]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 static const struct net_device_ops e1000_netdev_ops = {
892         .ndo_open               = e1000_open,
893         .ndo_stop               = e1000_close,
894         .ndo_start_xmit         = e1000_xmit_frame,
895         .ndo_get_stats          = e1000_get_stats,
896         .ndo_set_rx_mode        = e1000_set_rx_mode,
897         .ndo_set_mac_address    = e1000_set_mac,
898         .ndo_tx_timeout         = e1000_tx_timeout,
899         .ndo_change_mtu         = e1000_change_mtu,
900         .ndo_do_ioctl           = e1000_ioctl,
901         .ndo_validate_addr      = eth_validate_addr,
902
903         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
904         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
905         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907         .ndo_poll_controller    = e1000_netpoll,
908 #endif
909 };
910
911 /**
912  * e1000_probe - Device Initialization Routine
913  * @pdev: PCI device information struct
914  * @ent: entry in e1000_pci_tbl
915  *
916  * Returns 0 on success, negative on failure
917  *
918  * e1000_probe initializes an adapter identified by a pci_dev structure.
919  * The OS initialization, configuring of the adapter private structure,
920  * and a hardware reset occur.
921  **/
922 static int __devinit e1000_probe(struct pci_dev *pdev,
923                                  const struct pci_device_id *ent)
924 {
925         struct net_device *netdev;
926         struct e1000_adapter *adapter;
927         struct e1000_hw *hw;
928
929         static int cards_found = 0;
930         static int global_quad_port_a = 0; /* global ksp3 port a indication */
931         int i, err, pci_using_dac;
932         u16 eeprom_data = 0;
933         u16 eeprom_apme_mask = E1000_EEPROM_APME;
934         int bars, need_ioport;
935
936         /* do not allocate ioport bars when not needed */
937         need_ioport = e1000_is_need_ioport(pdev);
938         if (need_ioport) {
939                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940                 err = pci_enable_device(pdev);
941         } else {
942                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943                 err = pci_enable_device(pdev);
944         }
945         if (err)
946                 return err;
947
948         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
950                 pci_using_dac = 1;
951         } else {
952                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
953                 if (err) {
954                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
955                         if (err) {
956                                 E1000_ERR("No usable DMA configuration, "
957                                           "aborting\n");
958                                 goto err_dma;
959                         }
960                 }
961                 pci_using_dac = 0;
962         }
963
964         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965         if (err)
966                 goto err_pci_reg;
967
968         pci_set_master(pdev);
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = (1 << debug) - 1;
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         netdev->netdev_ops = &e1000_netdev_ops;
1005         e1000_set_ethtool_ops(netdev);
1006         netdev->watchdog_timeo = 5 * HZ;
1007         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1008
1009         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1010
1011         adapter->bd_number = cards_found;
1012
1013         /* setup the private structure */
1014
1015         err = e1000_sw_init(adapter);
1016         if (err)
1017                 goto err_sw_init;
1018
1019         err = -EIO;
1020         /* Flash BAR mapping must happen after e1000_sw_init
1021          * because it depends on mac_type */
1022         if ((hw->mac_type == e1000_ich8lan) &&
1023            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025                 if (!hw->flash_address)
1026                         goto err_flashmap;
1027         }
1028
1029         if (e1000_check_phy_reset_block(hw))
1030                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1031
1032         if (hw->mac_type >= e1000_82543) {
1033                 netdev->features = NETIF_F_SG |
1034                                    NETIF_F_HW_CSUM |
1035                                    NETIF_F_HW_VLAN_TX |
1036                                    NETIF_F_HW_VLAN_RX |
1037                                    NETIF_F_HW_VLAN_FILTER;
1038                 if (hw->mac_type == e1000_ich8lan)
1039                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1040         }
1041
1042         if ((hw->mac_type >= e1000_82544) &&
1043            (hw->mac_type != e1000_82547))
1044                 netdev->features |= NETIF_F_TSO;
1045
1046         if (hw->mac_type > e1000_82547_rev_2)
1047                 netdev->features |= NETIF_F_TSO6;
1048         if (pci_using_dac)
1049                 netdev->features |= NETIF_F_HIGHDMA;
1050
1051         netdev->features |= NETIF_F_LLTX;
1052
1053         netdev->vlan_features |= NETIF_F_TSO;
1054         netdev->vlan_features |= NETIF_F_TSO6;
1055         netdev->vlan_features |= NETIF_F_HW_CSUM;
1056         netdev->vlan_features |= NETIF_F_SG;
1057
1058         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1059
1060         /* initialize eeprom parameters */
1061         if (e1000_init_eeprom_params(hw)) {
1062                 E1000_ERR("EEPROM initialization failed\n");
1063                 goto err_eeprom;
1064         }
1065
1066         /* before reading the EEPROM, reset the controller to
1067          * put the device in a known good starting state */
1068
1069         e1000_reset_hw(hw);
1070
1071         /* make sure the EEPROM is good */
1072         if (e1000_validate_eeprom_checksum(hw) < 0) {
1073                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1074                 e1000_dump_eeprom(adapter);
1075                 /*
1076                  * set MAC address to all zeroes to invalidate and temporary
1077                  * disable this device for the user. This blocks regular
1078                  * traffic while still permitting ethtool ioctls from reaching
1079                  * the hardware as well as allowing the user to run the
1080                  * interface after manually setting a hw addr using
1081                  * `ip set address`
1082                  */
1083                 memset(hw->mac_addr, 0, netdev->addr_len);
1084         } else {
1085                 /* copy the MAC address out of the EEPROM */
1086                 if (e1000_read_mac_addr(hw))
1087                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1088         }
1089         /* don't block initalization here due to bad MAC address */
1090         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1091         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1092
1093         if (!is_valid_ether_addr(netdev->perm_addr))
1094                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1095
1096         e1000_get_bus_info(hw);
1097
1098         init_timer(&adapter->tx_fifo_stall_timer);
1099         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1100         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1101
1102         init_timer(&adapter->watchdog_timer);
1103         adapter->watchdog_timer.function = &e1000_watchdog;
1104         adapter->watchdog_timer.data = (unsigned long) adapter;
1105
1106         init_timer(&adapter->phy_info_timer);
1107         adapter->phy_info_timer.function = &e1000_update_phy_info;
1108         adapter->phy_info_timer.data = (unsigned long)adapter;
1109
1110         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1111
1112         e1000_check_options(adapter);
1113
1114         /* Initial Wake on LAN setting
1115          * If APM wake is enabled in the EEPROM,
1116          * enable the ACPI Magic Packet filter
1117          */
1118
1119         switch (hw->mac_type) {
1120         case e1000_82542_rev2_0:
1121         case e1000_82542_rev2_1:
1122         case e1000_82543:
1123                 break;
1124         case e1000_82544:
1125                 e1000_read_eeprom(hw,
1126                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1127                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1128                 break;
1129         case e1000_ich8lan:
1130                 e1000_read_eeprom(hw,
1131                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1132                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1133                 break;
1134         case e1000_82546:
1135         case e1000_82546_rev_3:
1136         case e1000_82571:
1137         case e1000_80003es2lan:
1138                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1139                         e1000_read_eeprom(hw,
1140                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1141                         break;
1142                 }
1143                 /* Fall Through */
1144         default:
1145                 e1000_read_eeprom(hw,
1146                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1147                 break;
1148         }
1149         if (eeprom_data & eeprom_apme_mask)
1150                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1151
1152         /* now that we have the eeprom settings, apply the special cases
1153          * where the eeprom may be wrong or the board simply won't support
1154          * wake on lan on a particular port */
1155         switch (pdev->device) {
1156         case E1000_DEV_ID_82546GB_PCIE:
1157                 adapter->eeprom_wol = 0;
1158                 break;
1159         case E1000_DEV_ID_82546EB_FIBER:
1160         case E1000_DEV_ID_82546GB_FIBER:
1161         case E1000_DEV_ID_82571EB_FIBER:
1162                 /* Wake events only supported on port A for dual fiber
1163                  * regardless of eeprom setting */
1164                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165                         adapter->eeprom_wol = 0;
1166                 break;
1167         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1169         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1170         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1171         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1172                 /* if quad port adapter, disable WoL on all but port A */
1173                 if (global_quad_port_a != 0)
1174                         adapter->eeprom_wol = 0;
1175                 else
1176                         adapter->quad_port_a = 1;
1177                 /* Reset for multiple quad port adapters */
1178                 if (++global_quad_port_a == 4)
1179                         global_quad_port_a = 0;
1180                 break;
1181         }
1182
1183         /* initialize the wol settings based on the eeprom settings */
1184         adapter->wol = adapter->eeprom_wol;
1185         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1186
1187         /* print bus type/speed/width info */
1188         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1189                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1190                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1191                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1192                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1193                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1194                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1195                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1196                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1197                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1198                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1199                  "32-bit"));
1200
1201         printk("%pM\n", netdev->dev_addr);
1202
1203         if (hw->bus_type == e1000_bus_type_pci_express) {
1204                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1205                         "longer be supported by this driver in the future.\n",
1206                         pdev->vendor, pdev->device);
1207                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1208                         "driver instead.\n");
1209         }
1210
1211         /* reset the hardware with the new settings */
1212         e1000_reset(adapter);
1213
1214         /* If the controller is 82573 and f/w is AMT, do not set
1215          * DRV_LOAD until the interface is up.  For all other cases,
1216          * let the f/w know that the h/w is now under the control
1217          * of the driver. */
1218         if (hw->mac_type != e1000_82573 ||
1219             !e1000_check_mng_mode(hw))
1220                 e1000_get_hw_control(adapter);
1221
1222         /* tell the stack to leave us alone until e1000_open() is called */
1223         netif_carrier_off(netdev);
1224         netif_stop_queue(netdev);
1225
1226         strcpy(netdev->name, "eth%d");
1227         err = register_netdev(netdev);
1228         if (err)
1229                 goto err_register;
1230
1231         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1232
1233         cards_found++;
1234         return 0;
1235
1236 err_register:
1237         e1000_release_hw_control(adapter);
1238 err_eeprom:
1239         if (!e1000_check_phy_reset_block(hw))
1240                 e1000_phy_hw_reset(hw);
1241
1242         if (hw->flash_address)
1243                 iounmap(hw->flash_address);
1244 err_flashmap:
1245         for (i = 0; i < adapter->num_rx_queues; i++)
1246                 dev_put(&adapter->polling_netdev[i]);
1247
1248         kfree(adapter->tx_ring);
1249         kfree(adapter->rx_ring);
1250         kfree(adapter->polling_netdev);
1251 err_sw_init:
1252         iounmap(hw->hw_addr);
1253 err_ioremap:
1254         free_netdev(netdev);
1255 err_alloc_etherdev:
1256         pci_release_selected_regions(pdev, bars);
1257 err_pci_reg:
1258 err_dma:
1259         pci_disable_device(pdev);
1260         return err;
1261 }
1262
1263 /**
1264  * e1000_remove - Device Removal Routine
1265  * @pdev: PCI device information struct
1266  *
1267  * e1000_remove is called by the PCI subsystem to alert the driver
1268  * that it should release a PCI device.  The could be caused by a
1269  * Hot-Plug event, or because the driver is going to be removed from
1270  * memory.
1271  **/
1272
1273 static void __devexit e1000_remove(struct pci_dev *pdev)
1274 {
1275         struct net_device *netdev = pci_get_drvdata(pdev);
1276         struct e1000_adapter *adapter = netdev_priv(netdev);
1277         struct e1000_hw *hw = &adapter->hw;
1278         int i;
1279
1280         cancel_work_sync(&adapter->reset_task);
1281
1282         e1000_release_manageability(adapter);
1283
1284         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1285          * would have already happened in close and is redundant. */
1286         e1000_release_hw_control(adapter);
1287
1288         for (i = 0; i < adapter->num_rx_queues; i++)
1289                 dev_put(&adapter->polling_netdev[i]);
1290
1291         unregister_netdev(netdev);
1292
1293         if (!e1000_check_phy_reset_block(hw))
1294                 e1000_phy_hw_reset(hw);
1295
1296         kfree(adapter->tx_ring);
1297         kfree(adapter->rx_ring);
1298         kfree(adapter->polling_netdev);
1299
1300         iounmap(hw->hw_addr);
1301         if (hw->flash_address)
1302                 iounmap(hw->flash_address);
1303         pci_release_selected_regions(pdev, adapter->bars);
1304
1305         free_netdev(netdev);
1306
1307         pci_disable_device(pdev);
1308 }
1309
1310 /**
1311  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1312  * @adapter: board private structure to initialize
1313  *
1314  * e1000_sw_init initializes the Adapter private data structure.
1315  * Fields are initialized based on PCI device information and
1316  * OS network device settings (MTU size).
1317  **/
1318
1319 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1320 {
1321         struct e1000_hw *hw = &adapter->hw;
1322         struct net_device *netdev = adapter->netdev;
1323         struct pci_dev *pdev = adapter->pdev;
1324         int i;
1325
1326         /* PCI config space info */
1327
1328         hw->vendor_id = pdev->vendor;
1329         hw->device_id = pdev->device;
1330         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1331         hw->subsystem_id = pdev->subsystem_device;
1332         hw->revision_id = pdev->revision;
1333
1334         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1335
1336         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1337         hw->max_frame_size = netdev->mtu +
1338                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1339         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1340
1341         /* identify the MAC */
1342
1343         if (e1000_set_mac_type(hw)) {
1344                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1345                 return -EIO;
1346         }
1347
1348         switch (hw->mac_type) {
1349         default:
1350                 break;
1351         case e1000_82541:
1352         case e1000_82547:
1353         case e1000_82541_rev_2:
1354         case e1000_82547_rev_2:
1355                 hw->phy_init_script = 1;
1356                 break;
1357         }
1358
1359         e1000_set_media_type(hw);
1360
1361         hw->wait_autoneg_complete = false;
1362         hw->tbi_compatibility_en = true;
1363         hw->adaptive_ifs = true;
1364
1365         /* Copper options */
1366
1367         if (hw->media_type == e1000_media_type_copper) {
1368                 hw->mdix = AUTO_ALL_MODES;
1369                 hw->disable_polarity_correction = false;
1370                 hw->master_slave = E1000_MASTER_SLAVE;
1371         }
1372
1373         adapter->num_tx_queues = 1;
1374         adapter->num_rx_queues = 1;
1375
1376         if (e1000_alloc_queues(adapter)) {
1377                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1378                 return -ENOMEM;
1379         }
1380
1381         for (i = 0; i < adapter->num_rx_queues; i++) {
1382                 adapter->polling_netdev[i].priv = adapter;
1383                 dev_hold(&adapter->polling_netdev[i]);
1384                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1385         }
1386         spin_lock_init(&adapter->tx_queue_lock);
1387
1388         /* Explicitly disable IRQ since the NIC can be in any state. */
1389         e1000_irq_disable(adapter);
1390
1391         spin_lock_init(&adapter->stats_lock);
1392
1393         set_bit(__E1000_DOWN, &adapter->flags);
1394
1395         return 0;
1396 }
1397
1398 /**
1399  * e1000_alloc_queues - Allocate memory for all rings
1400  * @adapter: board private structure to initialize
1401  *
1402  * We allocate one ring per queue at run-time since we don't know the
1403  * number of queues at compile-time.  The polling_netdev array is
1404  * intended for Multiqueue, but should work fine with a single queue.
1405  **/
1406
1407 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1408 {
1409         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1410                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1411         if (!adapter->tx_ring)
1412                 return -ENOMEM;
1413
1414         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1415                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1416         if (!adapter->rx_ring) {
1417                 kfree(adapter->tx_ring);
1418                 return -ENOMEM;
1419         }
1420
1421         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1422                                           sizeof(struct net_device),
1423                                           GFP_KERNEL);
1424         if (!adapter->polling_netdev) {
1425                 kfree(adapter->tx_ring);
1426                 kfree(adapter->rx_ring);
1427                 return -ENOMEM;
1428         }
1429
1430         return E1000_SUCCESS;
1431 }
1432
1433 /**
1434  * e1000_open - Called when a network interface is made active
1435  * @netdev: network interface device structure
1436  *
1437  * Returns 0 on success, negative value on failure
1438  *
1439  * The open entry point is called when a network interface is made
1440  * active by the system (IFF_UP).  At this point all resources needed
1441  * for transmit and receive operations are allocated, the interrupt
1442  * handler is registered with the OS, the watchdog timer is started,
1443  * and the stack is notified that the interface is ready.
1444  **/
1445
1446 static int e1000_open(struct net_device *netdev)
1447 {
1448         struct e1000_adapter *adapter = netdev_priv(netdev);
1449         struct e1000_hw *hw = &adapter->hw;
1450         int err;
1451
1452         /* disallow open during test */
1453         if (test_bit(__E1000_TESTING, &adapter->flags))
1454                 return -EBUSY;
1455
1456         /* allocate transmit descriptors */
1457         err = e1000_setup_all_tx_resources(adapter);
1458         if (err)
1459                 goto err_setup_tx;
1460
1461         /* allocate receive descriptors */
1462         err = e1000_setup_all_rx_resources(adapter);
1463         if (err)
1464                 goto err_setup_rx;
1465
1466         e1000_power_up_phy(adapter);
1467
1468         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1469         if ((hw->mng_cookie.status &
1470                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1471                 e1000_update_mng_vlan(adapter);
1472         }
1473
1474         /* If AMT is enabled, let the firmware know that the network
1475          * interface is now open */
1476         if (hw->mac_type == e1000_82573 &&
1477             e1000_check_mng_mode(hw))
1478                 e1000_get_hw_control(adapter);
1479
1480         /* before we allocate an interrupt, we must be ready to handle it.
1481          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1482          * as soon as we call pci_request_irq, so we have to setup our
1483          * clean_rx handler before we do so.  */
1484         e1000_configure(adapter);
1485
1486         err = e1000_request_irq(adapter);
1487         if (err)
1488                 goto err_req_irq;
1489
1490         /* From here on the code is the same as e1000_up() */
1491         clear_bit(__E1000_DOWN, &adapter->flags);
1492
1493         napi_enable(&adapter->napi);
1494
1495         e1000_irq_enable(adapter);
1496
1497         netif_start_queue(netdev);
1498
1499         /* fire a link status change interrupt to start the watchdog */
1500         ew32(ICS, E1000_ICS_LSC);
1501
1502         return E1000_SUCCESS;
1503
1504 err_req_irq:
1505         e1000_release_hw_control(adapter);
1506         e1000_power_down_phy(adapter);
1507         e1000_free_all_rx_resources(adapter);
1508 err_setup_rx:
1509         e1000_free_all_tx_resources(adapter);
1510 err_setup_tx:
1511         e1000_reset(adapter);
1512
1513         return err;
1514 }
1515
1516 /**
1517  * e1000_close - Disables a network interface
1518  * @netdev: network interface device structure
1519  *
1520  * Returns 0, this is not allowed to fail
1521  *
1522  * The close entry point is called when an interface is de-activated
1523  * by the OS.  The hardware is still under the drivers control, but
1524  * needs to be disabled.  A global MAC reset is issued to stop the
1525  * hardware, and all transmit and receive resources are freed.
1526  **/
1527
1528 static int e1000_close(struct net_device *netdev)
1529 {
1530         struct e1000_adapter *adapter = netdev_priv(netdev);
1531         struct e1000_hw *hw = &adapter->hw;
1532
1533         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1534         e1000_down(adapter);
1535         e1000_power_down_phy(adapter);
1536         e1000_free_irq(adapter);
1537
1538         e1000_free_all_tx_resources(adapter);
1539         e1000_free_all_rx_resources(adapter);
1540
1541         /* kill manageability vlan ID if supported, but not if a vlan with
1542          * the same ID is registered on the host OS (let 8021q kill it) */
1543         if ((hw->mng_cookie.status &
1544                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1545              !(adapter->vlgrp &&
1546                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1547                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1548         }
1549
1550         /* If AMT is enabled, let the firmware know that the network
1551          * interface is now closed */
1552         if (hw->mac_type == e1000_82573 &&
1553             e1000_check_mng_mode(hw))
1554                 e1000_release_hw_control(adapter);
1555
1556         return 0;
1557 }
1558
1559 /**
1560  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1561  * @adapter: address of board private structure
1562  * @start: address of beginning of memory
1563  * @len: length of memory
1564  **/
1565 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1566                                   unsigned long len)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         unsigned long begin = (unsigned long)start;
1570         unsigned long end = begin + len;
1571
1572         /* First rev 82545 and 82546 need to not allow any memory
1573          * write location to cross 64k boundary due to errata 23 */
1574         if (hw->mac_type == e1000_82545 ||
1575             hw->mac_type == e1000_82546) {
1576                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1577         }
1578
1579         return true;
1580 }
1581
1582 /**
1583  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1584  * @adapter: board private structure
1585  * @txdr:    tx descriptor ring (for a specific queue) to setup
1586  *
1587  * Return 0 on success, negative on failure
1588  **/
1589
1590 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1591                                     struct e1000_tx_ring *txdr)
1592 {
1593         struct pci_dev *pdev = adapter->pdev;
1594         int size;
1595
1596         size = sizeof(struct e1000_buffer) * txdr->count;
1597         txdr->buffer_info = vmalloc(size);
1598         if (!txdr->buffer_info) {
1599                 DPRINTK(PROBE, ERR,
1600                 "Unable to allocate memory for the transmit descriptor ring\n");
1601                 return -ENOMEM;
1602         }
1603         memset(txdr->buffer_info, 0, size);
1604
1605         /* round up to nearest 4K */
1606
1607         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1608         txdr->size = ALIGN(txdr->size, 4096);
1609
1610         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1611         if (!txdr->desc) {
1612 setup_tx_desc_die:
1613                 vfree(txdr->buffer_info);
1614                 DPRINTK(PROBE, ERR,
1615                 "Unable to allocate memory for the transmit descriptor ring\n");
1616                 return -ENOMEM;
1617         }
1618
1619         /* Fix for errata 23, can't cross 64kB boundary */
1620         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1621                 void *olddesc = txdr->desc;
1622                 dma_addr_t olddma = txdr->dma;
1623                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1624                                      "at %p\n", txdr->size, txdr->desc);
1625                 /* Try again, without freeing the previous */
1626                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1627                 /* Failed allocation, critical failure */
1628                 if (!txdr->desc) {
1629                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1630                         goto setup_tx_desc_die;
1631                 }
1632
1633                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1634                         /* give up */
1635                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1636                                             txdr->dma);
1637                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1638                         DPRINTK(PROBE, ERR,
1639                                 "Unable to allocate aligned memory "
1640                                 "for the transmit descriptor ring\n");
1641                         vfree(txdr->buffer_info);
1642                         return -ENOMEM;
1643                 } else {
1644                         /* Free old allocation, new allocation was successful */
1645                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1646                 }
1647         }
1648         memset(txdr->desc, 0, txdr->size);
1649
1650         txdr->next_to_use = 0;
1651         txdr->next_to_clean = 0;
1652         spin_lock_init(&txdr->tx_lock);
1653
1654         return 0;
1655 }
1656
1657 /**
1658  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1659  *                                (Descriptors) for all queues
1660  * @adapter: board private structure
1661  *
1662  * Return 0 on success, negative on failure
1663  **/
1664
1665 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1666 {
1667         int i, err = 0;
1668
1669         for (i = 0; i < adapter->num_tx_queues; i++) {
1670                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1671                 if (err) {
1672                         DPRINTK(PROBE, ERR,
1673                                 "Allocation for Tx Queue %u failed\n", i);
1674                         for (i-- ; i >= 0; i--)
1675                                 e1000_free_tx_resources(adapter,
1676                                                         &adapter->tx_ring[i]);
1677                         break;
1678                 }
1679         }
1680
1681         return err;
1682 }
1683
1684 /**
1685  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1686  * @adapter: board private structure
1687  *
1688  * Configure the Tx unit of the MAC after a reset.
1689  **/
1690
1691 static void e1000_configure_tx(struct e1000_adapter *adapter)
1692 {
1693         u64 tdba;
1694         struct e1000_hw *hw = &adapter->hw;
1695         u32 tdlen, tctl, tipg, tarc;
1696         u32 ipgr1, ipgr2;
1697
1698         /* Setup the HW Tx Head and Tail descriptor pointers */
1699
1700         switch (adapter->num_tx_queues) {
1701         case 1:
1702         default:
1703                 tdba = adapter->tx_ring[0].dma;
1704                 tdlen = adapter->tx_ring[0].count *
1705                         sizeof(struct e1000_tx_desc);
1706                 ew32(TDLEN, tdlen);
1707                 ew32(TDBAH, (tdba >> 32));
1708                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1709                 ew32(TDT, 0);
1710                 ew32(TDH, 0);
1711                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1712                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1713                 break;
1714         }
1715
1716         /* Set the default values for the Tx Inter Packet Gap timer */
1717         if (hw->mac_type <= e1000_82547_rev_2 &&
1718             (hw->media_type == e1000_media_type_fiber ||
1719              hw->media_type == e1000_media_type_internal_serdes))
1720                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1721         else
1722                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1723
1724         switch (hw->mac_type) {
1725         case e1000_82542_rev2_0:
1726         case e1000_82542_rev2_1:
1727                 tipg = DEFAULT_82542_TIPG_IPGT;
1728                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1729                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1730                 break;
1731         case e1000_80003es2lan:
1732                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1733                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1734                 break;
1735         default:
1736                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1737                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1738                 break;
1739         }
1740         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1741         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1742         ew32(TIPG, tipg);
1743
1744         /* Set the Tx Interrupt Delay register */
1745
1746         ew32(TIDV, adapter->tx_int_delay);
1747         if (hw->mac_type >= e1000_82540)
1748                 ew32(TADV, adapter->tx_abs_int_delay);
1749
1750         /* Program the Transmit Control Register */
1751
1752         tctl = er32(TCTL);
1753         tctl &= ~E1000_TCTL_CT;
1754         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1755                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1756
1757         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1758                 tarc = er32(TARC0);
1759                 /* set the speed mode bit, we'll clear it if we're not at
1760                  * gigabit link later */
1761                 tarc |= (1 << 21);
1762                 ew32(TARC0, tarc);
1763         } else if (hw->mac_type == e1000_80003es2lan) {
1764                 tarc = er32(TARC0);
1765                 tarc |= 1;
1766                 ew32(TARC0, tarc);
1767                 tarc = er32(TARC1);
1768                 tarc |= 1;
1769                 ew32(TARC1, tarc);
1770         }
1771
1772         e1000_config_collision_dist(hw);
1773
1774         /* Setup Transmit Descriptor Settings for eop descriptor */
1775         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1776
1777         /* only set IDE if we are delaying interrupts using the timers */
1778         if (adapter->tx_int_delay)
1779                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1780
1781         if (hw->mac_type < e1000_82543)
1782                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1783         else
1784                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1785
1786         /* Cache if we're 82544 running in PCI-X because we'll
1787          * need this to apply a workaround later in the send path. */
1788         if (hw->mac_type == e1000_82544 &&
1789             hw->bus_type == e1000_bus_type_pcix)
1790                 adapter->pcix_82544 = 1;
1791
1792         ew32(TCTL, tctl);
1793
1794 }
1795
1796 /**
1797  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1798  * @adapter: board private structure
1799  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1800  *
1801  * Returns 0 on success, negative on failure
1802  **/
1803
1804 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1805                                     struct e1000_rx_ring *rxdr)
1806 {
1807         struct e1000_hw *hw = &adapter->hw;
1808         struct pci_dev *pdev = adapter->pdev;
1809         int size, desc_len;
1810
1811         size = sizeof(struct e1000_buffer) * rxdr->count;
1812         rxdr->buffer_info = vmalloc(size);
1813         if (!rxdr->buffer_info) {
1814                 DPRINTK(PROBE, ERR,
1815                 "Unable to allocate memory for the receive descriptor ring\n");
1816                 return -ENOMEM;
1817         }
1818         memset(rxdr->buffer_info, 0, size);
1819
1820         if (hw->mac_type <= e1000_82547_rev_2)
1821                 desc_len = sizeof(struct e1000_rx_desc);
1822         else
1823                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1824
1825         /* Round up to nearest 4K */
1826
1827         rxdr->size = rxdr->count * desc_len;
1828         rxdr->size = ALIGN(rxdr->size, 4096);
1829
1830         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1831
1832         if (!rxdr->desc) {
1833                 DPRINTK(PROBE, ERR,
1834                 "Unable to allocate memory for the receive descriptor ring\n");
1835 setup_rx_desc_die:
1836                 vfree(rxdr->buffer_info);
1837                 return -ENOMEM;
1838         }
1839
1840         /* Fix for errata 23, can't cross 64kB boundary */
1841         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1842                 void *olddesc = rxdr->desc;
1843                 dma_addr_t olddma = rxdr->dma;
1844                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1845                                      "at %p\n", rxdr->size, rxdr->desc);
1846                 /* Try again, without freeing the previous */
1847                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1848                 /* Failed allocation, critical failure */
1849                 if (!rxdr->desc) {
1850                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1851                         DPRINTK(PROBE, ERR,
1852                                 "Unable to allocate memory "
1853                                 "for the receive descriptor ring\n");
1854                         goto setup_rx_desc_die;
1855                 }
1856
1857                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1858                         /* give up */
1859                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1860                                             rxdr->dma);
1861                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1862                         DPRINTK(PROBE, ERR,
1863                                 "Unable to allocate aligned memory "
1864                                 "for the receive descriptor ring\n");
1865                         goto setup_rx_desc_die;
1866                 } else {
1867                         /* Free old allocation, new allocation was successful */
1868                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1869                 }
1870         }
1871         memset(rxdr->desc, 0, rxdr->size);
1872
1873         rxdr->next_to_clean = 0;
1874         rxdr->next_to_use = 0;
1875
1876         return 0;
1877 }
1878
1879 /**
1880  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1881  *                                (Descriptors) for all queues
1882  * @adapter: board private structure
1883  *
1884  * Return 0 on success, negative on failure
1885  **/
1886
1887 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1888 {
1889         int i, err = 0;
1890
1891         for (i = 0; i < adapter->num_rx_queues; i++) {
1892                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1893                 if (err) {
1894                         DPRINTK(PROBE, ERR,
1895                                 "Allocation for Rx Queue %u failed\n", i);
1896                         for (i-- ; i >= 0; i--)
1897                                 e1000_free_rx_resources(adapter,
1898                                                         &adapter->rx_ring[i]);
1899                         break;
1900                 }
1901         }
1902
1903         return err;
1904 }
1905
1906 /**
1907  * e1000_setup_rctl - configure the receive control registers
1908  * @adapter: Board private structure
1909  **/
1910 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1911                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1912 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1913 {
1914         struct e1000_hw *hw = &adapter->hw;
1915         u32 rctl;
1916
1917         rctl = er32(RCTL);
1918
1919         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1920
1921         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1922                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1923                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1924
1925         if (hw->tbi_compatibility_on == 1)
1926                 rctl |= E1000_RCTL_SBP;
1927         else
1928                 rctl &= ~E1000_RCTL_SBP;
1929
1930         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1931                 rctl &= ~E1000_RCTL_LPE;
1932         else
1933                 rctl |= E1000_RCTL_LPE;
1934
1935         /* Setup buffer sizes */
1936         rctl &= ~E1000_RCTL_SZ_4096;
1937         rctl |= E1000_RCTL_BSEX;
1938         switch (adapter->rx_buffer_len) {
1939                 case E1000_RXBUFFER_256:
1940                         rctl |= E1000_RCTL_SZ_256;
1941                         rctl &= ~E1000_RCTL_BSEX;
1942                         break;
1943                 case E1000_RXBUFFER_512:
1944                         rctl |= E1000_RCTL_SZ_512;
1945                         rctl &= ~E1000_RCTL_BSEX;
1946                         break;
1947                 case E1000_RXBUFFER_1024:
1948                         rctl |= E1000_RCTL_SZ_1024;
1949                         rctl &= ~E1000_RCTL_BSEX;
1950                         break;
1951                 case E1000_RXBUFFER_2048:
1952                 default:
1953                         rctl |= E1000_RCTL_SZ_2048;
1954                         rctl &= ~E1000_RCTL_BSEX;
1955                         break;
1956                 case E1000_RXBUFFER_4096:
1957                         rctl |= E1000_RCTL_SZ_4096;
1958                         break;
1959                 case E1000_RXBUFFER_8192:
1960                         rctl |= E1000_RCTL_SZ_8192;
1961                         break;
1962                 case E1000_RXBUFFER_16384:
1963                         rctl |= E1000_RCTL_SZ_16384;
1964                         break;
1965         }
1966
1967         ew32(RCTL, rctl);
1968 }
1969
1970 /**
1971  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1972  * @adapter: board private structure
1973  *
1974  * Configure the Rx unit of the MAC after a reset.
1975  **/
1976
1977 static void e1000_configure_rx(struct e1000_adapter *adapter)
1978 {
1979         u64 rdba;
1980         struct e1000_hw *hw = &adapter->hw;
1981         u32 rdlen, rctl, rxcsum, ctrl_ext;
1982
1983         rdlen = adapter->rx_ring[0].count *
1984                 sizeof(struct e1000_rx_desc);
1985         adapter->clean_rx = e1000_clean_rx_irq;
1986         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1987
1988         /* disable receives while setting up the descriptors */
1989         rctl = er32(RCTL);
1990         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1991
1992         /* set the Receive Delay Timer Register */
1993         ew32(RDTR, adapter->rx_int_delay);
1994
1995         if (hw->mac_type >= e1000_82540) {
1996                 ew32(RADV, adapter->rx_abs_int_delay);
1997                 if (adapter->itr_setting != 0)
1998                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1999         }
2000
2001         if (hw->mac_type >= e1000_82571) {
2002                 ctrl_ext = er32(CTRL_EXT);
2003                 /* Reset delay timers after every interrupt */
2004                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2005                 /* Auto-Mask interrupts upon ICR access */
2006                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2007                 ew32(IAM, 0xffffffff);
2008                 ew32(CTRL_EXT, ctrl_ext);
2009                 E1000_WRITE_FLUSH();
2010         }
2011
2012         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2013          * the Base and Length of the Rx Descriptor Ring */
2014         switch (adapter->num_rx_queues) {
2015         case 1:
2016         default:
2017                 rdba = adapter->rx_ring[0].dma;
2018                 ew32(RDLEN, rdlen);
2019                 ew32(RDBAH, (rdba >> 32));
2020                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2021                 ew32(RDT, 0);
2022                 ew32(RDH, 0);
2023                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2024                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2025                 break;
2026         }
2027
2028         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2029         if (hw->mac_type >= e1000_82543) {
2030                 rxcsum = er32(RXCSUM);
2031                 if (adapter->rx_csum)
2032                         rxcsum |= E1000_RXCSUM_TUOFL;
2033                 else
2034                         /* don't need to clear IPPCSE as it defaults to 0 */
2035                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2036                 ew32(RXCSUM, rxcsum);
2037         }
2038
2039         /* Enable Receives */
2040         ew32(RCTL, rctl);
2041 }
2042
2043 /**
2044  * e1000_free_tx_resources - Free Tx Resources per Queue
2045  * @adapter: board private structure
2046  * @tx_ring: Tx descriptor ring for a specific queue
2047  *
2048  * Free all transmit software resources
2049  **/
2050
2051 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2052                                     struct e1000_tx_ring *tx_ring)
2053 {
2054         struct pci_dev *pdev = adapter->pdev;
2055
2056         e1000_clean_tx_ring(adapter, tx_ring);
2057
2058         vfree(tx_ring->buffer_info);
2059         tx_ring->buffer_info = NULL;
2060
2061         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2062
2063         tx_ring->desc = NULL;
2064 }
2065
2066 /**
2067  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2068  * @adapter: board private structure
2069  *
2070  * Free all transmit software resources
2071  **/
2072
2073 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2074 {
2075         int i;
2076
2077         for (i = 0; i < adapter->num_tx_queues; i++)
2078                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2079 }
2080
2081 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2082                                              struct e1000_buffer *buffer_info)
2083 {
2084         if (buffer_info->dma) {
2085                 pci_unmap_page(adapter->pdev,
2086                                 buffer_info->dma,
2087                                 buffer_info->length,
2088                                 PCI_DMA_TODEVICE);
2089                 buffer_info->dma = 0;
2090         }
2091         if (buffer_info->skb) {
2092                 dev_kfree_skb_any(buffer_info->skb);
2093                 buffer_info->skb = NULL;
2094         }
2095         /* buffer_info must be completely set up in the transmit path */
2096 }
2097
2098 /**
2099  * e1000_clean_tx_ring - Free Tx Buffers
2100  * @adapter: board private structure
2101  * @tx_ring: ring to be cleaned
2102  **/
2103
2104 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2105                                 struct e1000_tx_ring *tx_ring)
2106 {
2107         struct e1000_hw *hw = &adapter->hw;
2108         struct e1000_buffer *buffer_info;
2109         unsigned long size;
2110         unsigned int i;
2111
2112         /* Free all the Tx ring sk_buffs */
2113
2114         for (i = 0; i < tx_ring->count; i++) {
2115                 buffer_info = &tx_ring->buffer_info[i];
2116                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2117         }
2118
2119         size = sizeof(struct e1000_buffer) * tx_ring->count;
2120         memset(tx_ring->buffer_info, 0, size);
2121
2122         /* Zero out the descriptor ring */
2123
2124         memset(tx_ring->desc, 0, tx_ring->size);
2125
2126         tx_ring->next_to_use = 0;
2127         tx_ring->next_to_clean = 0;
2128         tx_ring->last_tx_tso = 0;
2129
2130         writel(0, hw->hw_addr + tx_ring->tdh);
2131         writel(0, hw->hw_addr + tx_ring->tdt);
2132 }
2133
2134 /**
2135  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2136  * @adapter: board private structure
2137  **/
2138
2139 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2140 {
2141         int i;
2142
2143         for (i = 0; i < adapter->num_tx_queues; i++)
2144                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2145 }
2146
2147 /**
2148  * e1000_free_rx_resources - Free Rx Resources
2149  * @adapter: board private structure
2150  * @rx_ring: ring to clean the resources from
2151  *
2152  * Free all receive software resources
2153  **/
2154
2155 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2156                                     struct e1000_rx_ring *rx_ring)
2157 {
2158         struct pci_dev *pdev = adapter->pdev;
2159
2160         e1000_clean_rx_ring(adapter, rx_ring);
2161
2162         vfree(rx_ring->buffer_info);
2163         rx_ring->buffer_info = NULL;
2164
2165         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2166
2167         rx_ring->desc = NULL;
2168 }
2169
2170 /**
2171  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2172  * @adapter: board private structure
2173  *
2174  * Free all receive software resources
2175  **/
2176
2177 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2178 {
2179         int i;
2180
2181         for (i = 0; i < adapter->num_rx_queues; i++)
2182                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2183 }
2184
2185 /**
2186  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2187  * @adapter: board private structure
2188  * @rx_ring: ring to free buffers from
2189  **/
2190
2191 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2192                                 struct e1000_rx_ring *rx_ring)
2193 {
2194         struct e1000_hw *hw = &adapter->hw;
2195         struct e1000_buffer *buffer_info;
2196         struct pci_dev *pdev = adapter->pdev;
2197         unsigned long size;
2198         unsigned int i;
2199
2200         /* Free all the Rx ring sk_buffs */
2201         for (i = 0; i < rx_ring->count; i++) {
2202                 buffer_info = &rx_ring->buffer_info[i];
2203                 if (buffer_info->skb) {
2204                         pci_unmap_single(pdev,
2205                                          buffer_info->dma,
2206                                          buffer_info->length,
2207                                          PCI_DMA_FROMDEVICE);
2208
2209                         dev_kfree_skb(buffer_info->skb);
2210                         buffer_info->skb = NULL;
2211                 }
2212         }
2213
2214         size = sizeof(struct e1000_buffer) * rx_ring->count;
2215         memset(rx_ring->buffer_info, 0, size);
2216
2217         /* Zero out the descriptor ring */
2218
2219         memset(rx_ring->desc, 0, rx_ring->size);
2220
2221         rx_ring->next_to_clean = 0;
2222         rx_ring->next_to_use = 0;
2223
2224         writel(0, hw->hw_addr + rx_ring->rdh);
2225         writel(0, hw->hw_addr + rx_ring->rdt);
2226 }
2227
2228 /**
2229  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2230  * @adapter: board private structure
2231  **/
2232
2233 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2234 {
2235         int i;
2236
2237         for (i = 0; i < adapter->num_rx_queues; i++)
2238                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2239 }
2240
2241 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2242  * and memory write and invalidate disabled for certain operations
2243  */
2244 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2245 {
2246         struct e1000_hw *hw = &adapter->hw;
2247         struct net_device *netdev = adapter->netdev;
2248         u32 rctl;
2249
2250         e1000_pci_clear_mwi(hw);
2251
2252         rctl = er32(RCTL);
2253         rctl |= E1000_RCTL_RST;
2254         ew32(RCTL, rctl);
2255         E1000_WRITE_FLUSH();
2256         mdelay(5);
2257
2258         if (netif_running(netdev))
2259                 e1000_clean_all_rx_rings(adapter);
2260 }
2261
2262 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2263 {
2264         struct e1000_hw *hw = &adapter->hw;
2265         struct net_device *netdev = adapter->netdev;
2266         u32 rctl;
2267
2268         rctl = er32(RCTL);
2269         rctl &= ~E1000_RCTL_RST;
2270         ew32(RCTL, rctl);
2271         E1000_WRITE_FLUSH();
2272         mdelay(5);
2273
2274         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2275                 e1000_pci_set_mwi(hw);
2276
2277         if (netif_running(netdev)) {
2278                 /* No need to loop, because 82542 supports only 1 queue */
2279                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2280                 e1000_configure_rx(adapter);
2281                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2282         }
2283 }
2284
2285 /**
2286  * e1000_set_mac - Change the Ethernet Address of the NIC
2287  * @netdev: network interface device structure
2288  * @p: pointer to an address structure
2289  *
2290  * Returns 0 on success, negative on failure
2291  **/
2292
2293 static int e1000_set_mac(struct net_device *netdev, void *p)
2294 {
2295         struct e1000_adapter *adapter = netdev_priv(netdev);
2296         struct e1000_hw *hw = &adapter->hw;
2297         struct sockaddr *addr = p;
2298
2299         if (!is_valid_ether_addr(addr->sa_data))
2300                 return -EADDRNOTAVAIL;
2301
2302         /* 82542 2.0 needs to be in reset to write receive address registers */
2303
2304         if (hw->mac_type == e1000_82542_rev2_0)
2305                 e1000_enter_82542_rst(adapter);
2306
2307         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2308         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2309
2310         e1000_rar_set(hw, hw->mac_addr, 0);
2311
2312         /* With 82571 controllers, LAA may be overwritten (with the default)
2313          * due to controller reset from the other port. */
2314         if (hw->mac_type == e1000_82571) {
2315                 /* activate the work around */
2316                 hw->laa_is_present = 1;
2317
2318                 /* Hold a copy of the LAA in RAR[14] This is done so that
2319                  * between the time RAR[0] gets clobbered  and the time it
2320                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2321                  * of the RARs and no incoming packets directed to this port
2322                  * are dropped. Eventaully the LAA will be in RAR[0] and
2323                  * RAR[14] */
2324                 e1000_rar_set(hw, hw->mac_addr,
2325                                         E1000_RAR_ENTRIES - 1);
2326         }
2327
2328         if (hw->mac_type == e1000_82542_rev2_0)
2329                 e1000_leave_82542_rst(adapter);
2330
2331         return 0;
2332 }
2333
2334 /**
2335  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2336  * @netdev: network interface device structure
2337  *
2338  * The set_rx_mode entry point is called whenever the unicast or multicast
2339  * address lists or the network interface flags are updated. This routine is
2340  * responsible for configuring the hardware for proper unicast, multicast,
2341  * promiscuous mode, and all-multi behavior.
2342  **/
2343
2344 static void e1000_set_rx_mode(struct net_device *netdev)
2345 {
2346         struct e1000_adapter *adapter = netdev_priv(netdev);
2347         struct e1000_hw *hw = &adapter->hw;
2348         struct dev_addr_list *uc_ptr;
2349         struct dev_addr_list *mc_ptr;
2350         u32 rctl;
2351         u32 hash_value;
2352         int i, rar_entries = E1000_RAR_ENTRIES;
2353         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2354                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2355                                 E1000_NUM_MTA_REGISTERS;
2356
2357         if (hw->mac_type == e1000_ich8lan)
2358                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2359
2360         /* reserve RAR[14] for LAA over-write work-around */
2361         if (hw->mac_type == e1000_82571)
2362                 rar_entries--;
2363
2364         /* Check for Promiscuous and All Multicast modes */
2365
2366         rctl = er32(RCTL);
2367
2368         if (netdev->flags & IFF_PROMISC) {
2369                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2370                 rctl &= ~E1000_RCTL_VFE;
2371         } else {
2372                 if (netdev->flags & IFF_ALLMULTI) {
2373                         rctl |= E1000_RCTL_MPE;
2374                 } else {
2375                         rctl &= ~E1000_RCTL_MPE;
2376                 }
2377                 if (adapter->hw.mac_type != e1000_ich8lan)
2378                         rctl |= E1000_RCTL_VFE;
2379         }
2380
2381         uc_ptr = NULL;
2382         if (netdev->uc_count > rar_entries - 1) {
2383                 rctl |= E1000_RCTL_UPE;
2384         } else if (!(netdev->flags & IFF_PROMISC)) {
2385                 rctl &= ~E1000_RCTL_UPE;
2386                 uc_ptr = netdev->uc_list;
2387         }
2388
2389         ew32(RCTL, rctl);
2390
2391         /* 82542 2.0 needs to be in reset to write receive address registers */
2392
2393         if (hw->mac_type == e1000_82542_rev2_0)
2394                 e1000_enter_82542_rst(adapter);
2395
2396         /* load the first 14 addresses into the exact filters 1-14. Unicast
2397          * addresses take precedence to avoid disabling unicast filtering
2398          * when possible.
2399          *
2400          * RAR 0 is used for the station MAC adddress
2401          * if there are not 14 addresses, go ahead and clear the filters
2402          * -- with 82571 controllers only 0-13 entries are filled here
2403          */
2404         mc_ptr = netdev->mc_list;
2405
2406         for (i = 1; i < rar_entries; i++) {
2407                 if (uc_ptr) {
2408                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2409                         uc_ptr = uc_ptr->next;
2410                 } else if (mc_ptr) {
2411                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2412                         mc_ptr = mc_ptr->next;
2413                 } else {
2414                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2415                         E1000_WRITE_FLUSH();
2416                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2417                         E1000_WRITE_FLUSH();
2418                 }
2419         }
2420         WARN_ON(uc_ptr != NULL);
2421
2422         /* clear the old settings from the multicast hash table */
2423
2424         for (i = 0; i < mta_reg_count; i++) {
2425                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2426                 E1000_WRITE_FLUSH();
2427         }
2428
2429         /* load any remaining addresses into the hash table */
2430
2431         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2432                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2433                 e1000_mta_set(hw, hash_value);
2434         }
2435
2436         if (hw->mac_type == e1000_82542_rev2_0)
2437                 e1000_leave_82542_rst(adapter);
2438 }
2439
2440 /* Need to wait a few seconds after link up to get diagnostic information from
2441  * the phy */
2442
2443 static void e1000_update_phy_info(unsigned long data)
2444 {
2445         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2446         struct e1000_hw *hw = &adapter->hw;
2447         e1000_phy_get_info(hw, &adapter->phy_info);
2448 }
2449
2450 /**
2451  * e1000_82547_tx_fifo_stall - Timer Call-back
2452  * @data: pointer to adapter cast into an unsigned long
2453  **/
2454
2455 static void e1000_82547_tx_fifo_stall(unsigned long data)
2456 {
2457         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2458         struct e1000_hw *hw = &adapter->hw;
2459         struct net_device *netdev = adapter->netdev;
2460         u32 tctl;
2461
2462         if (atomic_read(&adapter->tx_fifo_stall)) {
2463                 if ((er32(TDT) == er32(TDH)) &&
2464                    (er32(TDFT) == er32(TDFH)) &&
2465                    (er32(TDFTS) == er32(TDFHS))) {
2466                         tctl = er32(TCTL);
2467                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2468                         ew32(TDFT, adapter->tx_head_addr);
2469                         ew32(TDFH, adapter->tx_head_addr);
2470                         ew32(TDFTS, adapter->tx_head_addr);
2471                         ew32(TDFHS, adapter->tx_head_addr);
2472                         ew32(TCTL, tctl);
2473                         E1000_WRITE_FLUSH();
2474
2475                         adapter->tx_fifo_head = 0;
2476                         atomic_set(&adapter->tx_fifo_stall, 0);
2477                         netif_wake_queue(netdev);
2478                 } else {
2479                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2480                 }
2481         }
2482 }
2483
2484 /**
2485  * e1000_watchdog - Timer Call-back
2486  * @data: pointer to adapter cast into an unsigned long
2487  **/
2488 static void e1000_watchdog(unsigned long data)
2489 {
2490         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2491         struct e1000_hw *hw = &adapter->hw;
2492         struct net_device *netdev = adapter->netdev;
2493         struct e1000_tx_ring *txdr = adapter->tx_ring;
2494         u32 link, tctl;
2495         s32 ret_val;
2496
2497         ret_val = e1000_check_for_link(hw);
2498         if ((ret_val == E1000_ERR_PHY) &&
2499             (hw->phy_type == e1000_phy_igp_3) &&
2500             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2501                 /* See e1000_kumeran_lock_loss_workaround() */
2502                 DPRINTK(LINK, INFO,
2503                         "Gigabit has been disabled, downgrading speed\n");
2504         }
2505
2506         if (hw->mac_type == e1000_82573) {
2507                 e1000_enable_tx_pkt_filtering(hw);
2508                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2509                         e1000_update_mng_vlan(adapter);
2510         }
2511
2512         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2513            !(er32(TXCW) & E1000_TXCW_ANE))
2514                 link = !hw->serdes_link_down;
2515         else
2516                 link = er32(STATUS) & E1000_STATUS_LU;
2517
2518         if (link) {
2519                 if (!netif_carrier_ok(netdev)) {
2520                         u32 ctrl;
2521                         bool txb2b = true;
2522                         e1000_get_speed_and_duplex(hw,
2523                                                    &adapter->link_speed,
2524                                                    &adapter->link_duplex);
2525
2526                         ctrl = er32(CTRL);
2527                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2528                                "Flow Control: %s\n",
2529                                netdev->name,
2530                                adapter->link_speed,
2531                                adapter->link_duplex == FULL_DUPLEX ?
2532                                 "Full Duplex" : "Half Duplex",
2533                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2534                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2535                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2536                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2537
2538                         /* tweak tx_queue_len according to speed/duplex
2539                          * and adjust the timeout factor */
2540                         netdev->tx_queue_len = adapter->tx_queue_len;
2541                         adapter->tx_timeout_factor = 1;
2542                         switch (adapter->link_speed) {
2543                         case SPEED_10:
2544                                 txb2b = false;
2545                                 netdev->tx_queue_len = 10;
2546                                 adapter->tx_timeout_factor = 8;
2547                                 break;
2548                         case SPEED_100:
2549                                 txb2b = false;
2550                                 netdev->tx_queue_len = 100;
2551                                 /* maybe add some timeout factor ? */
2552                                 break;
2553                         }
2554
2555                         if ((hw->mac_type == e1000_82571 ||
2556                              hw->mac_type == e1000_82572) &&
2557                             !txb2b) {
2558                                 u32 tarc0;
2559                                 tarc0 = er32(TARC0);
2560                                 tarc0 &= ~(1 << 21);
2561                                 ew32(TARC0, tarc0);
2562                         }
2563
2564                         /* disable TSO for pcie and 10/100 speeds, to avoid
2565                          * some hardware issues */
2566                         if (!adapter->tso_force &&
2567                             hw->bus_type == e1000_bus_type_pci_express){
2568                                 switch (adapter->link_speed) {
2569                                 case SPEED_10:
2570                                 case SPEED_100:
2571                                         DPRINTK(PROBE,INFO,
2572                                         "10/100 speed: disabling TSO\n");
2573                                         netdev->features &= ~NETIF_F_TSO;
2574                                         netdev->features &= ~NETIF_F_TSO6;
2575                                         break;
2576                                 case SPEED_1000:
2577                                         netdev->features |= NETIF_F_TSO;
2578                                         netdev->features |= NETIF_F_TSO6;
2579                                         break;
2580                                 default:
2581                                         /* oops */
2582                                         break;
2583                                 }
2584                         }
2585
2586                         /* enable transmits in the hardware, need to do this
2587                          * after setting TARC0 */
2588                         tctl = er32(TCTL);
2589                         tctl |= E1000_TCTL_EN;
2590                         ew32(TCTL, tctl);
2591
2592                         netif_carrier_on(netdev);
2593                         netif_wake_queue(netdev);
2594                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2595                         adapter->smartspeed = 0;
2596                 } else {
2597                         /* make sure the receive unit is started */
2598                         if (hw->rx_needs_kicking) {
2599                                 u32 rctl = er32(RCTL);
2600                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2601                         }
2602                 }
2603         } else {
2604                 if (netif_carrier_ok(netdev)) {
2605                         adapter->link_speed = 0;
2606                         adapter->link_duplex = 0;
2607                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2608                                netdev->name);
2609                         netif_carrier_off(netdev);
2610                         netif_stop_queue(netdev);
2611                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2612
2613                         /* 80003ES2LAN workaround--
2614                          * For packet buffer work-around on link down event;
2615                          * disable receives in the ISR and
2616                          * reset device here in the watchdog
2617                          */
2618                         if (hw->mac_type == e1000_80003es2lan)
2619                                 /* reset device */
2620                                 schedule_work(&adapter->reset_task);
2621                 }
2622
2623                 e1000_smartspeed(adapter);
2624         }
2625
2626         e1000_update_stats(adapter);
2627
2628         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2629         adapter->tpt_old = adapter->stats.tpt;
2630         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2631         adapter->colc_old = adapter->stats.colc;
2632
2633         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2634         adapter->gorcl_old = adapter->stats.gorcl;
2635         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2636         adapter->gotcl_old = adapter->stats.gotcl;
2637
2638         e1000_update_adaptive(hw);
2639
2640         if (!netif_carrier_ok(netdev)) {
2641                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2642                         /* We've lost link, so the controller stops DMA,
2643                          * but we've got queued Tx work that's never going
2644                          * to get done, so reset controller to flush Tx.
2645                          * (Do the reset outside of interrupt context). */
2646                         adapter->tx_timeout_count++;
2647                         schedule_work(&adapter->reset_task);
2648                 }
2649         }
2650
2651         /* Cause software interrupt to ensure rx ring is cleaned */
2652         ew32(ICS, E1000_ICS_RXDMT0);
2653
2654         /* Force detection of hung controller every watchdog period */
2655         adapter->detect_tx_hung = true;
2656
2657         /* With 82571 controllers, LAA may be overwritten due to controller
2658          * reset from the other port. Set the appropriate LAA in RAR[0] */
2659         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2660                 e1000_rar_set(hw, hw->mac_addr, 0);
2661
2662         /* Reset the timer */
2663         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2664 }
2665
2666 enum latency_range {
2667         lowest_latency = 0,
2668         low_latency = 1,
2669         bulk_latency = 2,
2670         latency_invalid = 255
2671 };
2672
2673 /**
2674  * e1000_update_itr - update the dynamic ITR value based on statistics
2675  *      Stores a new ITR value based on packets and byte
2676  *      counts during the last interrupt.  The advantage of per interrupt
2677  *      computation is faster updates and more accurate ITR for the current
2678  *      traffic pattern.  Constants in this function were computed
2679  *      based on theoretical maximum wire speed and thresholds were set based
2680  *      on testing data as well as attempting to minimize response time
2681  *      while increasing bulk throughput.
2682  *      this functionality is controlled by the InterruptThrottleRate module
2683  *      parameter (see e1000_param.c)
2684  * @adapter: pointer to adapter
2685  * @itr_setting: current adapter->itr
2686  * @packets: the number of packets during this measurement interval
2687  * @bytes: the number of bytes during this measurement interval
2688  **/
2689 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2690                                      u16 itr_setting, int packets, int bytes)
2691 {
2692         unsigned int retval = itr_setting;
2693         struct e1000_hw *hw = &adapter->hw;
2694
2695         if (unlikely(hw->mac_type < e1000_82540))
2696                 goto update_itr_done;
2697
2698         if (packets == 0)
2699                 goto update_itr_done;
2700
2701         switch (itr_setting) {
2702         case lowest_latency:
2703                 /* jumbo frames get bulk treatment*/
2704                 if (bytes/packets > 8000)
2705                         retval = bulk_latency;
2706                 else if ((packets < 5) && (bytes > 512))
2707                         retval = low_latency;
2708                 break;
2709         case low_latency:  /* 50 usec aka 20000 ints/s */
2710                 if (bytes > 10000) {
2711                         /* jumbo frames need bulk latency setting */
2712                         if (bytes/packets > 8000)
2713                                 retval = bulk_latency;
2714                         else if ((packets < 10) || ((bytes/packets) > 1200))
2715                                 retval = bulk_latency;
2716                         else if ((packets > 35))
2717                                 retval = lowest_latency;
2718                 } else if (bytes/packets > 2000)
2719                         retval = bulk_latency;
2720                 else if (packets <= 2 && bytes < 512)
2721                         retval = lowest_latency;
2722                 break;
2723         case bulk_latency: /* 250 usec aka 4000 ints/s */
2724                 if (bytes > 25000) {
2725                         if (packets > 35)
2726                                 retval = low_latency;
2727                 } else if (bytes < 6000) {
2728                         retval = low_latency;
2729                 }
2730                 break;
2731         }
2732
2733 update_itr_done:
2734         return retval;
2735 }
2736
2737 static void e1000_set_itr(struct e1000_adapter *adapter)
2738 {
2739         struct e1000_hw *hw = &adapter->hw;
2740         u16 current_itr;
2741         u32 new_itr = adapter->itr;
2742
2743         if (unlikely(hw->mac_type < e1000_82540))
2744                 return;
2745
2746         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2747         if (unlikely(adapter->link_speed != SPEED_1000)) {
2748                 current_itr = 0;
2749                 new_itr = 4000;
2750                 goto set_itr_now;
2751         }
2752
2753         adapter->tx_itr = e1000_update_itr(adapter,
2754                                     adapter->tx_itr,
2755                                     adapter->total_tx_packets,
2756                                     adapter->total_tx_bytes);
2757         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2758         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2759                 adapter->tx_itr = low_latency;
2760
2761         adapter->rx_itr = e1000_update_itr(adapter,
2762                                     adapter->rx_itr,
2763                                     adapter->total_rx_packets,
2764                                     adapter->total_rx_bytes);
2765         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2766         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2767                 adapter->rx_itr = low_latency;
2768
2769         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2770
2771         switch (current_itr) {
2772         /* counts and packets in update_itr are dependent on these numbers */
2773         case lowest_latency:
2774                 new_itr = 70000;
2775                 break;
2776         case low_latency:
2777                 new_itr = 20000; /* aka hwitr = ~200 */
2778                 break;
2779         case bulk_latency:
2780                 new_itr = 4000;
2781                 break;
2782         default:
2783                 break;
2784         }
2785
2786 set_itr_now:
2787         if (new_itr != adapter->itr) {
2788                 /* this attempts to bias the interrupt rate towards Bulk
2789                  * by adding intermediate steps when interrupt rate is
2790                  * increasing */
2791                 new_itr = new_itr > adapter->itr ?
2792                              min(adapter->itr + (new_itr >> 2), new_itr) :
2793                              new_itr;
2794                 adapter->itr = new_itr;
2795                 ew32(ITR, 1000000000 / (new_itr * 256));
2796         }
2797
2798         return;
2799 }
2800
2801 #define E1000_TX_FLAGS_CSUM             0x00000001
2802 #define E1000_TX_FLAGS_VLAN             0x00000002
2803 #define E1000_TX_FLAGS_TSO              0x00000004
2804 #define E1000_TX_FLAGS_IPV4             0x00000008
2805 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2806 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2807
2808 static int e1000_tso(struct e1000_adapter *adapter,
2809                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2810 {
2811         struct e1000_context_desc *context_desc;
2812         struct e1000_buffer *buffer_info;
2813         unsigned int i;
2814         u32 cmd_length = 0;
2815         u16 ipcse = 0, tucse, mss;
2816         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2817         int err;
2818
2819         if (skb_is_gso(skb)) {
2820                 if (skb_header_cloned(skb)) {
2821                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2822                         if (err)
2823                                 return err;
2824                 }
2825
2826                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2827                 mss = skb_shinfo(skb)->gso_size;
2828                 if (skb->protocol == htons(ETH_P_IP)) {
2829                         struct iphdr *iph = ip_hdr(skb);
2830                         iph->tot_len = 0;
2831                         iph->check = 0;
2832                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2833                                                                  iph->daddr, 0,
2834                                                                  IPPROTO_TCP,
2835                                                                  0);
2836                         cmd_length = E1000_TXD_CMD_IP;
2837                         ipcse = skb_transport_offset(skb) - 1;
2838                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2839                         ipv6_hdr(skb)->payload_len = 0;
2840                         tcp_hdr(skb)->check =
2841                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2842                                                  &ipv6_hdr(skb)->daddr,
2843                                                  0, IPPROTO_TCP, 0);
2844                         ipcse = 0;
2845                 }
2846                 ipcss = skb_network_offset(skb);
2847                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2848                 tucss = skb_transport_offset(skb);
2849                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2850                 tucse = 0;
2851
2852                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2853                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2854
2855                 i = tx_ring->next_to_use;
2856                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2857                 buffer_info = &tx_ring->buffer_info[i];
2858
2859                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2860                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2861                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2862                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2863                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2864                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2865                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2866                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2867                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2868
2869                 buffer_info->time_stamp = jiffies;
2870                 buffer_info->next_to_watch = i;
2871
2872                 if (++i == tx_ring->count) i = 0;
2873                 tx_ring->next_to_use = i;
2874
2875                 return true;
2876         }
2877         return false;
2878 }
2879
2880 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2881                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2882 {
2883         struct e1000_context_desc *context_desc;
2884         struct e1000_buffer *buffer_info;
2885         unsigned int i;
2886         u8 css;
2887         u32 cmd_len = E1000_TXD_CMD_DEXT;
2888
2889         if (skb->ip_summed != CHECKSUM_PARTIAL)
2890                 return false;
2891
2892         switch (skb->protocol) {
2893         case __constant_htons(ETH_P_IP):
2894                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2895                         cmd_len |= E1000_TXD_CMD_TCP;
2896                 break;
2897         case __constant_htons(ETH_P_IPV6):
2898                 /* XXX not handling all IPV6 headers */
2899                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2900                         cmd_len |= E1000_TXD_CMD_TCP;
2901                 break;
2902         default:
2903                 if (unlikely(net_ratelimit()))
2904                         DPRINTK(DRV, WARNING,
2905                                 "checksum_partial proto=%x!\n", skb->protocol);
2906                 break;
2907         }
2908
2909         css = skb_transport_offset(skb);
2910
2911         i = tx_ring->next_to_use;
2912         buffer_info = &tx_ring->buffer_info[i];
2913         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2914
2915         context_desc->lower_setup.ip_config = 0;
2916         context_desc->upper_setup.tcp_fields.tucss = css;
2917         context_desc->upper_setup.tcp_fields.tucso =
2918                 css + skb->csum_offset;
2919         context_desc->upper_setup.tcp_fields.tucse = 0;
2920         context_desc->tcp_seg_setup.data = 0;
2921         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2922
2923         buffer_info->time_stamp = jiffies;
2924         buffer_info->next_to_watch = i;
2925
2926         if (unlikely(++i == tx_ring->count)) i = 0;
2927         tx_ring->next_to_use = i;
2928
2929         return true;
2930 }
2931
2932 #define E1000_MAX_TXD_PWR       12
2933 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2934
2935 static int e1000_tx_map(struct e1000_adapter *adapter,
2936                         struct e1000_tx_ring *tx_ring,
2937                         struct sk_buff *skb, unsigned int first,
2938                         unsigned int max_per_txd, unsigned int nr_frags,
2939                         unsigned int mss)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_buffer *buffer_info;
2943         unsigned int len = skb->len;
2944         unsigned int offset = 0, size, count = 0, i;
2945         unsigned int f;
2946         len -= skb->data_len;
2947
2948         i = tx_ring->next_to_use;
2949
2950         while (len) {
2951                 buffer_info = &tx_ring->buffer_info[i];
2952                 size = min(len, max_per_txd);
2953                 /* Workaround for Controller erratum --
2954                  * descriptor for non-tso packet in a linear SKB that follows a
2955                  * tso gets written back prematurely before the data is fully
2956                  * DMA'd to the controller */
2957                 if (!skb->data_len && tx_ring->last_tx_tso &&
2958                     !skb_is_gso(skb)) {
2959                         tx_ring->last_tx_tso = 0;
2960                         size -= 4;
2961                 }
2962
2963                 /* Workaround for premature desc write-backs
2964                  * in TSO mode.  Append 4-byte sentinel desc */
2965                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2966                         size -= 4;
2967                 /* work-around for errata 10 and it applies
2968                  * to all controllers in PCI-X mode
2969                  * The fix is to make sure that the first descriptor of a
2970                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2971                  */
2972                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2973                                 (size > 2015) && count == 0))
2974                         size = 2015;
2975
2976                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2977                  * terminating buffers within evenly-aligned dwords. */
2978                 if (unlikely(adapter->pcix_82544 &&
2979                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2980                    size > 4))
2981                         size -= 4;
2982
2983                 buffer_info->length = size;
2984                 buffer_info->dma =
2985                         pci_map_single(adapter->pdev,
2986                                 skb->data + offset,
2987                                 size,
2988                                 PCI_DMA_TODEVICE);
2989                 buffer_info->time_stamp = jiffies;
2990                 buffer_info->next_to_watch = i;
2991
2992                 len -= size;
2993                 offset += size;
2994                 count++;
2995                 if (unlikely(++i == tx_ring->count)) i = 0;
2996         }
2997
2998         for (f = 0; f < nr_frags; f++) {
2999                 struct skb_frag_struct *frag;
3000
3001                 frag = &skb_shinfo(skb)->frags[f];
3002                 len = frag->size;
3003                 offset = frag->page_offset;
3004
3005                 while (len) {
3006                         buffer_info = &tx_ring->buffer_info[i];
3007                         size = min(len, max_per_txd);
3008                         /* Workaround for premature desc write-backs
3009                          * in TSO mode.  Append 4-byte sentinel desc */
3010                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3011                                 size -= 4;
3012                         /* Workaround for potential 82544 hang in PCI-X.
3013                          * Avoid terminating buffers within evenly-aligned
3014                          * dwords. */
3015                         if (unlikely(adapter->pcix_82544 &&
3016                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3017                            size > 4))
3018                                 size -= 4;
3019
3020                         buffer_info->length = size;
3021                         buffer_info->dma =
3022                                 pci_map_page(adapter->pdev,
3023                                         frag->page,
3024                                         offset,
3025                                         size,
3026                                         PCI_DMA_TODEVICE);
3027                         buffer_info->time_stamp = jiffies;
3028                         buffer_info->next_to_watch = i;
3029
3030                         len -= size;
3031                         offset += size;
3032                         count++;
3033                         if (unlikely(++i == tx_ring->count)) i = 0;
3034                 }
3035         }
3036
3037         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3038         tx_ring->buffer_info[i].skb = skb;
3039         tx_ring->buffer_info[first].next_to_watch = i;
3040
3041         return count;
3042 }
3043
3044 static void e1000_tx_queue(struct e1000_adapter *adapter,
3045                            struct e1000_tx_ring *tx_ring, int tx_flags,
3046                            int count)
3047 {
3048         struct e1000_hw *hw = &adapter->hw;
3049         struct e1000_tx_desc *tx_desc = NULL;
3050         struct e1000_buffer *buffer_info;
3051         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3052         unsigned int i;
3053
3054         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3055                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3056                              E1000_TXD_CMD_TSE;
3057                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3058
3059                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3060                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3061         }
3062
3063         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3064                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3065                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3066         }
3067
3068         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3069                 txd_lower |= E1000_TXD_CMD_VLE;
3070                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3071         }
3072
3073         i = tx_ring->next_to_use;
3074
3075         while (count--) {
3076                 buffer_info = &tx_ring->buffer_info[i];
3077                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3078                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3079                 tx_desc->lower.data =
3080                         cpu_to_le32(txd_lower | buffer_info->length);
3081                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3082                 if (unlikely(++i == tx_ring->count)) i = 0;
3083         }
3084
3085         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3086
3087         /* Force memory writes to complete before letting h/w
3088          * know there are new descriptors to fetch.  (Only
3089          * applicable for weak-ordered memory model archs,
3090          * such as IA-64). */
3091         wmb();
3092
3093         tx_ring->next_to_use = i;
3094         writel(i, hw->hw_addr + tx_ring->tdt);
3095         /* we need this if more than one processor can write to our tail
3096          * at a time, it syncronizes IO on IA64/Altix systems */
3097         mmiowb();
3098 }
3099
3100 /**
3101  * 82547 workaround to avoid controller hang in half-duplex environment.
3102  * The workaround is to avoid queuing a large packet that would span
3103  * the internal Tx FIFO ring boundary by notifying the stack to resend
3104  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3105  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3106  * to the beginning of the Tx FIFO.
3107  **/
3108
3109 #define E1000_FIFO_HDR                  0x10
3110 #define E1000_82547_PAD_LEN             0x3E0
3111
3112 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3113                                        struct sk_buff *skb)
3114 {
3115         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3116         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3117
3118         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3119
3120         if (adapter->link_duplex != HALF_DUPLEX)
3121                 goto no_fifo_stall_required;
3122
3123         if (atomic_read(&adapter->tx_fifo_stall))
3124                 return 1;
3125
3126         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3127                 atomic_set(&adapter->tx_fifo_stall, 1);
3128                 return 1;
3129         }
3130
3131 no_fifo_stall_required:
3132         adapter->tx_fifo_head += skb_fifo_len;
3133         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3134                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3135         return 0;
3136 }
3137
3138 #define MINIMUM_DHCP_PACKET_SIZE 282
3139 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3140                                     struct sk_buff *skb)
3141 {
3142         struct e1000_hw *hw =  &adapter->hw;
3143         u16 length, offset;
3144         if (vlan_tx_tag_present(skb)) {
3145                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3146                         ( hw->mng_cookie.status &
3147                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3148                         return 0;
3149         }
3150         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3151                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3152                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3153                         const struct iphdr *ip =
3154                                 (struct iphdr *)((u8 *)skb->data+14);
3155                         if (IPPROTO_UDP == ip->protocol) {
3156                                 struct udphdr *udp =
3157                                         (struct udphdr *)((u8 *)ip +
3158                                                 (ip->ihl << 2));
3159                                 if (ntohs(udp->dest) == 67) {
3160                                         offset = (u8 *)udp + 8 - skb->data;
3161                                         length = skb->len - offset;
3162
3163                                         return e1000_mng_write_dhcp_info(hw,
3164                                                         (u8 *)udp + 8,
3165                                                         length);
3166                                 }
3167                         }
3168                 }
3169         }
3170         return 0;
3171 }
3172
3173 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3174 {
3175         struct e1000_adapter *adapter = netdev_priv(netdev);
3176         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3177
3178         netif_stop_queue(netdev);
3179         /* Herbert's original patch had:
3180          *  smp_mb__after_netif_stop_queue();
3181          * but since that doesn't exist yet, just open code it. */
3182         smp_mb();
3183
3184         /* We need to check again in a case another CPU has just
3185          * made room available. */
3186         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3187                 return -EBUSY;
3188
3189         /* A reprieve! */
3190         netif_start_queue(netdev);
3191         ++adapter->restart_queue;
3192         return 0;
3193 }
3194
3195 static int e1000_maybe_stop_tx(struct net_device *netdev,
3196                                struct e1000_tx_ring *tx_ring, int size)
3197 {
3198         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3199                 return 0;
3200         return __e1000_maybe_stop_tx(netdev, size);
3201 }
3202
3203 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3204 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3205 {
3206         struct e1000_adapter *adapter = netdev_priv(netdev);
3207         struct e1000_hw *hw = &adapter->hw;
3208         struct e1000_tx_ring *tx_ring;
3209         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3210         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3211         unsigned int tx_flags = 0;
3212         unsigned int len = skb->len - skb->data_len;
3213         unsigned long flags;
3214         unsigned int nr_frags;
3215         unsigned int mss;
3216         int count = 0;
3217         int tso;
3218         unsigned int f;
3219
3220         /* This goes back to the question of how to logically map a tx queue
3221          * to a flow.  Right now, performance is impacted slightly negatively
3222          * if using multiple tx queues.  If the stack breaks away from a
3223          * single qdisc implementation, we can look at this again. */
3224         tx_ring = adapter->tx_ring;
3225
3226         if (unlikely(skb->len <= 0)) {
3227                 dev_kfree_skb_any(skb);
3228                 return NETDEV_TX_OK;
3229         }
3230
3231         /* 82571 and newer doesn't need the workaround that limited descriptor
3232          * length to 4kB */
3233         if (hw->mac_type >= e1000_82571)
3234                 max_per_txd = 8192;
3235
3236         mss = skb_shinfo(skb)->gso_size;
3237         /* The controller does a simple calculation to
3238          * make sure there is enough room in the FIFO before
3239          * initiating the DMA for each buffer.  The calc is:
3240          * 4 = ceil(buffer len/mss).  To make sure we don't
3241          * overrun the FIFO, adjust the max buffer len if mss
3242          * drops. */
3243         if (mss) {
3244                 u8 hdr_len;
3245                 max_per_txd = min(mss << 2, max_per_txd);
3246                 max_txd_pwr = fls(max_per_txd) - 1;
3247
3248                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3249                 * points to just header, pull a few bytes of payload from
3250                 * frags into skb->data */
3251                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3252                 if (skb->data_len && hdr_len == len) {
3253                         switch (hw->mac_type) {
3254                                 unsigned int pull_size;
3255                         case e1000_82544:
3256                                 /* Make sure we have room to chop off 4 bytes,
3257                                  * and that the end alignment will work out to
3258                                  * this hardware's requirements
3259                                  * NOTE: this is a TSO only workaround
3260                                  * if end byte alignment not correct move us
3261                                  * into the next dword */
3262                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3263                                         break;
3264                                 /* fall through */
3265                         case e1000_82571:
3266                         case e1000_82572:
3267                         case e1000_82573:
3268                         case e1000_ich8lan:
3269                                 pull_size = min((unsigned int)4, skb->data_len);
3270                                 if (!__pskb_pull_tail(skb, pull_size)) {
3271                                         DPRINTK(DRV, ERR,
3272                                                 "__pskb_pull_tail failed.\n");
3273                                         dev_kfree_skb_any(skb);
3274                                         return NETDEV_TX_OK;
3275                                 }
3276                                 len = skb->len - skb->data_len;
3277                                 break;
3278                         default:
3279                                 /* do nothing */
3280                                 break;
3281                         }
3282                 }
3283         }
3284
3285         /* reserve a descriptor for the offload context */
3286         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3287                 count++;
3288         count++;
3289
3290         /* Controller Erratum workaround */
3291         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3292                 count++;
3293
3294         count += TXD_USE_COUNT(len, max_txd_pwr);
3295
3296         if (adapter->pcix_82544)
3297                 count++;
3298
3299         /* work-around for errata 10 and it applies to all controllers
3300          * in PCI-X mode, so add one more descriptor to the count
3301          */
3302         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3303                         (len > 2015)))
3304                 count++;
3305
3306         nr_frags = skb_shinfo(skb)->nr_frags;
3307         for (f = 0; f < nr_frags; f++)
3308                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3309                                        max_txd_pwr);
3310         if (adapter->pcix_82544)
3311                 count += nr_frags;
3312
3313
3314         if (hw->tx_pkt_filtering &&
3315             (hw->mac_type == e1000_82573))
3316                 e1000_transfer_dhcp_info(adapter, skb);
3317
3318         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3319                 /* Collision - tell upper layer to requeue */
3320                 return NETDEV_TX_LOCKED;
3321
3322         /* need: count + 2 desc gap to keep tail from touching
3323          * head, otherwise try next time */
3324         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3325                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3326                 return NETDEV_TX_BUSY;
3327         }
3328
3329         if (unlikely(hw->mac_type == e1000_82547)) {
3330                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3331                         netif_stop_queue(netdev);
3332                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3333                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3334                         return NETDEV_TX_BUSY;
3335                 }
3336         }
3337
3338         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3339                 tx_flags |= E1000_TX_FLAGS_VLAN;
3340                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3341         }
3342
3343         first = tx_ring->next_to_use;
3344
3345         tso = e1000_tso(adapter, tx_ring, skb);
3346         if (tso < 0) {
3347                 dev_kfree_skb_any(skb);
3348                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3349                 return NETDEV_TX_OK;
3350         }
3351
3352         if (likely(tso)) {
3353                 tx_ring->last_tx_tso = 1;
3354                 tx_flags |= E1000_TX_FLAGS_TSO;
3355         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3356                 tx_flags |= E1000_TX_FLAGS_CSUM;
3357
3358         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3359          * 82571 hardware supports TSO capabilities for IPv6 as well...
3360          * no longer assume, we must. */
3361         if (likely(skb->protocol == htons(ETH_P_IP)))
3362                 tx_flags |= E1000_TX_FLAGS_IPV4;
3363
3364         e1000_tx_queue(adapter, tx_ring, tx_flags,
3365                        e1000_tx_map(adapter, tx_ring, skb, first,
3366                                     max_per_txd, nr_frags, mss));
3367
3368         netdev->trans_start = jiffies;
3369
3370         /* Make sure there is space in the ring for the next send. */
3371         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3372
3373         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3374         return NETDEV_TX_OK;
3375 }
3376
3377 /**
3378  * e1000_tx_timeout - Respond to a Tx Hang
3379  * @netdev: network interface device structure
3380  **/
3381
3382 static void e1000_tx_timeout(struct net_device *netdev)
3383 {
3384         struct e1000_adapter *adapter = netdev_priv(netdev);
3385
3386         /* Do the reset outside of interrupt context */
3387         adapter->tx_timeout_count++;
3388         schedule_work(&adapter->reset_task);
3389 }
3390
3391 static void e1000_reset_task(struct work_struct *work)
3392 {
3393         struct e1000_adapter *adapter =
3394                 container_of(work, struct e1000_adapter, reset_task);
3395
3396         e1000_reinit_locked(adapter);
3397 }
3398
3399 /**
3400  * e1000_get_stats - Get System Network Statistics
3401  * @netdev: network interface device structure
3402  *
3403  * Returns the address of the device statistics structure.
3404  * The statistics are actually updated from the timer callback.
3405  **/
3406
3407 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3408 {
3409         struct e1000_adapter *adapter = netdev_priv(netdev);
3410
3411         /* only return the current stats */
3412         return &adapter->net_stats;
3413 }
3414
3415 /**
3416  * e1000_change_mtu - Change the Maximum Transfer Unit
3417  * @netdev: network interface device structure
3418  * @new_mtu: new value for maximum frame size
3419  *
3420  * Returns 0 on success, negative on failure
3421  **/
3422
3423 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3424 {
3425         struct e1000_adapter *adapter = netdev_priv(netdev);
3426         struct e1000_hw *hw = &adapter->hw;
3427         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3428         u16 eeprom_data = 0;
3429
3430         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3431             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3432                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3433                 return -EINVAL;
3434         }
3435
3436         /* Adapter-specific max frame size limits. */
3437         switch (hw->mac_type) {
3438         case e1000_undefined ... e1000_82542_rev2_1:
3439         case e1000_ich8lan:
3440                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3441                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3442                         return -EINVAL;
3443                 }
3444                 break;
3445         case e1000_82573:
3446                 /* Jumbo Frames not supported if:
3447                  * - this is not an 82573L device
3448                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3449                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3450                                   &eeprom_data);
3451                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3452                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3453                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3454                                 DPRINTK(PROBE, ERR,
3455                                         "Jumbo Frames not supported.\n");
3456                                 return -EINVAL;
3457                         }
3458                         break;
3459                 }
3460                 /* ERT will be enabled later to enable wire speed receives */
3461
3462                 /* fall through to get support */
3463         case e1000_82571:
3464         case e1000_82572:
3465         case e1000_80003es2lan:
3466 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3467                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3468                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3469                         return -EINVAL;
3470                 }
3471                 break;
3472         default:
3473                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3474                 break;
3475         }
3476
3477         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3478          * means we reserve 2 more, this pushes us to allocate from the next
3479          * larger slab size
3480          * i.e. RXBUFFER_2048 --> size-4096 slab */
3481
3482         if (max_frame <= E1000_RXBUFFER_256)
3483                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3484         else if (max_frame <= E1000_RXBUFFER_512)
3485                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3486         else if (max_frame <= E1000_RXBUFFER_1024)
3487                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3488         else if (max_frame <= E1000_RXBUFFER_2048)
3489                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3490         else if (max_frame <= E1000_RXBUFFER_4096)
3491                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3492         else if (max_frame <= E1000_RXBUFFER_8192)
3493                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3494         else if (max_frame <= E1000_RXBUFFER_16384)
3495                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3496
3497         /* adjust allocation if LPE protects us, and we aren't using SBP */
3498         if (!hw->tbi_compatibility_on &&
3499             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3500              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3501                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3502
3503         netdev->mtu = new_mtu;
3504         hw->max_frame_size = max_frame;
3505
3506         if (netif_running(netdev))
3507                 e1000_reinit_locked(adapter);
3508
3509         return 0;
3510 }
3511
3512 /**
3513  * e1000_update_stats - Update the board statistics counters
3514  * @adapter: board private structure
3515  **/
3516
3517 void e1000_update_stats(struct e1000_adapter *adapter)
3518 {
3519         struct e1000_hw *hw = &adapter->hw;
3520         struct pci_dev *pdev = adapter->pdev;
3521         unsigned long flags;
3522         u16 phy_tmp;
3523
3524 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3525
3526         /*
3527          * Prevent stats update while adapter is being reset, or if the pci
3528          * connection is down.
3529          */
3530         if (adapter->link_speed == 0)
3531                 return;
3532         if (pci_channel_offline(pdev))
3533                 return;
3534
3535         spin_lock_irqsave(&adapter->stats_lock, flags);
3536
3537         /* these counters are modified from e1000_tbi_adjust_stats,
3538          * called from the interrupt context, so they must only
3539          * be written while holding adapter->stats_lock
3540          */
3541
3542         adapter->stats.crcerrs += er32(CRCERRS);
3543         adapter->stats.gprc += er32(GPRC);
3544         adapter->stats.gorcl += er32(GORCL);
3545         adapter->stats.gorch += er32(GORCH);
3546         adapter->stats.bprc += er32(BPRC);
3547         adapter->stats.mprc += er32(MPRC);
3548         adapter->stats.roc += er32(ROC);
3549
3550         if (hw->mac_type != e1000_ich8lan) {
3551                 adapter->stats.prc64 += er32(PRC64);
3552                 adapter->stats.prc127 += er32(PRC127);
3553                 adapter->stats.prc255 += er32(PRC255);
3554                 adapter->stats.prc511 += er32(PRC511);
3555                 adapter->stats.prc1023 += er32(PRC1023);
3556                 adapter->stats.prc1522 += er32(PRC1522);
3557         }
3558
3559         adapter->stats.symerrs += er32(SYMERRS);
3560         adapter->stats.mpc += er32(MPC);
3561         adapter->stats.scc += er32(SCC);
3562         adapter->stats.ecol += er32(ECOL);
3563         adapter->stats.mcc += er32(MCC);
3564         adapter->stats.latecol += er32(LATECOL);
3565         adapter->stats.dc += er32(DC);
3566         adapter->stats.sec += er32(SEC);
3567         adapter->stats.rlec += er32(RLEC);
3568         adapter->stats.xonrxc += er32(XONRXC);
3569         adapter->stats.xontxc += er32(XONTXC);
3570         adapter->stats.xoffrxc += er32(XOFFRXC);
3571         adapter->stats.xofftxc += er32(XOFFTXC);
3572         adapter->stats.fcruc += er32(FCRUC);
3573         adapter->stats.gptc += er32(GPTC);
3574         adapter->stats.gotcl += er32(GOTCL);
3575         adapter->stats.gotch += er32(GOTCH);
3576         adapter->stats.rnbc += er32(RNBC);
3577         adapter->stats.ruc += er32(RUC);
3578         adapter->stats.rfc += er32(RFC);
3579         adapter->stats.rjc += er32(RJC);
3580         adapter->stats.torl += er32(TORL);
3581         adapter->stats.torh += er32(TORH);
3582         adapter->stats.totl += er32(TOTL);
3583         adapter->stats.toth += er32(TOTH);
3584         adapter->stats.tpr += er32(TPR);
3585
3586         if (hw->mac_type != e1000_ich8lan) {
3587                 adapter->stats.ptc64 += er32(PTC64);
3588                 adapter->stats.ptc127 += er32(PTC127);
3589                 adapter->stats.ptc255 += er32(PTC255);
3590                 adapter->stats.ptc511 += er32(PTC511);
3591                 adapter->stats.ptc1023 += er32(PTC1023);
3592                 adapter->stats.ptc1522 += er32(PTC1522);
3593         }
3594
3595         adapter->stats.mptc += er32(MPTC);
3596         adapter->stats.bptc += er32(BPTC);
3597
3598         /* used for adaptive IFS */
3599
3600         hw->tx_packet_delta = er32(TPT);
3601         adapter->stats.tpt += hw->tx_packet_delta;
3602         hw->collision_delta = er32(COLC);
3603         adapter->stats.colc += hw->collision_delta;
3604
3605         if (hw->mac_type >= e1000_82543) {
3606                 adapter->stats.algnerrc += er32(ALGNERRC);
3607                 adapter->stats.rxerrc += er32(RXERRC);
3608                 adapter->stats.tncrs += er32(TNCRS);
3609                 adapter->stats.cexterr += er32(CEXTERR);
3610                 adapter->stats.tsctc += er32(TSCTC);
3611                 adapter->stats.tsctfc += er32(TSCTFC);
3612         }
3613         if (hw->mac_type > e1000_82547_rev_2) {
3614                 adapter->stats.iac += er32(IAC);
3615                 adapter->stats.icrxoc += er32(ICRXOC);
3616
3617                 if (hw->mac_type != e1000_ich8lan) {
3618                         adapter->stats.icrxptc += er32(ICRXPTC);
3619                         adapter->stats.icrxatc += er32(ICRXATC);
3620                         adapter->stats.ictxptc += er32(ICTXPTC);
3621                         adapter->stats.ictxatc += er32(ICTXATC);
3622                         adapter->stats.ictxqec += er32(ICTXQEC);
3623                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3624                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3625                 }
3626         }
3627
3628         /* Fill out the OS statistics structure */
3629         adapter->net_stats.multicast = adapter->stats.mprc;
3630         adapter->net_stats.collisions = adapter->stats.colc;
3631
3632         /* Rx Errors */
3633
3634         /* RLEC on some newer hardware can be incorrect so build
3635         * our own version based on RUC and ROC */
3636         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3637                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3638                 adapter->stats.ruc + adapter->stats.roc +
3639                 adapter->stats.cexterr;
3640         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3641         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3642         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3643         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3644         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3645
3646         /* Tx Errors */
3647         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3648         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3649         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3650         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3651         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3652         if (hw->bad_tx_carr_stats_fd &&
3653             adapter->link_duplex == FULL_DUPLEX) {
3654                 adapter->net_stats.tx_carrier_errors = 0;
3655                 adapter->stats.tncrs = 0;
3656         }
3657
3658         /* Tx Dropped needs to be maintained elsewhere */
3659
3660         /* Phy Stats */
3661         if (hw->media_type == e1000_media_type_copper) {
3662                 if ((adapter->link_speed == SPEED_1000) &&
3663                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3664                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3665                         adapter->phy_stats.idle_errors += phy_tmp;
3666                 }
3667
3668                 if ((hw->mac_type <= e1000_82546) &&
3669                    (hw->phy_type == e1000_phy_m88) &&
3670                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3671                         adapter->phy_stats.receive_errors += phy_tmp;
3672         }
3673
3674         /* Management Stats */
3675         if (hw->has_smbus) {
3676                 adapter->stats.mgptc += er32(MGTPTC);
3677                 adapter->stats.mgprc += er32(MGTPRC);
3678                 adapter->stats.mgpdc += er32(MGTPDC);
3679         }
3680
3681         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3682 }
3683
3684 /**
3685  * e1000_intr_msi - Interrupt Handler
3686  * @irq: interrupt number
3687  * @data: pointer to a network interface device structure
3688  **/
3689
3690 static irqreturn_t e1000_intr_msi(int irq, void *data)
3691 {
3692         struct net_device *netdev = data;
3693         struct e1000_adapter *adapter = netdev_priv(netdev);
3694         struct e1000_hw *hw = &adapter->hw;
3695         u32 icr = er32(ICR);
3696
3697         /* in NAPI mode read ICR disables interrupts using IAM */
3698
3699         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3700                 hw->get_link_status = 1;
3701                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3702                  * link down event; disable receives here in the ISR and reset
3703                  * adapter in watchdog */
3704                 if (netif_carrier_ok(netdev) &&
3705                     (hw->mac_type == e1000_80003es2lan)) {
3706                         /* disable receives */
3707                         u32 rctl = er32(RCTL);
3708                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3709                 }
3710                 /* guard against interrupt when we're going down */
3711                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3712                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3713         }
3714
3715         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3716                 adapter->total_tx_bytes = 0;
3717                 adapter->total_tx_packets = 0;
3718                 adapter->total_rx_bytes = 0;
3719                 adapter->total_rx_packets = 0;
3720                 __netif_rx_schedule(netdev, &adapter->napi);
3721         } else
3722                 e1000_irq_enable(adapter);
3723
3724         return IRQ_HANDLED;
3725 }
3726
3727 /**
3728  * e1000_intr - Interrupt Handler
3729  * @irq: interrupt number
3730  * @data: pointer to a network interface device structure
3731  **/
3732
3733 static irqreturn_t e1000_intr(int irq, void *data)
3734 {
3735         struct net_device *netdev = data;
3736         struct e1000_adapter *adapter = netdev_priv(netdev);
3737         struct e1000_hw *hw = &adapter->hw;
3738         u32 rctl, icr = er32(ICR);
3739
3740         if (unlikely(!icr))
3741                 return IRQ_NONE;  /* Not our interrupt */
3742
3743         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3744          * not set, then the adapter didn't send an interrupt */
3745         if (unlikely(hw->mac_type >= e1000_82571 &&
3746                      !(icr & E1000_ICR_INT_ASSERTED)))
3747                 return IRQ_NONE;
3748
3749         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3750          * need for the IMC write */
3751
3752         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3753                 hw->get_link_status = 1;
3754                 /* 80003ES2LAN workaround--
3755                  * For packet buffer work-around on link down event;
3756                  * disable receives here in the ISR and
3757                  * reset adapter in watchdog
3758                  */
3759                 if (netif_carrier_ok(netdev) &&
3760                     (hw->mac_type == e1000_80003es2lan)) {
3761                         /* disable receives */
3762                         rctl = er32(RCTL);
3763                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3764                 }
3765                 /* guard against interrupt when we're going down */
3766                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3767                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3768         }
3769
3770         if (unlikely(hw->mac_type < e1000_82571)) {
3771                 /* disable interrupts, without the synchronize_irq bit */
3772                 ew32(IMC, ~0);
3773                 E1000_WRITE_FLUSH();
3774         }
3775         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3776                 adapter->total_tx_bytes = 0;
3777                 adapter->total_tx_packets = 0;
3778                 adapter->total_rx_bytes = 0;
3779                 adapter->total_rx_packets = 0;
3780                 __netif_rx_schedule(netdev, &adapter->napi);
3781         } else
3782                 /* this really should not happen! if it does it is basically a
3783                  * bug, but not a hard error, so enable ints and continue */
3784                 e1000_irq_enable(adapter);
3785
3786         return IRQ_HANDLED;
3787 }
3788
3789 /**
3790  * e1000_clean - NAPI Rx polling callback
3791  * @adapter: board private structure
3792  **/
3793 static int e1000_clean(struct napi_struct *napi, int budget)
3794 {
3795         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3796         struct net_device *poll_dev = adapter->netdev;
3797         int tx_cleaned = 0, work_done = 0;
3798
3799         adapter = netdev_priv(poll_dev);
3800
3801         /* e1000_clean is called per-cpu.  This lock protects
3802          * tx_ring[0] from being cleaned by multiple cpus
3803          * simultaneously.  A failure obtaining the lock means
3804          * tx_ring[0] is currently being cleaned anyway. */
3805         if (spin_trylock(&adapter->tx_queue_lock)) {
3806                 tx_cleaned = e1000_clean_tx_irq(adapter,
3807                                                 &adapter->tx_ring[0]);
3808                 spin_unlock(&adapter->tx_queue_lock);
3809         }
3810
3811         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3812                           &work_done, budget);
3813
3814         if (tx_cleaned)
3815                 work_done = budget;
3816
3817         /* If budget not fully consumed, exit the polling mode */
3818         if (work_done < budget) {
3819                 if (likely(adapter->itr_setting & 3))
3820                         e1000_set_itr(adapter);
3821                 netif_rx_complete(poll_dev, napi);
3822                 e1000_irq_enable(adapter);
3823         }
3824
3825         return work_done;
3826 }
3827
3828 /**
3829  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3830  * @adapter: board private structure
3831  **/
3832 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3833                                struct e1000_tx_ring *tx_ring)
3834 {
3835         struct e1000_hw *hw = &adapter->hw;
3836         struct net_device *netdev = adapter->netdev;
3837         struct e1000_tx_desc *tx_desc, *eop_desc;
3838         struct e1000_buffer *buffer_info;
3839         unsigned int i, eop;
3840         unsigned int count = 0;
3841         bool cleaned = false;
3842         unsigned int total_tx_bytes=0, total_tx_packets=0;
3843
3844         i = tx_ring->next_to_clean;
3845         eop = tx_ring->buffer_info[i].next_to_watch;
3846         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3847
3848         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3849                 for (cleaned = false; !cleaned; ) {
3850                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3851                         buffer_info = &tx_ring->buffer_info[i];
3852                         cleaned = (i == eop);
3853
3854                         if (cleaned) {
3855                                 struct sk_buff *skb = buffer_info->skb;
3856                                 unsigned int segs, bytecount;
3857                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3858                                 /* multiply data chunks by size of headers */
3859                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3860                                             skb->len;
3861                                 total_tx_packets += segs;
3862                                 total_tx_bytes += bytecount;
3863                         }
3864                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3865                         tx_desc->upper.data = 0;
3866
3867                         if (unlikely(++i == tx_ring->count)) i = 0;
3868                 }
3869
3870                 eop = tx_ring->buffer_info[i].next_to_watch;
3871                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872 #define E1000_TX_WEIGHT 64
3873                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3874                 if (count++ == E1000_TX_WEIGHT)
3875                         break;
3876         }
3877
3878         tx_ring->next_to_clean = i;
3879
3880 #define TX_WAKE_THRESHOLD 32
3881         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3882                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3883                 /* Make sure that anybody stopping the queue after this
3884                  * sees the new next_to_clean.
3885                  */
3886                 smp_mb();
3887                 if (netif_queue_stopped(netdev)) {
3888                         netif_wake_queue(netdev);
3889                         ++adapter->restart_queue;
3890                 }
3891         }
3892
3893         if (adapter->detect_tx_hung) {
3894                 /* Detect a transmit hang in hardware, this serializes the
3895                  * check with the clearing of time_stamp and movement of i */
3896                 adapter->detect_tx_hung = false;
3897                 if (tx_ring->buffer_info[eop].dma &&
3898                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3899                                (adapter->tx_timeout_factor * HZ))
3900                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3901
3902                         /* detected Tx unit hang */
3903                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3904                                         "  Tx Queue             <%lu>\n"
3905                                         "  TDH                  <%x>\n"
3906                                         "  TDT                  <%x>\n"
3907                                         "  next_to_use          <%x>\n"
3908                                         "  next_to_clean        <%x>\n"
3909                                         "buffer_info[next_to_clean]\n"
3910                                         "  time_stamp           <%lx>\n"
3911                                         "  next_to_watch        <%x>\n"
3912                                         "  jiffies              <%lx>\n"
3913                                         "  next_to_watch.status <%x>\n",
3914                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3915                                         sizeof(struct e1000_tx_ring)),
3916                                 readl(hw->hw_addr + tx_ring->tdh),
3917                                 readl(hw->hw_addr + tx_ring->tdt),
3918                                 tx_ring->next_to_use,
3919                                 tx_ring->next_to_clean,
3920                                 tx_ring->buffer_info[eop].time_stamp,
3921                                 eop,
3922                                 jiffies,
3923                                 eop_desc->upper.fields.status);
3924                         netif_stop_queue(netdev);
3925                 }
3926         }
3927         adapter->total_tx_bytes += total_tx_bytes;
3928         adapter->total_tx_packets += total_tx_packets;
3929         adapter->net_stats.tx_bytes += total_tx_bytes;
3930         adapter->net_stats.tx_packets += total_tx_packets;
3931         return cleaned;
3932 }
3933
3934 /**
3935  * e1000_rx_checksum - Receive Checksum Offload for 82543
3936  * @adapter:     board private structure
3937  * @status_err:  receive descriptor status and error fields
3938  * @csum:        receive descriptor csum field
3939  * @sk_buff:     socket buffer with received data
3940  **/
3941
3942 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3943                               u32 csum, struct sk_buff *skb)
3944 {
3945         struct e1000_hw *hw = &adapter->hw;
3946         u16 status = (u16)status_err;
3947         u8 errors = (u8)(status_err >> 24);
3948         skb->ip_summed = CHECKSUM_NONE;
3949
3950         /* 82543 or newer only */
3951         if (unlikely(hw->mac_type < e1000_82543)) return;
3952         /* Ignore Checksum bit is set */
3953         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3954         /* TCP/UDP checksum error bit is set */
3955         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3956                 /* let the stack verify checksum errors */
3957                 adapter->hw_csum_err++;
3958                 return;
3959         }
3960         /* TCP/UDP Checksum has not been calculated */
3961         if (hw->mac_type <= e1000_82547_rev_2) {
3962                 if (!(status & E1000_RXD_STAT_TCPCS))
3963                         return;
3964         } else {
3965                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3966                         return;
3967         }
3968         /* It must be a TCP or UDP packet with a valid checksum */
3969         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970                 /* TCP checksum is good */
3971                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3972         } else if (hw->mac_type > e1000_82547_rev_2) {
3973                 /* IP fragment with UDP payload */
3974                 /* Hardware complements the payload checksum, so we undo it
3975                  * and then put the value in host order for further stack use.
3976                  */
3977                 __sum16 sum = (__force __sum16)htons(csum);
3978                 skb->csum = csum_unfold(~sum);
3979                 skb->ip_summed = CHECKSUM_COMPLETE;
3980         }
3981         adapter->hw_csum_good++;
3982 }
3983
3984 /**
3985  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3986  * @adapter: board private structure
3987  **/
3988 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3989                                struct e1000_rx_ring *rx_ring,
3990                                int *work_done, int work_to_do)
3991 {
3992         struct e1000_hw *hw = &adapter->hw;
3993         struct net_device *netdev = adapter->netdev;
3994         struct pci_dev *pdev = adapter->pdev;
3995         struct e1000_rx_desc *rx_desc, *next_rxd;
3996         struct e1000_buffer *buffer_info, *next_buffer;
3997         unsigned long flags;
3998         u32 length;
3999         u8 last_byte;
4000         unsigned int i;
4001         int cleaned_count = 0;
4002         bool cleaned = false;
4003         unsigned int total_rx_bytes=0, total_rx_packets=0;
4004
4005         i = rx_ring->next_to_clean;
4006         rx_desc = E1000_RX_DESC(*rx_ring, i);
4007         buffer_info = &rx_ring->buffer_info[i];
4008
4009         while (rx_desc->status & E1000_RXD_STAT_DD) {
4010                 struct sk_buff *skb;
4011                 u8 status;
4012
4013                 if (*work_done >= work_to_do)
4014                         break;
4015                 (*work_done)++;
4016
4017                 status = rx_desc->status;
4018                 skb = buffer_info->skb;
4019                 buffer_info->skb = NULL;
4020
4021                 prefetch(skb->data - NET_IP_ALIGN);
4022
4023                 if (++i == rx_ring->count) i = 0;
4024                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4025                 prefetch(next_rxd);
4026
4027                 next_buffer = &rx_ring->buffer_info[i];
4028
4029                 cleaned = true;
4030                 cleaned_count++;
4031                 pci_unmap_single(pdev,
4032                                  buffer_info->dma,
4033                                  buffer_info->length,
4034                                  PCI_DMA_FROMDEVICE);
4035
4036                 length = le16_to_cpu(rx_desc->length);
4037
4038                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4039                         /* All receives must fit into a single buffer */
4040                         E1000_DBG("%s: Receive packet consumed multiple"
4041                                   " buffers\n", netdev->name);
4042                         /* recycle */
4043                         buffer_info->skb = skb;
4044                         goto next_desc;
4045                 }
4046
4047                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4048                         last_byte = *(skb->data + length - 1);
4049                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4050                                        last_byte)) {
4051                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4052                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4053                                                        length, skb->data);
4054                                 spin_unlock_irqrestore(&adapter->stats_lock,
4055                                                        flags);
4056                                 length--;
4057                         } else {
4058                                 /* recycle */
4059                                 buffer_info->skb = skb;
4060                                 goto next_desc;
4061                         }
4062                 }
4063
4064                 /* adjust length to remove Ethernet CRC, this must be
4065                  * done after the TBI_ACCEPT workaround above */
4066                 length -= 4;
4067
4068                 /* probably a little skewed due to removing CRC */
4069                 total_rx_bytes += length;
4070                 total_rx_packets++;
4071
4072                 /* code added for copybreak, this should improve
4073                  * performance for small packets with large amounts
4074                  * of reassembly being done in the stack */
4075                 if (length < copybreak) {
4076                         struct sk_buff *new_skb =
4077                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4078                         if (new_skb) {
4079                                 skb_reserve(new_skb, NET_IP_ALIGN);
4080                                 skb_copy_to_linear_data_offset(new_skb,
4081                                                                -NET_IP_ALIGN,
4082                                                                (skb->data -
4083                                                                 NET_IP_ALIGN),
4084                                                                (length +
4085                                                                 NET_IP_ALIGN));
4086                                 /* save the skb in buffer_info as good */
4087                                 buffer_info->skb = skb;
4088                                 skb = new_skb;
4089                         }
4090                         /* else just continue with the old one */
4091                 }
4092                 /* end copybreak code */
4093                 skb_put(skb, length);
4094
4095                 /* Receive Checksum Offload */
4096                 e1000_rx_checksum(adapter,
4097                                   (u32)(status) |
4098                                   ((u32)(rx_desc->errors) << 24),
4099                                   le16_to_cpu(rx_desc->csum), skb);
4100
4101                 skb->protocol = eth_type_trans(skb, netdev);
4102
4103                 if (unlikely(adapter->vlgrp &&
4104                             (status & E1000_RXD_STAT_VP))) {
4105                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4106                                                  le16_to_cpu(rx_desc->special));
4107                 } else {
4108                         netif_receive_skb(skb);
4109                 }
4110
4111 next_desc:
4112                 rx_desc->status = 0;
4113
4114                 /* return some buffers to hardware, one at a time is too slow */
4115                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4116                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4117                         cleaned_count = 0;
4118                 }
4119
4120                 /* use prefetched values */
4121                 rx_desc = next_rxd;
4122                 buffer_info = next_buffer;
4123         }
4124         rx_ring->next_to_clean = i;
4125
4126         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4127         if (cleaned_count)
4128                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4129
4130         adapter->total_rx_packets += total_rx_packets;
4131         adapter->total_rx_bytes += total_rx_bytes;
4132         adapter->net_stats.rx_bytes += total_rx_bytes;
4133         adapter->net_stats.rx_packets += total_rx_packets;
4134         return cleaned;
4135 }
4136
4137 /**
4138  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4139  * @adapter: address of board private structure
4140  **/
4141
4142 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4143                                    struct e1000_rx_ring *rx_ring,
4144                                    int cleaned_count)
4145 {
4146         struct e1000_hw *hw = &adapter->hw;
4147         struct net_device *netdev = adapter->netdev;
4148         struct pci_dev *pdev = adapter->pdev;
4149         struct e1000_rx_desc *rx_desc;
4150         struct e1000_buffer *buffer_info;
4151         struct sk_buff *skb;
4152         unsigned int i;
4153         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4154
4155         i = rx_ring->next_to_use;
4156         buffer_info = &rx_ring->buffer_info[i];
4157
4158         while (cleaned_count--) {
4159                 skb = buffer_info->skb;
4160                 if (skb) {
4161                         skb_trim(skb, 0);
4162                         goto map_skb;
4163                 }
4164
4165                 skb = netdev_alloc_skb(netdev, bufsz);
4166                 if (unlikely(!skb)) {
4167                         /* Better luck next round */
4168                         adapter->alloc_rx_buff_failed++;
4169                         break;
4170                 }
4171
4172                 /* Fix for errata 23, can't cross 64kB boundary */
4173                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4174                         struct sk_buff *oldskb = skb;
4175                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4176                                              "at %p\n", bufsz, skb->data);
4177                         /* Try again, without freeing the previous */
4178                         skb = netdev_alloc_skb(netdev, bufsz);
4179                         /* Failed allocation, critical failure */
4180                         if (!skb) {
4181                                 dev_kfree_skb(oldskb);
4182                                 break;
4183                         }
4184
4185                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4186                                 /* give up */
4187                                 dev_kfree_skb(skb);
4188                                 dev_kfree_skb(oldskb);
4189                                 break; /* while !buffer_info->skb */
4190                         }
4191
4192                         /* Use new allocation */
4193                         dev_kfree_skb(oldskb);
4194                 }
4195                 /* Make buffer alignment 2 beyond a 16 byte boundary
4196                  * this will result in a 16 byte aligned IP header after
4197                  * the 14 byte MAC header is removed
4198                  */
4199                 skb_reserve(skb, NET_IP_ALIGN);
4200
4201                 buffer_info->skb = skb;
4202                 buffer_info->length = adapter->rx_buffer_len;
4203 map_skb:
4204                 buffer_info->dma = pci_map_single(pdev,
4205                                                   skb->data,
4206                                                   adapter->rx_buffer_len,
4207                                                   PCI_DMA_FROMDEVICE);
4208
4209                 /* Fix for errata 23, can't cross 64kB boundary */
4210                 if (!e1000_check_64k_bound(adapter,
4211                                         (void *)(unsigned long)buffer_info->dma,
4212                                         adapter->rx_buffer_len)) {
4213                         DPRINTK(RX_ERR, ERR,
4214                                 "dma align check failed: %u bytes at %p\n",
4215                                 adapter->rx_buffer_len,
4216                                 (void *)(unsigned long)buffer_info->dma);
4217                         dev_kfree_skb(skb);
4218                         buffer_info->skb = NULL;
4219
4220                         pci_unmap_single(pdev, buffer_info->dma,
4221                                          adapter->rx_buffer_len,
4222                                          PCI_DMA_FROMDEVICE);
4223
4224                         break; /* while !buffer_info->skb */
4225                 }
4226                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4227                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4228
4229                 if (unlikely(++i == rx_ring->count))
4230                         i = 0;
4231                 buffer_info = &rx_ring->buffer_info[i];
4232         }
4233
4234         if (likely(rx_ring->next_to_use != i)) {
4235                 rx_ring->next_to_use = i;
4236                 if (unlikely(i-- == 0))
4237                         i = (rx_ring->count - 1);
4238
4239                 /* Force memory writes to complete before letting h/w
4240                  * know there are new descriptors to fetch.  (Only
4241                  * applicable for weak-ordered memory model archs,
4242                  * such as IA-64). */
4243                 wmb();
4244                 writel(i, hw->hw_addr + rx_ring->rdt);
4245         }
4246 }
4247
4248 /**
4249  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4250  * @adapter:
4251  **/
4252
4253 static void e1000_smartspeed(struct e1000_adapter *adapter)
4254 {
4255         struct e1000_hw *hw = &adapter->hw;
4256         u16 phy_status;
4257         u16 phy_ctrl;
4258
4259         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4260            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4261                 return;
4262
4263         if (adapter->smartspeed == 0) {
4264                 /* If Master/Slave config fault is asserted twice,
4265                  * we assume back-to-back */
4266                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4267                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4268                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4269                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4270                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4271                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4272                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4273                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4274                                             phy_ctrl);
4275                         adapter->smartspeed++;
4276                         if (!e1000_phy_setup_autoneg(hw) &&
4277                            !e1000_read_phy_reg(hw, PHY_CTRL,
4278                                                &phy_ctrl)) {
4279                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4280                                              MII_CR_RESTART_AUTO_NEG);
4281                                 e1000_write_phy_reg(hw, PHY_CTRL,
4282                                                     phy_ctrl);
4283                         }
4284                 }
4285                 return;
4286         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4287                 /* If still no link, perhaps using 2/3 pair cable */
4288                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4289                 phy_ctrl |= CR_1000T_MS_ENABLE;
4290                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4291                 if (!e1000_phy_setup_autoneg(hw) &&
4292                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4293                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4294                                      MII_CR_RESTART_AUTO_NEG);
4295                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4296                 }
4297         }
4298         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4299         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4300                 adapter->smartspeed = 0;
4301 }
4302
4303 /**
4304  * e1000_ioctl -
4305  * @netdev:
4306  * @ifreq:
4307  * @cmd:
4308  **/
4309
4310 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4311 {
4312         switch (cmd) {
4313         case SIOCGMIIPHY:
4314         case SIOCGMIIREG:
4315         case SIOCSMIIREG:
4316                 return e1000_mii_ioctl(netdev, ifr, cmd);
4317         default:
4318                 return -EOPNOTSUPP;
4319         }
4320 }
4321
4322 /**
4323  * e1000_mii_ioctl -
4324  * @netdev:
4325  * @ifreq:
4326  * @cmd:
4327  **/
4328
4329 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4330                            int cmd)
4331 {
4332         struct e1000_adapter *adapter = netdev_priv(netdev);
4333         struct e1000_hw *hw = &adapter->hw;
4334         struct mii_ioctl_data *data = if_mii(ifr);
4335         int retval;
4336         u16 mii_reg;
4337         u16 spddplx;
4338         unsigned long flags;
4339
4340         if (hw->media_type != e1000_media_type_copper)
4341                 return -EOPNOTSUPP;
4342
4343         switch (cmd) {
4344         case SIOCGMIIPHY:
4345                 data->phy_id = hw->phy_addr;
4346                 break;
4347         case SIOCGMIIREG:
4348                 if (!capable(CAP_NET_ADMIN))
4349                         return -EPERM;
4350                 spin_lock_irqsave(&adapter->stats_lock, flags);
4351                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4352                                    &data->val_out)) {
4353                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4354                         return -EIO;
4355                 }
4356                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4357                 break;
4358         case SIOCSMIIREG:
4359                 if (!capable(CAP_NET_ADMIN))
4360                         return -EPERM;
4361                 if (data->reg_num & ~(0x1F))
4362                         return -EFAULT;
4363                 mii_reg = data->val_in;
4364                 spin_lock_irqsave(&adapter->stats_lock, flags);
4365                 if (e1000_write_phy_reg(hw, data->reg_num,
4366                                         mii_reg)) {
4367                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4368                         return -EIO;
4369                 }
4370                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4371                 if (hw->media_type == e1000_media_type_copper) {
4372                         switch (data->reg_num) {
4373                         case PHY_CTRL:
4374                                 if (mii_reg & MII_CR_POWER_DOWN)
4375                                         break;
4376                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4377                                         hw->autoneg = 1;
4378                                         hw->autoneg_advertised = 0x2F;
4379                                 } else {
4380                                         if (mii_reg & 0x40)
4381                                                 spddplx = SPEED_1000;
4382                                         else if (mii_reg & 0x2000)
4383                                                 spddplx = SPEED_100;
4384                                         else
4385                                                 spddplx = SPEED_10;
4386                                         spddplx += (mii_reg & 0x100)
4387                                                    ? DUPLEX_FULL :
4388                                                    DUPLEX_HALF;
4389                                         retval = e1000_set_spd_dplx(adapter,
4390                                                                     spddplx);
4391                                         if (retval)
4392                                                 return retval;
4393                                 }
4394                                 if (netif_running(adapter->netdev))
4395                                         e1000_reinit_locked(adapter);
4396                                 else
4397                                         e1000_reset(adapter);
4398                                 break;
4399                         case M88E1000_PHY_SPEC_CTRL:
4400                         case M88E1000_EXT_PHY_SPEC_CTRL:
4401                                 if (e1000_phy_reset(hw))
4402                                         return -EIO;
4403                                 break;
4404                         }
4405                 } else {
4406                         switch (data->reg_num) {
4407                         case PHY_CTRL:
4408                                 if (mii_reg & MII_CR_POWER_DOWN)
4409                                         break;
4410                                 if (netif_running(adapter->netdev))
4411                                         e1000_reinit_locked(adapter);
4412                                 else
4413                                         e1000_reset(adapter);
4414                                 break;
4415                         }
4416                 }
4417                 break;
4418         default:
4419                 return -EOPNOTSUPP;
4420         }
4421         return E1000_SUCCESS;
4422 }
4423
4424 void e1000_pci_set_mwi(struct e1000_hw *hw)
4425 {
4426         struct e1000_adapter *adapter = hw->back;
4427         int ret_val = pci_set_mwi(adapter->pdev);
4428
4429         if (ret_val)
4430                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4431 }
4432
4433 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4434 {
4435         struct e1000_adapter *adapter = hw->back;
4436
4437         pci_clear_mwi(adapter->pdev);
4438 }
4439
4440 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4441 {
4442         struct e1000_adapter *adapter = hw->back;
4443         return pcix_get_mmrbc(adapter->pdev);
4444 }
4445
4446 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4447 {
4448         struct e1000_adapter *adapter = hw->back;
4449         pcix_set_mmrbc(adapter->pdev, mmrbc);
4450 }
4451
4452 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4453 {
4454     struct e1000_adapter *adapter = hw->back;
4455     u16 cap_offset;
4456
4457     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4458     if (!cap_offset)
4459         return -E1000_ERR_CONFIG;
4460
4461     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4462
4463     return E1000_SUCCESS;
4464 }
4465
4466 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4467 {
4468         outl(value, port);
4469 }
4470
4471 static void e1000_vlan_rx_register(struct net_device *netdev,
4472                                    struct vlan_group *grp)
4473 {
4474         struct e1000_adapter *adapter = netdev_priv(netdev);
4475         struct e1000_hw *hw = &adapter->hw;
4476         u32 ctrl, rctl;
4477
4478         if (!test_bit(__E1000_DOWN, &adapter->flags))
4479                 e1000_irq_disable(adapter);
4480         adapter->vlgrp = grp;
4481
4482         if (grp) {
4483                 /* enable VLAN tag insert/strip */
4484                 ctrl = er32(CTRL);
4485                 ctrl |= E1000_CTRL_VME;
4486                 ew32(CTRL, ctrl);
4487
4488                 if (adapter->hw.mac_type != e1000_ich8lan) {
4489                         /* enable VLAN receive filtering */
4490                         rctl = er32(RCTL);
4491                         rctl &= ~E1000_RCTL_CFIEN;
4492                         ew32(RCTL, rctl);
4493                         e1000_update_mng_vlan(adapter);
4494                 }
4495         } else {
4496                 /* disable VLAN tag insert/strip */
4497                 ctrl = er32(CTRL);
4498                 ctrl &= ~E1000_CTRL_VME;
4499                 ew32(CTRL, ctrl);
4500
4501                 if (adapter->hw.mac_type != e1000_ich8lan) {
4502                         if (adapter->mng_vlan_id !=
4503                             (u16)E1000_MNG_VLAN_NONE) {
4504                                 e1000_vlan_rx_kill_vid(netdev,
4505                                                        adapter->mng_vlan_id);
4506                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4507                         }
4508                 }
4509         }
4510
4511         if (!test_bit(__E1000_DOWN, &adapter->flags))
4512                 e1000_irq_enable(adapter);
4513 }
4514
4515 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4516 {
4517         struct e1000_adapter *adapter = netdev_priv(netdev);
4518         struct e1000_hw *hw = &adapter->hw;
4519         u32 vfta, index;
4520
4521         if ((hw->mng_cookie.status &
4522              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4523             (vid == adapter->mng_vlan_id))
4524                 return;
4525         /* add VID to filter table */
4526         index = (vid >> 5) & 0x7F;
4527         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4528         vfta |= (1 << (vid & 0x1F));
4529         e1000_write_vfta(hw, index, vfta);
4530 }
4531
4532 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4533 {
4534         struct e1000_adapter *adapter = netdev_priv(netdev);
4535         struct e1000_hw *hw = &adapter->hw;
4536         u32 vfta, index;
4537
4538         if (!test_bit(__E1000_DOWN, &adapter->flags))
4539                 e1000_irq_disable(adapter);
4540         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4541         if (!test_bit(__E1000_DOWN, &adapter->flags))
4542                 e1000_irq_enable(adapter);
4543
4544         if ((hw->mng_cookie.status &
4545              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4546             (vid == adapter->mng_vlan_id)) {
4547                 /* release control to f/w */
4548                 e1000_release_hw_control(adapter);
4549                 return;
4550         }
4551
4552         /* remove VID from filter table */
4553         index = (vid >> 5) & 0x7F;
4554         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4555         vfta &= ~(1 << (vid & 0x1F));
4556         e1000_write_vfta(hw, index, vfta);
4557 }
4558
4559 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4560 {
4561         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4562
4563         if (adapter->vlgrp) {
4564                 u16 vid;
4565                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4566                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4567                                 continue;
4568                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4569                 }
4570         }
4571 }
4572
4573 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4574 {
4575         struct e1000_hw *hw = &adapter->hw;
4576
4577         hw->autoneg = 0;
4578
4579         /* Fiber NICs only allow 1000 gbps Full duplex */
4580         if ((hw->media_type == e1000_media_type_fiber) &&
4581                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4582                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4583                 return -EINVAL;
4584         }
4585
4586         switch (spddplx) {
4587         case SPEED_10 + DUPLEX_HALF:
4588                 hw->forced_speed_duplex = e1000_10_half;
4589                 break;
4590         case SPEED_10 + DUPLEX_FULL:
4591                 hw->forced_speed_duplex = e1000_10_full;
4592                 break;
4593         case SPEED_100 + DUPLEX_HALF:
4594                 hw->forced_speed_duplex = e1000_100_half;
4595                 break;
4596         case SPEED_100 + DUPLEX_FULL:
4597                 hw->forced_speed_duplex = e1000_100_full;
4598                 break;
4599         case SPEED_1000 + DUPLEX_FULL:
4600                 hw->autoneg = 1;
4601                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4602                 break;
4603         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4604         default:
4605                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4606                 return -EINVAL;
4607         }
4608         return 0;
4609 }
4610
4611 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4612 {
4613         struct net_device *netdev = pci_get_drvdata(pdev);
4614         struct e1000_adapter *adapter = netdev_priv(netdev);
4615         struct e1000_hw *hw = &adapter->hw;
4616         u32 ctrl, ctrl_ext, rctl, status;
4617         u32 wufc = adapter->wol;
4618 #ifdef CONFIG_PM
4619         int retval = 0;
4620 #endif
4621
4622         netif_device_detach(netdev);
4623
4624         if (netif_running(netdev)) {
4625                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4626                 e1000_down(adapter);
4627         }
4628
4629 #ifdef CONFIG_PM
4630         retval = pci_save_state(pdev);
4631         if (retval)
4632                 return retval;
4633 #endif
4634
4635         status = er32(STATUS);
4636         if (status & E1000_STATUS_LU)
4637                 wufc &= ~E1000_WUFC_LNKC;
4638
4639         if (wufc) {
4640                 e1000_setup_rctl(adapter);
4641                 e1000_set_rx_mode(netdev);
4642
4643                 /* turn on all-multi mode if wake on multicast is enabled */
4644                 if (wufc & E1000_WUFC_MC) {
4645                         rctl = er32(RCTL);
4646                         rctl |= E1000_RCTL_MPE;
4647                         ew32(RCTL, rctl);
4648                 }
4649
4650                 if (hw->mac_type >= e1000_82540) {
4651                         ctrl = er32(CTRL);
4652                         /* advertise wake from D3Cold */
4653                         #define E1000_CTRL_ADVD3WUC 0x00100000
4654                         /* phy power management enable */
4655                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4656                         ctrl |= E1000_CTRL_ADVD3WUC |
4657                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4658                         ew32(CTRL, ctrl);
4659                 }
4660
4661                 if (hw->media_type == e1000_media_type_fiber ||
4662                    hw->media_type == e1000_media_type_internal_serdes) {
4663                         /* keep the laser running in D3 */
4664                         ctrl_ext = er32(CTRL_EXT);
4665                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4666                         ew32(CTRL_EXT, ctrl_ext);
4667                 }
4668
4669                 /* Allow time for pending master requests to run */
4670                 e1000_disable_pciex_master(hw);
4671
4672                 ew32(WUC, E1000_WUC_PME_EN);
4673                 ew32(WUFC, wufc);
4674                 pci_enable_wake(pdev, PCI_D3hot, 1);
4675                 pci_enable_wake(pdev, PCI_D3cold, 1);
4676         } else {
4677                 ew32(WUC, 0);
4678                 ew32(WUFC, 0);
4679                 pci_enable_wake(pdev, PCI_D3hot, 0);
4680                 pci_enable_wake(pdev, PCI_D3cold, 0);
4681         }
4682
4683         e1000_release_manageability(adapter);
4684
4685         /* make sure adapter isn't asleep if manageability is enabled */
4686         if (adapter->en_mng_pt) {
4687                 pci_enable_wake(pdev, PCI_D3hot, 1);
4688                 pci_enable_wake(pdev, PCI_D3cold, 1);
4689         }
4690
4691         if (hw->phy_type == e1000_phy_igp_3)
4692                 e1000_phy_powerdown_workaround(hw);
4693
4694         if (netif_running(netdev))
4695                 e1000_free_irq(adapter);
4696
4697         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4698          * would have already happened in close and is redundant. */
4699         e1000_release_hw_control(adapter);
4700
4701         pci_disable_device(pdev);
4702
4703         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4704
4705         return 0;
4706 }
4707
4708 #ifdef CONFIG_PM
4709 static int e1000_resume(struct pci_dev *pdev)
4710 {
4711         struct net_device *netdev = pci_get_drvdata(pdev);
4712         struct e1000_adapter *adapter = netdev_priv(netdev);
4713         struct e1000_hw *hw = &adapter->hw;
4714         u32 err;
4715
4716         pci_set_power_state(pdev, PCI_D0);
4717         pci_restore_state(pdev);
4718
4719         if (adapter->need_ioport)
4720                 err = pci_enable_device(pdev);
4721         else
4722                 err = pci_enable_device_mem(pdev);
4723         if (err) {
4724                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4725                 return err;
4726         }
4727         pci_set_master(pdev);
4728
4729         pci_enable_wake(pdev, PCI_D3hot, 0);
4730         pci_enable_wake(pdev, PCI_D3cold, 0);
4731
4732         if (netif_running(netdev)) {
4733                 err = e1000_request_irq(adapter);
4734                 if (err)
4735                         return err;
4736         }
4737
4738         e1000_power_up_phy(adapter);
4739         e1000_reset(adapter);
4740         ew32(WUS, ~0);
4741
4742         e1000_init_manageability(adapter);
4743
4744         if (netif_running(netdev))
4745                 e1000_up(adapter);
4746
4747         netif_device_attach(netdev);
4748
4749         /* If the controller is 82573 and f/w is AMT, do not set
4750          * DRV_LOAD until the interface is up.  For all other cases,
4751          * let the f/w know that the h/w is now under the control
4752          * of the driver. */
4753         if (hw->mac_type != e1000_82573 ||
4754             !e1000_check_mng_mode(hw))
4755                 e1000_get_hw_control(adapter);
4756
4757         return 0;
4758 }
4759 #endif
4760
4761 static void e1000_shutdown(struct pci_dev *pdev)
4762 {
4763         e1000_suspend(pdev, PMSG_SUSPEND);
4764 }
4765
4766 #ifdef CONFIG_NET_POLL_CONTROLLER
4767 /*
4768  * Polling 'interrupt' - used by things like netconsole to send skbs
4769  * without having to re-enable interrupts. It's not called while
4770  * the interrupt routine is executing.
4771  */
4772 static void e1000_netpoll(struct net_device *netdev)
4773 {
4774         struct e1000_adapter *adapter = netdev_priv(netdev);
4775
4776         disable_irq(adapter->pdev->irq);
4777         e1000_intr(adapter->pdev->irq, netdev);
4778         enable_irq(adapter->pdev->irq);
4779 }
4780 #endif
4781
4782 /**
4783  * e1000_io_error_detected - called when PCI error is detected
4784  * @pdev: Pointer to PCI device
4785  * @state: The current pci conneection state
4786  *
4787  * This function is called after a PCI bus error affecting
4788  * this device has been detected.
4789  */
4790 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4791                                                 pci_channel_state_t state)
4792 {
4793         struct net_device *netdev = pci_get_drvdata(pdev);
4794         struct e1000_adapter *adapter = netdev_priv(netdev);
4795
4796         netif_device_detach(netdev);
4797
4798         if (netif_running(netdev))
4799                 e1000_down(adapter);
4800         pci_disable_device(pdev);
4801
4802         /* Request a slot slot reset. */
4803         return PCI_ERS_RESULT_NEED_RESET;
4804 }
4805
4806 /**
4807  * e1000_io_slot_reset - called after the pci bus has been reset.
4808  * @pdev: Pointer to PCI device
4809  *
4810  * Restart the card from scratch, as if from a cold-boot. Implementation
4811  * resembles the first-half of the e1000_resume routine.
4812  */
4813 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4814 {
4815         struct net_device *netdev = pci_get_drvdata(pdev);
4816         struct e1000_adapter *adapter = netdev_priv(netdev);
4817         struct e1000_hw *hw = &adapter->hw;
4818         int err;
4819
4820         if (adapter->need_ioport)
4821                 err = pci_enable_device(pdev);
4822         else
4823                 err = pci_enable_device_mem(pdev);
4824         if (err) {
4825                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4826                 return PCI_ERS_RESULT_DISCONNECT;
4827         }
4828         pci_set_master(pdev);
4829
4830         pci_enable_wake(pdev, PCI_D3hot, 0);
4831         pci_enable_wake(pdev, PCI_D3cold, 0);
4832
4833         e1000_reset(adapter);
4834         ew32(WUS, ~0);
4835
4836         return PCI_ERS_RESULT_RECOVERED;
4837 }
4838
4839 /**
4840  * e1000_io_resume - called when traffic can start flowing again.
4841  * @pdev: Pointer to PCI device
4842  *
4843  * This callback is called when the error recovery driver tells us that
4844  * its OK to resume normal operation. Implementation resembles the
4845  * second-half of the e1000_resume routine.
4846  */
4847 static void e1000_io_resume(struct pci_dev *pdev)
4848 {
4849         struct net_device *netdev = pci_get_drvdata(pdev);
4850         struct e1000_adapter *adapter = netdev_priv(netdev);
4851         struct e1000_hw *hw = &adapter->hw;
4852
4853         e1000_init_manageability(adapter);
4854
4855         if (netif_running(netdev)) {
4856                 if (e1000_up(adapter)) {
4857                         printk("e1000: can't bring device back up after reset\n");
4858                         return;
4859                 }
4860         }
4861
4862         netif_device_attach(netdev);
4863
4864         /* If the controller is 82573 and f/w is AMT, do not set
4865          * DRV_LOAD until the interface is up.  For all other cases,
4866          * let the f/w know that the h/w is now under the control
4867          * of the driver. */
4868         if (hw->mac_type != e1000_82573 ||
4869             !e1000_check_mng_mode(hw))
4870                 e1000_get_hw_control(adapter);
4871
4872 }
4873
4874 /* e1000_main.c */