]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_ethtool.c
e1000: Support for 82571 and 82572 controllers
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95 };
96 #define E1000_STATS_LEN \
97         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104
105 static int
106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107 {
108         struct e1000_adapter *adapter = netdev_priv(netdev);
109         struct e1000_hw *hw = &adapter->hw;
110
111         if(hw->media_type == e1000_media_type_copper) {
112
113                 ecmd->supported = (SUPPORTED_10baseT_Half |
114                                    SUPPORTED_10baseT_Full |
115                                    SUPPORTED_100baseT_Half |
116                                    SUPPORTED_100baseT_Full |
117                                    SUPPORTED_1000baseT_Full|
118                                    SUPPORTED_Autoneg |
119                                    SUPPORTED_TP);
120
121                 ecmd->advertising = ADVERTISED_TP;
122
123                 if(hw->autoneg == 1) {
124                         ecmd->advertising |= ADVERTISED_Autoneg;
125
126                         /* the e1000 autoneg seems to match ethtool nicely */
127
128                         ecmd->advertising |= hw->autoneg_advertised;
129                 }
130
131                 ecmd->port = PORT_TP;
132                 ecmd->phy_address = hw->phy_addr;
133
134                 if(hw->mac_type == e1000_82543)
135                         ecmd->transceiver = XCVR_EXTERNAL;
136                 else
137                         ecmd->transceiver = XCVR_INTERNAL;
138
139         } else {
140                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
141                                      SUPPORTED_FIBRE |
142                                      SUPPORTED_Autoneg);
143
144                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
145                                      ADVERTISED_FIBRE |
146                                      ADVERTISED_Autoneg);
147
148                 ecmd->port = PORT_FIBRE;
149
150                 if(hw->mac_type >= e1000_82545)
151                         ecmd->transceiver = XCVR_INTERNAL;
152                 else
153                         ecmd->transceiver = XCVR_EXTERNAL;
154         }
155
156         if(netif_carrier_ok(adapter->netdev)) {
157
158                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159                                                    &adapter->link_duplex);
160                 ecmd->speed = adapter->link_speed;
161
162                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163                  *          and HALF_DUPLEX != DUPLEX_HALF */
164
165                 if(adapter->link_duplex == FULL_DUPLEX)
166                         ecmd->duplex = DUPLEX_FULL;
167                 else
168                         ecmd->duplex = DUPLEX_HALF;
169         } else {
170                 ecmd->speed = -1;
171                 ecmd->duplex = -1;
172         }
173
174         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int
180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 {
182         struct e1000_adapter *adapter = netdev_priv(netdev);
183         struct e1000_hw *hw = &adapter->hw;
184
185         if(ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 if(hw->media_type == e1000_media_type_fiber)
188                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
189                                      ADVERTISED_FIBRE |
190                                      ADVERTISED_Autoneg;
191                 else 
192                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
193                                                   ADVERTISED_10baseT_Full |
194                                                   ADVERTISED_100baseT_Half |
195                                                   ADVERTISED_100baseT_Full |
196                                                   ADVERTISED_1000baseT_Full|
197                                                   ADVERTISED_Autoneg |
198                                                   ADVERTISED_TP;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
202                         return -EINVAL;
203
204         /* reset the link */
205
206         if(netif_running(adapter->netdev)) {
207                 e1000_down(adapter);
208                 e1000_reset(adapter);
209                 e1000_up(adapter);
210         } else
211                 e1000_reset(adapter);
212
213         return 0;
214 }
215
216 static void
217 e1000_get_pauseparam(struct net_device *netdev,
218                      struct ethtool_pauseparam *pause)
219 {
220         struct e1000_adapter *adapter = netdev_priv(netdev);
221         struct e1000_hw *hw = &adapter->hw;
222
223         pause->autoneg = 
224                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225         
226         if(hw->fc == e1000_fc_rx_pause)
227                 pause->rx_pause = 1;
228         else if(hw->fc == e1000_fc_tx_pause)
229                 pause->tx_pause = 1;
230         else if(hw->fc == e1000_fc_full) {
231                 pause->rx_pause = 1;
232                 pause->tx_pause = 1;
233         }
234 }
235
236 static int
237 e1000_set_pauseparam(struct net_device *netdev,
238                      struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242         
243         adapter->fc_autoneg = pause->autoneg;
244
245         if(pause->rx_pause && pause->tx_pause)
246                 hw->fc = e1000_fc_full;
247         else if(pause->rx_pause && !pause->tx_pause)
248                 hw->fc = e1000_fc_rx_pause;
249         else if(!pause->rx_pause && pause->tx_pause)
250                 hw->fc = e1000_fc_tx_pause;
251         else if(!pause->rx_pause && !pause->tx_pause)
252                 hw->fc = e1000_fc_none;
253
254         hw->original_fc = hw->fc;
255
256         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
257                 if(netif_running(adapter->netdev)) {
258                         e1000_down(adapter);
259                         e1000_up(adapter);
260                 } else
261                         e1000_reset(adapter);
262         }
263         else
264                 return ((hw->media_type == e1000_media_type_fiber) ?
265                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
266         
267         return 0;
268 }
269
270 static uint32_t
271 e1000_get_rx_csum(struct net_device *netdev)
272 {
273         struct e1000_adapter *adapter = netdev_priv(netdev);
274         return adapter->rx_csum;
275 }
276
277 static int
278 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
279 {
280         struct e1000_adapter *adapter = netdev_priv(netdev);
281         adapter->rx_csum = data;
282
283         if(netif_running(netdev)) {
284                 e1000_down(adapter);
285                 e1000_up(adapter);
286         } else
287                 e1000_reset(adapter);
288         return 0;
289 }
290         
291 static uint32_t
292 e1000_get_tx_csum(struct net_device *netdev)
293 {
294         return (netdev->features & NETIF_F_HW_CSUM) != 0;
295 }
296
297 static int
298 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
299 {
300         struct e1000_adapter *adapter = netdev_priv(netdev);
301
302         if(adapter->hw.mac_type < e1000_82543) {
303                 if (!data)
304                         return -EINVAL;
305                 return 0;
306         }
307
308         if (data)
309                 netdev->features |= NETIF_F_HW_CSUM;
310         else
311                 netdev->features &= ~NETIF_F_HW_CSUM;
312
313         return 0;
314 }
315
316 #ifdef NETIF_F_TSO
317 static int
318 e1000_set_tso(struct net_device *netdev, uint32_t data)
319 {
320         struct e1000_adapter *adapter = netdev_priv(netdev);
321         if((adapter->hw.mac_type < e1000_82544) ||
322             (adapter->hw.mac_type == e1000_82547)) 
323                 return data ? -EINVAL : 0;
324
325         if (data)
326                 netdev->features |= NETIF_F_TSO;
327         else
328                 netdev->features &= ~NETIF_F_TSO;
329         return 0;
330
331 #endif /* NETIF_F_TSO */
332
333 static uint32_t
334 e1000_get_msglevel(struct net_device *netdev)
335 {
336         struct e1000_adapter *adapter = netdev_priv(netdev);
337         return adapter->msg_enable;
338 }
339
340 static void
341 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
342 {
343         struct e1000_adapter *adapter = netdev_priv(netdev);
344         adapter->msg_enable = data;
345 }
346
347 static int 
348 e1000_get_regs_len(struct net_device *netdev)
349 {
350 #define E1000_REGS_LEN 32
351         return E1000_REGS_LEN * sizeof(uint32_t);
352 }
353
354 static void
355 e1000_get_regs(struct net_device *netdev,
356                struct ethtool_regs *regs, void *p)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         struct e1000_hw *hw = &adapter->hw;
360         uint32_t *regs_buff = p;
361         uint16_t phy_data;
362
363         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
364
365         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
366
367         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
368         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
369
370         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
371         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
372         regs_buff[4]  = E1000_READ_REG(hw, RDH);
373         regs_buff[5]  = E1000_READ_REG(hw, RDT);
374         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
375
376         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
377         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
378         regs_buff[9]  = E1000_READ_REG(hw, TDH);
379         regs_buff[10] = E1000_READ_REG(hw, TDT);
380         regs_buff[11] = E1000_READ_REG(hw, TIDV);
381
382         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
383         if(hw->phy_type == e1000_phy_igp) {
384                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385                                     IGP01E1000_PHY_AGC_A);
386                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
387                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
389                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390                                     IGP01E1000_PHY_AGC_B);
391                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
392                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
395                                     IGP01E1000_PHY_AGC_C);
396                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
397                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_AGC_D);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
404                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
406                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
407                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410                                     IGP01E1000_PHY_PCS_INIT_REG);
411                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
412                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
414                 regs_buff[20] = 0; /* polarity correction enabled (always) */
415                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
416                 regs_buff[23] = regs_buff[18]; /* mdix mode */
417                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
418         } else {
419                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
420                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
421                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
422                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
425                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
426                 regs_buff[18] = regs_buff[13]; /* cable polarity */
427                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 regs_buff[20] = regs_buff[17]; /* polarity correction */
429                 /* phy receive errors */
430                 regs_buff[22] = adapter->phy_stats.receive_errors;
431                 regs_buff[23] = regs_buff[13]; /* mdix mode */
432         }
433         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
434         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
435         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
436         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
437         if(hw->mac_type >= e1000_82540 &&
438            hw->media_type == e1000_media_type_copper) {
439                 regs_buff[26] = E1000_READ_REG(hw, MANC);
440         }
441 }
442
443 static int
444 e1000_get_eeprom_len(struct net_device *netdev)
445 {
446         struct e1000_adapter *adapter = netdev_priv(netdev);
447         return adapter->hw.eeprom.word_size * 2;
448 }
449
450 static int
451 e1000_get_eeprom(struct net_device *netdev,
452                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
453 {
454         struct e1000_adapter *adapter = netdev_priv(netdev);
455         struct e1000_hw *hw = &adapter->hw;
456         uint16_t *eeprom_buff;
457         int first_word, last_word;
458         int ret_val = 0;
459         uint16_t i;
460
461         if(eeprom->len == 0)
462                 return -EINVAL;
463
464         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
465
466         first_word = eeprom->offset >> 1;
467         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469         eeprom_buff = kmalloc(sizeof(uint16_t) *
470                         (last_word - first_word + 1), GFP_KERNEL);
471         if(!eeprom_buff)
472                 return -ENOMEM;
473
474         if(hw->eeprom.type == e1000_eeprom_spi)
475                 ret_val = e1000_read_eeprom(hw, first_word,
476                                             last_word - first_word + 1,
477                                             eeprom_buff);
478         else {
479                 for (i = 0; i < last_word - first_word + 1; i++)
480                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
481                                                         &eeprom_buff[i])))
482                                 break;
483         }
484
485         /* Device's eeprom is always little-endian, word addressable */
486         for (i = 0; i < last_word - first_word + 1; i++)
487                 le16_to_cpus(&eeprom_buff[i]);
488
489         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
490                         eeprom->len);
491         kfree(eeprom_buff);
492
493         return ret_val;
494 }
495
496 static int
497 e1000_set_eeprom(struct net_device *netdev,
498                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
499 {
500         struct e1000_adapter *adapter = netdev_priv(netdev);
501         struct e1000_hw *hw = &adapter->hw;
502         uint16_t *eeprom_buff;
503         void *ptr;
504         int max_len, first_word, last_word, ret_val = 0;
505         uint16_t i;
506
507         if(eeprom->len == 0)
508                 return -EOPNOTSUPP;
509
510         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
511                 return -EFAULT;
512
513         max_len = hw->eeprom.word_size * 2;
514
515         first_word = eeprom->offset >> 1;
516         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
518         if(!eeprom_buff)
519                 return -ENOMEM;
520
521         ptr = (void *)eeprom_buff;
522
523         if(eeprom->offset & 1) {
524                 /* need read/modify/write of first changed EEPROM word */
525                 /* only the second byte of the word is being modified */
526                 ret_val = e1000_read_eeprom(hw, first_word, 1,
527                                             &eeprom_buff[0]);
528                 ptr++;
529         }
530         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
531                 /* need read/modify/write of last changed EEPROM word */
532                 /* only the first byte of the word is being modified */
533                 ret_val = e1000_read_eeprom(hw, last_word, 1,
534                                   &eeprom_buff[last_word - first_word]);
535         }
536
537         /* Device's eeprom is always little-endian, word addressable */
538         for (i = 0; i < last_word - first_word + 1; i++)
539                 le16_to_cpus(&eeprom_buff[i]);
540
541         memcpy(ptr, bytes, eeprom->len);
542
543         for (i = 0; i < last_word - first_word + 1; i++)
544                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
545
546         ret_val = e1000_write_eeprom(hw, first_word,
547                                      last_word - first_word + 1, eeprom_buff);
548
549         /* Update the checksum over the first part of the EEPROM if needed */
550         if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
551                 e1000_update_eeprom_checksum(hw);
552
553         kfree(eeprom_buff);
554         return ret_val;
555 }
556
557 static void
558 e1000_get_drvinfo(struct net_device *netdev,
559                        struct ethtool_drvinfo *drvinfo)
560 {
561         struct e1000_adapter *adapter = netdev_priv(netdev);
562
563         strncpy(drvinfo->driver,  e1000_driver_name, 32);
564         strncpy(drvinfo->version, e1000_driver_version, 32);
565         strncpy(drvinfo->fw_version, "N/A", 32);
566         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
567         drvinfo->n_stats = E1000_STATS_LEN;
568         drvinfo->testinfo_len = E1000_TEST_LEN;
569         drvinfo->regdump_len = e1000_get_regs_len(netdev);
570         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
571 }
572
573 static void
574 e1000_get_ringparam(struct net_device *netdev,
575                     struct ethtool_ringparam *ring)
576 {
577         struct e1000_adapter *adapter = netdev_priv(netdev);
578         e1000_mac_type mac_type = adapter->hw.mac_type;
579         struct e1000_desc_ring *txdr = &adapter->tx_ring;
580         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
581
582         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
583                 E1000_MAX_82544_RXD;
584         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
585                 E1000_MAX_82544_TXD;
586         ring->rx_mini_max_pending = 0;
587         ring->rx_jumbo_max_pending = 0;
588         ring->rx_pending = rxdr->count;
589         ring->tx_pending = txdr->count;
590         ring->rx_mini_pending = 0;
591         ring->rx_jumbo_pending = 0;
592 }
593
594 static int 
595 e1000_set_ringparam(struct net_device *netdev,
596                     struct ethtool_ringparam *ring)
597 {
598         struct e1000_adapter *adapter = netdev_priv(netdev);
599         e1000_mac_type mac_type = adapter->hw.mac_type;
600         struct e1000_desc_ring *txdr = &adapter->tx_ring;
601         struct e1000_desc_ring *rxdr = &adapter->rx_ring;
602         struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
603         int err;
604
605         tx_old = adapter->tx_ring;
606         rx_old = adapter->rx_ring;
607
608         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
609                 return -EINVAL;
610
611         if(netif_running(adapter->netdev))
612                 e1000_down(adapter);
613
614         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
615         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
616                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
617         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
618
619         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
620         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
621                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
622         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
623
624         if(netif_running(adapter->netdev)) {
625                 /* Try to get new resources before deleting old */
626                 if((err = e1000_setup_rx_resources(adapter)))
627                         goto err_setup_rx;
628                 if((err = e1000_setup_tx_resources(adapter)))
629                         goto err_setup_tx;
630
631                 /* save the new, restore the old in order to free it,
632                  * then restore the new back again */
633
634                 rx_new = adapter->rx_ring;
635                 tx_new = adapter->tx_ring;
636                 adapter->rx_ring = rx_old;
637                 adapter->tx_ring = tx_old;
638                 e1000_free_rx_resources(adapter);
639                 e1000_free_tx_resources(adapter);
640                 adapter->rx_ring = rx_new;
641                 adapter->tx_ring = tx_new;
642                 if((err = e1000_up(adapter)))
643                         return err;
644         }
645
646         return 0;
647 err_setup_tx:
648         e1000_free_rx_resources(adapter);
649 err_setup_rx:
650         adapter->rx_ring = rx_old;
651         adapter->tx_ring = tx_old;
652         e1000_up(adapter);
653         return err;
654 }
655
656 #define REG_PATTERN_TEST(R, M, W)                                              \
657 {                                                                              \
658         uint32_t pat, value;                                                   \
659         uint32_t test[] =                                                      \
660                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
661         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
662                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
663                 value = E1000_READ_REG(&adapter->hw, R);                       \
664                 if(value != (test[pat] & W & M)) {                             \
665                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
666                                 "0x%08X expected 0x%08X\n",                    \
667                                 E1000_##R, value, (test[pat] & W & M));        \
668                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
669                                 E1000_82542_##R : E1000_##R;                   \
670                         return 1;                                              \
671                 }                                                              \
672         }                                                                      \
673 }
674
675 #define REG_SET_AND_CHECK(R, M, W)                                             \
676 {                                                                              \
677         uint32_t value;                                                        \
678         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
679         value = E1000_READ_REG(&adapter->hw, R);                               \
680         if((W & M) != (value & M)) {                                          \
681                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
682                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
683                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
684                         E1000_82542_##R : E1000_##R;                           \
685                 return 1;                                                      \
686         }                                                                      \
687 }
688
689 static int
690 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
691 {
692         uint32_t value, before, after;
693         uint32_t i, toggle;
694
695         /* The status register is Read Only, so a write should fail.
696          * Some bits that get toggled are ignored.
697          */
698         switch (adapter->hw.mac_type) {
699         /* there are several bits on newer hardware that are r/w */
700         case e1000_82571:
701         case e1000_82572:
702                 toggle = 0x7FFFF3FF;
703                 break;
704         case e1000_82573:
705                 toggle = 0x7FFFF033;
706                 break;
707         default:
708                 toggle = 0xFFFFF833;
709                 break;
710         }
711
712         before = E1000_READ_REG(&adapter->hw, STATUS);
713         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
714         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
715         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
716         if(value != after) {
717                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
718                         "0x%08X expected: 0x%08X\n", after, value);
719                 *data = 1;
720                 return 1;
721         }
722         /* restore previous status */
723         E1000_WRITE_REG(&adapter->hw, STATUS, before);
724
725         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
726         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
727         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
728         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
729         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
730         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
731         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
732         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
733         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
734         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
735         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
736         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
737         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
738         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
739
740         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
741         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
742         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
743
744         if(adapter->hw.mac_type >= e1000_82543) {
745
746                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
747                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
748                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
749                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
750                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
751
752                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
753                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
754                                          0xFFFFFFFF);
755                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
756                                          0xFFFFFFFF);
757                 }
758
759         } else {
760
761                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
762                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
763                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
764                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
765
766         }
767
768         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
769                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
770
771         *data = 0;
772         return 0;
773 }
774
775 static int
776 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
777 {
778         uint16_t temp;
779         uint16_t checksum = 0;
780         uint16_t i;
781
782         *data = 0;
783         /* Read and add up the contents of the EEPROM */
784         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
785                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
786                         *data = 1;
787                         break;
788                 }
789                 checksum += temp;
790         }
791
792         /* If Checksum is not Correct return error else test passed */
793         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
794                 *data = 2;
795
796         return *data;
797 }
798
799 static irqreturn_t
800 e1000_test_intr(int irq,
801                 void *data,
802                 struct pt_regs *regs)
803 {
804         struct net_device *netdev = (struct net_device *) data;
805         struct e1000_adapter *adapter = netdev_priv(netdev);
806
807         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
808
809         return IRQ_HANDLED;
810 }
811
812 static int
813 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
814 {
815         struct net_device *netdev = adapter->netdev;
816         uint32_t mask, i=0, shared_int = TRUE;
817         uint32_t irq = adapter->pdev->irq;
818
819         *data = 0;
820
821         /* Hook up test interrupt handler just for this test */
822         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
823                 shared_int = FALSE;
824         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
825                               netdev->name, netdev)){
826                 *data = 1;
827                 return -1;
828         }
829
830         /* Disable all the interrupts */
831         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
832         msec_delay(10);
833
834         /* Test each interrupt */
835         for(; i < 10; i++) {
836
837                 /* Interrupt to test */
838                 mask = 1 << i;
839
840                 if(!shared_int) {
841                         /* Disable the interrupt to be reported in
842                          * the cause register and then force the same
843                          * interrupt and see if one gets posted.  If
844                          * an interrupt was posted to the bus, the
845                          * test failed.
846                          */
847                         adapter->test_icr = 0;
848                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
849                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
850                         msec_delay(10);
851  
852                         if(adapter->test_icr & mask) {
853                                 *data = 3;
854                                 break;
855                         }
856                 }
857
858                 /* Enable the interrupt to be reported in
859                  * the cause register and then force the same
860                  * interrupt and see if one gets posted.  If
861                  * an interrupt was not posted to the bus, the
862                  * test failed.
863                  */
864                 adapter->test_icr = 0;
865                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
866                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
867                 msec_delay(10);
868
869                 if(!(adapter->test_icr & mask)) {
870                         *data = 4;
871                         break;
872                 }
873
874                 if(!shared_int) {
875                         /* Disable the other interrupts to be reported in
876                          * the cause register and then force the other
877                          * interrupts and see if any get posted.  If
878                          * an interrupt was posted to the bus, the
879                          * test failed.
880                          */
881                         adapter->test_icr = 0;
882                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
883                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
884                         msec_delay(10);
885
886                         if(adapter->test_icr) {
887                                 *data = 5;
888                                 break;
889                         }
890                 }
891         }
892
893         /* Disable all the interrupts */
894         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
895         msec_delay(10);
896
897         /* Unhook test interrupt handler */
898         free_irq(irq, netdev);
899
900         return *data;
901 }
902
903 static void
904 e1000_free_desc_rings(struct e1000_adapter *adapter)
905 {
906         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
907         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
908         struct pci_dev *pdev = adapter->pdev;
909         int i;
910
911         if(txdr->desc && txdr->buffer_info) {
912                 for(i = 0; i < txdr->count; i++) {
913                         if(txdr->buffer_info[i].dma)
914                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
915                                                  txdr->buffer_info[i].length,
916                                                  PCI_DMA_TODEVICE);
917                         if(txdr->buffer_info[i].skb)
918                                 dev_kfree_skb(txdr->buffer_info[i].skb);
919                 }
920         }
921
922         if(rxdr->desc && rxdr->buffer_info) {
923                 for(i = 0; i < rxdr->count; i++) {
924                         if(rxdr->buffer_info[i].dma)
925                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
926                                                  rxdr->buffer_info[i].length,
927                                                  PCI_DMA_FROMDEVICE);
928                         if(rxdr->buffer_info[i].skb)
929                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
930                 }
931         }
932
933         if(txdr->desc)
934                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
935         if(rxdr->desc)
936                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
937
938         if(txdr->buffer_info)
939                 kfree(txdr->buffer_info);
940         if(rxdr->buffer_info)
941                 kfree(rxdr->buffer_info);
942
943         return;
944 }
945
946 static int
947 e1000_setup_desc_rings(struct e1000_adapter *adapter)
948 {
949         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
950         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
951         struct pci_dev *pdev = adapter->pdev;
952         uint32_t rctl;
953         int size, i, ret_val;
954
955         /* Setup Tx descriptor ring and Tx buffers */
956
957         if(!txdr->count)
958                 txdr->count = E1000_DEFAULT_TXD;   
959
960         size = txdr->count * sizeof(struct e1000_buffer);
961         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
962                 ret_val = 1;
963                 goto err_nomem;
964         }
965         memset(txdr->buffer_info, 0, size);
966
967         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
968         E1000_ROUNDUP(txdr->size, 4096);
969         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
970                 ret_val = 2;
971                 goto err_nomem;
972         }
973         memset(txdr->desc, 0, txdr->size);
974         txdr->next_to_use = txdr->next_to_clean = 0;
975
976         E1000_WRITE_REG(&adapter->hw, TDBAL,
977                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
978         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
979         E1000_WRITE_REG(&adapter->hw, TDLEN,
980                         txdr->count * sizeof(struct e1000_tx_desc));
981         E1000_WRITE_REG(&adapter->hw, TDH, 0);
982         E1000_WRITE_REG(&adapter->hw, TDT, 0);
983         E1000_WRITE_REG(&adapter->hw, TCTL,
984                         E1000_TCTL_PSP | E1000_TCTL_EN |
985                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
986                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
987
988         for(i = 0; i < txdr->count; i++) {
989                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
990                 struct sk_buff *skb;
991                 unsigned int size = 1024;
992
993                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
994                         ret_val = 3;
995                         goto err_nomem;
996                 }
997                 skb_put(skb, size);
998                 txdr->buffer_info[i].skb = skb;
999                 txdr->buffer_info[i].length = skb->len;
1000                 txdr->buffer_info[i].dma =
1001                         pci_map_single(pdev, skb->data, skb->len,
1002                                        PCI_DMA_TODEVICE);
1003                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1004                 tx_desc->lower.data = cpu_to_le32(skb->len);
1005                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1006                                                    E1000_TXD_CMD_IFCS |
1007                                                    E1000_TXD_CMD_RPS);
1008                 tx_desc->upper.data = 0;
1009         }
1010
1011         /* Setup Rx descriptor ring and Rx buffers */
1012
1013         if(!rxdr->count)
1014                 rxdr->count = E1000_DEFAULT_RXD;   
1015
1016         size = rxdr->count * sizeof(struct e1000_buffer);
1017         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1018                 ret_val = 4;
1019                 goto err_nomem;
1020         }
1021         memset(rxdr->buffer_info, 0, size);
1022
1023         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1024         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1025                 ret_val = 5;
1026                 goto err_nomem;
1027         }
1028         memset(rxdr->desc, 0, rxdr->size);
1029         rxdr->next_to_use = rxdr->next_to_clean = 0;
1030
1031         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1032         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1033         E1000_WRITE_REG(&adapter->hw, RDBAL,
1034                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1035         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1036         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1037         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1038         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1039         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1040                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1041                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1042         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1043
1044         for(i = 0; i < rxdr->count; i++) {
1045                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1046                 struct sk_buff *skb;
1047
1048                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1049                                 GFP_KERNEL))) {
1050                         ret_val = 6;
1051                         goto err_nomem;
1052                 }
1053                 skb_reserve(skb, NET_IP_ALIGN);
1054                 rxdr->buffer_info[i].skb = skb;
1055                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1056                 rxdr->buffer_info[i].dma =
1057                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1058                                        PCI_DMA_FROMDEVICE);
1059                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1060                 memset(skb->data, 0x00, skb->len);
1061         }
1062
1063         return 0;
1064
1065 err_nomem:
1066         e1000_free_desc_rings(adapter);
1067         return ret_val;
1068 }
1069
1070 static void
1071 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1072 {
1073         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1074         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1075         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1076         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1077         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1078 }
1079
1080 static void
1081 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1082 {
1083         uint16_t phy_reg;
1084
1085         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1086          * Extended PHY Specific Control Register to 25MHz clock.  This
1087          * value defaults back to a 2.5MHz clock when the PHY is reset.
1088          */
1089         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1090         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1091         e1000_write_phy_reg(&adapter->hw,
1092                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1093
1094         /* In addition, because of the s/w reset above, we need to enable
1095          * CRS on TX.  This must be set for both full and half duplex
1096          * operation.
1097          */
1098         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1099         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1100         e1000_write_phy_reg(&adapter->hw,
1101                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1102 }
1103
1104 static int
1105 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1106 {
1107         uint32_t ctrl_reg;
1108         uint16_t phy_reg;
1109
1110         /* Setup the Device Control Register for PHY loopback test. */
1111
1112         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1113         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1114                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1115                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1116                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1117                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1118
1119         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1120
1121         /* Read the PHY Specific Control Register (0x10) */
1122         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1123
1124         /* Clear Auto-Crossover bits in PHY Specific Control Register
1125          * (bits 6:5).
1126          */
1127         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1128         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1129
1130         /* Perform software reset on the PHY */
1131         e1000_phy_reset(&adapter->hw);
1132
1133         /* Have to setup TX_CLK and TX_CRS after software reset */
1134         e1000_phy_reset_clk_and_crs(adapter);
1135
1136         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1137
1138         /* Wait for reset to complete. */
1139         udelay(500);
1140
1141         /* Have to setup TX_CLK and TX_CRS after software reset */
1142         e1000_phy_reset_clk_and_crs(adapter);
1143
1144         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1145         e1000_phy_disable_receiver(adapter);
1146
1147         /* Set the loopback bit in the PHY control register. */
1148         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1149         phy_reg |= MII_CR_LOOPBACK;
1150         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1151
1152         /* Setup TX_CLK and TX_CRS one more time. */
1153         e1000_phy_reset_clk_and_crs(adapter);
1154
1155         /* Check Phy Configuration */
1156         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1157         if(phy_reg != 0x4100)
1158                  return 9;
1159
1160         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1161         if(phy_reg != 0x0070)
1162                 return 10;
1163
1164         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1165         if(phy_reg != 0x001A)
1166                 return 11;
1167
1168         return 0;
1169 }
1170
1171 static int
1172 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1173 {
1174         uint32_t ctrl_reg = 0;
1175         uint32_t stat_reg = 0;
1176
1177         adapter->hw.autoneg = FALSE;
1178
1179         if(adapter->hw.phy_type == e1000_phy_m88) {
1180                 /* Auto-MDI/MDIX Off */
1181                 e1000_write_phy_reg(&adapter->hw,
1182                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1183                 /* reset to update Auto-MDI/MDIX */
1184                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1185                 /* autoneg off */
1186                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1187         }
1188         /* force 1000, set loopback */
1189         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1190
1191         /* Now set up the MAC to the same speed/duplex as the PHY. */
1192         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1193         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1194         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1195                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1196                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1197                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1198
1199         if(adapter->hw.media_type == e1000_media_type_copper &&
1200            adapter->hw.phy_type == e1000_phy_m88) {
1201                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1202         } else {
1203                 /* Set the ILOS bit on the fiber Nic is half
1204                  * duplex link is detected. */
1205                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1206                 if((stat_reg & E1000_STATUS_FD) == 0)
1207                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1208         }
1209
1210         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1211
1212         /* Disable the receiver on the PHY so when a cable is plugged in, the
1213          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1214          */
1215         if(adapter->hw.phy_type == e1000_phy_m88)
1216                 e1000_phy_disable_receiver(adapter);
1217
1218         udelay(500);
1219
1220         return 0;
1221 }
1222
1223 static int
1224 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1225 {
1226         uint16_t phy_reg = 0;
1227         uint16_t count = 0;
1228
1229         switch (adapter->hw.mac_type) {
1230         case e1000_82543:
1231                 if(adapter->hw.media_type == e1000_media_type_copper) {
1232                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1233                          * Some PHY registers get corrupted at random, so
1234                          * attempt this 10 times.
1235                          */
1236                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1237                               count++ < 10);
1238                         if(count < 11)
1239                                 return 0;
1240                 }
1241                 break;
1242
1243         case e1000_82544:
1244         case e1000_82540:
1245         case e1000_82545:
1246         case e1000_82545_rev_3:
1247         case e1000_82546:
1248         case e1000_82546_rev_3:
1249         case e1000_82541:
1250         case e1000_82541_rev_2:
1251         case e1000_82547:
1252         case e1000_82547_rev_2:
1253         case e1000_82571:
1254         case e1000_82572:
1255         case e1000_82573:
1256                 return e1000_integrated_phy_loopback(adapter);
1257                 break;
1258
1259         default:
1260                 /* Default PHY loopback work is to read the MII
1261                  * control register and assert bit 14 (loopback mode).
1262                  */
1263                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1264                 phy_reg |= MII_CR_LOOPBACK;
1265                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1266                 return 0;
1267                 break;
1268         }
1269
1270         return 8;
1271 }
1272
1273 static int
1274 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1275 {
1276         uint32_t rctl;
1277
1278         if(adapter->hw.media_type == e1000_media_type_fiber ||
1279            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1280                 if(adapter->hw.mac_type == e1000_82545 ||
1281                    adapter->hw.mac_type == e1000_82546 ||
1282                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1283                    adapter->hw.mac_type == e1000_82546_rev_3)
1284                         return e1000_set_phy_loopback(adapter);
1285                 else {
1286                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1287                         rctl |= E1000_RCTL_LBM_TCVR;
1288                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1289                         return 0;
1290                 }
1291         } else if(adapter->hw.media_type == e1000_media_type_copper)
1292                 return e1000_set_phy_loopback(adapter);
1293
1294         return 7;
1295 }
1296
1297 static void
1298 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1299 {
1300         uint32_t rctl;
1301         uint16_t phy_reg;
1302
1303         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1304         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1305         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1306
1307         if(adapter->hw.media_type == e1000_media_type_copper ||
1308            ((adapter->hw.media_type == e1000_media_type_fiber ||
1309              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1310             (adapter->hw.mac_type == e1000_82545 ||
1311              adapter->hw.mac_type == e1000_82546 ||
1312              adapter->hw.mac_type == e1000_82545_rev_3 ||
1313              adapter->hw.mac_type == e1000_82546_rev_3))) {
1314                 adapter->hw.autoneg = TRUE;
1315                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1316                 if(phy_reg & MII_CR_LOOPBACK) {
1317                         phy_reg &= ~MII_CR_LOOPBACK;
1318                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1319                         e1000_phy_reset(&adapter->hw);
1320                 }
1321         }
1322 }
1323
1324 static void
1325 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1326 {
1327         memset(skb->data, 0xFF, frame_size);
1328         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1329         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1330         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1331         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1332 }
1333
1334 static int
1335 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1336 {
1337         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1338         if(*(skb->data + 3) == 0xFF) {
1339                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1340                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1341                         return 0;
1342                 }
1343         }
1344         return 13;
1345 }
1346
1347 static int
1348 e1000_run_loopback_test(struct e1000_adapter *adapter)
1349 {
1350         struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1351         struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1352         struct pci_dev *pdev = adapter->pdev;
1353         int i, j, k, l, lc, good_cnt, ret_val=0;
1354         unsigned long time;
1355
1356         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1357
1358         /* Calculate the loop count based on the largest descriptor ring 
1359          * The idea is to wrap the largest ring a number of times using 64
1360          * send/receive pairs during each loop
1361          */
1362
1363         if(rxdr->count <= txdr->count)
1364                 lc = ((txdr->count / 64) * 2) + 1;
1365         else
1366                 lc = ((rxdr->count / 64) * 2) + 1;
1367
1368         k = l = 0;
1369         for(j = 0; j <= lc; j++) { /* loop count loop */
1370                 for(i = 0; i < 64; i++) { /* send the packets */
1371                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1372                                         1024);
1373                         pci_dma_sync_single_for_device(pdev, 
1374                                         txdr->buffer_info[k].dma,
1375                                         txdr->buffer_info[k].length,
1376                                         PCI_DMA_TODEVICE);
1377                         if(unlikely(++k == txdr->count)) k = 0;
1378                 }
1379                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1380                 msec_delay(200);
1381                 time = jiffies; /* set the start time for the receive */
1382                 good_cnt = 0;
1383                 do { /* receive the sent packets */
1384                         pci_dma_sync_single_for_cpu(pdev, 
1385                                         rxdr->buffer_info[l].dma,
1386                                         rxdr->buffer_info[l].length,
1387                                         PCI_DMA_FROMDEVICE);
1388         
1389                         ret_val = e1000_check_lbtest_frame(
1390                                         rxdr->buffer_info[l].skb,
1391                                         1024);
1392                         if(!ret_val)
1393                                 good_cnt++;
1394                         if(unlikely(++l == rxdr->count)) l = 0;
1395                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1396                          * enough time to complete the receives, if it's 
1397                          * exceeded, break and error off
1398                          */
1399                 } while (good_cnt < 64 && jiffies < (time + 20));
1400                 if(good_cnt != 64) {
1401                         ret_val = 13; /* ret_val is the same as mis-compare */
1402                         break; 
1403                 }
1404                 if(jiffies >= (time + 2)) {
1405                         ret_val = 14; /* error code for time out error */
1406                         break;
1407                 }
1408         } /* end loop count loop */
1409         return ret_val;
1410 }
1411
1412 static int
1413 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1414 {
1415         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1416         if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1417         *data = e1000_run_loopback_test(adapter);
1418         e1000_loopback_cleanup(adapter);
1419         e1000_free_desc_rings(adapter);
1420 err_loopback:
1421         return *data;
1422 }
1423
1424 static int
1425 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1426 {
1427         *data = 0;
1428         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1429                 int i = 0;
1430                 adapter->hw.serdes_link_down = TRUE;
1431
1432                 /* On some blade server designs, link establishment
1433                  * could take as long as 2-3 minutes */
1434                 do {
1435                         e1000_check_for_link(&adapter->hw);
1436                         if (adapter->hw.serdes_link_down == FALSE)
1437                                 return *data;
1438                         msec_delay(20);
1439                 } while (i++ < 3750);
1440
1441                 *data = 1;
1442         } else {
1443                 e1000_check_for_link(&adapter->hw);
1444                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1445                         msec_delay(4000);
1446
1447                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1448                         *data = 1;
1449                 }
1450         }
1451         return *data;
1452 }
1453
1454 static int 
1455 e1000_diag_test_count(struct net_device *netdev)
1456 {
1457         return E1000_TEST_LEN;
1458 }
1459
1460 static void
1461 e1000_diag_test(struct net_device *netdev,
1462                    struct ethtool_test *eth_test, uint64_t *data)
1463 {
1464         struct e1000_adapter *adapter = netdev_priv(netdev);
1465         boolean_t if_running = netif_running(netdev);
1466
1467         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1468                 /* Offline tests */
1469
1470                 /* save speed, duplex, autoneg settings */
1471                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1472                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1473                 uint8_t autoneg = adapter->hw.autoneg;
1474
1475                 /* Link test performed before hardware reset so autoneg doesn't
1476                  * interfere with test result */
1477                 if(e1000_link_test(adapter, &data[4]))
1478                         eth_test->flags |= ETH_TEST_FL_FAILED;
1479
1480                 if(if_running)
1481                         e1000_down(adapter);
1482                 else
1483                         e1000_reset(adapter);
1484
1485                 if(e1000_reg_test(adapter, &data[0]))
1486                         eth_test->flags |= ETH_TEST_FL_FAILED;
1487
1488                 e1000_reset(adapter);
1489                 if(e1000_eeprom_test(adapter, &data[1]))
1490                         eth_test->flags |= ETH_TEST_FL_FAILED;
1491
1492                 e1000_reset(adapter);
1493                 if(e1000_intr_test(adapter, &data[2]))
1494                         eth_test->flags |= ETH_TEST_FL_FAILED;
1495
1496                 e1000_reset(adapter);
1497                 if(e1000_loopback_test(adapter, &data[3]))
1498                         eth_test->flags |= ETH_TEST_FL_FAILED;
1499
1500                 /* restore speed, duplex, autoneg settings */
1501                 adapter->hw.autoneg_advertised = autoneg_advertised;
1502                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1503                 adapter->hw.autoneg = autoneg;
1504
1505                 e1000_reset(adapter);
1506                 if(if_running)
1507                         e1000_up(adapter);
1508         } else {
1509                 /* Online tests */
1510                 if(e1000_link_test(adapter, &data[4]))
1511                         eth_test->flags |= ETH_TEST_FL_FAILED;
1512
1513                 /* Offline tests aren't run; pass by default */
1514                 data[0] = 0;
1515                 data[1] = 0;
1516                 data[2] = 0;
1517                 data[3] = 0;
1518         }
1519 }
1520
1521 static void
1522 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1523 {
1524         struct e1000_adapter *adapter = netdev_priv(netdev);
1525         struct e1000_hw *hw = &adapter->hw;
1526
1527         switch(adapter->hw.device_id) {
1528         case E1000_DEV_ID_82542:
1529         case E1000_DEV_ID_82543GC_FIBER:
1530         case E1000_DEV_ID_82543GC_COPPER:
1531         case E1000_DEV_ID_82544EI_FIBER:
1532         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1533         case E1000_DEV_ID_82545EM_FIBER:
1534         case E1000_DEV_ID_82545EM_COPPER:
1535                 wol->supported = 0;
1536                 wol->wolopts   = 0;
1537                 return;
1538
1539         case E1000_DEV_ID_82546EB_FIBER:
1540         case E1000_DEV_ID_82546GB_FIBER:
1541                 /* Wake events only supported on port A for dual fiber */
1542                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1543                         wol->supported = 0;
1544                         wol->wolopts   = 0;
1545                         return;
1546                 }
1547                 /* Fall Through */
1548
1549         default:
1550                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1551                                  WAKE_BCAST | WAKE_MAGIC;
1552
1553                 wol->wolopts = 0;
1554                 if(adapter->wol & E1000_WUFC_EX)
1555                         wol->wolopts |= WAKE_UCAST;
1556                 if(adapter->wol & E1000_WUFC_MC)
1557                         wol->wolopts |= WAKE_MCAST;
1558                 if(adapter->wol & E1000_WUFC_BC)
1559                         wol->wolopts |= WAKE_BCAST;
1560                 if(adapter->wol & E1000_WUFC_MAG)
1561                         wol->wolopts |= WAKE_MAGIC;
1562                 return;
1563         }
1564 }
1565
1566 static int
1567 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1568 {
1569         struct e1000_adapter *adapter = netdev_priv(netdev);
1570         struct e1000_hw *hw = &adapter->hw;
1571
1572         switch(adapter->hw.device_id) {
1573         case E1000_DEV_ID_82542:
1574         case E1000_DEV_ID_82543GC_FIBER:
1575         case E1000_DEV_ID_82543GC_COPPER:
1576         case E1000_DEV_ID_82544EI_FIBER:
1577         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1578         case E1000_DEV_ID_82545EM_FIBER:
1579         case E1000_DEV_ID_82545EM_COPPER:
1580                 return wol->wolopts ? -EOPNOTSUPP : 0;
1581
1582         case E1000_DEV_ID_82546EB_FIBER:
1583         case E1000_DEV_ID_82546GB_FIBER:
1584                 /* Wake events only supported on port A for dual fiber */
1585                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1586                         return wol->wolopts ? -EOPNOTSUPP : 0;
1587                 /* Fall Through */
1588
1589         default:
1590                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1591                         return -EOPNOTSUPP;
1592
1593                 adapter->wol = 0;
1594
1595                 if(wol->wolopts & WAKE_UCAST)
1596                         adapter->wol |= E1000_WUFC_EX;
1597                 if(wol->wolopts & WAKE_MCAST)
1598                         adapter->wol |= E1000_WUFC_MC;
1599                 if(wol->wolopts & WAKE_BCAST)
1600                         adapter->wol |= E1000_WUFC_BC;
1601                 if(wol->wolopts & WAKE_MAGIC)
1602                         adapter->wol |= E1000_WUFC_MAG;
1603         }
1604
1605         return 0;
1606 }
1607
1608 /* toggle LED 4 times per second = 2 "blinks" per second */
1609 #define E1000_ID_INTERVAL       (HZ/4)
1610
1611 /* bit defines for adapter->led_status */
1612 #define E1000_LED_ON            0
1613
1614 static void
1615 e1000_led_blink_callback(unsigned long data)
1616 {
1617         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1618
1619         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1620                 e1000_led_off(&adapter->hw);
1621         else
1622                 e1000_led_on(&adapter->hw);
1623
1624         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1625 }
1626
1627 static int
1628 e1000_phys_id(struct net_device *netdev, uint32_t data)
1629 {
1630         struct e1000_adapter *adapter = netdev_priv(netdev);
1631
1632         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1633                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1634
1635         if(adapter->hw.mac_type < e1000_82571) {
1636                 if(!adapter->blink_timer.function) {
1637                         init_timer(&adapter->blink_timer);
1638                         adapter->blink_timer.function = e1000_led_blink_callback;
1639                         adapter->blink_timer.data = (unsigned long) adapter;
1640                 }
1641                 e1000_setup_led(&adapter->hw);
1642                 mod_timer(&adapter->blink_timer, jiffies);
1643                 msleep_interruptible(data * 1000);
1644                 del_timer_sync(&adapter->blink_timer);
1645         }
1646         else {
1647                 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1648                         E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | 
1649                         (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1650                         (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1651                         (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1652                 msleep_interruptible(data * 1000);
1653         }
1654
1655         e1000_led_off(&adapter->hw);
1656         clear_bit(E1000_LED_ON, &adapter->led_status);
1657         e1000_cleanup_led(&adapter->hw);
1658
1659         return 0;
1660 }
1661
1662 static int
1663 e1000_nway_reset(struct net_device *netdev)
1664 {
1665         struct e1000_adapter *adapter = netdev_priv(netdev);
1666         if(netif_running(netdev)) {
1667                 e1000_down(adapter);
1668                 e1000_up(adapter);
1669         }
1670         return 0;
1671 }
1672
1673 static int 
1674 e1000_get_stats_count(struct net_device *netdev)
1675 {
1676         return E1000_STATS_LEN;
1677 }
1678
1679 static void 
1680 e1000_get_ethtool_stats(struct net_device *netdev, 
1681                 struct ethtool_stats *stats, uint64_t *data)
1682 {
1683         struct e1000_adapter *adapter = netdev_priv(netdev);
1684         int i;
1685
1686         e1000_update_stats(adapter);
1687         for(i = 0; i < E1000_STATS_LEN; i++) {
1688                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1689                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1690                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1691         }
1692 }
1693
1694 static void 
1695 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1696 {
1697         int i;
1698
1699         switch(stringset) {
1700         case ETH_SS_TEST:
1701                 memcpy(data, *e1000_gstrings_test, 
1702                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1703                 break;
1704         case ETH_SS_STATS:
1705                 for (i=0; i < E1000_STATS_LEN; i++) {
1706                         memcpy(data + i * ETH_GSTRING_LEN, 
1707                         e1000_gstrings_stats[i].stat_string,
1708                         ETH_GSTRING_LEN);
1709                 }
1710                 break;
1711         }
1712 }
1713
1714 struct ethtool_ops e1000_ethtool_ops = {
1715         .get_settings           = e1000_get_settings,
1716         .set_settings           = e1000_set_settings,
1717         .get_drvinfo            = e1000_get_drvinfo,
1718         .get_regs_len           = e1000_get_regs_len,
1719         .get_regs               = e1000_get_regs,
1720         .get_wol                = e1000_get_wol,
1721         .set_wol                = e1000_set_wol,
1722         .get_msglevel           = e1000_get_msglevel,
1723         .set_msglevel           = e1000_set_msglevel,
1724         .nway_reset             = e1000_nway_reset,
1725         .get_link               = ethtool_op_get_link,
1726         .get_eeprom_len         = e1000_get_eeprom_len,
1727         .get_eeprom             = e1000_get_eeprom,
1728         .set_eeprom             = e1000_set_eeprom,
1729         .get_ringparam          = e1000_get_ringparam,
1730         .set_ringparam          = e1000_set_ringparam,
1731         .get_pauseparam         = e1000_get_pauseparam,
1732         .set_pauseparam         = e1000_set_pauseparam,
1733         .get_rx_csum            = e1000_get_rx_csum,
1734         .set_rx_csum            = e1000_set_rx_csum,
1735         .get_tx_csum            = e1000_get_tx_csum,
1736         .set_tx_csum            = e1000_set_tx_csum,
1737         .get_sg                 = ethtool_op_get_sg,
1738         .set_sg                 = ethtool_op_set_sg,
1739 #ifdef NETIF_F_TSO
1740         .get_tso                = ethtool_op_get_tso,
1741         .set_tso                = e1000_set_tso,
1742 #endif
1743         .self_test_count        = e1000_diag_test_count,
1744         .self_test              = e1000_diag_test,
1745         .get_strings            = e1000_get_strings,
1746         .phys_id                = e1000_phys_id,
1747         .get_stats_count        = e1000_get_stats_count,
1748         .get_ethtool_stats      = e1000_get_ethtool_stats,
1749         .get_perm_addr          = ethtool_op_get_perm_addr,
1750 };
1751
1752 void e1000_set_ethtool_ops(struct net_device *netdev)
1753 {
1754         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1755 }