]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/cxgb3/cxgb3_offload.c
cxgb3: manage private iSCSI IP address
[linux-2.6-omap-h63xx.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
42
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
51
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
55
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
58
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
61
62 static inline int offload_activated(struct t3cdev *tdev)
63 {
64         const struct adapter *adapter = tdev2adap(tdev);
65
66         return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
67 }
68
69 /**
70  *      cxgb3_register_client - register an offload client
71  *      @client: the client
72  *
73  *      Add the client to the client list,
74  *      and call backs the client for each activated offload device
75  */
76 void cxgb3_register_client(struct cxgb3_client *client)
77 {
78         struct t3cdev *tdev;
79
80         mutex_lock(&cxgb3_db_lock);
81         list_add_tail(&client->client_list, &client_list);
82
83         if (client->add) {
84                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85                         if (offload_activated(tdev))
86                                 client->add(tdev);
87                 }
88         }
89         mutex_unlock(&cxgb3_db_lock);
90 }
91
92 EXPORT_SYMBOL(cxgb3_register_client);
93
94 /**
95  *      cxgb3_unregister_client - unregister an offload client
96  *      @client: the client
97  *
98  *      Remove the client to the client list,
99  *      and call backs the client for each activated offload device.
100  */
101 void cxgb3_unregister_client(struct cxgb3_client *client)
102 {
103         struct t3cdev *tdev;
104
105         mutex_lock(&cxgb3_db_lock);
106         list_del(&client->client_list);
107
108         if (client->remove) {
109                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110                         if (offload_activated(tdev))
111                                 client->remove(tdev);
112                 }
113         }
114         mutex_unlock(&cxgb3_db_lock);
115 }
116
117 EXPORT_SYMBOL(cxgb3_unregister_client);
118
119 /**
120  *      cxgb3_add_clients - activate registered clients for an offload device
121  *      @tdev: the offload device
122  *
123  *      Call backs all registered clients once a offload device is activated
124  */
125 void cxgb3_add_clients(struct t3cdev *tdev)
126 {
127         struct cxgb3_client *client;
128
129         mutex_lock(&cxgb3_db_lock);
130         list_for_each_entry(client, &client_list, client_list) {
131                 if (client->add)
132                         client->add(tdev);
133         }
134         mutex_unlock(&cxgb3_db_lock);
135 }
136
137 /**
138  *      cxgb3_remove_clients - deactivates registered clients
139  *                             for an offload device
140  *      @tdev: the offload device
141  *
142  *      Call backs all registered clients once a offload device is deactivated
143  */
144 void cxgb3_remove_clients(struct t3cdev *tdev)
145 {
146         struct cxgb3_client *client;
147
148         mutex_lock(&cxgb3_db_lock);
149         list_for_each_entry(client, &client_list, client_list) {
150                 if (client->remove)
151                         client->remove(tdev);
152         }
153         mutex_unlock(&cxgb3_db_lock);
154 }
155
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157                                            const unsigned char *mac,
158                                            unsigned int vlan)
159 {
160         int i;
161
162         for_each_port(adapter, i) {
163                 struct vlan_group *grp;
164                 struct net_device *dev = adapter->port[i];
165                 const struct port_info *p = netdev_priv(dev);
166
167                 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168                         if (vlan && vlan != VLAN_VID_MASK) {
169                                 grp = p->vlan_grp;
170                                 dev = NULL;
171                                 if (grp)
172                                         dev = vlan_group_get_device(grp, vlan);
173                         } else
174                                 while (dev->master)
175                                         dev = dev->master;
176                         return dev;
177                 }
178         }
179         return NULL;
180 }
181
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
183                               void *data)
184 {
185         int i;
186         int ret = 0;
187         unsigned int val = 0;
188         struct ulp_iscsi_info *uiip = data;
189
190         switch (req) {
191         case ULP_ISCSI_GET_PARAMS:
192                 uiip->pdev = adapter->pdev;
193                 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
194                 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
195                 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
196
197                 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
198                 for (i = 0; i < 4; i++, val >>= 8)
199                         uiip->pgsz_factor[i] = val & 0xFF;
200
201                 val = t3_read_reg(adapter, A_TP_PARA_REG7);
202                 uiip->max_txsz =
203                 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
204                                      (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
205                 /*
206                  * On tx, the iscsi pdu has to be <= tx page size and has to
207                  * fit into the Tx PM FIFO.
208                  */
209                 val = min(adapter->params.tp.tx_pg_size,
210                           t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
211                 uiip->max_txsz = min(val, uiip->max_txsz);
212
213                 /* set MaxRxData to 16224 */
214                 val = t3_read_reg(adapter, A_TP_PARA_REG2);
215                 if ((val >> S_MAXRXDATA) != 0x3f60) {
216                         val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
217                         val |= V_MAXRXDATA(0x3f60);
218                         printk(KERN_INFO
219                                 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
220                                 adapter->name, val);
221                         t3_write_reg(adapter, A_TP_PARA_REG2, val);
222                 }
223
224                 /*
225                  * on rx, the iscsi pdu has to be < rx page size and the
226                  * the max rx data length programmed in TP
227                  */
228                 val = min(adapter->params.tp.rx_pg_size,
229                           ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
230                                 S_MAXRXDATA) & M_MAXRXDATA);
231                 uiip->max_rxsz = min(val, uiip->max_rxsz);
232                 break;
233         case ULP_ISCSI_SET_PARAMS:
234                 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
235                 /* program the ddp page sizes */
236                 for (i = 0; i < 4; i++)
237                         val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
238                 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
239                         printk(KERN_INFO
240                                 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
241                                 adapter->name, val, uiip->pgsz_factor[0],
242                                 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
243                                 uiip->pgsz_factor[3]);
244                         t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
245                 }
246                 break;
247         default:
248                 ret = -EOPNOTSUPP;
249         }
250         return ret;
251 }
252
253 /* Response queue used for RDMA events. */
254 #define ASYNC_NOTIF_RSPQ 0
255
256 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
257 {
258         int ret = 0;
259
260         switch (req) {
261         case RDMA_GET_PARAMS: {
262                 struct rdma_info *rdma = data;
263                 struct pci_dev *pdev = adapter->pdev;
264
265                 rdma->udbell_physbase = pci_resource_start(pdev, 2);
266                 rdma->udbell_len = pci_resource_len(pdev, 2);
267                 rdma->tpt_base =
268                         t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
269                 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
270                 rdma->pbl_base =
271                         t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
272                 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
273                 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
274                 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
275                 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
276                 rdma->pdev = pdev;
277                 break;
278         }
279         case RDMA_CQ_OP:{
280                 unsigned long flags;
281                 struct rdma_cq_op *rdma = data;
282
283                 /* may be called in any context */
284                 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
285                 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
286                                         rdma->credits);
287                 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
288                 break;
289         }
290         case RDMA_GET_MEM:{
291                 struct ch_mem_range *t = data;
292                 struct mc7 *mem;
293
294                 if ((t->addr & 7) || (t->len & 7))
295                         return -EINVAL;
296                 if (t->mem_id == MEM_CM)
297                         mem = &adapter->cm;
298                 else if (t->mem_id == MEM_PMRX)
299                         mem = &adapter->pmrx;
300                 else if (t->mem_id == MEM_PMTX)
301                         mem = &adapter->pmtx;
302                 else
303                         return -EINVAL;
304
305                 ret =
306                         t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
307                                         (u64 *) t->buf);
308                 if (ret)
309                         return ret;
310                 break;
311         }
312         case RDMA_CQ_SETUP:{
313                 struct rdma_cq_setup *rdma = data;
314
315                 spin_lock_irq(&adapter->sge.reg_lock);
316                 ret =
317                         t3_sge_init_cqcntxt(adapter, rdma->id,
318                                         rdma->base_addr, rdma->size,
319                                         ASYNC_NOTIF_RSPQ,
320                                         rdma->ovfl_mode, rdma->credits,
321                                         rdma->credit_thres);
322                 spin_unlock_irq(&adapter->sge.reg_lock);
323                 break;
324         }
325         case RDMA_CQ_DISABLE:
326                 spin_lock_irq(&adapter->sge.reg_lock);
327                 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
328                 spin_unlock_irq(&adapter->sge.reg_lock);
329                 break;
330         case RDMA_CTRL_QP_SETUP:{
331                 struct rdma_ctrlqp_setup *rdma = data;
332
333                 spin_lock_irq(&adapter->sge.reg_lock);
334                 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
335                                                 SGE_CNTXT_RDMA,
336                                                 ASYNC_NOTIF_RSPQ,
337                                                 rdma->base_addr, rdma->size,
338                                                 FW_RI_TID_START, 1, 0);
339                 spin_unlock_irq(&adapter->sge.reg_lock);
340                 break;
341         }
342         case RDMA_GET_MIB: {
343                 spin_lock(&adapter->stats_lock);
344                 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
345                 spin_unlock(&adapter->stats_lock);
346                 break;
347         }
348         default:
349                 ret = -EOPNOTSUPP;
350         }
351         return ret;
352 }
353
354 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
355 {
356         struct adapter *adapter = tdev2adap(tdev);
357         struct tid_range *tid;
358         struct mtutab *mtup;
359         struct iff_mac *iffmacp;
360         struct ddp_params *ddpp;
361         struct adap_ports *ports;
362         struct ofld_page_info *rx_page_info;
363         struct tp_params *tp = &adapter->params.tp;
364         int i;
365
366         switch (req) {
367         case GET_MAX_OUTSTANDING_WR:
368                 *(unsigned int *)data = FW_WR_NUM;
369                 break;
370         case GET_WR_LEN:
371                 *(unsigned int *)data = WR_FLITS;
372                 break;
373         case GET_TX_MAX_CHUNK:
374                 *(unsigned int *)data = 1 << 20;        /* 1MB */
375                 break;
376         case GET_TID_RANGE:
377                 tid = data;
378                 tid->num = t3_mc5_size(&adapter->mc5) -
379                     adapter->params.mc5.nroutes -
380                     adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
381                 tid->base = 0;
382                 break;
383         case GET_STID_RANGE:
384                 tid = data;
385                 tid->num = adapter->params.mc5.nservers;
386                 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
387                     adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
388                 break;
389         case GET_L2T_CAPACITY:
390                 *(unsigned int *)data = 2048;
391                 break;
392         case GET_MTUS:
393                 mtup = data;
394                 mtup->size = NMTUS;
395                 mtup->mtus = adapter->params.mtus;
396                 break;
397         case GET_IFF_FROM_MAC:
398                 iffmacp = data;
399                 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
400                                                 iffmacp->vlan_tag &
401                                                 VLAN_VID_MASK);
402                 break;
403         case GET_DDP_PARAMS:
404                 ddpp = data;
405                 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
406                 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
407                 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
408                 break;
409         case GET_PORTS:
410                 ports = data;
411                 ports->nports = adapter->params.nports;
412                 for_each_port(adapter, i)
413                         ports->lldevs[i] = adapter->port[i];
414                 break;
415         case ULP_ISCSI_GET_PARAMS:
416         case ULP_ISCSI_SET_PARAMS:
417                 if (!offload_running(adapter))
418                         return -EAGAIN;
419                 return cxgb_ulp_iscsi_ctl(adapter, req, data);
420         case RDMA_GET_PARAMS:
421         case RDMA_CQ_OP:
422         case RDMA_CQ_SETUP:
423         case RDMA_CQ_DISABLE:
424         case RDMA_CTRL_QP_SETUP:
425         case RDMA_GET_MEM:
426         case RDMA_GET_MIB:
427                 if (!offload_running(adapter))
428                         return -EAGAIN;
429                 return cxgb_rdma_ctl(adapter, req, data);
430         case GET_RX_PAGE_INFO:
431                 rx_page_info = data;
432                 rx_page_info->page_size = tp->rx_pg_size;
433                 rx_page_info->num = tp->rx_num_pgs;
434                 break;
435         case GET_ISCSI_IPV4ADDR: {
436                 struct iscsi_ipv4addr *p = data;
437                 struct port_info *pi = netdev_priv(p->dev);
438                 p->ipv4addr = pi->iscsi_ipv4addr;
439                 break;
440         }
441         default:
442                 return -EOPNOTSUPP;
443         }
444         return 0;
445 }
446
447 /*
448  * Dummy handler for Rx offload packets in case we get an offload packet before
449  * proper processing is setup.  This complains and drops the packet as it isn't
450  * normal to get offload packets at this stage.
451  */
452 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
453                                 int n)
454 {
455         while (n--)
456                 dev_kfree_skb_any(skbs[n]);
457         return 0;
458 }
459
460 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
461 {
462 }
463
464 void cxgb3_set_dummy_ops(struct t3cdev *dev)
465 {
466         dev->recv = rx_offload_blackhole;
467         dev->neigh_update = dummy_neigh_update;
468 }
469
470 /*
471  * Free an active-open TID.
472  */
473 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
474 {
475         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
476         union active_open_entry *p = atid2entry(t, atid);
477         void *ctx = p->t3c_tid.ctx;
478
479         spin_lock_bh(&t->atid_lock);
480         p->next = t->afree;
481         t->afree = p;
482         t->atids_in_use--;
483         spin_unlock_bh(&t->atid_lock);
484
485         return ctx;
486 }
487
488 EXPORT_SYMBOL(cxgb3_free_atid);
489
490 /*
491  * Free a server TID and return it to the free pool.
492  */
493 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
494 {
495         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
496         union listen_entry *p = stid2entry(t, stid);
497
498         spin_lock_bh(&t->stid_lock);
499         p->next = t->sfree;
500         t->sfree = p;
501         t->stids_in_use--;
502         spin_unlock_bh(&t->stid_lock);
503 }
504
505 EXPORT_SYMBOL(cxgb3_free_stid);
506
507 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
508                       void *ctx, unsigned int tid)
509 {
510         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
511
512         t->tid_tab[tid].client = client;
513         t->tid_tab[tid].ctx = ctx;
514         atomic_inc(&t->tids_in_use);
515 }
516
517 EXPORT_SYMBOL(cxgb3_insert_tid);
518
519 /*
520  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
521  */
522 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
523 {
524         struct cpl_tid_release *req;
525
526         skb->priority = CPL_PRIORITY_SETUP;
527         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
528         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
529         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
530 }
531
532 static void t3_process_tid_release_list(struct work_struct *work)
533 {
534         struct t3c_data *td = container_of(work, struct t3c_data,
535                                            tid_release_task);
536         struct sk_buff *skb;
537         struct t3cdev *tdev = td->dev;
538
539
540         spin_lock_bh(&td->tid_release_lock);
541         while (td->tid_release_list) {
542                 struct t3c_tid_entry *p = td->tid_release_list;
543
544                 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
545                 spin_unlock_bh(&td->tid_release_lock);
546
547                 skb = alloc_skb(sizeof(struct cpl_tid_release),
548                                 GFP_KERNEL | __GFP_NOFAIL);
549                 mk_tid_release(skb, p - td->tid_maps.tid_tab);
550                 cxgb3_ofld_send(tdev, skb);
551                 p->ctx = NULL;
552                 spin_lock_bh(&td->tid_release_lock);
553         }
554         spin_unlock_bh(&td->tid_release_lock);
555 }
556
557 /* use ctx as a next pointer in the tid release list */
558 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
559 {
560         struct t3c_data *td = T3C_DATA(tdev);
561         struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
562
563         spin_lock_bh(&td->tid_release_lock);
564         p->ctx = (void *)td->tid_release_list;
565         p->client = NULL;
566         td->tid_release_list = p;
567         if (!p->ctx)
568                 schedule_work(&td->tid_release_task);
569         spin_unlock_bh(&td->tid_release_lock);
570 }
571
572 EXPORT_SYMBOL(cxgb3_queue_tid_release);
573
574 /*
575  * Remove a tid from the TID table.  A client may defer processing its last
576  * CPL message if it is locked at the time it arrives, and while the message
577  * sits in the client's backlog the TID may be reused for another connection.
578  * To handle this we atomically switch the TID association if it still points
579  * to the original client context.
580  */
581 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
582 {
583         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
584
585         BUG_ON(tid >= t->ntids);
586         if (tdev->type == T3A)
587                 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
588         else {
589                 struct sk_buff *skb;
590
591                 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
592                 if (likely(skb)) {
593                         mk_tid_release(skb, tid);
594                         cxgb3_ofld_send(tdev, skb);
595                         t->tid_tab[tid].ctx = NULL;
596                 } else
597                         cxgb3_queue_tid_release(tdev, tid);
598         }
599         atomic_dec(&t->tids_in_use);
600 }
601
602 EXPORT_SYMBOL(cxgb3_remove_tid);
603
604 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
605                      void *ctx)
606 {
607         int atid = -1;
608         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
609
610         spin_lock_bh(&t->atid_lock);
611         if (t->afree &&
612             t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
613             t->ntids) {
614                 union active_open_entry *p = t->afree;
615
616                 atid = (p - t->atid_tab) + t->atid_base;
617                 t->afree = p->next;
618                 p->t3c_tid.ctx = ctx;
619                 p->t3c_tid.client = client;
620                 t->atids_in_use++;
621         }
622         spin_unlock_bh(&t->atid_lock);
623         return atid;
624 }
625
626 EXPORT_SYMBOL(cxgb3_alloc_atid);
627
628 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
629                      void *ctx)
630 {
631         int stid = -1;
632         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
633
634         spin_lock_bh(&t->stid_lock);
635         if (t->sfree) {
636                 union listen_entry *p = t->sfree;
637
638                 stid = (p - t->stid_tab) + t->stid_base;
639                 t->sfree = p->next;
640                 p->t3c_tid.ctx = ctx;
641                 p->t3c_tid.client = client;
642                 t->stids_in_use++;
643         }
644         spin_unlock_bh(&t->stid_lock);
645         return stid;
646 }
647
648 EXPORT_SYMBOL(cxgb3_alloc_stid);
649
650 /* Get the t3cdev associated with a net_device */
651 struct t3cdev *dev2t3cdev(struct net_device *dev)
652 {
653         const struct port_info *pi = netdev_priv(dev);
654
655         return (struct t3cdev *)pi->adapter;
656 }
657
658 EXPORT_SYMBOL(dev2t3cdev);
659
660 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
661 {
662         struct cpl_smt_write_rpl *rpl = cplhdr(skb);
663
664         if (rpl->status != CPL_ERR_NONE)
665                 printk(KERN_ERR
666                        "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
667                        rpl->status, GET_TID(rpl));
668
669         return CPL_RET_BUF_DONE;
670 }
671
672 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
673 {
674         struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
675
676         if (rpl->status != CPL_ERR_NONE)
677                 printk(KERN_ERR
678                        "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
679                        rpl->status, GET_TID(rpl));
680
681         return CPL_RET_BUF_DONE;
682 }
683
684 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
685 {
686         struct cpl_rte_write_rpl *rpl = cplhdr(skb);
687
688         if (rpl->status != CPL_ERR_NONE)
689                 printk(KERN_ERR
690                        "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
691                        rpl->status, GET_TID(rpl));
692
693         return CPL_RET_BUF_DONE;
694 }
695
696 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
697 {
698         struct cpl_act_open_rpl *rpl = cplhdr(skb);
699         unsigned int atid = G_TID(ntohl(rpl->atid));
700         struct t3c_tid_entry *t3c_tid;
701
702         t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
703         if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
704             t3c_tid->client->handlers &&
705             t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
706                 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
707                                                                     t3c_tid->
708                                                                     ctx);
709         } else {
710                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
711                        dev->name, CPL_ACT_OPEN_RPL);
712                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
713         }
714 }
715
716 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
717 {
718         union opcode_tid *p = cplhdr(skb);
719         unsigned int stid = G_TID(ntohl(p->opcode_tid));
720         struct t3c_tid_entry *t3c_tid;
721
722         t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
723         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
724             t3c_tid->client->handlers[p->opcode]) {
725                 return t3c_tid->client->handlers[p->opcode] (dev, skb,
726                                                              t3c_tid->ctx);
727         } else {
728                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
729                        dev->name, p->opcode);
730                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
731         }
732 }
733
734 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
735 {
736         union opcode_tid *p = cplhdr(skb);
737         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
738         struct t3c_tid_entry *t3c_tid;
739
740         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
741         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
742             t3c_tid->client->handlers[p->opcode]) {
743                 return t3c_tid->client->handlers[p->opcode]
744                     (dev, skb, t3c_tid->ctx);
745         } else {
746                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
747                        dev->name, p->opcode);
748                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
749         }
750 }
751
752 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
753 {
754         struct cpl_pass_accept_req *req = cplhdr(skb);
755         unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
756         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
757         struct t3c_tid_entry *t3c_tid;
758         unsigned int tid = GET_TID(req);
759
760         if (unlikely(tid >= t->ntids)) {
761                 printk("%s: passive open TID %u too large\n",
762                        dev->name, tid);
763                 t3_fatal_err(tdev2adap(dev));
764                 return CPL_RET_BUF_DONE;
765         }
766
767         t3c_tid = lookup_stid(t, stid);
768         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
769             t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
770                 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
771                     (dev, skb, t3c_tid->ctx);
772         } else {
773                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
774                        dev->name, CPL_PASS_ACCEPT_REQ);
775                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
776         }
777 }
778
779 /*
780  * Returns an sk_buff for a reply CPL message of size len.  If the input
781  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
782  * is allocated.  The input skb must be of size at least len.  Note that this
783  * operation does not destroy the original skb data even if it decides to reuse
784  * the buffer.
785  */
786 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
787                                                gfp_t gfp)
788 {
789         if (likely(!skb_cloned(skb))) {
790                 BUG_ON(skb->len < len);
791                 __skb_trim(skb, len);
792                 skb_get(skb);
793         } else {
794                 skb = alloc_skb(len, gfp);
795                 if (skb)
796                         __skb_put(skb, len);
797         }
798         return skb;
799 }
800
801 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
802 {
803         union opcode_tid *p = cplhdr(skb);
804         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
805         struct t3c_tid_entry *t3c_tid;
806
807         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
808         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
809             t3c_tid->client->handlers[p->opcode]) {
810                 return t3c_tid->client->handlers[p->opcode]
811                     (dev, skb, t3c_tid->ctx);
812         } else {
813                 struct cpl_abort_req_rss *req = cplhdr(skb);
814                 struct cpl_abort_rpl *rpl;
815                 struct sk_buff *reply_skb;
816                 unsigned int tid = GET_TID(req);
817                 u8 cmd = req->status;
818
819                 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
820                     req->status == CPL_ERR_PERSIST_NEG_ADVICE)
821                         goto out;
822
823                 reply_skb = cxgb3_get_cpl_reply_skb(skb,
824                                                     sizeof(struct
825                                                            cpl_abort_rpl),
826                                                     GFP_ATOMIC);
827
828                 if (!reply_skb) {
829                         printk("do_abort_req_rss: couldn't get skb!\n");
830                         goto out;
831                 }
832                 reply_skb->priority = CPL_PRIORITY_DATA;
833                 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
834                 rpl = cplhdr(reply_skb);
835                 rpl->wr.wr_hi =
836                     htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
837                 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
838                 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
839                 rpl->cmd = cmd;
840                 cxgb3_ofld_send(dev, reply_skb);
841 out:
842                 return CPL_RET_BUF_DONE;
843         }
844 }
845
846 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
847 {
848         struct cpl_act_establish *req = cplhdr(skb);
849         unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
850         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
851         struct t3c_tid_entry *t3c_tid;
852         unsigned int tid = GET_TID(req);
853
854         if (unlikely(tid >= t->ntids)) {
855                 printk("%s: active establish TID %u too large\n",
856                        dev->name, tid);
857                 t3_fatal_err(tdev2adap(dev));
858                 return CPL_RET_BUF_DONE;
859         }
860
861         t3c_tid = lookup_atid(t, atid);
862         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
863             t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
864                 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
865                     (dev, skb, t3c_tid->ctx);
866         } else {
867                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
868                        dev->name, CPL_ACT_ESTABLISH);
869                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
870         }
871 }
872
873 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
874 {
875         struct cpl_trace_pkt *p = cplhdr(skb);
876
877         skb->protocol = htons(0xffff);
878         skb->dev = dev->lldev;
879         skb_pull(skb, sizeof(*p));
880         skb_reset_mac_header(skb);
881         netif_receive_skb(skb);
882         return 0;
883 }
884
885 /*
886  * That skb would better have come from process_responses() where we abuse
887  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
888  * ->csum, the things might get really interesting here.
889  */
890
891 static inline u32 get_hwtid(struct sk_buff *skb)
892 {
893         return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
894 }
895
896 static inline u32 get_opcode(struct sk_buff *skb)
897 {
898         return G_OPCODE(ntohl((__force __be32)skb->csum));
899 }
900
901 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
902 {
903         unsigned int hwtid = get_hwtid(skb);
904         unsigned int opcode = get_opcode(skb);
905         struct t3c_tid_entry *t3c_tid;
906
907         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
908         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
909             t3c_tid->client->handlers[opcode]) {
910                 return t3c_tid->client->handlers[opcode] (dev, skb,
911                                                           t3c_tid->ctx);
912         } else {
913                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
914                        dev->name, opcode);
915                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
916         }
917 }
918
919 static int nb_callback(struct notifier_block *self, unsigned long event,
920                        void *ctx)
921 {
922         switch (event) {
923         case (NETEVENT_NEIGH_UPDATE):{
924                 cxgb_neigh_update((struct neighbour *)ctx);
925                 break;
926         }
927         case (NETEVENT_PMTU_UPDATE):
928                 break;
929         case (NETEVENT_REDIRECT):{
930                 struct netevent_redirect *nr = ctx;
931                 cxgb_redirect(nr->old, nr->new);
932                 cxgb_neigh_update(nr->new->neighbour);
933                 break;
934         }
935         default:
936                 break;
937         }
938         return 0;
939 }
940
941 static struct notifier_block nb = {
942         .notifier_call = nb_callback
943 };
944
945 /*
946  * Process a received packet with an unknown/unexpected CPL opcode.
947  */
948 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
949 {
950         printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
951                *skb->data);
952         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
953 }
954
955 /*
956  * Handlers for each CPL opcode
957  */
958 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
959
960 /*
961  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
962  * to unregister an existing handler.
963  */
964 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
965 {
966         if (opcode < NUM_CPL_CMDS)
967                 cpl_handlers[opcode] = h ? h : do_bad_cpl;
968         else
969                 printk(KERN_ERR "T3C: handler registration for "
970                        "opcode %x failed\n", opcode);
971 }
972
973 EXPORT_SYMBOL(t3_register_cpl_handler);
974
975 /*
976  * T3CDEV's receive method.
977  */
978 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
979 {
980         while (n--) {
981                 struct sk_buff *skb = *skbs++;
982                 unsigned int opcode = get_opcode(skb);
983                 int ret = cpl_handlers[opcode] (dev, skb);
984
985 #if VALIDATE_TID
986                 if (ret & CPL_RET_UNKNOWN_TID) {
987                         union opcode_tid *p = cplhdr(skb);
988
989                         printk(KERN_ERR "%s: CPL message (opcode %u) had "
990                                "unknown TID %u\n", dev->name, opcode,
991                                G_TID(ntohl(p->opcode_tid)));
992                 }
993 #endif
994                 if (ret & CPL_RET_BUF_DONE)
995                         kfree_skb(skb);
996         }
997         return 0;
998 }
999
1000 /*
1001  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1002  */
1003 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1004 {
1005         int r;
1006
1007         local_bh_disable();
1008         r = dev->send(dev, skb);
1009         local_bh_enable();
1010         return r;
1011 }
1012
1013 EXPORT_SYMBOL(cxgb3_ofld_send);
1014
1015 static int is_offloading(struct net_device *dev)
1016 {
1017         struct adapter *adapter;
1018         int i;
1019
1020         read_lock_bh(&adapter_list_lock);
1021         list_for_each_entry(adapter, &adapter_list, adapter_list) {
1022                 for_each_port(adapter, i) {
1023                         if (dev == adapter->port[i]) {
1024                                 read_unlock_bh(&adapter_list_lock);
1025                                 return 1;
1026                         }
1027                 }
1028         }
1029         read_unlock_bh(&adapter_list_lock);
1030         return 0;
1031 }
1032
1033 void cxgb_neigh_update(struct neighbour *neigh)
1034 {
1035         struct net_device *dev = neigh->dev;
1036
1037         if (dev && (is_offloading(dev))) {
1038                 struct t3cdev *tdev = dev2t3cdev(dev);
1039
1040                 BUG_ON(!tdev);
1041                 t3_l2t_update(tdev, neigh);
1042         }
1043 }
1044
1045 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1046 {
1047         struct sk_buff *skb;
1048         struct cpl_set_tcb_field *req;
1049
1050         skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1051         if (!skb) {
1052                 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1053                 return;
1054         }
1055         skb->priority = CPL_PRIORITY_CONTROL;
1056         req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1057         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1058         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1059         req->reply = 0;
1060         req->cpu_idx = 0;
1061         req->word = htons(W_TCB_L2T_IX);
1062         req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1063         req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1064         tdev->send(tdev, skb);
1065 }
1066
1067 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1068 {
1069         struct net_device *olddev, *newdev;
1070         struct tid_info *ti;
1071         struct t3cdev *tdev;
1072         u32 tid;
1073         int update_tcb;
1074         struct l2t_entry *e;
1075         struct t3c_tid_entry *te;
1076
1077         olddev = old->neighbour->dev;
1078         newdev = new->neighbour->dev;
1079         if (!is_offloading(olddev))
1080                 return;
1081         if (!is_offloading(newdev)) {
1082                 printk(KERN_WARNING "%s: Redirect to non-offload "
1083                        "device ignored.\n", __func__);
1084                 return;
1085         }
1086         tdev = dev2t3cdev(olddev);
1087         BUG_ON(!tdev);
1088         if (tdev != dev2t3cdev(newdev)) {
1089                 printk(KERN_WARNING "%s: Redirect to different "
1090                        "offload device ignored.\n", __func__);
1091                 return;
1092         }
1093
1094         /* Add new L2T entry */
1095         e = t3_l2t_get(tdev, new->neighbour, newdev);
1096         if (!e) {
1097                 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1098                        __func__);
1099                 return;
1100         }
1101
1102         /* Walk tid table and notify clients of dst change. */
1103         ti = &(T3C_DATA(tdev))->tid_maps;
1104         for (tid = 0; tid < ti->ntids; tid++) {
1105                 te = lookup_tid(ti, tid);
1106                 BUG_ON(!te);
1107                 if (te && te->ctx && te->client && te->client->redirect) {
1108                         update_tcb = te->client->redirect(te->ctx, old, new, e);
1109                         if (update_tcb) {
1110                                 l2t_hold(L2DATA(tdev), e);
1111                                 set_l2t_ix(tdev, tid, e);
1112                         }
1113                 }
1114         }
1115         l2t_release(L2DATA(tdev), e);
1116 }
1117
1118 /*
1119  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1120  * The allocated memory is cleared.
1121  */
1122 void *cxgb_alloc_mem(unsigned long size)
1123 {
1124         void *p = kmalloc(size, GFP_KERNEL);
1125
1126         if (!p)
1127                 p = vmalloc(size);
1128         if (p)
1129                 memset(p, 0, size);
1130         return p;
1131 }
1132
1133 /*
1134  * Free memory allocated through t3_alloc_mem().
1135  */
1136 void cxgb_free_mem(void *addr)
1137 {
1138         if (is_vmalloc_addr(addr))
1139                 vfree(addr);
1140         else
1141                 kfree(addr);
1142 }
1143
1144 /*
1145  * Allocate and initialize the TID tables.  Returns 0 on success.
1146  */
1147 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1148                          unsigned int natids, unsigned int nstids,
1149                          unsigned int atid_base, unsigned int stid_base)
1150 {
1151         unsigned long size = ntids * sizeof(*t->tid_tab) +
1152             natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1153
1154         t->tid_tab = cxgb_alloc_mem(size);
1155         if (!t->tid_tab)
1156                 return -ENOMEM;
1157
1158         t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1159         t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1160         t->ntids = ntids;
1161         t->nstids = nstids;
1162         t->stid_base = stid_base;
1163         t->sfree = NULL;
1164         t->natids = natids;
1165         t->atid_base = atid_base;
1166         t->afree = NULL;
1167         t->stids_in_use = t->atids_in_use = 0;
1168         atomic_set(&t->tids_in_use, 0);
1169         spin_lock_init(&t->stid_lock);
1170         spin_lock_init(&t->atid_lock);
1171
1172         /*
1173          * Setup the free lists for stid_tab and atid_tab.
1174          */
1175         if (nstids) {
1176                 while (--nstids)
1177                         t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1178                 t->sfree = t->stid_tab;
1179         }
1180         if (natids) {
1181                 while (--natids)
1182                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1183                 t->afree = t->atid_tab;
1184         }
1185         return 0;
1186 }
1187
1188 static void free_tid_maps(struct tid_info *t)
1189 {
1190         cxgb_free_mem(t->tid_tab);
1191 }
1192
1193 static inline void add_adapter(struct adapter *adap)
1194 {
1195         write_lock_bh(&adapter_list_lock);
1196         list_add_tail(&adap->adapter_list, &adapter_list);
1197         write_unlock_bh(&adapter_list_lock);
1198 }
1199
1200 static inline void remove_adapter(struct adapter *adap)
1201 {
1202         write_lock_bh(&adapter_list_lock);
1203         list_del(&adap->adapter_list);
1204         write_unlock_bh(&adapter_list_lock);
1205 }
1206
1207 int cxgb3_offload_activate(struct adapter *adapter)
1208 {
1209         struct t3cdev *dev = &adapter->tdev;
1210         int natids, err;
1211         struct t3c_data *t;
1212         struct tid_range stid_range, tid_range;
1213         struct mtutab mtutab;
1214         unsigned int l2t_capacity;
1215
1216         t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1217         if (!t)
1218                 return -ENOMEM;
1219
1220         err = -EOPNOTSUPP;
1221         if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1222             dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1223             dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1224             dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1225             dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1226             dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1227                 goto out_free;
1228
1229         err = -ENOMEM;
1230         L2DATA(dev) = t3_init_l2t(l2t_capacity);
1231         if (!L2DATA(dev))
1232                 goto out_free;
1233
1234         natids = min(tid_range.num / 2, MAX_ATIDS);
1235         err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1236                             stid_range.num, ATID_BASE, stid_range.base);
1237         if (err)
1238                 goto out_free_l2t;
1239
1240         t->mtus = mtutab.mtus;
1241         t->nmtus = mtutab.size;
1242
1243         INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1244         spin_lock_init(&t->tid_release_lock);
1245         INIT_LIST_HEAD(&t->list_node);
1246         t->dev = dev;
1247
1248         T3C_DATA(dev) = t;
1249         dev->recv = process_rx;
1250         dev->neigh_update = t3_l2t_update;
1251
1252         /* Register netevent handler once */
1253         if (list_empty(&adapter_list))
1254                 register_netevent_notifier(&nb);
1255
1256         add_adapter(adapter);
1257         return 0;
1258
1259 out_free_l2t:
1260         t3_free_l2t(L2DATA(dev));
1261         L2DATA(dev) = NULL;
1262 out_free:
1263         kfree(t);
1264         return err;
1265 }
1266
1267 void cxgb3_offload_deactivate(struct adapter *adapter)
1268 {
1269         struct t3cdev *tdev = &adapter->tdev;
1270         struct t3c_data *t = T3C_DATA(tdev);
1271
1272         remove_adapter(adapter);
1273         if (list_empty(&adapter_list))
1274                 unregister_netevent_notifier(&nb);
1275
1276         free_tid_maps(&t->tid_maps);
1277         T3C_DATA(tdev) = NULL;
1278         t3_free_l2t(L2DATA(tdev));
1279         L2DATA(tdev) = NULL;
1280         kfree(t);
1281 }
1282
1283 static inline void register_tdev(struct t3cdev *tdev)
1284 {
1285         static int unit;
1286
1287         mutex_lock(&cxgb3_db_lock);
1288         snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1289         list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1290         mutex_unlock(&cxgb3_db_lock);
1291 }
1292
1293 static inline void unregister_tdev(struct t3cdev *tdev)
1294 {
1295         mutex_lock(&cxgb3_db_lock);
1296         list_del(&tdev->ofld_dev_list);
1297         mutex_unlock(&cxgb3_db_lock);
1298 }
1299
1300 static inline int adap2type(struct adapter *adapter)
1301 {
1302         int type = 0;
1303
1304         switch (adapter->params.rev) {
1305         case T3_REV_A:
1306                 type = T3A;
1307                 break;
1308         case T3_REV_B:
1309         case T3_REV_B2:
1310                 type = T3B;
1311                 break;
1312         case T3_REV_C:
1313                 type = T3C;
1314                 break;
1315         }
1316         return type;
1317 }
1318
1319 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1320 {
1321         struct t3cdev *tdev = &adapter->tdev;
1322
1323         INIT_LIST_HEAD(&tdev->ofld_dev_list);
1324
1325         cxgb3_set_dummy_ops(tdev);
1326         tdev->send = t3_offload_tx;
1327         tdev->ctl = cxgb_offload_ctl;
1328         tdev->type = adap2type(adapter);
1329
1330         register_tdev(tdev);
1331 }
1332
1333 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1334 {
1335         struct t3cdev *tdev = &adapter->tdev;
1336
1337         tdev->recv = NULL;
1338         tdev->neigh_update = NULL;
1339
1340         unregister_tdev(tdev);
1341 }
1342
1343 void __init cxgb3_offload_init(void)
1344 {
1345         int i;
1346
1347         for (i = 0; i < NUM_CPL_CMDS; ++i)
1348                 cpl_handlers[i] = do_bad_cpl;
1349
1350         t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1351         t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1352         t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1353         t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1354         t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1355         t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1356         t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1357         t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1358         t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1359         t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1360         t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1361         t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1362         t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1363         t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1364         t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1365         t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1366         t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1367         t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1368         t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1369         t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1370         t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1371         t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1372         t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1373         t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1374         t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1375         t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1376 }