1 /* bnx2x_init.h: Broadcom Everest network driver.
3 * Copyright (c) 2007-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
20 #define INIT_EMULATION 0x1
23 #define INIT_HARDWARE 0x7
25 #define STORM_INTMEM_SIZE_E1 (0x5800 / 4)
26 #define STORM_INTMEM_SIZE_E1H (0x10000 / 4)
27 #define TSTORM_INTMEM_ADDR 0x1a0000
28 #define CSTORM_INTMEM_ADDR 0x220000
29 #define XSTORM_INTMEM_ADDR 0x2a0000
30 #define USTORM_INTMEM_ADDR 0x320000
33 /* Init operation types and structures */
34 /* Common for both E1 and E1H */
35 #define OP_RD 0x1 /* read single register */
36 #define OP_WR 0x2 /* write single register */
37 #define OP_IW 0x3 /* write single register using mailbox */
38 #define OP_SW 0x4 /* copy a string to the device */
39 #define OP_SI 0x5 /* copy a string using mailbox */
40 #define OP_ZR 0x6 /* clear memory */
41 #define OP_ZP 0x7 /* unzip then copy with DMAE */
42 #define OP_WR_64 0x8 /* write 64 bit pattern */
43 #define OP_WB 0x9 /* copy a string using DMAE */
45 /* Operation specific for E1 */
46 #define OP_RD_E1 0xa /* read single register */
47 #define OP_WR_E1 0xb /* write single register */
48 #define OP_IW_E1 0xc /* write single register using mailbox */
49 #define OP_SW_E1 0xd /* copy a string to the device */
50 #define OP_SI_E1 0xe /* copy a string using mailbox */
51 #define OP_ZR_E1 0xf /* clear memory */
52 #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
53 #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
54 #define OP_WB_E1 0x12 /* copy a string using DMAE */
56 /* Operation specific for E1H */
57 #define OP_RD_E1H 0x13 /* read single register */
58 #define OP_WR_E1H 0x14 /* write single register */
59 #define OP_IW_E1H 0x15 /* write single register using mailbox */
60 #define OP_SW_E1H 0x16 /* copy a string to the device */
61 #define OP_SI_E1H 0x17 /* copy a string using mailbox */
62 #define OP_ZR_E1H 0x18 /* clear memory */
63 #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
64 #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
65 #define OP_WB_E1H 0x1b /* copy a string using DMAE */
67 /* FPGA and EMUL specific operations */
68 #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
69 #define OP_WR_EMUL 0x1d /* write single register on Emulation */
70 #define OP_WR_FPGA 0x1e /* write single register on FPGA */
71 #define OP_WR_ASIC 0x1f /* write single register on ASIC */
92 struct op_string_write {
95 #ifdef __LITTLE_ENDIAN
98 #else /* __BIG_ENDIAN */
112 struct op_write write;
113 struct op_string_write str_wr;
118 #include "bnx2x_init_values.h"
120 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
121 static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
123 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
128 for (i = 0; i < len; i++) {
129 REG_WR(bp, addr + i*4, data[i]);
131 touch_softlockup_watchdog();
137 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
142 for (i = 0; i < len; i++) {
143 REG_WR_IND(bp, addr + i*4, data[i]);
145 touch_softlockup_watchdog();
151 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
156 if (bp->dmae_ready) {
157 while (len > DMAE_LEN32_WR_MAX) {
158 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
159 addr + offset, DMAE_LEN32_WR_MAX);
160 offset += DMAE_LEN32_WR_MAX * 4;
161 len -= DMAE_LEN32_WR_MAX;
163 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
166 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
168 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
172 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
174 if ((len * 4) > FW_BUF_SIZE) {
175 BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n",
179 memset(bp->gunzip_buf, fill, len * 4);
181 bnx2x_write_big_buf(bp, addr, len);
184 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
187 u32 buf_len32 = FW_BUF_SIZE/4;
192 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
193 data64 = HILO_U64((*(data + 1)), (*data));
194 len64 = min((u32)(FW_BUF_SIZE/8), len64);
195 for (i = 0; i < len64; i++) {
196 u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
201 for (i = 0; i < len; i += buf_len32) {
202 u32 cur_len = min(buf_len32, len - i);
204 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
208 /*********************************************************
209 There are different blobs for each PRAM section.
210 In addition, each blob write operation is divided into a few operations
211 in order to decrease the amount of phys. contigious buffer needed.
212 Thus, when we select a blob the address may be with some offset
213 from the beginning of PRAM section.
214 The same holds for the INT_TABLE sections.
215 **********************************************************/
216 #define IF_IS_INT_TABLE_ADDR(base, addr) \
217 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
219 #define IF_IS_PRAM_ADDR(base, addr) \
220 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
222 static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
224 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
225 data = is_e1 ? tsem_int_table_data_e1 :
226 tsem_int_table_data_e1h;
228 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
229 data = is_e1 ? csem_int_table_data_e1 :
230 csem_int_table_data_e1h;
232 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
233 data = is_e1 ? usem_int_table_data_e1 :
234 usem_int_table_data_e1h;
236 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
237 data = is_e1 ? xsem_int_table_data_e1 :
238 xsem_int_table_data_e1h;
240 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
241 data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
243 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
244 data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
246 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
247 data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
249 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
250 data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
255 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
256 u32 len, int gunzip, int is_e1, u32 blob_off)
260 data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
268 temp = kmalloc(len, GFP_KERNEL);
269 size = (len / 4) + ((len % 4) ? 1 : 0);
270 for (i = 0; i < size; i++)
271 temp[i] = swab32(data[i]);
274 rc = bnx2x_gunzip(bp, (u8 *)data, len);
276 BNX2X_ERR("gunzip failed ! rc %d\n", rc);
279 len = bp->gunzip_outlen;
282 for (i = 0; i < len; i++)
283 ((u32 *)bp->gunzip_buf)[i] =
284 swab32(((u32 *)bp->gunzip_buf)[i]);
287 if ((len * 4) > FW_BUF_SIZE) {
288 BNX2X_ERR("LARGE DMAE OPERATION ! "
289 "addr 0x%x len 0x%x\n", addr, len*4);
292 memcpy(bp->gunzip_buf, data, len * 4);
295 if (bp->dmae_ready) {
296 while (len > DMAE_LEN32_WR_MAX) {
297 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
298 addr + offset, DMAE_LEN32_WR_MAX);
299 offset += DMAE_LEN32_WR_MAX * 4;
300 len -= DMAE_LEN32_WR_MAX;
302 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
305 bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
308 static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
310 int is_e1 = CHIP_IS_E1(bp);
311 int is_e1h = CHIP_IS_E1H(bp);
312 int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
315 u32 op_type, addr, len;
316 const u32 *data, *data_base;
318 if (CHIP_REV_IS_FPGA(bp))
320 else if (CHIP_REV_IS_EMUL(bp))
326 data_base = init_data_e1;
327 else /* CHIP_IS_E1H(bp) */
328 data_base = init_data_e1h;
330 for (i = op_start; i < op_end; i++) {
332 op = (union init_op *)&(init_ops[i]);
334 op_type = op->str_wr.op;
335 addr = op->str_wr.offset;
336 len = op->str_wr.data_len;
337 data = data_base + op->str_wr.data_off;
339 /* carefull! it must be in order */
340 if (unlikely(op_type > OP_WB)) {
343 if (op_type <= OP_WB_E1) {
345 op_type -= (OP_RD_E1 - OP_RD);
348 } else if (op_type <= OP_WB_E1H) {
350 op_type -= (OP_RD_E1H - OP_RD);
353 /* HW/EMUL specific */
354 if (op_type == hw_wr)
357 /* EMUL on E1H is special */
358 if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
367 REG_WR(bp, addr, op->write.val);
370 bnx2x_init_str_wr(bp, addr, data, len);
373 bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
376 bnx2x_init_ind_wr(bp, addr, data, len);
379 bnx2x_init_fill(bp, addr, 0, op->zero.len);
382 bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
383 op->str_wr.data_off);
386 bnx2x_init_wr_64(bp, addr, data, len);
389 /* happens whenever an op is of a diff HW */
391 DP(NETIF_MSG_HW, "skipping init operation "
392 "index %d[%d:%d]: type %d addr 0x%x "
394 i, op_start, op_end, op_type, addr, len, len);
402 /****************************************************************************
404 ****************************************************************************/
406 * This code configures the PCI read/write arbiter
407 * which implements a weighted round robin
408 * between the virtual queues in the chip.
410 * The values were derived for each PCI max payload and max request size.
411 * since max payload and max request size are only known at run time,
412 * this is done as a separate init stage.
420 /* configuration for one arbiter queue */
427 /* derived configuration for each read queue for each max request size */
428 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
429 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
430 {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
431 {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
432 {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
433 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
434 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
435 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
436 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
437 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
438 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
439 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
440 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
441 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
442 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
443 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
444 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
445 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
446 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
447 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
448 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
449 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
450 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
451 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
452 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
453 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
454 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
455 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
456 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
457 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
460 /* derived configuration for each write queue for each max request size */
461 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
462 {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
463 {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
464 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
465 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
466 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
467 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
468 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
469 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
470 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
471 {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
472 {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
473 {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
474 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
477 /* register addresses for read queues */
478 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
479 {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
480 PXP2_REG_RQ_BW_RD_UBOUND0},
481 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
482 PXP2_REG_PSWRQ_BW_UB1},
483 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
484 PXP2_REG_PSWRQ_BW_UB2},
485 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
486 PXP2_REG_PSWRQ_BW_UB3},
487 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
488 PXP2_REG_RQ_BW_RD_UBOUND4},
489 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
490 PXP2_REG_RQ_BW_RD_UBOUND5},
491 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
492 PXP2_REG_PSWRQ_BW_UB6},
493 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
494 PXP2_REG_PSWRQ_BW_UB7},
495 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
496 PXP2_REG_PSWRQ_BW_UB8},
497 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
498 PXP2_REG_PSWRQ_BW_UB9},
499 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
500 PXP2_REG_PSWRQ_BW_UB10},
501 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
502 PXP2_REG_PSWRQ_BW_UB11},
503 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
504 PXP2_REG_RQ_BW_RD_UBOUND12},
505 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
506 PXP2_REG_RQ_BW_RD_UBOUND13},
507 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
508 PXP2_REG_RQ_BW_RD_UBOUND14},
509 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
510 PXP2_REG_RQ_BW_RD_UBOUND15},
511 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
512 PXP2_REG_RQ_BW_RD_UBOUND16},
513 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
514 PXP2_REG_RQ_BW_RD_UBOUND17},
515 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
516 PXP2_REG_RQ_BW_RD_UBOUND18},
517 {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
518 PXP2_REG_RQ_BW_RD_UBOUND19},
519 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
520 PXP2_REG_RQ_BW_RD_UBOUND20},
521 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
522 PXP2_REG_RQ_BW_RD_UBOUND22},
523 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
524 PXP2_REG_RQ_BW_RD_UBOUND23},
525 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
526 PXP2_REG_RQ_BW_RD_UBOUND24},
527 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
528 PXP2_REG_RQ_BW_RD_UBOUND25},
529 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
530 PXP2_REG_RQ_BW_RD_UBOUND26},
531 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
532 PXP2_REG_RQ_BW_RD_UBOUND27},
533 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
534 PXP2_REG_PSWRQ_BW_UB28}
537 /* register addresses for write queues */
538 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
539 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
540 PXP2_REG_PSWRQ_BW_UB1},
541 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
542 PXP2_REG_PSWRQ_BW_UB2},
543 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
544 PXP2_REG_PSWRQ_BW_UB3},
545 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
546 PXP2_REG_PSWRQ_BW_UB6},
547 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
548 PXP2_REG_PSWRQ_BW_UB7},
549 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
550 PXP2_REG_PSWRQ_BW_UB8},
551 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
552 PXP2_REG_PSWRQ_BW_UB9},
553 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
554 PXP2_REG_PSWRQ_BW_UB10},
555 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
556 PXP2_REG_PSWRQ_BW_UB11},
557 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
558 PXP2_REG_PSWRQ_BW_UB28},
559 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
560 PXP2_REG_RQ_BW_WR_UBOUND29},
561 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
562 PXP2_REG_RQ_BW_WR_UBOUND30}
565 static void bnx2x_init_pxp(struct bnx2x *bp)
567 int r_order, w_order;
570 pci_read_config_word(bp->pdev,
571 bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val);
572 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", (u16)val);
573 w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
574 r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12);
576 if (r_order > MAX_RD_ORD) {
577 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
578 r_order, MAX_RD_ORD);
579 r_order = MAX_RD_ORD;
581 if (w_order > MAX_WR_ORD) {
582 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
583 w_order, MAX_WR_ORD);
584 w_order = MAX_WR_ORD;
586 if (CHIP_REV_IS_FPGA(bp)) {
587 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
590 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
592 for (i = 0; i < NUM_RD_Q-1; i++) {
593 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
594 REG_WR(bp, read_arb_addr[i].add,
595 read_arb_data[i][r_order].add);
596 REG_WR(bp, read_arb_addr[i].ubound,
597 read_arb_data[i][r_order].ubound);
600 for (i = 0; i < NUM_WR_Q-1; i++) {
601 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
602 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
604 REG_WR(bp, write_arb_addr[i].l,
605 write_arb_data[i][w_order].l);
607 REG_WR(bp, write_arb_addr[i].add,
608 write_arb_data[i][w_order].add);
610 REG_WR(bp, write_arb_addr[i].ubound,
611 write_arb_data[i][w_order].ubound);
614 val = REG_RD(bp, write_arb_addr[i].l);
615 REG_WR(bp, write_arb_addr[i].l,
616 val | (write_arb_data[i][w_order].l << 10));
618 val = REG_RD(bp, write_arb_addr[i].add);
619 REG_WR(bp, write_arb_addr[i].add,
620 val | (write_arb_data[i][w_order].add << 10));
622 val = REG_RD(bp, write_arb_addr[i].ubound);
623 REG_WR(bp, write_arb_addr[i].ubound,
624 val | (write_arb_data[i][w_order].ubound << 7));
628 val = write_arb_data[NUM_WR_Q-1][w_order].add;
629 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
630 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
631 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
633 val = read_arb_data[NUM_RD_Q-1][r_order].add;
634 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
635 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
636 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
638 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
639 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
640 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
641 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
643 if (r_order == MAX_RD_ORD)
644 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
646 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
648 if (CHIP_IS_E1H(bp)) {
649 REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1);
650 REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1);
651 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1);
652 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1);
653 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1);
654 REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1);
655 REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1);
656 REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1);
657 REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1);
658 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
659 REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1);
664 /****************************************************************************
666 ****************************************************************************/
668 #define CDU_REGION_NUMBER_XCM_AG 2
669 #define CDU_REGION_NUMBER_UCM_AG 4
672 * String-to-compress [31:8] = CID (all 24 bits)
673 * String-to-compress [7:4] = Region
674 * String-to-compress [3:0] = Type
676 #define CDU_VALID_DATA(_cid, _region, _type) \
677 (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
678 #define CDU_CRC8(_cid, _region, _type) \
679 calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
680 #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
681 (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
682 #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
683 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
684 #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
686 /*****************************************************************************
688 * Calculates crc 8 on a word value: polynomial 0-1-2-8
689 * Code was translated from Verilog.
690 ****************************************************************************/
691 static u8 calc_crc8(u32 data, u8 crc)
699 /* split the data into 31 bits */
700 for (i = 0; i < 32; i++) {
705 /* split the crc into 8 bits */
706 for (i = 0; i < 8; i++) {
711 NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
712 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
714 NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
715 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
716 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
717 NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
718 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
719 C[0] ^ C[1] ^ C[4] ^ C[5];
720 NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
721 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
722 C[1] ^ C[2] ^ C[5] ^ C[6];
723 NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
724 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
725 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
726 NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
727 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
729 NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
730 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
732 NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
733 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
737 for (i = 0; i < 8; i++)
738 crc_res |= (NewCRC[i] << i);
743 /* regiesers addresses are not in order
744 so these arrays help simplify the code */
745 static const int cm_start[E1H_FUNC_MAX][9] = {
746 {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
747 XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
749 {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
750 XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
752 {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
753 XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
755 {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
756 XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
758 {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
759 XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
761 {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
762 XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
764 {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
765 XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
767 {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
768 XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
772 static const int cm_end[E1H_FUNC_MAX][9] = {
773 {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
774 XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
776 {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
777 XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
779 {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
780 XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
782 {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
783 XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
785 {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
786 XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
788 {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
789 XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
791 {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
792 XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
794 {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
795 XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
799 static const int hc_limits[E1H_FUNC_MAX][2] = {
800 {HC_FUNC0_START, HC_FUNC0_END},
801 {HC_FUNC1_START, HC_FUNC1_END},
802 {HC_FUNC2_START, HC_FUNC2_END},
803 {HC_FUNC3_START, HC_FUNC3_END},
804 {HC_FUNC4_START, HC_FUNC4_END},
805 {HC_FUNC5_START, HC_FUNC5_END},
806 {HC_FUNC6_START, HC_FUNC6_END},
807 {HC_FUNC7_START, HC_FUNC7_END}
810 #endif /* BNX2X_INIT_H */