = gpa >> PAGE_SHIFT;
994                 page = gfn_to_page(vcpu->kvm, pfn);
995                 if (!page)
996                         return X86EMUL_UNHANDLEABLE;
997                 page_virt = kmap_atomic(page, KM_USER0);
998
999                 memcpy(data, page_virt + offset, tocopy);
1000
1001                 kunmap_atomic(page_virt, KM_USER0);
1002
1003                 bytes -= tocopy;
1004                 data += tocopy;
1005                 addr += tocopy;
1006         }
1007
1008         return X86EMUL_CONTINUE;
1009 }
1010
1011 static int emulator_write_std(unsigned long addr,
1012                               const void *val,
1013                               unsigned int bytes,
1014                               struct x86_emulate_ctxt *ctxt)
1015 {
1016         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1017                addr, bytes);
1018         return X86EMUL_UNHANDLEABLE;
1019 }
1020
1021 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1022                                                 gpa_t addr)
1023 {
1024         /*
1025          * Note that its important to have this wrapper function because
1026          * in the very near future we will be checking for MMIOs against
1027          * the LAPIC as well as the general MMIO bus
1028          */
1029         return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1030 }
1031
1032 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1033                                                gpa_t addr)
1034 {
1035         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1036 }
1037
1038 static int emulator_read_emulated(unsigned long addr,
1039                                   void *val,
1040                                   unsigned int bytes,
1041                                   struct x86_emulate_ctxt *ctxt)
1042 {
1043         struct kvm_vcpu      *vcpu = ctxt->vcpu;
1044         struct kvm_io_device *mmio_dev;
1045         gpa_t                 gpa;
1046
1047         if (vcpu->mmio_read_completed) {
1048                 memcpy(val, vcpu->mmio_data, bytes);
1049                 vcpu->mmio_read_completed = 0;
1050                 return X86EMUL_CONTINUE;
1051         } else if (emulator_read_std(addr, val, bytes, ctxt)
1052                    == X86EMUL_CONTINUE)
1053                 return X86EMUL_CONTINUE;
1054
1055         gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1056         if (gpa == UNMAPPED_GVA)
1057                 return X86EMUL_PROPAGATE_FAULT;
1058
1059         /*
1060          * Is this MMIO handled locally?
1061          */
1062         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1063         if (mmio_dev) {
1064                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1065                 return X86EMUL_CONTINUE;
1066         }
1067
1068         vcpu->mmio_needed = 1;
1069         vcpu->mmio_phys_addr = gpa;
1070         vcpu->mmio_size = bytes;
1071         vcpu->mmio_is_write = 0;
1072
1073         return X86EMUL_UNHANDLEABLE;
1074 }
1075
1076 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1077                                const void *val, int bytes)
1078 {
1079         struct page *page;
1080         void *virt;
1081
1082         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1083                 return 0;
1084         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1085         if (!page)
1086                 return 0;
1087         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1088         virt = kmap_atomic(page, KM_USER0);
1089         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1090         memcpy(virt + offset_in_page(gpa), val, bytes);
1091         kunmap_atomic(virt, KM_USER0);
1092         return 1;
1093 }
1094
1095 static int emulator_write_emulated_onepage(unsigned long addr,
1096                                            const void *val,
1097                                            unsigned int bytes,
1098                                            struct x86_emulate_ctxt *ctxt)
1099 {
1100         struct kvm_vcpu      *vcpu = ctxt->vcpu;
1101         struct kvm_io_device *mmio_dev;
1102         gpa_t                 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1103
1104         if (gpa == UNMAPPED_GVA) {
1105                 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1106                 return X86EMUL_PROPAGATE_FAULT;
1107         }
1108
1109         if (emulator_write_phys(vcpu, gpa, val, bytes))
1110                 return X86EMUL_CONTINUE;
1111
1112         /*
1113          * Is this MMIO handled locally?
1114          */
1115         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1116         if (mmio_dev) {
1117                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1118                 return X86EMUL_CONTINUE;
1119         }
1120
1121         vcpu->mmio_needed = 1;
1122         vcpu->mmio_phys_addr = gpa;
1123         vcpu->mmio_size = bytes;
1124         vcpu->mmio_is_write = 1;
1125         memcpy(vcpu->mmio_data, val, bytes);
1126
1127         return X86EMUL_CONTINUE;
1128 }
1129
1130 static int emulator_write_emulated(unsigned long addr,
1131                                    const void *val,
1132                                    unsigned int bytes,
1133                                    struct x86_emulate_ctxt *ctxt)
1134 {
1135         /* Crossing a page boundary? */
1136         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1137                 int rc, now;
1138
1139                 now = -addr & ~PAGE_MASK;
1140                 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1141                 if (rc != X86EMUL_CONTINUE)
1142                         return rc;
1143                 addr += now;
1144                 val += now;
1145                 bytes -= now;
1146         }
1147         return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1148 }
1149
1150 static int emulator_cmpxchg_emulated(unsigned long addr,
1151                                      const void *old,
1152                                      const void *new,
1153                                      unsigned int bytes,
1154                                      struct x86_emulate_ctxt *ctxt)
1155 {
1156         static int reported;
1157
1158         if (!reported) {
1159                 reported = 1;
1160                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1161         }
1162         return emulator_write_emulated(addr, new, bytes, ctxt);
1163 }
1164
1165 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1166 {
1167         return kvm_arch_ops->get_segment_base(vcpu, seg);
1168 }
1169
1170 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1171 {
1172         return X86EMUL_CONTINUE;
1173 }
1174
1175 int emulate_clts(struct kvm_vcpu *vcpu)
1176 {
1177         unsigned long cr0;
1178
1179         cr0 = vcpu->cr0 & ~X86_CR0_TS;
1180         kvm_arch_ops->set_cr0(vcpu, cr0);
1181         return X86EMUL_CONTINUE;
1182 }
1183
1184 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1185 {
1186         struct kvm_vcpu *vcpu = ctxt->vcpu;
1187
1188         switch (dr) {
1189         case 0 ... 3:
1190                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1191                 return X86EMUL_CONTINUE;
1192         default:
1193                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1194                        __FUNCTION__, dr);
1195                 return X86EMUL_UNHANDLEABLE;
1196         }
1197 }
1198
1199 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1200 {
1201         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1202         int exception;
1203
1204         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1205         if (exception) {
1206                 /* FIXME: better handling */
1207                 return X86EMUL_UNHANDLEABLE;
1208         }
1209         return X86EMUL_CONTINUE;
1210 }
1211
1212 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1213 {
1214         static int reported;
1215         u8 opcodes[4];
1216         unsigned long rip = ctxt->vcpu->rip;
1217         unsigned long rip_linear;
1218
1219         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1220
1221         if (reported)
1222                 return;
1223
1224         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1225
1226         printk(KERN_ERR "emulation failed but !mmio_needed?"
1227                " rip %lx %02x %02x %02x %02x\n",
1228                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1229         reported = 1;
1230 }
1231
1232 struct x86_emulate_ops emulate_ops = {
1233         .read_std            = emulator_read_std,
1234         .write_std           = emulator_write_std,
1235         .read_emulated       = emulator_read_emulated,
1236         .write_emulated      = emulator_write_emulated,
1237         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1238 };
1239
1240 int emulate_instruction(struct kvm_vcpu *vcpu,
1241                         struct kvm_run *run,
1242                         unsigned long cr2,
1243                         u16 error_code)
1244 {
1245         struct x86_emulate_ctxt emulate_ctxt;
1246         int r;
1247         int cs_db, cs_l;
1248
1249         vcpu->mmio_fault_cr2 = cr2;
1250         kvm_arch_ops->cache_regs(vcpu);
1251
1252         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1253
1254         emulate_ctxt.vcpu = vcpu;
1255         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1256         emulate_ctxt.cr2 = cr2;
1257         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1258                 ? X86EMUL_MODE_REAL : cs_l
1259                 ? X86EMUL_MODE_PROT64 : cs_db
1260                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1261
1262         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1263                 emulate_ctxt.cs_base = 0;
1264                 emulate_ctxt.ds_base = 0;
1265                 emulate_ctxt.es_base = 0;
1266                 emulate_ctxt.ss_base = 0;
1267         } else {
1268                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1269                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1270                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1271                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1272         }
1273
1274         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1275         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1276
1277         vcpu->mmio_is_write = 0;
1278         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1279
1280         if ((r || vcpu->mmio_is_write) && run) {
1281                 run->exit_reason = KVM_EXIT_MMIO;
1282                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1283                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1284                 run->mmio.len = vcpu->mmio_size;
1285                 run->mmio.is_write = vcpu->mmio_is_write;
1286         }
1287
1288         if (r) {
1289                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1290                         return EMULATE_DONE;
1291                 if (!vcpu->mmio_needed) {
1292                         report_emulation_failure(&emulate_ctxt);
1293                         return EMULATE_FAIL;
1294                 }
1295                 return EMULATE_DO_MMIO;
1296         }
1297
1298         kvm_arch_ops->decache_regs(vcpu);
1299         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1300
1301         if (vcpu->mmio_is_write) {
1302                 vcpu->mmio_needed = 0;
1303                 return EMULATE_DO_MMIO;
1304         }
1305
1306         return EMULATE_DONE;
1307 }
1308 EXPORT_SYMBOL_GPL(emulate_instruction);
1309
1310 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1311 {
1312         if (vcpu->irq_summary)
1313                 return 1;
1314
1315         vcpu->run->exit_reason = KVM_EXIT_HLT;
1316         ++vcpu->stat.halt_exits;
1317         return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1320
1321 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1322 {
1323         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1324
1325         kvm_arch_ops->cache_regs(vcpu);
1326         ret = -KVM_EINVAL;
1327 #ifdef CONFIG_X86_64
1328         if (is_long_mode(vcpu)) {
1329                 nr = vcpu->regs[VCPU_REGS_RAX];
1330                 a0 = vcpu->regs[VCPU_REGS_RDI];
1331                 a1 = vcpu->regs[VCPU_REGS_RSI];
1332                 a2 = vcpu->regs[VCPU_REGS_RDX];
1333                 a3 = vcpu->regs[VCPU_REGS_RCX];
1334                 a4 = vcpu->regs[VCPU_REGS_R8];
1335                 a5 = vcpu->regs[VCPU_REGS_R9];
1336         } else
1337 #endif
1338         {
1339                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1340                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1341                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1342                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1343                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1344                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1345                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1346         }
1347         switch (nr) {
1348         default:
1349                 run->hypercall.args[0] = a0;
1350                 run->hypercall.args[1] = a1;
1351                 run->hypercall.args[2] = a2;
1352                 run->hypercall.args[3] = a3;
1353                 run->hypercall.args[4] = a4;
1354                 run->hypercall.args[5] = a5;
1355                 run->hypercall.ret = ret;
1356                 run->hypercall.longmode = is_long_mode(vcpu);
1357                 kvm_arch_ops->decache_regs(vcpu);
1358                 return 0;
1359         }
1360         vcpu->regs[VCPU_REGS_RAX] = ret;
1361         kvm_arch_ops->decache_regs(vcpu);
1362         return 1;
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_hypercall);
1365
1366 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1367 {
1368         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1369 }
1370
1371 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1372 {
1373         struct descriptor_table dt = { limit, base };
1374
1375         kvm_arch_ops->set_gdt(vcpu, &dt);
1376 }
1377
1378 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1379 {
1380         struct descriptor_table dt = { limit, base };
1381
1382         kvm_arch_ops->set_idt(vcpu, &dt);
1383 }
1384
1385 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1386                    unsigned long *rflags)
1387 {
1388         lmsw(vcpu, msw);
1389         *rflags = kvm_arch_ops->get_rflags(vcpu);
1390 }
1391
1392 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1393 {
1394         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1395         switch (cr) {
1396         case 0:
1397                 return vcpu->cr0;
1398         case 2:
1399                 return vcpu->cr2;
1400         case 3:
1401                 return vcpu->cr3;
1402         case 4:
1403                 return vcpu->cr4;
1404         default:
1405                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1406                 return 0;
1407         }
1408 }
1409
1410 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1411                      unsigned long *rflags)
1412 {
1413         switch (cr) {
1414         case 0:
1415                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1416                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1417                 break;
1418         case 2:
1419                 vcpu->cr2 = val;
1420                 break;
1421         case 3:
1422                 set_cr3(vcpu, val);
1423                 break;
1424         case 4:
1425                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1426                 break;
1427         default:
1428                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1429         }
1430 }
1431
1432 /*
1433  * Register the para guest with the host:
1434  */
1435 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1436 {
1437         struct kvm_vcpu_para_state *para_state;
1438         hpa_t para_state_hpa, hypercall_hpa;
1439         struct page *para_state_page;
1440         unsigned char *hypercall;
1441         gpa_t hypercall_gpa;
1442
1443         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1444         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1445
1446         /*
1447          * Needs to be page aligned:
1448          */
1449         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1450                 goto err_gp;
1451
1452         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1453         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1454         if (is_error_hpa(para_state_hpa))
1455                 goto err_gp;
1456
1457         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1458         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1459         para_state = kmap(para_state_page);
1460
1461         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1462         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1463
1464         para_state->host_version = KVM_PARA_API_VERSION;
1465         /*
1466          * We cannot support guests that try to register themselves
1467          * with a newer API version than the host supports:
1468          */
1469         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1470                 para_state->ret = -KVM_EINVAL;
1471                 goto err_kunmap_skip;
1472         }
1473
1474         hypercall_gpa = para_state->hypercall_gpa;
1475         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1476         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1477         if (is_error_hpa(hypercall_hpa)) {
1478                 para_state->ret = -KVM_EINVAL;
1479                 goto err_kunmap_skip;
1480         }
1481
1482         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1483         vcpu->para_state_page = para_state_page;
1484         vcpu->para_state_gpa = para_state_gpa;
1485         vcpu->hypercall_gpa = hypercall_gpa;
1486
1487         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1488         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1489                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1490         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1491         kunmap_atomic(hypercall, KM_USER1);
1492
1493         para_state->ret = 0;
1494 err_kunmap_skip:
1495         kunmap(para_state_page);
1496         return 0;
1497 err_gp:
1498         return 1;
1499 }
1500
1501 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1502 {
1503         u64 data;
1504
1505         switch (msr) {
1506         case 0xc0010010: /* SYSCFG */
1507         case 0xc0010015: /* HWCR */
1508         case MSR_IA32_PLATFORM_ID:
1509         case MSR_IA32_P5_MC_ADDR:
1510         case MSR_IA32_P5_MC_TYPE:
1511         case MSR_IA32_MC0_CTL:
1512         case MSR_IA32_MCG_STATUS:
1513         case MSR_IA32_MCG_CAP:
1514         case MSR_IA32_MC0_MISC:
1515         case MSR_IA32_MC0_MISC+4:
1516         case MSR_IA32_MC0_MISC+8:
1517         case MSR_IA32_MC0_MISC+12:
1518         case MSR_IA32_MC0_MISC+16:
1519         case MSR_IA32_UCODE_REV:
1520         case MSR_IA32_PERF_STATUS:
1521         case MSR_IA32_EBL_CR_POWERON:
1522                 /* MTRR registers */
1523         case 0xfe:
1524         case 0x200 ... 0x2ff:
1525                 data = 0;
1526                 break;
1527         case 0xcd: /* fsb frequency */
1528                 data = 3;
1529                 break;
1530         case MSR_IA32_APICBASE:
1531                 data = vcpu->apic_base;
1532                 break;
1533         case MSR_IA32_MISC_ENABLE:
1534                 data = vcpu->ia32_misc_enable_msr;
1535                 break;
1536 #ifdef CONFIG_X86_64
1537         case MSR_EFER:
1538                 data = vcpu->shadow_efer;
1539                 break;
1540 #endif
1541         default:
1542                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1543                 return 1;
1544         }
1545         *pdata = data;
1546         return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1549
1550 /*
1551  * Reads an msr value (of 'msr_index') into 'pdata'.
1552  * Returns 0 on success, non-0 otherwise.
1553  * Assumes vcpu_load() was already called.
1554  */
1555 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1556 {
1557         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1558 }
1559
1560 #ifdef CONFIG_X86_64
1561
1562 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1563 {
1564         if (efer & EFER_RESERVED_BITS) {
1565                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1566                        efer);
1567                 inject_gp(vcpu);
1568                 return;
1569         }
1570
1571         if (is_paging(vcpu)
1572             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1573                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1574                 inject_gp(vcpu);
1575                 return;
1576         }
1577
1578         kvm_arch_ops->set_efer(vcpu, efer);
1579
1580         efer &= ~EFER_LMA;
1581         efer |= vcpu->shadow_efer & EFER_LMA;
1582
1583         vcpu->shadow_efer = efer;
1584 }
1585
1586 #endif
1587
1588 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1589 {
1590         switch (msr) {
1591 #ifdef CONFIG_X86_64
1592         case MSR_EFER:
1593                 set_efer(vcpu, data);
1594                 break;
1595 #endif
1596         case MSR_IA32_MC0_STATUS:
1597                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1598                        __FUNCTION__, data);
1599                 break;
1600         case MSR_IA32_MCG_STATUS:
1601                 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1602                         __FUNCTION__, data);
1603                 break;
1604         case MSR_IA32_UCODE_REV:
1605         case MSR_IA32_UCODE_WRITE:
1606         case 0x200 ... 0x2ff: /* MTRRs */
1607                 break;
1608         case MSR_IA32_APICBASE:
1609                 vcpu->apic_base = data;
1610                 break;
1611         case MSR_IA32_MISC_ENABLE:
1612                 vcpu->ia32_misc_enable_msr = data;
1613                 break;
1614         /*
1615          * This is the 'probe whether the host is KVM' logic:
1616          */
1617         case MSR_KVM_API_MAGIC:
1618                 return vcpu_register_para(vcpu, data);
1619
1620         default:
1621                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1622                 return 1;
1623         }
1624         return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1627
1628 /*
1629  * Writes msr value into into the appropriate "register".
1630  * Returns 0 on success, non-0 otherwise.
1631  * Assumes vcpu_load() was already called.
1632  */
1633 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1634 {
1635         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1636 }
1637
1638 void kvm_resched(struct kvm_vcpu *vcpu)
1639 {
1640         if (!need_resched())
1641                 return;
1642         vcpu_put(vcpu);
1643         cond_resched();
1644         vcpu_load(vcpu);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_resched);
1647
1648 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1649 {
1650         int i;
1651         u32 function;
1652         struct kvm_cpuid_entry *e, *best;
1653
1654         kvm_arch_ops->cache_regs(vcpu);
1655         function = vcpu->regs[VCPU_REGS_RAX];
1656         vcpu->regs[VCPU_REGS_RAX] = 0;
1657         vcpu->regs[VCPU_REGS_RBX] = 0;
1658         vcpu->regs[VCPU_REGS_RCX] = 0;
1659         vcpu->regs[VCPU_REGS_RDX] = 0;
1660         best = NULL;
1661         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1662                 e = &vcpu->cpuid_entries[i];
1663                 if (e->function == function) {
1664                         best = e;
1665                         break;
1666                 }
1667                 /*
1668                  * Both basic or both extended?
1669                  */
1670                 if (((e->function ^ function) & 0x80000000) == 0)
1671                         if (!best || e->function > best->function)
1672                                 best = e;
1673         }
1674         if (best) {
1675                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1676                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1677                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1678                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1679         }
1680         kvm_arch_ops->decache_regs(vcpu);
1681         kvm_arch_ops->skip_emulated_instruction(vcpu);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1684
1685 static int pio_copy_data(struct kvm_vcpu *vcpu)
1686 {
1687         void *p = vcpu->pio_data;
1688         void *q;
1689         unsigned bytes;
1690         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1691
1692         kvm_arch_ops->vcpu_put(vcpu);
1693         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1694                  PAGE_KERNEL);
1695         if (!q) {
1696                 kvm_arch_ops->vcpu_load(vcpu);
1697                 free_pio_guest_pages(vcpu);
1698                 return -ENOMEM;
1699         }
1700         q += vcpu->pio.guest_page_offset;
1701         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1702         if (vcpu->pio.in)
1703                 memcpy(q, p, bytes);
1704         else
1705                 memcpy(p, q, bytes);
1706         q -= vcpu->pio.guest_page_offset;
1707         vunmap(q);
1708         kvm_arch_ops->vcpu_load(vcpu);
1709         free_pio_guest_pages(vcpu);
1710         return 0;
1711 }
1712
1713 static int complete_pio(struct kvm_vcpu *vcpu)
1714 {
1715         struct kvm_pio_request *io = &vcpu->pio;
1716         long delta;
1717         int r;
1718
1719         kvm_arch_ops->cache_regs(vcpu);
1720
1721         if (!io->string) {
1722                 if (io->in)
1723                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1724                                io->size);
1725         } else {
1726                 if (io->in) {
1727                         r = pio_copy_data(vcpu);
1728                         if (r) {
1729                                 kvm_arch_ops->cache_regs(vcpu);
1730                                 return r;
1731                         }
1732                 }
1733
1734                 delta = 1;
1735                 if (io->rep) {
1736                         delta *= io->cur_count;
1737                         /*
1738                          * The size of the register should really depend on
1739                          * current address size.
1740                          */
1741                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1742                 }
1743                 if (io->down)
1744                         delta = -delta;
1745                 delta *= io->size;
1746                 if (io->in)
1747                         vcpu->regs[VCPU_REGS_RDI] += delta;
1748                 else
1749                         vcpu->regs[VCPU_REGS_RSI] += delta;
1750         }
1751
1752         kvm_arch_ops->decache_regs(vcpu);
1753
1754         io->count -= io->cur_count;
1755         io->cur_count = 0;
1756
1757         if (!io->count)
1758                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1759         return 0;
1760 }
1761
1762 static void kernel_pio(struct kvm_io_device *pio_dev,
1763                        struct kvm_vcpu *vcpu,
1764                        void *pd)
1765 {
1766         /* TODO: String I/O for in kernel device */
1767
1768         if (vcpu->pio.in)
1769                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1770                                   vcpu->pio.size,
1771                                   pd);
1772         else
1773                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1774                                    vcpu->pio.size,
1775                                    pd);
1776 }
1777
1778 static void pio_string_write(struct kvm_io_device *pio_dev,
1779                              struct kvm_vcpu *vcpu)
1780 {
1781         struct kvm_pio_request *io = &vcpu->pio;
1782         void *pd = vcpu->pio_data;
1783         int i;
1784
1785         for (i = 0; i < io->cur_count; i++) {
1786                 kvm_iodevice_write(pio_dev, io->port,
1787                                    io->size,
1788                                    pd);
1789                 pd += io->size;
1790         }
1791 }
1792
1793 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1794                   int size, unsigned long count, int string, int down,
1795                   gva_t address, int rep, unsigned port)
1796 {
1797         unsigned now, in_page;
1798         int i, ret = 0;
1799         int nr_pages = 1;
1800         struct page *page;
1801         struct kvm_io_device *pio_dev;
1802
1803         vcpu->run->exit_reason = KVM_EXIT_IO;
1804         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1805         vcpu->run->io.size = size;
1806         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1807         vcpu->run->io.count = count;
1808         vcpu->run->io.port = port;
1809         vcpu->pio.count = count;
1810         vcpu->pio.cur_count = count;
1811         vcpu->pio.size = size;
1812         vcpu->pio.in = in;
1813         vcpu->pio.port = port;
1814         vcpu->pio.string = string;
1815         vcpu->pio.down = down;
1816         vcpu->pio.guest_page_offset = offset_in_page(address);
1817         vcpu->pio.rep = rep;
1818
1819         pio_dev = vcpu_find_pio_dev(vcpu, port);
1820         if (!string) {
1821                 kvm_arch_ops->cache_regs(vcpu);
1822                 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1823                 kvm_arch_ops->decache_regs(vcpu);
1824                 if (pio_dev) {
1825                         kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1826                         complete_pio(vcpu);
1827                         return 1;
1828                 }
1829                 return 0;
1830         }
1831
1832         if (!count) {
1833                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1834                 return 1;
1835         }
1836
1837         now = min(count, PAGE_SIZE / size);
1838
1839         if (!down)
1840                 in_page = PAGE_SIZE - offset_in_page(address);
1841         else
1842                 in_page = offset_in_page(address) + size;
1843         now = min(count, (unsigned long)in_page / size);
1844         if (!now) {
1845                 /*
1846                  * String I/O straddles page boundary.  Pin two guest pages
1847                  * so that we satisfy atomicity constraints.  Do just one
1848                  * transaction to avoid complexity.
1849                  */
1850                 nr_pages = 2;
1851                 now = 1;
1852         }
1853         if (down) {
1854                 /*
1855                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1856                  */
1857                 printk(KERN_ERR "kvm: guest string pio down\n");
1858                 inject_gp(vcpu);
1859                 return 1;
1860         }
1861         vcpu->run->io.count = now;
1862         vcpu->pio.cur_count = now;
1863
1864         for (i = 0; i < nr_pages; ++i) {
1865                 spin_lock(&vcpu->kvm->lock);
1866                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1867                 if (page)
1868                         get_page(page);
1869                 vcpu->pio.guest_pages[i] = page;
1870                 spin_unlock(&vcpu->kvm->lock);
1871                 if (!page) {
1872                         inject_gp(vcpu);
1873                         free_pio_guest_pages(vcpu);
1874                         return 1;
1875                 }
1876         }
1877
1878         if (!vcpu->pio.in) {
1879                 /* string PIO write */
1880                 ret = pio_copy_data(vcpu);
1881                 if (ret >= 0 && pio_dev) {
1882                         pio_string_write(pio_dev, vcpu);
1883                         complete_pio(vcpu);
1884                         if (vcpu->pio.count == 0)
1885                                 ret = 1;
1886                 }
1887         } else if (pio_dev)
1888                 printk(KERN_ERR "no string pio read support yet, "
1889                        "port %x size %d count %ld\n",
1890                         port, size, count);
1891
1892         return ret;
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1895
1896 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1897 {
1898         int r;
1899         sigset_t sigsaved;
1900
1901         vcpu_load(vcpu);
1902
1903         if (vcpu->sigset_active)
1904                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1905
1906         /* re-sync apic's tpr */
1907         vcpu->cr8 = kvm_run->cr8;
1908
1909         if (vcpu->pio.cur_count) {
1910                 r = complete_pio(vcpu);
1911                 if (r)
1912                         goto out;
1913         }
1914
1915         if (vcpu->mmio_needed) {
1916                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1917                 vcpu->mmio_read_completed = 1;
1918                 vcpu->mmio_needed = 0;
1919                 r = emulate_instruction(vcpu, kvm_run,
1920                                         vcpu->mmio_fault_cr2, 0);
1921                 if (r == EMULATE_DO_MMIO) {
1922                         /*
1923                          * Read-modify-write.  Back to userspace.
1924                          */
1925                         r = 0;
1926                         goto out;
1927                 }
1928         }
1929
1930         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1931                 kvm_arch_ops->cache_regs(vcpu);
1932                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1933                 kvm_arch_ops->decache_regs(vcpu);
1934         }
1935
1936         r = kvm_arch_ops->run(vcpu, kvm_run);
1937
1938 out:
1939         if (vcpu->sigset_active)
1940                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1941
1942         vcpu_put(vcpu);
1943         return r;
1944 }
1945
1946 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1947                                    struct kvm_regs *regs)
1948 {
1949         vcpu_load(vcpu);
1950
1951         kvm_arch_ops->cache_regs(vcpu);
1952
1953         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1954         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1955         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1956         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1957         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1958         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1959         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1960         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1961 #ifdef CONFIG_X86_64
1962         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1963         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1964         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1965         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1966         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1967         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1968         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1969         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1970 #endif
1971
1972         regs->rip = vcpu->rip;
1973         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1974
1975         /*
1976          * Don't leak debug flags in case they were set for guest debugging
1977          */
1978         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1979                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1980
1981         vcpu_put(vcpu);
1982
1983         return 0;
1984 }
1985
1986 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1987                                    struct kvm_regs *regs)
1988 {
1989         vcpu_load(vcpu);
1990
1991         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1992         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1993         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1994         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1995         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1996         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1997         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1998         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1999 #ifdef CONFIG_X86_64
2000         vcpu->regs[VCPU_REGS_R8] = regs->r8;
2001         vcpu->regs[VCPU_REGS_R9] = regs->r9;
2002         vcpu->regs[VCPU_REGS_R10] = regs->r10;
2003         vcpu->regs[VCPU_REGS_R11] = regs->r11;
2004         vcpu->regs[VCPU_REGS_R12] = regs->r12;
2005         vcpu->regs[VCPU_REGS_R13] = regs->r13;
2006         vcpu->regs[VCPU_REGS_R14] = regs->r14;
2007         vcpu->regs[VCPU_REGS_R15] = regs->r15;
2008 #endif
2009
2010         vcpu->rip = regs->rip;
2011         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2012
2013         kvm_arch_ops->decache_regs(vcpu);
2014
2015         vcpu_put(vcpu);
2016
2017         return 0;
2018 }
2019
2020 static void get_segment(struct kvm_vcpu *vcpu,
2021                         struct kvm_segment *var, int seg)
2022 {
2023         return kvm_arch_ops->get_segment(vcpu, var, seg);
2024 }
2025
2026 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2027                                     struct kvm_sregs *sregs)
2028 {
2029         struct descriptor_table dt;
2030
2031         vcpu_load(vcpu);
2032
2033         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2034         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2035         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2036         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2037         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2038         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2039
2040         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2041         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2042
2043         kvm_arch_ops->get_idt(vcpu, &dt);
2044         sregs->idt.limit = dt.limit;
2045         sregs->idt.base = dt.base;
2046         kvm_arch_ops->get_gdt(vcpu, &dt);
2047         sregs->gdt.limit = dt.limit;
2048         sregs->gdt.base = dt.base;
2049
2050         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2051         sregs->cr0 = vcpu->cr0;
2052         sregs->cr2 = vcpu->cr2;
2053         sregs->cr3 = vcpu->cr3;
2054         sregs->cr4 = vcpu->cr4;
2055         sregs->cr8 = vcpu->cr8;
2056         sregs->efer = vcpu->shadow_efer;
2057         sregs->apic_base = vcpu->apic_base;
2058
2059         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2060                sizeof sregs->interrupt_bitmap);
2061
2062         vcpu_put(vcpu);
2063
2064         return 0;
2065 }
2066
2067 static void set_segment(struct kvm_vcpu *vcpu,
2068                         struct kvm_segment *var, int seg)
2069 {
2070         return kvm_arch_ops->set_segment(vcpu, var, seg);
2071 }
2072
2073 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2074                                     struct kvm_sregs *sregs)
2075 {
2076         int mmu_reset_needed = 0;
2077         int i;
2078         struct descriptor_table dt;
2079
2080         vcpu_load(vcpu);
2081
2082         dt.limit = sregs->idt.limit;
2083         dt.base = sregs->idt.base;
2084         kvm_arch_ops->set_idt(vcpu, &dt);
2085         dt.limit = sregs->gdt.limit;
2086         dt.base = sregs->gdt.base;
2087         kvm_arch_ops->set_gdt(vcpu, &dt);
2088
2089         vcpu->cr2 = sregs->cr2;
2090         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2091         vcpu->cr3 = sregs->cr3;
2092
2093         vcpu->cr8 = sregs->cr8;
2094
2095         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2096 #ifdef CONFIG_X86_64
2097         kvm_arch_ops->set_efer(vcpu, sregs->efer);
2098 #endif
2099         vcpu->apic_base = sregs->apic_base;
2100
2101         kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2102
2103         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2104         kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2105
2106         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2107         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2108         if (!is_long_mode(vcpu) && is_pae(vcpu))
2109                 load_pdptrs(vcpu, vcpu->cr3);
2110
2111         if (mmu_reset_needed)
2112                 kvm_mmu_reset_context(vcpu);
2113
2114         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2115                sizeof vcpu->irq_pending);
2116         vcpu->irq_summary = 0;
2117         for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2118                 if (vcpu->irq_pending[i])
2119                         __set_bit(i, &vcpu->irq_summary);
2120
2121         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2122         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2123         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2124         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2125         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2126         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2127
2128         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2129         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2130
2131         vcpu_put(vcpu);
2132
2133         return 0;
2134 }
2135
2136 /*
2137  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2138  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2139  *
2140  * This list is modified at module load time to reflect the
2141  * capabilities of the host cpu.
2142  */
2143 static u32 msrs_to_save[] = {
2144         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2145         MSR_K6_STAR,
2146 #ifdef CONFIG_X86_64
2147         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2148 #endif
2149         MSR_IA32_TIME_STAMP_COUNTER,
2150 };
2151
2152 static unsigned num_msrs_to_save;
2153
2154 static u32 emulated_msrs[] = {
2155         MSR_IA32_MISC_ENABLE,
2156 };
2157
2158 static __init void kvm_init_msr_list(void)
2159 {
2160         u32 dummy[2];
2161         unsigned i, j;
2162
2163         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2164                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2165                         continue;
2166                 if (j < i)
2167                         msrs_to_save[j] = msrs_to_save[i];
2168                 j++;
2169         }
2170         num_msrs_to_save = j;
2171 }
2172
2173 /*
2174  * Adapt set_msr() to msr_io()'s calling convention
2175  */
2176 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2177 {
2178         return kvm_set_msr(vcpu, index, *data);
2179 }
2180
2181 /*
2182  * Read or write a bunch of msrs. All parameters are kernel addresses.
2183  *
2184  * @return number of msrs set successfully.
2185  */
2186 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2187                     struct kvm_msr_entry *entries,
2188                     int (*do_msr)(struct kvm_vcpu *vcpu,
2189                                   unsigned index, u64 *data))
2190 {
2191         int i;
2192
2193         vcpu_load(vcpu);
2194
2195         for (i = 0; i < msrs->nmsrs; ++i)
2196                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2197                         break;
2198
2199         vcpu_put(vcpu);
2200
2201         return i;
2202 }
2203
2204 /*
2205  * Read or write a bunch of msrs. Parameters are user addresses.
2206  *
2207  * @return number of msrs set successfully.
2208  */
2209 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2210                   int (*do_msr)(struct kvm_vcpu *vcpu,
2211                                 unsigned index, u64 *data),
2212                   int writeback)
2213 {
2214         struct kvm_msrs msrs;
2215         struct kvm_msr_entry *entries;
2216         int r, n;
2217         unsigned size;
2218
2219         r = -EFAULT;
2220         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2221                 goto out;
2222
2223         r = -E2BIG;
2224         if (msrs.nmsrs >= MAX_IO_MSRS)
2225                 goto out;
2226
2227         r = -ENOMEM;
2228         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2229         entries = vmalloc(size);
2230         if (!entries)
2231                 goto out;
2232
2233         r = -EFAULT;
2234         if (copy_from_user(entries, user_msrs->entries, size))
2235                 goto out_free;
2236
2237         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2238         if (r < 0)
2239                 goto out_free;
2240
2241         r = -EFAULT;
2242         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2243                 goto out_free;
2244
2245         r = n;
2246
2247 out_free:
2248         vfree(entries);
2249 out:
2250         return r;
2251 }
2252
2253 /*
2254  * Translate a guest virtual address to a guest physical address.
2255  */
2256 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2257                                     struct kvm_translation *tr)
2258 {
2259         unsigned long vaddr = tr->linear_address;
2260         gpa_t gpa;
2261
2262         vcpu_load(vcpu);
2263         spin_lock(&vcpu->kvm->lock);
2264         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2265         tr->physical_address = gpa;
2266         tr->valid = gpa != UNMAPPED_GVA;
2267         tr->writeable = 1;
2268         tr->usermode = 0;
2269         spin_unlock(&vcpu->kvm->lock);
2270         vcpu_put(vcpu);
2271
2272         return 0;
2273 }
2274
2275 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2276                                     struct kvm_interrupt *irq)
2277 {
2278         if (irq->irq < 0 || irq->irq >= 256)
2279                 return -EINVAL;
2280         vcpu_load(vcpu);
2281
2282         set_bit(irq->irq, vcpu->irq_pending);
2283         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2284
2285         vcpu_put(vcpu);
2286
2287         return 0;
2288 }
2289
2290 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2291                                       struct kvm_debug_guest *dbg)
2292 {
2293         int r;
2294
2295         vcpu_load(vcpu);
2296
2297         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2298
2299         vcpu_put(vcpu);
2300
2301         return r;
2302 }
2303
2304 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2305                                     unsigned long address,
2306                                     int *type)
2307 {
2308         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2309         unsigned long pgoff;
2310         struct page *page;
2311
2312         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2313         if (pgoff == 0)
2314                 page = virt_to_page(vcpu->run);
2315         else if (pgoff == KVM_PIO_PAGE_OFFSET)
2316                 page = virt_to_page(vcpu->pio_data);
2317         else
2318                 return NOPAGE_SIGBUS;
2319         get_page(page);
2320         if (type != NULL)
2321                 *type = VM_FAULT_MINOR;
2322
2323         return page;
2324 }
2325
2326 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2327         .nopage = kvm_vcpu_nopage,
2328 };
2329
2330 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2331 {
2332         vma->vm_ops = &kvm_vcpu_vm_ops;
2333         return 0;
2334 }
2335
2336 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2337 {
2338         struct kvm_vcpu *vcpu = filp->private_data;
2339
2340         fput(vcpu->kvm->filp);
2341         return 0;
2342 }
2343
2344 static struct file_operations kvm_vcpu_fops = {
2345         .release        = kvm_vcpu_release,
2346         .unlocked_ioctl = kvm_vcpu_ioctl,
2347         .compat_ioctl   = kvm_vcpu_ioctl,
2348         .mmap           = kvm_vcpu_mmap,
2349 };
2350
2351 /*
2352  * Allocates an inode for the vcpu.
2353  */
2354 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2355 {
2356         int fd, r;
2357         struct inode *inode;
2358         struct file *file;
2359
2360         r = anon_inode_getfd(&fd, &inode, &file,
2361                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2362         if (r)
2363                 return r;
2364         atomic_inc(&vcpu->kvm->filp->f_count);
2365         return fd;
2366 }
2367
2368 /*
2369  * Creates some virtual cpus.  Good luck creating more than one.
2370  */
2371 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2372 {
2373         int r;
2374         struct kvm_vcpu *vcpu;
2375         struct page *page;
2376
2377         r = -EINVAL;
2378         if (!valid_vcpu(n))
2379                 goto out;
2380
2381         vcpu = &kvm->vcpus[n];
2382         vcpu->vcpu_id = n;
2383
2384         mutex_lock(&vcpu->mutex);
2385
2386         if (vcpu->valid) {
2387                 mutex_unlock(&vcpu->mutex);
2388                 return -EEXIST;
2389         }
2390
2391         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2392         r = -ENOMEM;
2393         if (!page)
2394                 goto out_unlock;
2395         vcpu->run = page_address(page);
2396
2397         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2398         r = -ENOMEM;
2399         if (!page)
2400                 goto out_free_run;
2401         vcpu->pio_data = page_address(page);
2402
2403         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2404                                            FX_IMAGE_ALIGN);
2405         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2406         vcpu->cr0 = 0x10;
2407
2408         r = kvm_arch_ops->vcpu_create(vcpu);
2409         if (r < 0)
2410                 goto out_free_vcpus;
2411
2412         r = kvm_mmu_create(vcpu);
2413         if (r < 0)
2414                 goto out_free_vcpus;
2415
2416         kvm_arch_ops->vcpu_load(vcpu);
2417         r = kvm_mmu_setup(vcpu);
2418         if (r >= 0)
2419                 r = kvm_arch_ops->vcpu_setup(vcpu);
2420         vcpu_put(vcpu);
2421
2422         if (r < 0)
2423                 goto out_free_vcpus;
2424
2425         r = create_vcpu_fd(vcpu);
2426         if (r < 0)
2427                 goto out_free_vcpus;
2428
2429         spin_lock(&kvm_lock);
2430         if (n >= kvm->nvcpus)
2431                 kvm->nvcpus = n + 1;
2432         spin_unlock(&kvm_lock);
2433
2434         vcpu->valid = 1;
2435
2436         return r;
2437
2438 out_free_vcpus:
2439         kvm_free_vcpu(vcpu);
2440 out_free_run:
2441         free_page((unsigned long)vcpu->run);
2442         vcpu->run = NULL;
2443 out_unlock:
2444         mutex_unlock(&vcpu->mutex);
2445 out:
2446         return r;
2447 }
2448
2449 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2450 {
2451         u64 efer;
2452         int i;
2453         struct kvm_cpuid_entry *e, *entry;
2454
2455         rdmsrl(MSR_EFER, efer);
2456         entry = NULL;
2457         for (i = 0; i < vcpu->cpuid_nent; ++i) {
2458                 e = &vcpu->cpuid_entries[i];
2459                 if (e->function == 0x80000001) {
2460                         entry = e;
2461                         break;
2462                 }
2463         }
2464         if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2465                 entry->edx &= ~(1 << 20);
2466                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2467         }
2468 }
2469
2470 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2471                                     struct kvm_cpuid *cpuid,
2472                                     struct kvm_cpuid_entry __user *entries)
2473 {
2474         int r;
2475
2476         r = -E2BIG;
2477         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2478                 goto out;
2479         r = -EFAULT;
2480         if (copy_from_user(&vcpu->cpuid_entries, entries,
2481                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2482                 goto out;
2483         vcpu->cpuid_nent = cpuid->nent;
2484         cpuid_fix_nx_cap(vcpu);
2485         return 0;
2486
2487 out:
2488         return r;
2489 }
2490
2491 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2492 {
2493         if (sigset) {
2494                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2495                 vcpu->sigset_active = 1;
2496                 vcpu->sigset = *sigset;
2497         } else
2498                 vcpu->sigset_active = 0;
2499         return 0;
2500 }
2501
2502 /*
2503  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
2504  * we have asm/x86/processor.h
2505  */
2506 struct fxsave {
2507         u16     cwd;
2508         u16     swd;
2509         u16     twd;
2510         u16     fop;
2511         u64     rip;
2512         u64     rdp;
2513         u32     mxcsr;
2514         u32     mxcsr_mask;
2515         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
2516 #ifdef CONFIG_X86_64
2517         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
2518 #else
2519         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
2520 #endif
2521 };
2522
2523 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2524 {
2525         struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2526
2527         vcpu_load(vcpu);
2528
2529         memcpy(fpu->fpr, fxsave->st_space, 128);
2530         fpu->fcw = fxsave->cwd;
2531         fpu->fsw = fxsave->swd;
2532         fpu->ftwx = fxsave->twd;
2533         fpu->last_opcode = fxsave->fop;
2534         fpu->last_ip = fxsave->rip;
2535         fpu->last_dp = fxsave->rdp;
2536         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2537
2538         vcpu_put(vcpu);
2539
2540         return 0;
2541 }
2542
2543 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2544 {
2545         struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2546
2547         vcpu_load(vcpu);
2548
2549         memcpy(fxsave->st_space, fpu->fpr, 128);
2550         fxsave->cwd = fpu->fcw;
2551         fxsave->swd = fpu->fsw;
2552         fxsave->twd = fpu->ftwx;
2553         fxsave->fop = fpu->last_opcode;
2554         fxsave->rip = fpu->last_ip;
2555         fxsave->rdp = fpu->last_dp;
2556         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2557
2558         vcpu_put(vcpu);
2559
2560         return 0;
2561 }
2562
2563 static long kvm_vcpu_ioctl(struct file *filp,
2564                            unsigned int ioctl, unsigned long arg)
2565 {
2566         struct kvm_vcpu *vcpu = filp->private_data;
2567         void __user *argp = (void __user *)arg;
2568         int r = -EINVAL;
2569
2570         switch (ioctl) {
2571         case KVM_RUN:
2572                 r = -EINVAL;
2573                 if (arg)
2574                         goto out;
2575                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2576                 break;
2577         case KVM_GET_REGS: {
2578                 struct kvm_regs kvm_regs;
2579
2580                 memset(&kvm_regs, 0, sizeof kvm_regs);
2581                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2582                 if (r)
2583                         goto out;
2584                 r = -EFAULT;
2585                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2586                         goto out;
2587                 r = 0;
2588                 break;
2589         }
2590         case KVM_SET_REGS: {
2591                 struct kvm_regs kvm_regs;
2592
2593                 r = -EFAULT;
2594                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2595                         goto out;
2596                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2597                 if (r)
2598                         goto out;
2599                 r = 0;
2600                 break;
2601         }
2602         case KVM_GET_SREGS: {
2603                 struct kvm_sregs kvm_sregs;
2604
2605                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2606                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2607                 if (r)
2608                         goto out;
2609                 r = -EFAULT;
2610                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2611                         goto out;
2612                 r = 0;
2613                 break;
2614         }
2615         case KVM_SET_SREGS: {
2616                 struct kvm_sregs kvm_sregs;
2617
2618                 r = -EFAULT;
2619                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2620                         goto out;
2621                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2622                 if (r)
2623                         goto out;
2624                 r = 0;
2625                 break;
2626         }
2627         case KVM_TRANSLATE: {
2628                 struct kvm_translation tr;
2629
2630                 r = -EFAULT;
2631                 if (copy_from_user(&tr, argp, sizeof tr))
2632                         goto out;
2633                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2634                 if (r)
2635                         goto out;
2636                 r = -EFAULT;
2637                 if (copy_to_user(argp, &tr, sizeof tr))
2638                         goto out;
2639                 r = 0;
2640                 break;
2641         }
2642         case KVM_INTERRUPT: {
2643                 struct kvm_interrupt irq;
2644
2645                 r = -EFAULT;
2646                 if (copy_from_user(&irq, argp, sizeof irq))
2647                         goto out;
2648                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2649                 if (r)
2650                         goto out;
2651                 r = 0;
2652                 break;
2653         }
2654         case KVM_DEBUG_GUEST: {
2655                 struct kvm_debug_guest dbg;
2656
2657                 r = -EFAULT;
2658                 if (copy_from_user(&dbg, argp, sizeof dbg))
2659                         goto out;
2660                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2661                 if (r)
2662                         goto out;
2663                 r = 0;
2664                 break;
2665         }
2666         case KVM_GET_MSRS:
2667                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2668                 break;
2669         case KVM_SET_MSRS:
2670                 r = msr_io(vcpu, argp, do_set_msr, 0);
2671                 break;
2672         case KVM_SET_CPUID: {
2673                 struct kvm_cpuid __user *cpuid_arg = argp;
2674                 struct kvm_cpuid cpuid;
2675
2676                 r = -EFAULT;
2677                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2678                         goto out;
2679                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2680                 if (r)
2681                         goto out;
2682                 break;
2683         }
2684         case KVM_SET_SIGNAL_MASK: {
2685                 struct kvm_signal_mask __user *sigmask_arg = argp;
2686                 struct kvm_signal_mask kvm_sigmask;
2687                 sigset_t sigset, *p;
2688
2689                 p = NULL;
2690                 if (argp) {
2691                         r = -EFAULT;
2692                         if (copy_from_user(&kvm_sigmask, argp,
2693                                            sizeof kvm_sigmask))
2694                                 goto out;
2695                         r = -EINVAL;
2696                         if (kvm_sigmask.len != sizeof sigset)
2697                                 goto out;
2698                         r = -EFAULT;
2699                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2700                                            sizeof sigset))
2701                                 goto out;
2702                         p = &sigset;
2703                 }
2704                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2705                 break;
2706         }
2707         case KVM_GET_FPU: {
2708                 struct kvm_fpu fpu;
2709
2710                 memset(&fpu, 0, sizeof fpu);
2711                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2712                 if (r)
2713                         goto out;
2714                 r = -EFAULT;
2715                 if (copy_to_user(argp, &fpu, sizeof fpu))
2716                         goto out;
2717                 r = 0;
2718                 break;
2719         }
2720         case KVM_SET_FPU: {
2721                 struct kvm_fpu fpu;
2722
2723                 r = -EFAULT;
2724                 if (copy_from_user(&fpu, argp, sizeof fpu))
2725                         goto out;
2726                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2727                 if (r)
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         default:
2733                 ;
2734         }
2735 out:
2736         return r;
2737 }
2738
2739 static long kvm_vm_ioctl(struct file *filp,
2740                            unsigned int ioctl, unsigned long arg)
2741 {
2742         struct kvm *kvm = filp->private_data;
2743         void __user *argp = (void __user *)arg;
2744         int r = -EINVAL;
2745
2746         switch (ioctl) {
2747         case KVM_CREATE_VCPU:
2748                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2749                 if (r < 0)
2750                         goto out;
2751                 break;
2752         case KVM_SET_MEMORY_REGION: {
2753                 struct kvm_memory_region kvm_mem;
2754
2755                 r = -EFAULT;
2756                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2757                         goto out;
2758                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2759                 if (r)
2760                         goto out;
2761                 break;
2762         }
2763         case KVM_GET_DIRTY_LOG: {
2764                 struct kvm_dirty_log log;
2765
2766                 r = -EFAULT;
2767                 if (copy_from_user(&log, argp, sizeof log))
2768                         goto out;
2769                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2770                 if (r)
2771                         goto out;
2772                 break;
2773         }
2774         case KVM_SET_MEMORY_ALIAS: {
2775                 struct kvm_memory_alias alias;
2776
2777                 r = -EFAULT;
2778                 if (copy_from_user(&alias, argp, sizeof alias))
2779                         goto out;
2780                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2781                 if (r)
2782                         goto out;
2783                 break;
2784         }
2785         default:
2786                 ;
2787         }
2788 out:
2789         return r;
2790 }
2791
2792 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2793                                   unsigned long address,
2794                                   int *type)
2795 {
2796         struct kvm *kvm = vma->vm_file->private_data;
2797         unsigned long pgoff;
2798         struct page *page;
2799
2800         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2801         page = gfn_to_page(kvm, pgoff);
2802         if (!page)
2803                 return NOPAGE_SIGBUS;
2804         get_page(page);
2805         if (type != NULL)
2806                 *type = VM_FAULT_MINOR;
2807
2808         return page;
2809 }
2810
2811 static struct vm_operations_struct kvm_vm_vm_ops = {
2812         .nopage = kvm_vm_nopage,
2813 };
2814
2815 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2816 {
2817         vma->vm_ops = &kvm_vm_vm_ops;
2818         return 0;
2819 }
2820
2821 static struct file_operations kvm_vm_fops = {
2822         .release        = kvm_vm_release,
2823         .unlocked_ioctl = kvm_vm_ioctl,
2824         .compat_ioctl   = kvm_vm_ioctl,
2825         .mmap           = kvm_vm_mmap,
2826 };
2827
2828 static int kvm_dev_ioctl_create_vm(void)
2829 {
2830         int fd, r;
2831         struct inode *inode;
2832         struct file *file;
2833         struct kvm *kvm;
2834
2835         kvm = kvm_create_vm();
2836         if (IS_ERR(kvm))
2837                 return PTR_ERR(kvm);
2838         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2839         if (r) {
2840                 kvm_destroy_vm(kvm);
2841                 return r;
2842         }
2843
2844         kvm->filp = file;
2845
2846         return fd;
2847 }
2848
2849 static long kvm_dev_ioctl(struct file *filp,
2850                           unsigned int ioctl, unsigned long arg)
2851 {
2852         void __user *argp = (void __user *)arg;
2853         long r = -EINVAL;
2854
2855         switch (ioctl) {
2856         case KVM_GET_API_VERSION:
2857                 r = -EINVAL;
2858                 if (arg)
2859                         goto out;
2860                 r = KVM_API_VERSION;
2861                 break;
2862         case KVM_CREATE_VM:
2863                 r = -EINVAL;
2864                 if (arg)
2865                         goto out;
2866                 r = kvm_dev_ioctl_create_vm();
2867                 break;
2868         case KVM_GET_MSR_INDEX_LIST: {
2869                 struct kvm_msr_list __user *user_msr_list = argp;
2870                 struct kvm_msr_list msr_list;
2871                 unsigned n;
2872
2873                 r = -EFAULT;
2874                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2875                         goto out;
2876                 n = msr_list.nmsrs;
2877                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2878                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2879                         goto out;
2880                 r = -E2BIG;
2881                 if (n < num_msrs_to_save)
2882                         goto out;
2883                 r = -EFAULT;
2884                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2885                                  num_msrs_to_save * sizeof(u32)))
2886                         goto out;
2887                 if (copy_to_user(user_msr_list->indices
2888                                  + num_msrs_to_save * sizeof(u32),
2889                                  &emulated_msrs,
2890                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2891                         goto out;
2892                 r = 0;
2893                 break;
2894         }
2895         case KVM_CHECK_EXTENSION:
2896                 /*
2897                  * No extensions defined at present.
2898                  */
2899                 r = 0;
2900                 break;
2901         case KVM_GET_VCPU_MMAP_SIZE:
2902                 r = -EINVAL;
2903                 if (arg)
2904                         goto out;
2905                 r = 2 * PAGE_SIZE;
2906                 break;
2907         default:
2908                 ;
2909         }
2910 out:
2911         return r;
2912 }
2913
2914 static struct file_operations kvm_chardev_ops = {
2915         .open           = kvm_dev_open,
2916         .release        = kvm_dev_release,
2917         .unlocked_ioctl = kvm_dev_ioctl,
2918         .compat_ioctl   = kvm_dev_ioctl,
2919 };
2920
2921 static struct miscdevice kvm_dev = {
2922         KVM_MINOR,
2923         "kvm",
2924         &kvm_chardev_ops,
2925 };
2926
2927 /*
2928  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2929  * cached on it.
2930  */
2931 static void decache_vcpus_on_cpu(int cpu)
2932 {
2933         struct kvm *vm;
2934         struct kvm_vcpu *vcpu;
2935         int i;
2936
2937         spin_lock(&kvm_lock);
2938         list_for_each_entry(vm, &vm_list, vm_list)
2939                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2940                         vcpu = &vm->vcpus[i];
2941                         /*
2942                          * If the vcpu is locked, then it is running on some
2943                          * other cpu and therefore it is not cached on the
2944                          * cpu in question.
2945                          *
2946                          * If it's not locked, check the last cpu it executed
2947                          * on.
2948                          */
2949                         if (mutex_trylock(&vcpu->mutex)) {
2950                                 if (vcpu->cpu == cpu) {
2951                                         kvm_arch_ops->vcpu_decache(vcpu);
2952                                         vcpu->cpu = -1;
2953                                 }
2954                                 mutex_unlock(&vcpu->mutex);
2955                         }
2956                 }
2957         spin_unlock(&kvm_lock);
2958 }
2959
2960 static void hardware_enable(void *junk)
2961 {
2962         int cpu = raw_smp_processor_id();
2963
2964         if (cpu_isset(cpu, cpus_hardware_enabled))
2965                 return;
2966         cpu_set(cpu, cpus_hardware_enabled);
2967         kvm_arch_ops->hardware_enable(NULL);
2968 }
2969
2970 static void hardware_disable(void *junk)
2971 {
2972         int cpu = raw_smp_processor_id();
2973
2974         if (!cpu_isset(cpu, cpus_hardware_enabled))
2975                 return;
2976         cpu_clear(cpu, cpus_hardware_enabled);
2977         decache_vcpus_on_cpu(cpu);
2978         kvm_arch_ops->hardware_disable(NULL);
2979 }
2980
2981 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2982                            void *v)
2983 {
2984         int cpu = (long)v;
2985
2986         switch (val) {
2987         case CPU_DYING:
2988         case CPU_DYING_FROZEN:
2989                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2990                        cpu);
2991                 hardware_disable(NULL);
2992                 break;
2993         case CPU_UP_CANCELED:
2994         case CPU_UP_CANCELED_FROZEN:
2995                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2996                        cpu);
2997                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2998                 break;
2999         case CPU_ONLINE:
3000         case CPU_ONLINE_FROZEN:
3001                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3002                        cpu);
3003                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3004                 break;
3005         }
3006         return NOTIFY_OK;
3007 }
3008
3009 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3010                        void *v)
3011 {
3012         if (val == SYS_RESTART) {
3013                 /*
3014                  * Some (well, at least mine) BIOSes hang on reboot if
3015                  * in vmx root mode.
3016                  */
3017                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3018                 on_each_cpu(hardware_disable, NULL, 0, 1);
3019         }
3020         return NOTIFY_OK;
3021 }
3022
3023 static struct notifier_block kvm_reboot_notifier = {
3024         .notifier_call = kvm_reboot,
3025         .priority = 0,
3026 };
3027
3028 void kvm_io_bus_init(struct kvm_io_bus *bus)
3029 {
3030         memset(bus, 0, sizeof(*bus));
3031 }
3032
3033 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3034 {
3035         int i;
3036
3037         for (i = 0; i < bus->dev_count; i++) {
3038                 struct kvm_io_device *pos = bus->devs[i];
3039
3040                 kvm_iodevice_destructor(pos);
3041         }
3042 }
3043
3044 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3045 {
3046         int i;
3047
3048         for (i = 0; i < bus->dev_count; i++) {
3049                 struct kvm_io_device *pos = bus->devs[i];
3050
3051                 if (pos->in_range(pos, addr))
3052                         return pos;
3053         }
3054
3055         return NULL;
3056 }
3057
3058 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3059 {
3060         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3061
3062         bus->devs[bus->dev_count++] = dev;
3063 }
3064
3065 static struct notifier_block kvm_cpu_notifier = {
3066         .notifier_call = kvm_cpu_hotplug,
3067         .priority = 20, /* must be > scheduler priority */
3068 };
3069
3070 static u64 stat_get(void *_offset)
3071 {
3072         unsigned offset = (long)_offset;
3073         u64 total = 0;
3074         struct kvm *kvm;
3075         struct kvm_vcpu *vcpu;
3076         int i;
3077
3078         spin_lock(&kvm_lock);
3079         list_for_each_entry(kvm, &vm_list, vm_list)
3080                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3081                         vcpu = &kvm->vcpus[i];
3082                         total += *(u32 *)((void *)vcpu + offset);
3083                 }
3084         spin_unlock(&kvm_lock);
3085         return total;
3086 }
3087
3088 static void stat_set(void *offset, u64 val)
3089 {
3090 }
3091
3092 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3093
3094 static __init void kvm_init_debug(void)
3095 {
3096         struct kvm_stats_debugfs_item *p;
3097
3098         debugfs_dir = debugfs_create_dir("kvm", NULL);
3099         for (p = debugfs_entries; p->name; ++p)
3100                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3101                                                 (void *)(long)p->offset,
3102                                                 &stat_fops);
3103 }
3104
3105 static void kvm_exit_debug(void)
3106 {
3107         struct kvm_stats_debugfs_item *p;
3108
3109         for (p = debugfs_entries; p->name; ++p)
3110                 debugfs_remove(p->dentry);
3111         debugfs_remove(debugfs_dir);
3112 }
3113
3114 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3115 {
3116         hardware_disable(NULL);
3117         return 0;
3118 }
3119
3120 static int kvm_resume(struct sys_device *dev)
3121 {
3122         hardware_enable(NULL);
3123         return 0;
3124 }
3125
3126 static struct sysdev_class kvm_sysdev_class = {
3127         set_kset_name("kvm"),
3128         .suspend = kvm_suspend,
3129         .resume = kvm_resume,
3130 };
3131
3132 static struct sys_device kvm_sysdev = {
3133         .id = 0,
3134         .cls = &kvm_sysdev_class,
3135 };
3136
3137 hpa_t bad_page_address;
3138
3139 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3140 {
3141         int r;
3142
3143         if (kvm_arch_ops) {
3144                 printk(KERN_ERR "kvm: already loaded the other module\n");
3145                 return -EEXIST;
3146         }
3147
3148         if (!ops->cpu_has_kvm_support()) {
3149                 printk(KERN_ERR "kvm: no hardware support\n");
3150                 return -EOPNOTSUPP;
3151         }
3152         if (ops->disabled_by_bios()) {
3153                 printk(KERN_ERR "kvm: disabled by bios\n");
3154                 return -EOPNOTSUPP;
3155         }
3156
3157         kvm_arch_ops = ops;
3158
3159         r = kvm_arch_ops->hardware_setup();
3160         if (r < 0)
3161                 goto out;
3162
3163         on_each_cpu(hardware_enable, NULL, 0, 1);
3164         r = register_cpu_notifier(&kvm_cpu_notifier);
3165         if (r)
3166                 goto out_free_1;
3167         register_reboot_notifier(&kvm_reboot_notifier);
3168
3169         r = sysdev_class_register(&kvm_sysdev_class);
3170         if (r)
3171                 goto out_free_2;
3172
3173         r = sysdev_register(&kvm_sysdev);
3174         if (r)
3175                 goto out_free_3;
3176
3177         kvm_chardev_ops.owner = module;
3178
3179         r = misc_register(&kvm_dev);
3180         if (r) {
3181                 printk (KERN_ERR "kvm: misc device register failed\n");
3182                 goto out_free;
3183         }
3184
3185         return r;
3186
3187 out_free:
3188         sysdev_unregister(&kvm_sysdev);
3189 out_free_3:
3190         sysdev_class_unregister(&kvm_sysdev_class);
3191 out_free_2:
3192         unregister_reboot_notifier(&kvm_reboot_notifier);
3193         unregister_cpu_notifier(&kvm_cpu_notifier);
3194 out_free_1:
3195         on_each_cpu(hardware_disable, NULL, 0, 1);
3196         kvm_arch_ops->hardware_unsetup();
3197 out:
3198         kvm_arch_ops = NULL;
3199         return r;
3200 }
3201
3202 void kvm_exit_arch(void)
3203 {
3204         misc_deregister(&kvm_dev);
3205         sysdev_unregister(&kvm_sysdev);
3206         sysdev_class_unregister(&kvm_sysdev_class);
3207         unregister_reboot_notifier(&kvm_reboot_notifier);
3208         unregister_cpu_notifier(&kvm_cpu_notifier);
3209         on_each_cpu(hardware_disable, NULL, 0, 1);
3210         kvm_arch_ops->hardware_unsetup();
3211         kvm_arch_ops = NULL;
3212 }
3213
3214 static __init int kvm_init(void)
3215 {
3216         static struct page *bad_page;
3217         int r;
3218
3219         r = kvm_mmu_module_init();
3220         if (r)
3221                 goto out4;
3222
3223         kvm_init_debug();
3224
3225         kvm_init_msr_list();
3226
3227         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3228                 r = -ENOMEM;
3229                 goto out;
3230         }
3231
3232         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3233         memset(__va(bad_page_address), 0, PAGE_SIZE);
3234
3235         return 0;
3236
3237 out:
3238         kvm_exit_debug();
3239         kvm_mmu_module_exit();
3240 out4:
3241         return r;
3242 }
3243
3244 static __exit void kvm_exit(void)
3245 {
3246         kvm_exit_debug();
3247         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3248         kvm_mmu_module_exit();
3249 }
3250
3251 module_init(kvm_init)
3252 module_exit(kvm_exit)
3253
3254 EXPORT_SYMBOL_GPL(kvm_init_arch);
3255 EXPORT_SYMBOL_GPL(kvm_exit_arch);