]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/kvm_main.c
KVM: Portability: Move x86 FPU handling to x86.c
[linux-2.6-omap-h63xx.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45
46 #include <asm/processor.h>
47 #include <asm/msr.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/desc.h>
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 static DEFINE_SPINLOCK(kvm_lock);
56 static LIST_HEAD(vm_list);
57
58 static cpumask_t cpus_hardware_enabled;
59
60 struct kvm_x86_ops *kvm_x86_ops;
61 struct kmem_cache *kvm_vcpu_cache;
62 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
63
64 static __read_mostly struct preempt_ops kvm_preempt_ops;
65
66 static struct dentry *debugfs_dir;
67
68 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
69                            unsigned long arg);
70
71 static inline int valid_vcpu(int n)
72 {
73         return likely(n >= 0 && n < KVM_MAX_VCPUS);
74 }
75
76 /*
77  * Switches to specified vcpu, until a matching vcpu_put()
78  */
79 void vcpu_load(struct kvm_vcpu *vcpu)
80 {
81         int cpu;
82
83         mutex_lock(&vcpu->mutex);
84         cpu = get_cpu();
85         preempt_notifier_register(&vcpu->preempt_notifier);
86         kvm_arch_vcpu_load(vcpu, cpu);
87         put_cpu();
88 }
89
90 void vcpu_put(struct kvm_vcpu *vcpu)
91 {
92         preempt_disable();
93         kvm_arch_vcpu_put(vcpu);
94         preempt_notifier_unregister(&vcpu->preempt_notifier);
95         preempt_enable();
96         mutex_unlock(&vcpu->mutex);
97 }
98
99 static void ack_flush(void *_completed)
100 {
101 }
102
103 void kvm_flush_remote_tlbs(struct kvm *kvm)
104 {
105         int i, cpu;
106         cpumask_t cpus;
107         struct kvm_vcpu *vcpu;
108
109         cpus_clear(cpus);
110         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
111                 vcpu = kvm->vcpus[i];
112                 if (!vcpu)
113                         continue;
114                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
115                         continue;
116                 cpu = vcpu->cpu;
117                 if (cpu != -1 && cpu != raw_smp_processor_id())
118                         cpu_set(cpu, cpus);
119         }
120         smp_call_function_mask(cpus, ack_flush, NULL, 1);
121 }
122
123 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
124 {
125         struct page *page;
126         int r;
127
128         mutex_init(&vcpu->mutex);
129         vcpu->cpu = -1;
130         vcpu->mmu.root_hpa = INVALID_PAGE;
131         vcpu->kvm = kvm;
132         vcpu->vcpu_id = id;
133         if (!irqchip_in_kernel(kvm) || id == 0)
134                 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
135         else
136                 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
137         init_waitqueue_head(&vcpu->wq);
138
139         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
140         if (!page) {
141                 r = -ENOMEM;
142                 goto fail;
143         }
144         vcpu->run = page_address(page);
145
146         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
147         if (!page) {
148                 r = -ENOMEM;
149                 goto fail_free_run;
150         }
151         vcpu->pio_data = page_address(page);
152
153         r = kvm_mmu_create(vcpu);
154         if (r < 0)
155                 goto fail_free_pio_data;
156
157         if (irqchip_in_kernel(kvm)) {
158                 r = kvm_create_lapic(vcpu);
159                 if (r < 0)
160                         goto fail_mmu_destroy;
161         }
162
163         return 0;
164
165 fail_mmu_destroy:
166         kvm_mmu_destroy(vcpu);
167 fail_free_pio_data:
168         free_page((unsigned long)vcpu->pio_data);
169 fail_free_run:
170         free_page((unsigned long)vcpu->run);
171 fail:
172         return r;
173 }
174 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
175
176 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
177 {
178         kvm_free_lapic(vcpu);
179         kvm_mmu_destroy(vcpu);
180         free_page((unsigned long)vcpu->pio_data);
181         free_page((unsigned long)vcpu->run);
182 }
183 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
184
185 static struct kvm *kvm_create_vm(void)
186 {
187         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
188
189         if (!kvm)
190                 return ERR_PTR(-ENOMEM);
191
192         kvm_io_bus_init(&kvm->pio_bus);
193         mutex_init(&kvm->lock);
194         INIT_LIST_HEAD(&kvm->active_mmu_pages);
195         kvm_io_bus_init(&kvm->mmio_bus);
196         spin_lock(&kvm_lock);
197         list_add(&kvm->vm_list, &vm_list);
198         spin_unlock(&kvm_lock);
199         return kvm;
200 }
201
202 /*
203  * Free any memory in @free but not in @dont.
204  */
205 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
206                                   struct kvm_memory_slot *dont)
207 {
208         if (!dont || free->rmap != dont->rmap)
209                 vfree(free->rmap);
210
211         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
212                 vfree(free->dirty_bitmap);
213
214         free->npages = 0;
215         free->dirty_bitmap = NULL;
216         free->rmap = NULL;
217 }
218
219 static void kvm_free_physmem(struct kvm *kvm)
220 {
221         int i;
222
223         for (i = 0; i < kvm->nmemslots; ++i)
224                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
225 }
226
227 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
228 {
229         vcpu_load(vcpu);
230         kvm_mmu_unload(vcpu);
231         vcpu_put(vcpu);
232 }
233
234 static void kvm_free_vcpus(struct kvm *kvm)
235 {
236         unsigned int i;
237
238         /*
239          * Unpin any mmu pages first.
240          */
241         for (i = 0; i < KVM_MAX_VCPUS; ++i)
242                 if (kvm->vcpus[i])
243                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
244         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
245                 if (kvm->vcpus[i]) {
246                         kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
247                         kvm->vcpus[i] = NULL;
248                 }
249         }
250
251 }
252
253 static void kvm_destroy_vm(struct kvm *kvm)
254 {
255         spin_lock(&kvm_lock);
256         list_del(&kvm->vm_list);
257         spin_unlock(&kvm_lock);
258         kvm_io_bus_destroy(&kvm->pio_bus);
259         kvm_io_bus_destroy(&kvm->mmio_bus);
260         kfree(kvm->vpic);
261         kfree(kvm->vioapic);
262         kvm_free_vcpus(kvm);
263         kvm_free_physmem(kvm);
264         kfree(kvm);
265 }
266
267 static int kvm_vm_release(struct inode *inode, struct file *filp)
268 {
269         struct kvm *kvm = filp->private_data;
270
271         kvm_destroy_vm(kvm);
272         return 0;
273 }
274
275 /*
276  * Allocate some memory and give it an address in the guest physical address
277  * space.
278  *
279  * Discontiguous memory is allowed, mostly for framebuffers.
280  *
281  * Must be called holding kvm->lock.
282  */
283 int __kvm_set_memory_region(struct kvm *kvm,
284                             struct kvm_userspace_memory_region *mem,
285                             int user_alloc)
286 {
287         int r;
288         gfn_t base_gfn;
289         unsigned long npages;
290         unsigned long i;
291         struct kvm_memory_slot *memslot;
292         struct kvm_memory_slot old, new;
293
294         r = -EINVAL;
295         /* General sanity checks */
296         if (mem->memory_size & (PAGE_SIZE - 1))
297                 goto out;
298         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
299                 goto out;
300         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
301                 goto out;
302         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
303                 goto out;
304
305         memslot = &kvm->memslots[mem->slot];
306         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
307         npages = mem->memory_size >> PAGE_SHIFT;
308
309         if (!npages)
310                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
311
312         new = old = *memslot;
313
314         new.base_gfn = base_gfn;
315         new.npages = npages;
316         new.flags = mem->flags;
317
318         /* Disallow changing a memory slot's size. */
319         r = -EINVAL;
320         if (npages && old.npages && npages != old.npages)
321                 goto out_free;
322
323         /* Check for overlaps */
324         r = -EEXIST;
325         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
326                 struct kvm_memory_slot *s = &kvm->memslots[i];
327
328                 if (s == memslot)
329                         continue;
330                 if (!((base_gfn + npages <= s->base_gfn) ||
331                       (base_gfn >= s->base_gfn + s->npages)))
332                         goto out_free;
333         }
334
335         /* Free page dirty bitmap if unneeded */
336         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
337                 new.dirty_bitmap = NULL;
338
339         r = -ENOMEM;
340
341         /* Allocate if a slot is being created */
342         if (npages && !new.rmap) {
343                 new.rmap = vmalloc(npages * sizeof(struct page *));
344
345                 if (!new.rmap)
346                         goto out_free;
347
348                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
349
350                 new.user_alloc = user_alloc;
351                 if (user_alloc)
352                         new.userspace_addr = mem->userspace_addr;
353                 else {
354                         down_write(&current->mm->mmap_sem);
355                         new.userspace_addr = do_mmap(NULL, 0,
356                                                      npages * PAGE_SIZE,
357                                                      PROT_READ | PROT_WRITE,
358                                                      MAP_SHARED | MAP_ANONYMOUS,
359                                                      0);
360                         up_write(&current->mm->mmap_sem);
361
362                         if (IS_ERR((void *)new.userspace_addr))
363                                 goto out_free;
364                 }
365         } else {
366                 if (!old.user_alloc && old.rmap) {
367                         int ret;
368
369                         down_write(&current->mm->mmap_sem);
370                         ret = do_munmap(current->mm, old.userspace_addr,
371                                         old.npages * PAGE_SIZE);
372                         up_write(&current->mm->mmap_sem);
373                         if (ret < 0)
374                                 printk(KERN_WARNING
375                                        "kvm_vm_ioctl_set_memory_region: "
376                                        "failed to munmap memory\n");
377                 }
378         }
379
380         /* Allocate page dirty bitmap if needed */
381         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
382                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
383
384                 new.dirty_bitmap = vmalloc(dirty_bytes);
385                 if (!new.dirty_bitmap)
386                         goto out_free;
387                 memset(new.dirty_bitmap, 0, dirty_bytes);
388         }
389
390         if (mem->slot >= kvm->nmemslots)
391                 kvm->nmemslots = mem->slot + 1;
392
393         if (!kvm->n_requested_mmu_pages) {
394                 unsigned int n_pages;
395
396                 if (npages) {
397                         n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
398                         kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
399                                                  n_pages);
400                 } else {
401                         unsigned int nr_mmu_pages;
402
403                         n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
404                         nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
405                         nr_mmu_pages = max(nr_mmu_pages,
406                                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
407                         kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
408                 }
409         }
410
411         *memslot = new;
412
413         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
414         kvm_flush_remote_tlbs(kvm);
415
416         kvm_free_physmem_slot(&old, &new);
417         return 0;
418
419 out_free:
420         kvm_free_physmem_slot(&new, &old);
421 out:
422         return r;
423
424 }
425 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
426
427 int kvm_set_memory_region(struct kvm *kvm,
428                           struct kvm_userspace_memory_region *mem,
429                           int user_alloc)
430 {
431         int r;
432
433         mutex_lock(&kvm->lock);
434         r = __kvm_set_memory_region(kvm, mem, user_alloc);
435         mutex_unlock(&kvm->lock);
436         return r;
437 }
438 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
439
440 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
441                                    struct
442                                    kvm_userspace_memory_region *mem,
443                                    int user_alloc)
444 {
445         if (mem->slot >= KVM_MEMORY_SLOTS)
446                 return -EINVAL;
447         return kvm_set_memory_region(kvm, mem, user_alloc);
448 }
449
450 /*
451  * Get (and clear) the dirty memory log for a memory slot.
452  */
453 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
454                                       struct kvm_dirty_log *log)
455 {
456         struct kvm_memory_slot *memslot;
457         int r, i;
458         int n;
459         unsigned long any = 0;
460
461         mutex_lock(&kvm->lock);
462
463         r = -EINVAL;
464         if (log->slot >= KVM_MEMORY_SLOTS)
465                 goto out;
466
467         memslot = &kvm->memslots[log->slot];
468         r = -ENOENT;
469         if (!memslot->dirty_bitmap)
470                 goto out;
471
472         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
473
474         for (i = 0; !any && i < n/sizeof(long); ++i)
475                 any = memslot->dirty_bitmap[i];
476
477         r = -EFAULT;
478         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
479                 goto out;
480
481         /* If nothing is dirty, don't bother messing with page tables. */
482         if (any) {
483                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
484                 kvm_flush_remote_tlbs(kvm);
485                 memset(memslot->dirty_bitmap, 0, n);
486         }
487
488         r = 0;
489
490 out:
491         mutex_unlock(&kvm->lock);
492         return r;
493 }
494
495 int is_error_page(struct page *page)
496 {
497         return page == bad_page;
498 }
499 EXPORT_SYMBOL_GPL(is_error_page);
500
501 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
502 {
503         int i;
504         struct kvm_mem_alias *alias;
505
506         for (i = 0; i < kvm->naliases; ++i) {
507                 alias = &kvm->aliases[i];
508                 if (gfn >= alias->base_gfn
509                     && gfn < alias->base_gfn + alias->npages)
510                         return alias->target_gfn + gfn - alias->base_gfn;
511         }
512         return gfn;
513 }
514
515 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
516 {
517         int i;
518
519         for (i = 0; i < kvm->nmemslots; ++i) {
520                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
521
522                 if (gfn >= memslot->base_gfn
523                     && gfn < memslot->base_gfn + memslot->npages)
524                         return memslot;
525         }
526         return NULL;
527 }
528
529 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
530 {
531         gfn = unalias_gfn(kvm, gfn);
532         return __gfn_to_memslot(kvm, gfn);
533 }
534
535 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
536 {
537         int i;
538
539         gfn = unalias_gfn(kvm, gfn);
540         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
541                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
542
543                 if (gfn >= memslot->base_gfn
544                     && gfn < memslot->base_gfn + memslot->npages)
545                         return 1;
546         }
547         return 0;
548 }
549 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
550
551 /*
552  * Requires current->mm->mmap_sem to be held
553  */
554 static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
555 {
556         struct kvm_memory_slot *slot;
557         struct page *page[1];
558         int npages;
559
560         might_sleep();
561
562         gfn = unalias_gfn(kvm, gfn);
563         slot = __gfn_to_memslot(kvm, gfn);
564         if (!slot) {
565                 get_page(bad_page);
566                 return bad_page;
567         }
568
569         npages = get_user_pages(current, current->mm,
570                                 slot->userspace_addr
571                                 + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
572                                 1, 1, page, NULL);
573         if (npages != 1) {
574                 get_page(bad_page);
575                 return bad_page;
576         }
577
578         return page[0];
579 }
580
581 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
582 {
583         struct page *page;
584
585         down_read(&current->mm->mmap_sem);
586         page = __gfn_to_page(kvm, gfn);
587         up_read(&current->mm->mmap_sem);
588
589         return page;
590 }
591
592 EXPORT_SYMBOL_GPL(gfn_to_page);
593
594 void kvm_release_page(struct page *page)
595 {
596         if (!PageReserved(page))
597                 SetPageDirty(page);
598         put_page(page);
599 }
600 EXPORT_SYMBOL_GPL(kvm_release_page);
601
602 static int next_segment(unsigned long len, int offset)
603 {
604         if (len > PAGE_SIZE - offset)
605                 return PAGE_SIZE - offset;
606         else
607                 return len;
608 }
609
610 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
611                         int len)
612 {
613         void *page_virt;
614         struct page *page;
615
616         page = gfn_to_page(kvm, gfn);
617         if (is_error_page(page)) {
618                 kvm_release_page(page);
619                 return -EFAULT;
620         }
621         page_virt = kmap_atomic(page, KM_USER0);
622
623         memcpy(data, page_virt + offset, len);
624
625         kunmap_atomic(page_virt, KM_USER0);
626         kvm_release_page(page);
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
630
631 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
632 {
633         gfn_t gfn = gpa >> PAGE_SHIFT;
634         int seg;
635         int offset = offset_in_page(gpa);
636         int ret;
637
638         while ((seg = next_segment(len, offset)) != 0) {
639                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
640                 if (ret < 0)
641                         return ret;
642                 offset = 0;
643                 len -= seg;
644                 data += seg;
645                 ++gfn;
646         }
647         return 0;
648 }
649 EXPORT_SYMBOL_GPL(kvm_read_guest);
650
651 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
652                          int offset, int len)
653 {
654         void *page_virt;
655         struct page *page;
656
657         page = gfn_to_page(kvm, gfn);
658         if (is_error_page(page)) {
659                 kvm_release_page(page);
660                 return -EFAULT;
661         }
662         page_virt = kmap_atomic(page, KM_USER0);
663
664         memcpy(page_virt + offset, data, len);
665
666         kunmap_atomic(page_virt, KM_USER0);
667         mark_page_dirty(kvm, gfn);
668         kvm_release_page(page);
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
672
673 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
674                     unsigned long len)
675 {
676         gfn_t gfn = gpa >> PAGE_SHIFT;
677         int seg;
678         int offset = offset_in_page(gpa);
679         int ret;
680
681         while ((seg = next_segment(len, offset)) != 0) {
682                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
683                 if (ret < 0)
684                         return ret;
685                 offset = 0;
686                 len -= seg;
687                 data += seg;
688                 ++gfn;
689         }
690         return 0;
691 }
692
693 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
694 {
695         void *page_virt;
696         struct page *page;
697
698         page = gfn_to_page(kvm, gfn);
699         if (is_error_page(page)) {
700                 kvm_release_page(page);
701                 return -EFAULT;
702         }
703         page_virt = kmap_atomic(page, KM_USER0);
704
705         memset(page_virt + offset, 0, len);
706
707         kunmap_atomic(page_virt, KM_USER0);
708         kvm_release_page(page);
709         return 0;
710 }
711 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
712
713 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
714 {
715         gfn_t gfn = gpa >> PAGE_SHIFT;
716         int seg;
717         int offset = offset_in_page(gpa);
718         int ret;
719
720         while ((seg = next_segment(len, offset)) != 0) {
721                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
722                 if (ret < 0)
723                         return ret;
724                 offset = 0;
725                 len -= seg;
726                 ++gfn;
727         }
728         return 0;
729 }
730 EXPORT_SYMBOL_GPL(kvm_clear_guest);
731
732 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
733 {
734         struct kvm_memory_slot *memslot;
735
736         gfn = unalias_gfn(kvm, gfn);
737         memslot = __gfn_to_memslot(kvm, gfn);
738         if (memslot && memslot->dirty_bitmap) {
739                 unsigned long rel_gfn = gfn - memslot->base_gfn;
740
741                 /* avoid RMW */
742                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
743                         set_bit(rel_gfn, memslot->dirty_bitmap);
744         }
745 }
746
747 /*
748  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
749  */
750 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
751 {
752         DECLARE_WAITQUEUE(wait, current);
753
754         add_wait_queue(&vcpu->wq, &wait);
755
756         /*
757          * We will block until either an interrupt or a signal wakes us up
758          */
759         while (!kvm_cpu_has_interrupt(vcpu)
760                && !signal_pending(current)
761                && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
762                && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
763                 set_current_state(TASK_INTERRUPTIBLE);
764                 vcpu_put(vcpu);
765                 schedule();
766                 vcpu_load(vcpu);
767         }
768
769         __set_current_state(TASK_RUNNING);
770         remove_wait_queue(&vcpu->wq, &wait);
771 }
772
773 void kvm_resched(struct kvm_vcpu *vcpu)
774 {
775         if (!need_resched())
776                 return;
777         cond_resched();
778 }
779 EXPORT_SYMBOL_GPL(kvm_resched);
780
781 /*
782  * Check if userspace requested an interrupt window, and that the
783  * interrupt window is open.
784  *
785  * No need to exit to userspace if we already have an interrupt queued.
786  */
787 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
788                                           struct kvm_run *kvm_run)
789 {
790         return (!vcpu->irq_summary &&
791                 kvm_run->request_interrupt_window &&
792                 vcpu->interrupt_window_open &&
793                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
794 }
795
796 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
797                               struct kvm_run *kvm_run)
798 {
799         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
800         kvm_run->cr8 = get_cr8(vcpu);
801         kvm_run->apic_base = kvm_get_apic_base(vcpu);
802         if (irqchip_in_kernel(vcpu->kvm))
803                 kvm_run->ready_for_interrupt_injection = 1;
804         else
805                 kvm_run->ready_for_interrupt_injection =
806                                         (vcpu->interrupt_window_open &&
807                                          vcpu->irq_summary == 0);
808 }
809
810 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
811 {
812         int r;
813
814         if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
815                 pr_debug("vcpu %d received sipi with vector # %x\n",
816                        vcpu->vcpu_id, vcpu->sipi_vector);
817                 kvm_lapic_reset(vcpu);
818                 r = kvm_x86_ops->vcpu_reset(vcpu);
819                 if (r)
820                         return r;
821                 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
822         }
823
824 preempted:
825         if (vcpu->guest_debug.enabled)
826                 kvm_x86_ops->guest_debug_pre(vcpu);
827
828 again:
829         r = kvm_mmu_reload(vcpu);
830         if (unlikely(r))
831                 goto out;
832
833         kvm_inject_pending_timer_irqs(vcpu);
834
835         preempt_disable();
836
837         kvm_x86_ops->prepare_guest_switch(vcpu);
838         kvm_load_guest_fpu(vcpu);
839
840         local_irq_disable();
841
842         if (signal_pending(current)) {
843                 local_irq_enable();
844                 preempt_enable();
845                 r = -EINTR;
846                 kvm_run->exit_reason = KVM_EXIT_INTR;
847                 ++vcpu->stat.signal_exits;
848                 goto out;
849         }
850
851         if (irqchip_in_kernel(vcpu->kvm))
852                 kvm_x86_ops->inject_pending_irq(vcpu);
853         else if (!vcpu->mmio_read_completed)
854                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
855
856         vcpu->guest_mode = 1;
857         kvm_guest_enter();
858
859         if (vcpu->requests)
860                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
861                         kvm_x86_ops->tlb_flush(vcpu);
862
863         kvm_x86_ops->run(vcpu, kvm_run);
864
865         vcpu->guest_mode = 0;
866         local_irq_enable();
867
868         ++vcpu->stat.exits;
869
870         /*
871          * We must have an instruction between local_irq_enable() and
872          * kvm_guest_exit(), so the timer interrupt isn't delayed by
873          * the interrupt shadow.  The stat.exits increment will do nicely.
874          * But we need to prevent reordering, hence this barrier():
875          */
876         barrier();
877
878         kvm_guest_exit();
879
880         preempt_enable();
881
882         /*
883          * Profile KVM exit RIPs:
884          */
885         if (unlikely(prof_on == KVM_PROFILING)) {
886                 kvm_x86_ops->cache_regs(vcpu);
887                 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
888         }
889
890         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
891
892         if (r > 0) {
893                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
894                         r = -EINTR;
895                         kvm_run->exit_reason = KVM_EXIT_INTR;
896                         ++vcpu->stat.request_irq_exits;
897                         goto out;
898                 }
899                 if (!need_resched()) {
900                         ++vcpu->stat.light_exits;
901                         goto again;
902                 }
903         }
904
905 out:
906         if (r > 0) {
907                 kvm_resched(vcpu);
908                 goto preempted;
909         }
910
911         post_kvm_run_save(vcpu, kvm_run);
912
913         return r;
914 }
915
916
917 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
918 {
919         int r;
920         sigset_t sigsaved;
921
922         vcpu_load(vcpu);
923
924         if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
925                 kvm_vcpu_block(vcpu);
926                 vcpu_put(vcpu);
927                 return -EAGAIN;
928         }
929
930         if (vcpu->sigset_active)
931                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
932
933         /* re-sync apic's tpr */
934         if (!irqchip_in_kernel(vcpu->kvm))
935                 set_cr8(vcpu, kvm_run->cr8);
936
937         if (vcpu->pio.cur_count) {
938                 r = complete_pio(vcpu);
939                 if (r)
940                         goto out;
941         }
942 #if CONFIG_HAS_IOMEM
943         if (vcpu->mmio_needed) {
944                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
945                 vcpu->mmio_read_completed = 1;
946                 vcpu->mmio_needed = 0;
947                 r = emulate_instruction(vcpu, kvm_run,
948                                         vcpu->mmio_fault_cr2, 0, 1);
949                 if (r == EMULATE_DO_MMIO) {
950                         /*
951                          * Read-modify-write.  Back to userspace.
952                          */
953                         r = 0;
954                         goto out;
955                 }
956         }
957 #endif
958         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
959                 kvm_x86_ops->cache_regs(vcpu);
960                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
961                 kvm_x86_ops->decache_regs(vcpu);
962         }
963
964         r = __vcpu_run(vcpu, kvm_run);
965
966 out:
967         if (vcpu->sigset_active)
968                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
969
970         vcpu_put(vcpu);
971         return r;
972 }
973
974 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
975                                    struct kvm_regs *regs)
976 {
977         vcpu_load(vcpu);
978
979         kvm_x86_ops->cache_regs(vcpu);
980
981         regs->rax = vcpu->regs[VCPU_REGS_RAX];
982         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
983         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
984         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
985         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
986         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
987         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
988         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
989 #ifdef CONFIG_X86_64
990         regs->r8 = vcpu->regs[VCPU_REGS_R8];
991         regs->r9 = vcpu->regs[VCPU_REGS_R9];
992         regs->r10 = vcpu->regs[VCPU_REGS_R10];
993         regs->r11 = vcpu->regs[VCPU_REGS_R11];
994         regs->r12 = vcpu->regs[VCPU_REGS_R12];
995         regs->r13 = vcpu->regs[VCPU_REGS_R13];
996         regs->r14 = vcpu->regs[VCPU_REGS_R14];
997         regs->r15 = vcpu->regs[VCPU_REGS_R15];
998 #endif
999
1000         regs->rip = vcpu->rip;
1001         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
1002
1003         /*
1004          * Don't leak debug flags in case they were set for guest debugging
1005          */
1006         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1007                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1008
1009         vcpu_put(vcpu);
1010
1011         return 0;
1012 }
1013
1014 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1015                                    struct kvm_regs *regs)
1016 {
1017         vcpu_load(vcpu);
1018
1019         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1020         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1021         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1022         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1023         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1024         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1025         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1026         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1027 #ifdef CONFIG_X86_64
1028         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1029         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1030         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1031         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1032         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1033         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1034         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1035         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1036 #endif
1037
1038         vcpu->rip = regs->rip;
1039         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
1040
1041         kvm_x86_ops->decache_regs(vcpu);
1042
1043         vcpu_put(vcpu);
1044
1045         return 0;
1046 }
1047
1048 static void get_segment(struct kvm_vcpu *vcpu,
1049                         struct kvm_segment *var, int seg)
1050 {
1051         return kvm_x86_ops->get_segment(vcpu, var, seg);
1052 }
1053
1054 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1055                                     struct kvm_sregs *sregs)
1056 {
1057         struct descriptor_table dt;
1058         int pending_vec;
1059
1060         vcpu_load(vcpu);
1061
1062         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1063         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1064         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1065         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1066         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1067         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1068
1069         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1070         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1071
1072         kvm_x86_ops->get_idt(vcpu, &dt);
1073         sregs->idt.limit = dt.limit;
1074         sregs->idt.base = dt.base;
1075         kvm_x86_ops->get_gdt(vcpu, &dt);
1076         sregs->gdt.limit = dt.limit;
1077         sregs->gdt.base = dt.base;
1078
1079         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1080         sregs->cr0 = vcpu->cr0;
1081         sregs->cr2 = vcpu->cr2;
1082         sregs->cr3 = vcpu->cr3;
1083         sregs->cr4 = vcpu->cr4;
1084         sregs->cr8 = get_cr8(vcpu);
1085         sregs->efer = vcpu->shadow_efer;
1086         sregs->apic_base = kvm_get_apic_base(vcpu);
1087
1088         if (irqchip_in_kernel(vcpu->kvm)) {
1089                 memset(sregs->interrupt_bitmap, 0,
1090                        sizeof sregs->interrupt_bitmap);
1091                 pending_vec = kvm_x86_ops->get_irq(vcpu);
1092                 if (pending_vec >= 0)
1093                         set_bit(pending_vec,
1094                                 (unsigned long *)sregs->interrupt_bitmap);
1095         } else
1096                 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1097                        sizeof sregs->interrupt_bitmap);
1098
1099         vcpu_put(vcpu);
1100
1101         return 0;
1102 }
1103
1104 static void set_segment(struct kvm_vcpu *vcpu,
1105                         struct kvm_segment *var, int seg)
1106 {
1107         return kvm_x86_ops->set_segment(vcpu, var, seg);
1108 }
1109
1110 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1111                                     struct kvm_sregs *sregs)
1112 {
1113         int mmu_reset_needed = 0;
1114         int i, pending_vec, max_bits;
1115         struct descriptor_table dt;
1116
1117         vcpu_load(vcpu);
1118
1119         dt.limit = sregs->idt.limit;
1120         dt.base = sregs->idt.base;
1121         kvm_x86_ops->set_idt(vcpu, &dt);
1122         dt.limit = sregs->gdt.limit;
1123         dt.base = sregs->gdt.base;
1124         kvm_x86_ops->set_gdt(vcpu, &dt);
1125
1126         vcpu->cr2 = sregs->cr2;
1127         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1128         vcpu->cr3 = sregs->cr3;
1129
1130         set_cr8(vcpu, sregs->cr8);
1131
1132         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1133 #ifdef CONFIG_X86_64
1134         kvm_x86_ops->set_efer(vcpu, sregs->efer);
1135 #endif
1136         kvm_set_apic_base(vcpu, sregs->apic_base);
1137
1138         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1139
1140         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1141         vcpu->cr0 = sregs->cr0;
1142         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
1143
1144         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1145         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
1146         if (!is_long_mode(vcpu) && is_pae(vcpu))
1147                 load_pdptrs(vcpu, vcpu->cr3);
1148
1149         if (mmu_reset_needed)
1150                 kvm_mmu_reset_context(vcpu);
1151
1152         if (!irqchip_in_kernel(vcpu->kvm)) {
1153                 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1154                        sizeof vcpu->irq_pending);
1155                 vcpu->irq_summary = 0;
1156                 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
1157                         if (vcpu->irq_pending[i])
1158                                 __set_bit(i, &vcpu->irq_summary);
1159         } else {
1160                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
1161                 pending_vec = find_first_bit(
1162                         (const unsigned long *)sregs->interrupt_bitmap,
1163                         max_bits);
1164                 /* Only pending external irq is handled here */
1165                 if (pending_vec < max_bits) {
1166                         kvm_x86_ops->set_irq(vcpu, pending_vec);
1167                         pr_debug("Set back pending irq %d\n",
1168                                  pending_vec);
1169                 }
1170         }
1171
1172         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1173         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1174         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1175         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1176         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1177         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1178
1179         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1180         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1181
1182         vcpu_put(vcpu);
1183
1184         return 0;
1185 }
1186
1187 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1188 {
1189         struct kvm_segment cs;
1190
1191         get_segment(vcpu, &cs, VCPU_SREG_CS);
1192         *db = cs.db;
1193         *l = cs.l;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
1196
1197 /*
1198  * Translate a guest virtual address to a guest physical address.
1199  */
1200 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1201                                     struct kvm_translation *tr)
1202 {
1203         unsigned long vaddr = tr->linear_address;
1204         gpa_t gpa;
1205
1206         vcpu_load(vcpu);
1207         mutex_lock(&vcpu->kvm->lock);
1208         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1209         tr->physical_address = gpa;
1210         tr->valid = gpa != UNMAPPED_GVA;
1211         tr->writeable = 1;
1212         tr->usermode = 0;
1213         mutex_unlock(&vcpu->kvm->lock);
1214         vcpu_put(vcpu);
1215
1216         return 0;
1217 }
1218
1219 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1220                                     struct kvm_interrupt *irq)
1221 {
1222         if (irq->irq < 0 || irq->irq >= 256)
1223                 return -EINVAL;
1224         if (irqchip_in_kernel(vcpu->kvm))
1225                 return -ENXIO;
1226         vcpu_load(vcpu);
1227
1228         set_bit(irq->irq, vcpu->irq_pending);
1229         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1230
1231         vcpu_put(vcpu);
1232
1233         return 0;
1234 }
1235
1236 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1237                                       struct kvm_debug_guest *dbg)
1238 {
1239         int r;
1240
1241         vcpu_load(vcpu);
1242
1243         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
1244
1245         vcpu_put(vcpu);
1246
1247         return r;
1248 }
1249
1250 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
1251                                     unsigned long address,
1252                                     int *type)
1253 {
1254         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1255         unsigned long pgoff;
1256         struct page *page;
1257
1258         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1259         if (pgoff == 0)
1260                 page = virt_to_page(vcpu->run);
1261         else if (pgoff == KVM_PIO_PAGE_OFFSET)
1262                 page = virt_to_page(vcpu->pio_data);
1263         else
1264                 return NOPAGE_SIGBUS;
1265         get_page(page);
1266         if (type != NULL)
1267                 *type = VM_FAULT_MINOR;
1268
1269         return page;
1270 }
1271
1272 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1273         .nopage = kvm_vcpu_nopage,
1274 };
1275
1276 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1277 {
1278         vma->vm_ops = &kvm_vcpu_vm_ops;
1279         return 0;
1280 }
1281
1282 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1283 {
1284         struct kvm_vcpu *vcpu = filp->private_data;
1285
1286         fput(vcpu->kvm->filp);
1287         return 0;
1288 }
1289
1290 static struct file_operations kvm_vcpu_fops = {
1291         .release        = kvm_vcpu_release,
1292         .unlocked_ioctl = kvm_vcpu_ioctl,
1293         .compat_ioctl   = kvm_vcpu_ioctl,
1294         .mmap           = kvm_vcpu_mmap,
1295 };
1296
1297 /*
1298  * Allocates an inode for the vcpu.
1299  */
1300 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1301 {
1302         int fd, r;
1303         struct inode *inode;
1304         struct file *file;
1305
1306         r = anon_inode_getfd(&fd, &inode, &file,
1307                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
1308         if (r)
1309                 return r;
1310         atomic_inc(&vcpu->kvm->filp->f_count);
1311         return fd;
1312 }
1313
1314 /*
1315  * Creates some virtual cpus.  Good luck creating more than one.
1316  */
1317 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1318 {
1319         int r;
1320         struct kvm_vcpu *vcpu;
1321
1322         if (!valid_vcpu(n))
1323                 return -EINVAL;
1324
1325         vcpu = kvm_x86_ops->vcpu_create(kvm, n);
1326         if (IS_ERR(vcpu))
1327                 return PTR_ERR(vcpu);
1328
1329         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1330
1331         /* We do fxsave: this must be aligned. */
1332         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
1333
1334         vcpu_load(vcpu);
1335         r = kvm_x86_ops->vcpu_reset(vcpu);
1336         if (r == 0)
1337                 r = kvm_mmu_setup(vcpu);
1338         vcpu_put(vcpu);
1339         if (r < 0)
1340                 goto free_vcpu;
1341
1342         mutex_lock(&kvm->lock);
1343         if (kvm->vcpus[n]) {
1344                 r = -EEXIST;
1345                 mutex_unlock(&kvm->lock);
1346                 goto mmu_unload;
1347         }
1348         kvm->vcpus[n] = vcpu;
1349         mutex_unlock(&kvm->lock);
1350
1351         /* Now it's all set up, let userspace reach it */
1352         r = create_vcpu_fd(vcpu);
1353         if (r < 0)
1354                 goto unlink;
1355         return r;
1356
1357 unlink:
1358         mutex_lock(&kvm->lock);
1359         kvm->vcpus[n] = NULL;
1360         mutex_unlock(&kvm->lock);
1361
1362 mmu_unload:
1363         vcpu_load(vcpu);
1364         kvm_mmu_unload(vcpu);
1365         vcpu_put(vcpu);
1366
1367 free_vcpu:
1368         kvm_x86_ops->vcpu_free(vcpu);
1369         return r;
1370 }
1371
1372 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1373 {
1374         if (sigset) {
1375                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1376                 vcpu->sigset_active = 1;
1377                 vcpu->sigset = *sigset;
1378         } else
1379                 vcpu->sigset_active = 0;
1380         return 0;
1381 }
1382
1383 static long kvm_vcpu_ioctl(struct file *filp,
1384                            unsigned int ioctl, unsigned long arg)
1385 {
1386         struct kvm_vcpu *vcpu = filp->private_data;
1387         void __user *argp = (void __user *)arg;
1388         int r;
1389
1390         switch (ioctl) {
1391         case KVM_RUN:
1392                 r = -EINVAL;
1393                 if (arg)
1394                         goto out;
1395                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
1396                 break;
1397         case KVM_GET_REGS: {
1398                 struct kvm_regs kvm_regs;
1399
1400                 memset(&kvm_regs, 0, sizeof kvm_regs);
1401                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
1402                 if (r)
1403                         goto out;
1404                 r = -EFAULT;
1405                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1406                         goto out;
1407                 r = 0;
1408                 break;
1409         }
1410         case KVM_SET_REGS: {
1411                 struct kvm_regs kvm_regs;
1412
1413                 r = -EFAULT;
1414                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1415                         goto out;
1416                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
1417                 if (r)
1418                         goto out;
1419                 r = 0;
1420                 break;
1421         }
1422         case KVM_GET_SREGS: {
1423                 struct kvm_sregs kvm_sregs;
1424
1425                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
1426                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
1427                 if (r)
1428                         goto out;
1429                 r = -EFAULT;
1430                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1431                         goto out;
1432                 r = 0;
1433                 break;
1434         }
1435         case KVM_SET_SREGS: {
1436                 struct kvm_sregs kvm_sregs;
1437
1438                 r = -EFAULT;
1439                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1440                         goto out;
1441                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
1442                 if (r)
1443                         goto out;
1444                 r = 0;
1445                 break;
1446         }
1447         case KVM_TRANSLATE: {
1448                 struct kvm_translation tr;
1449
1450                 r = -EFAULT;
1451                 if (copy_from_user(&tr, argp, sizeof tr))
1452                         goto out;
1453                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
1454                 if (r)
1455                         goto out;
1456                 r = -EFAULT;
1457                 if (copy_to_user(argp, &tr, sizeof tr))
1458                         goto out;
1459                 r = 0;
1460                 break;
1461         }
1462         case KVM_INTERRUPT: {
1463                 struct kvm_interrupt irq;
1464
1465                 r = -EFAULT;
1466                 if (copy_from_user(&irq, argp, sizeof irq))
1467                         goto out;
1468                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1469                 if (r)
1470                         goto out;
1471                 r = 0;
1472                 break;
1473         }
1474         case KVM_DEBUG_GUEST: {
1475                 struct kvm_debug_guest dbg;
1476
1477                 r = -EFAULT;
1478                 if (copy_from_user(&dbg, argp, sizeof dbg))
1479                         goto out;
1480                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
1481                 if (r)
1482                         goto out;
1483                 r = 0;
1484                 break;
1485         }
1486         case KVM_SET_SIGNAL_MASK: {
1487                 struct kvm_signal_mask __user *sigmask_arg = argp;
1488                 struct kvm_signal_mask kvm_sigmask;
1489                 sigset_t sigset, *p;
1490
1491                 p = NULL;
1492                 if (argp) {
1493                         r = -EFAULT;
1494                         if (copy_from_user(&kvm_sigmask, argp,
1495                                            sizeof kvm_sigmask))
1496                                 goto out;
1497                         r = -EINVAL;
1498                         if (kvm_sigmask.len != sizeof sigset)
1499                                 goto out;
1500                         r = -EFAULT;
1501                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1502                                            sizeof sigset))
1503                                 goto out;
1504                         p = &sigset;
1505                 }
1506                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1507                 break;
1508         }
1509         case KVM_GET_FPU: {
1510                 struct kvm_fpu fpu;
1511
1512                 memset(&fpu, 0, sizeof fpu);
1513                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
1514                 if (r)
1515                         goto out;
1516                 r = -EFAULT;
1517                 if (copy_to_user(argp, &fpu, sizeof fpu))
1518                         goto out;
1519                 r = 0;
1520                 break;
1521         }
1522         case KVM_SET_FPU: {
1523                 struct kvm_fpu fpu;
1524
1525                 r = -EFAULT;
1526                 if (copy_from_user(&fpu, argp, sizeof fpu))
1527                         goto out;
1528                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
1529                 if (r)
1530                         goto out;
1531                 r = 0;
1532                 break;
1533         }
1534         default:
1535                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1536         }
1537 out:
1538         return r;
1539 }
1540
1541 static long kvm_vm_ioctl(struct file *filp,
1542                            unsigned int ioctl, unsigned long arg)
1543 {
1544         struct kvm *kvm = filp->private_data;
1545         void __user *argp = (void __user *)arg;
1546         int r;
1547
1548         switch (ioctl) {
1549         case KVM_CREATE_VCPU:
1550                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1551                 if (r < 0)
1552                         goto out;
1553                 break;
1554         case KVM_SET_USER_MEMORY_REGION: {
1555                 struct kvm_userspace_memory_region kvm_userspace_mem;
1556
1557                 r = -EFAULT;
1558                 if (copy_from_user(&kvm_userspace_mem, argp,
1559                                                 sizeof kvm_userspace_mem))
1560                         goto out;
1561
1562                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1563                 if (r)
1564                         goto out;
1565                 break;
1566         }
1567         case KVM_GET_DIRTY_LOG: {
1568                 struct kvm_dirty_log log;
1569
1570                 r = -EFAULT;
1571                 if (copy_from_user(&log, argp, sizeof log))
1572                         goto out;
1573                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1574                 if (r)
1575                         goto out;
1576                 break;
1577         }
1578         default:
1579                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1580         }
1581 out:
1582         return r;
1583 }
1584
1585 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
1586                                   unsigned long address,
1587                                   int *type)
1588 {
1589         struct kvm *kvm = vma->vm_file->private_data;
1590         unsigned long pgoff;
1591         struct page *page;
1592
1593         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1594         if (!kvm_is_visible_gfn(kvm, pgoff))
1595                 return NOPAGE_SIGBUS;
1596         /* current->mm->mmap_sem is already held so call lockless version */
1597         page = __gfn_to_page(kvm, pgoff);
1598         if (is_error_page(page)) {
1599                 kvm_release_page(page);
1600                 return NOPAGE_SIGBUS;
1601         }
1602         if (type != NULL)
1603                 *type = VM_FAULT_MINOR;
1604
1605         return page;
1606 }
1607
1608 static struct vm_operations_struct kvm_vm_vm_ops = {
1609         .nopage = kvm_vm_nopage,
1610 };
1611
1612 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1613 {
1614         vma->vm_ops = &kvm_vm_vm_ops;
1615         return 0;
1616 }
1617
1618 static struct file_operations kvm_vm_fops = {
1619         .release        = kvm_vm_release,
1620         .unlocked_ioctl = kvm_vm_ioctl,
1621         .compat_ioctl   = kvm_vm_ioctl,
1622         .mmap           = kvm_vm_mmap,
1623 };
1624
1625 static int kvm_dev_ioctl_create_vm(void)
1626 {
1627         int fd, r;
1628         struct inode *inode;
1629         struct file *file;
1630         struct kvm *kvm;
1631
1632         kvm = kvm_create_vm();
1633         if (IS_ERR(kvm))
1634                 return PTR_ERR(kvm);
1635         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1636         if (r) {
1637                 kvm_destroy_vm(kvm);
1638                 return r;
1639         }
1640
1641         kvm->filp = file;
1642
1643         return fd;
1644 }
1645
1646 static long kvm_dev_ioctl(struct file *filp,
1647                           unsigned int ioctl, unsigned long arg)
1648 {
1649         void __user *argp = (void __user *)arg;
1650         long r = -EINVAL;
1651
1652         switch (ioctl) {
1653         case KVM_GET_API_VERSION:
1654                 r = -EINVAL;
1655                 if (arg)
1656                         goto out;
1657                 r = KVM_API_VERSION;
1658                 break;
1659         case KVM_CREATE_VM:
1660                 r = -EINVAL;
1661                 if (arg)
1662                         goto out;
1663                 r = kvm_dev_ioctl_create_vm();
1664                 break;
1665         case KVM_CHECK_EXTENSION: {
1666                 int ext = (long)argp;
1667
1668                 switch (ext) {
1669                 case KVM_CAP_IRQCHIP:
1670                 case KVM_CAP_HLT:
1671                 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1672                 case KVM_CAP_USER_MEMORY:
1673                 case KVM_CAP_SET_TSS_ADDR:
1674                         r = 1;
1675                         break;
1676                 default:
1677                         r = 0;
1678                         break;
1679                 }
1680                 break;
1681         }
1682         case KVM_GET_VCPU_MMAP_SIZE:
1683                 r = -EINVAL;
1684                 if (arg)
1685                         goto out;
1686                 r = 2 * PAGE_SIZE;
1687                 break;
1688         default:
1689                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1690         }
1691 out:
1692         return r;
1693 }
1694
1695 static struct file_operations kvm_chardev_ops = {
1696         .unlocked_ioctl = kvm_dev_ioctl,
1697         .compat_ioctl   = kvm_dev_ioctl,
1698 };
1699
1700 static struct miscdevice kvm_dev = {
1701         KVM_MINOR,
1702         "kvm",
1703         &kvm_chardev_ops,
1704 };
1705
1706 /*
1707  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
1708  * cached on it.
1709  */
1710 static void decache_vcpus_on_cpu(int cpu)
1711 {
1712         struct kvm *vm;
1713         struct kvm_vcpu *vcpu;
1714         int i;
1715
1716         spin_lock(&kvm_lock);
1717         list_for_each_entry(vm, &vm_list, vm_list)
1718                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1719                         vcpu = vm->vcpus[i];
1720                         if (!vcpu)
1721                                 continue;
1722                         /*
1723                          * If the vcpu is locked, then it is running on some
1724                          * other cpu and therefore it is not cached on the
1725                          * cpu in question.
1726                          *
1727                          * If it's not locked, check the last cpu it executed
1728                          * on.
1729                          */
1730                         if (mutex_trylock(&vcpu->mutex)) {
1731                                 if (vcpu->cpu == cpu) {
1732                                         kvm_x86_ops->vcpu_decache(vcpu);
1733                                         vcpu->cpu = -1;
1734                                 }
1735                                 mutex_unlock(&vcpu->mutex);
1736                         }
1737                 }
1738         spin_unlock(&kvm_lock);
1739 }
1740
1741 static void hardware_enable(void *junk)
1742 {
1743         int cpu = raw_smp_processor_id();
1744
1745         if (cpu_isset(cpu, cpus_hardware_enabled))
1746                 return;
1747         cpu_set(cpu, cpus_hardware_enabled);
1748         kvm_x86_ops->hardware_enable(NULL);
1749 }
1750
1751 static void hardware_disable(void *junk)
1752 {
1753         int cpu = raw_smp_processor_id();
1754
1755         if (!cpu_isset(cpu, cpus_hardware_enabled))
1756                 return;
1757         cpu_clear(cpu, cpus_hardware_enabled);
1758         decache_vcpus_on_cpu(cpu);
1759         kvm_x86_ops->hardware_disable(NULL);
1760 }
1761
1762 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1763                            void *v)
1764 {
1765         int cpu = (long)v;
1766
1767         switch (val) {
1768         case CPU_DYING:
1769         case CPU_DYING_FROZEN:
1770                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1771                        cpu);
1772                 hardware_disable(NULL);
1773                 break;
1774         case CPU_UP_CANCELED:
1775         case CPU_UP_CANCELED_FROZEN:
1776                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1777                        cpu);
1778                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1779                 break;
1780         case CPU_ONLINE:
1781         case CPU_ONLINE_FROZEN:
1782                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1783                        cpu);
1784                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1785                 break;
1786         }
1787         return NOTIFY_OK;
1788 }
1789
1790 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1791                       void *v)
1792 {
1793         if (val == SYS_RESTART) {
1794                 /*
1795                  * Some (well, at least mine) BIOSes hang on reboot if
1796                  * in vmx root mode.
1797                  */
1798                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1799                 on_each_cpu(hardware_disable, NULL, 0, 1);
1800         }
1801         return NOTIFY_OK;
1802 }
1803
1804 static struct notifier_block kvm_reboot_notifier = {
1805         .notifier_call = kvm_reboot,
1806         .priority = 0,
1807 };
1808
1809 void kvm_io_bus_init(struct kvm_io_bus *bus)
1810 {
1811         memset(bus, 0, sizeof(*bus));
1812 }
1813
1814 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1815 {
1816         int i;
1817
1818         for (i = 0; i < bus->dev_count; i++) {
1819                 struct kvm_io_device *pos = bus->devs[i];
1820
1821                 kvm_iodevice_destructor(pos);
1822         }
1823 }
1824
1825 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1826 {
1827         int i;
1828
1829         for (i = 0; i < bus->dev_count; i++) {
1830                 struct kvm_io_device *pos = bus->devs[i];
1831
1832                 if (pos->in_range(pos, addr))
1833                         return pos;
1834         }
1835
1836         return NULL;
1837 }
1838
1839 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1840 {
1841         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1842
1843         bus->devs[bus->dev_count++] = dev;
1844 }
1845
1846 static struct notifier_block kvm_cpu_notifier = {
1847         .notifier_call = kvm_cpu_hotplug,
1848         .priority = 20, /* must be > scheduler priority */
1849 };
1850
1851 static u64 stat_get(void *_offset)
1852 {
1853         unsigned offset = (long)_offset;
1854         u64 total = 0;
1855         struct kvm *kvm;
1856         struct kvm_vcpu *vcpu;
1857         int i;
1858
1859         spin_lock(&kvm_lock);
1860         list_for_each_entry(kvm, &vm_list, vm_list)
1861                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1862                         vcpu = kvm->vcpus[i];
1863                         if (vcpu)
1864                                 total += *(u32 *)((void *)vcpu + offset);
1865                 }
1866         spin_unlock(&kvm_lock);
1867         return total;
1868 }
1869
1870 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
1871
1872 static __init void kvm_init_debug(void)
1873 {
1874         struct kvm_stats_debugfs_item *p;
1875
1876         debugfs_dir = debugfs_create_dir("kvm", NULL);
1877         for (p = debugfs_entries; p->name; ++p)
1878                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1879                                                 (void *)(long)p->offset,
1880                                                 &stat_fops);
1881 }
1882
1883 static void kvm_exit_debug(void)
1884 {
1885         struct kvm_stats_debugfs_item *p;
1886
1887         for (p = debugfs_entries; p->name; ++p)
1888                 debugfs_remove(p->dentry);
1889         debugfs_remove(debugfs_dir);
1890 }
1891
1892 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1893 {
1894         hardware_disable(NULL);
1895         return 0;
1896 }
1897
1898 static int kvm_resume(struct sys_device *dev)
1899 {
1900         hardware_enable(NULL);
1901         return 0;
1902 }
1903
1904 static struct sysdev_class kvm_sysdev_class = {
1905         .name = "kvm",
1906         .suspend = kvm_suspend,
1907         .resume = kvm_resume,
1908 };
1909
1910 static struct sys_device kvm_sysdev = {
1911         .id = 0,
1912         .cls = &kvm_sysdev_class,
1913 };
1914
1915 struct page *bad_page;
1916
1917 static inline
1918 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1919 {
1920         return container_of(pn, struct kvm_vcpu, preempt_notifier);
1921 }
1922
1923 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1924 {
1925         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1926
1927         kvm_x86_ops->vcpu_load(vcpu, cpu);
1928 }
1929
1930 static void kvm_sched_out(struct preempt_notifier *pn,
1931                           struct task_struct *next)
1932 {
1933         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1934
1935         kvm_x86_ops->vcpu_put(vcpu);
1936 }
1937
1938 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
1939                   struct module *module)
1940 {
1941         int r;
1942         int cpu;
1943
1944         if (kvm_x86_ops) {
1945                 printk(KERN_ERR "kvm: already loaded the other module\n");
1946                 return -EEXIST;
1947         }
1948
1949         if (!ops->cpu_has_kvm_support()) {
1950                 printk(KERN_ERR "kvm: no hardware support\n");
1951                 return -EOPNOTSUPP;
1952         }
1953         if (ops->disabled_by_bios()) {
1954                 printk(KERN_ERR "kvm: disabled by bios\n");
1955                 return -EOPNOTSUPP;
1956         }
1957
1958         kvm_x86_ops = ops;
1959
1960         r = kvm_x86_ops->hardware_setup();
1961         if (r < 0)
1962                 goto out;
1963
1964         for_each_online_cpu(cpu) {
1965                 smp_call_function_single(cpu,
1966                                 kvm_x86_ops->check_processor_compatibility,
1967                                 &r, 0, 1);
1968                 if (r < 0)
1969                         goto out_free_0;
1970         }
1971
1972         on_each_cpu(hardware_enable, NULL, 0, 1);
1973         r = register_cpu_notifier(&kvm_cpu_notifier);
1974         if (r)
1975                 goto out_free_1;
1976         register_reboot_notifier(&kvm_reboot_notifier);
1977
1978         r = sysdev_class_register(&kvm_sysdev_class);
1979         if (r)
1980                 goto out_free_2;
1981
1982         r = sysdev_register(&kvm_sysdev);
1983         if (r)
1984                 goto out_free_3;
1985
1986         /* A kmem cache lets us meet the alignment requirements of fx_save. */
1987         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1988                                            __alignof__(struct kvm_vcpu), 0, 0);
1989         if (!kvm_vcpu_cache) {
1990                 r = -ENOMEM;
1991                 goto out_free_4;
1992         }
1993
1994         kvm_chardev_ops.owner = module;
1995
1996         r = misc_register(&kvm_dev);
1997         if (r) {
1998                 printk(KERN_ERR "kvm: misc device register failed\n");
1999                 goto out_free;
2000         }
2001
2002         kvm_preempt_ops.sched_in = kvm_sched_in;
2003         kvm_preempt_ops.sched_out = kvm_sched_out;
2004
2005         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2006
2007         return 0;
2008
2009 out_free:
2010         kmem_cache_destroy(kvm_vcpu_cache);
2011 out_free_4:
2012         sysdev_unregister(&kvm_sysdev);
2013 out_free_3:
2014         sysdev_class_unregister(&kvm_sysdev_class);
2015 out_free_2:
2016         unregister_reboot_notifier(&kvm_reboot_notifier);
2017         unregister_cpu_notifier(&kvm_cpu_notifier);
2018 out_free_1:
2019         on_each_cpu(hardware_disable, NULL, 0, 1);
2020 out_free_0:
2021         kvm_x86_ops->hardware_unsetup();
2022 out:
2023         kvm_x86_ops = NULL;
2024         return r;
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_init_x86);
2027
2028 void kvm_exit_x86(void)
2029 {
2030         misc_deregister(&kvm_dev);
2031         kmem_cache_destroy(kvm_vcpu_cache);
2032         sysdev_unregister(&kvm_sysdev);
2033         sysdev_class_unregister(&kvm_sysdev_class);
2034         unregister_reboot_notifier(&kvm_reboot_notifier);
2035         unregister_cpu_notifier(&kvm_cpu_notifier);
2036         on_each_cpu(hardware_disable, NULL, 0, 1);
2037         kvm_x86_ops->hardware_unsetup();
2038         kvm_x86_ops = NULL;
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_exit_x86);
2041
2042 static __init int kvm_init(void)
2043 {
2044         int r;
2045
2046         r = kvm_mmu_module_init();
2047         if (r)
2048                 goto out4;
2049
2050         kvm_init_debug();
2051
2052         kvm_arch_init();
2053
2054         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2055
2056         if (bad_page == NULL) {
2057                 r = -ENOMEM;
2058                 goto out;
2059         }
2060
2061         return 0;
2062
2063 out:
2064         kvm_exit_debug();
2065         kvm_mmu_module_exit();
2066 out4:
2067         return r;
2068 }
2069
2070 static __exit void kvm_exit(void)
2071 {
2072         kvm_exit_debug();
2073         __free_page(bad_page);
2074         kvm_mmu_module_exit();
2075 }
2076
2077 module_init(kvm_init)
2078 module_exit(kvm_exit)