]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/forcedeth.c
[PATCH] forcedeth config: diagnostics
[linux-2.6-omap-h63xx.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *
112  * Known bugs:
113  * We suspect that on some hardware no TX done interrupts are generated.
114  * This means recovery from netif_stop_queue only happens if the hw timer
115  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
116  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
117  * If your hardware reliably generates tx done interrupts, then you can remove
118  * DEV_NEED_TIMERIRQ from the driver_data flags.
119  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
120  * superfluous timer interrupts from the nic.
121  */
122 #define FORCEDETH_VERSION               "0.55"
123 #define DRV_NAME                        "forcedeth"
124
125 #include <linux/module.h>
126 #include <linux/types.h>
127 #include <linux/pci.h>
128 #include <linux/interrupt.h>
129 #include <linux/netdevice.h>
130 #include <linux/etherdevice.h>
131 #include <linux/delay.h>
132 #include <linux/spinlock.h>
133 #include <linux/ethtool.h>
134 #include <linux/timer.h>
135 #include <linux/skbuff.h>
136 #include <linux/mii.h>
137 #include <linux/random.h>
138 #include <linux/init.h>
139 #include <linux/if_vlan.h>
140 #include <linux/dma-mapping.h>
141
142 #include <asm/irq.h>
143 #include <asm/io.h>
144 #include <asm/uaccess.h>
145 #include <asm/system.h>
146
147 #if 0
148 #define dprintk                 printk
149 #else
150 #define dprintk(x...)           do { } while (0)
151 #endif
152
153
154 /*
155  * Hardware access:
156  */
157
158 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
159 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
160 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
161 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
162 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
163 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
164 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
165 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
166 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
167 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
168 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
169 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
170
171 enum {
172         NvRegIrqStatus = 0x000,
173 #define NVREG_IRQSTAT_MIIEVENT  0x040
174 #define NVREG_IRQSTAT_MASK              0x1ff
175         NvRegIrqMask = 0x004,
176 #define NVREG_IRQ_RX_ERROR              0x0001
177 #define NVREG_IRQ_RX                    0x0002
178 #define NVREG_IRQ_RX_NOBUF              0x0004
179 #define NVREG_IRQ_TX_ERR                0x0008
180 #define NVREG_IRQ_TX_OK                 0x0010
181 #define NVREG_IRQ_TIMER                 0x0020
182 #define NVREG_IRQ_LINK                  0x0040
183 #define NVREG_IRQ_RX_FORCED             0x0080
184 #define NVREG_IRQ_TX_FORCED             0x0100
185 #define NVREG_IRQMASK_THROUGHPUT        0x00df
186 #define NVREG_IRQMASK_CPU               0x0040
187 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
188 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
189 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
190
191 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
192                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
193                                         NVREG_IRQ_TX_FORCED))
194
195         NvRegUnknownSetupReg6 = 0x008,
196 #define NVREG_UNKSETUP6_VAL             3
197
198 /*
199  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
200  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
201  */
202         NvRegPollingInterval = 0x00c,
203 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
204 #define NVREG_POLL_DEFAULT_CPU  13
205         NvRegMSIMap0 = 0x020,
206         NvRegMSIMap1 = 0x024,
207         NvRegMSIIrqMask = 0x030,
208 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
209         NvRegMisc1 = 0x080,
210 #define NVREG_MISC1_PAUSE_TX    0x01
211 #define NVREG_MISC1_HD          0x02
212 #define NVREG_MISC1_FORCE       0x3b0f3c
213
214         NvRegMacReset = 0x3c,
215 #define NVREG_MAC_RESET_ASSERT  0x0F3
216         NvRegTransmitterControl = 0x084,
217 #define NVREG_XMITCTL_START     0x01
218         NvRegTransmitterStatus = 0x088,
219 #define NVREG_XMITSTAT_BUSY     0x01
220
221         NvRegPacketFilterFlags = 0x8c,
222 #define NVREG_PFF_PAUSE_RX      0x08
223 #define NVREG_PFF_ALWAYS        0x7F0000
224 #define NVREG_PFF_PROMISC       0x80
225 #define NVREG_PFF_MYADDR        0x20
226 #define NVREG_PFF_LOOPBACK      0x10
227
228         NvRegOffloadConfig = 0x90,
229 #define NVREG_OFFLOAD_HOMEPHY   0x601
230 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
231         NvRegReceiverControl = 0x094,
232 #define NVREG_RCVCTL_START      0x01
233         NvRegReceiverStatus = 0x98,
234 #define NVREG_RCVSTAT_BUSY      0x01
235
236         NvRegRandomSeed = 0x9c,
237 #define NVREG_RNDSEED_MASK      0x00ff
238 #define NVREG_RNDSEED_FORCE     0x7f00
239 #define NVREG_RNDSEED_FORCE2    0x2d00
240 #define NVREG_RNDSEED_FORCE3    0x7400
241
242         NvRegUnknownSetupReg1 = 0xA0,
243 #define NVREG_UNKSETUP1_VAL     0x16070f
244         NvRegUnknownSetupReg2 = 0xA4,
245 #define NVREG_UNKSETUP2_VAL     0x16
246         NvRegMacAddrA = 0xA8,
247         NvRegMacAddrB = 0xAC,
248         NvRegMulticastAddrA = 0xB0,
249 #define NVREG_MCASTADDRA_FORCE  0x01
250         NvRegMulticastAddrB = 0xB4,
251         NvRegMulticastMaskA = 0xB8,
252         NvRegMulticastMaskB = 0xBC,
253
254         NvRegPhyInterface = 0xC0,
255 #define PHY_RGMII               0x10000000
256
257         NvRegTxRingPhysAddr = 0x100,
258         NvRegRxRingPhysAddr = 0x104,
259         NvRegRingSizes = 0x108,
260 #define NVREG_RINGSZ_TXSHIFT 0
261 #define NVREG_RINGSZ_RXSHIFT 16
262         NvRegUnknownTransmitterReg = 0x10c,
263         NvRegLinkSpeed = 0x110,
264 #define NVREG_LINKSPEED_FORCE 0x10000
265 #define NVREG_LINKSPEED_10      1000
266 #define NVREG_LINKSPEED_100     100
267 #define NVREG_LINKSPEED_1000    50
268 #define NVREG_LINKSPEED_MASK    (0xFFF)
269         NvRegUnknownSetupReg5 = 0x130,
270 #define NVREG_UNKSETUP5_BIT31   (1<<31)
271         NvRegUnknownSetupReg3 = 0x13c,
272 #define NVREG_UNKSETUP3_VAL1    0x200010
273         NvRegTxRxControl = 0x144,
274 #define NVREG_TXRXCTL_KICK      0x0001
275 #define NVREG_TXRXCTL_BIT1      0x0002
276 #define NVREG_TXRXCTL_BIT2      0x0004
277 #define NVREG_TXRXCTL_IDLE      0x0008
278 #define NVREG_TXRXCTL_RESET     0x0010
279 #define NVREG_TXRXCTL_RXCHECK   0x0400
280 #define NVREG_TXRXCTL_DESC_1    0
281 #define NVREG_TXRXCTL_DESC_2    0x02100
282 #define NVREG_TXRXCTL_DESC_3    0x02200
283 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
284 #define NVREG_TXRXCTL_VLANINS   0x00080
285         NvRegTxRingPhysAddrHigh = 0x148,
286         NvRegRxRingPhysAddrHigh = 0x14C,
287         NvRegTxPauseFrame = 0x170,
288 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
289 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
290         NvRegMIIStatus = 0x180,
291 #define NVREG_MIISTAT_ERROR             0x0001
292 #define NVREG_MIISTAT_LINKCHANGE        0x0008
293 #define NVREG_MIISTAT_MASK              0x000f
294 #define NVREG_MIISTAT_MASK2             0x000f
295         NvRegUnknownSetupReg4 = 0x184,
296 #define NVREG_UNKSETUP4_VAL     8
297
298         NvRegAdapterControl = 0x188,
299 #define NVREG_ADAPTCTL_START    0x02
300 #define NVREG_ADAPTCTL_LINKUP   0x04
301 #define NVREG_ADAPTCTL_PHYVALID 0x40000
302 #define NVREG_ADAPTCTL_RUNNING  0x100000
303 #define NVREG_ADAPTCTL_PHYSHIFT 24
304         NvRegMIISpeed = 0x18c,
305 #define NVREG_MIISPEED_BIT8     (1<<8)
306 #define NVREG_MIIDELAY  5
307         NvRegMIIControl = 0x190,
308 #define NVREG_MIICTL_INUSE      0x08000
309 #define NVREG_MIICTL_WRITE      0x00400
310 #define NVREG_MIICTL_ADDRSHIFT  5
311         NvRegMIIData = 0x194,
312         NvRegWakeUpFlags = 0x200,
313 #define NVREG_WAKEUPFLAGS_VAL           0x7770
314 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
315 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
316 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
317 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
318 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
319 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
320 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
321 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
322 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
323 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
324
325         NvRegPatternCRC = 0x204,
326         NvRegPatternMask = 0x208,
327         NvRegPowerCap = 0x268,
328 #define NVREG_POWERCAP_D3SUPP   (1<<30)
329 #define NVREG_POWERCAP_D2SUPP   (1<<26)
330 #define NVREG_POWERCAP_D1SUPP   (1<<25)
331         NvRegPowerState = 0x26c,
332 #define NVREG_POWERSTATE_POWEREDUP      0x8000
333 #define NVREG_POWERSTATE_VALID          0x0100
334 #define NVREG_POWERSTATE_MASK           0x0003
335 #define NVREG_POWERSTATE_D0             0x0000
336 #define NVREG_POWERSTATE_D1             0x0001
337 #define NVREG_POWERSTATE_D2             0x0002
338 #define NVREG_POWERSTATE_D3             0x0003
339         NvRegTxCnt = 0x280,
340         NvRegTxZeroReXmt = 0x284,
341         NvRegTxOneReXmt = 0x288,
342         NvRegTxManyReXmt = 0x28c,
343         NvRegTxLateCol = 0x290,
344         NvRegTxUnderflow = 0x294,
345         NvRegTxLossCarrier = 0x298,
346         NvRegTxExcessDef = 0x29c,
347         NvRegTxRetryErr = 0x2a0,
348         NvRegRxFrameErr = 0x2a4,
349         NvRegRxExtraByte = 0x2a8,
350         NvRegRxLateCol = 0x2ac,
351         NvRegRxRunt = 0x2b0,
352         NvRegRxFrameTooLong = 0x2b4,
353         NvRegRxOverflow = 0x2b8,
354         NvRegRxFCSErr = 0x2bc,
355         NvRegRxFrameAlignErr = 0x2c0,
356         NvRegRxLenErr = 0x2c4,
357         NvRegRxUnicast = 0x2c8,
358         NvRegRxMulticast = 0x2cc,
359         NvRegRxBroadcast = 0x2d0,
360         NvRegTxDef = 0x2d4,
361         NvRegTxFrame = 0x2d8,
362         NvRegRxCnt = 0x2dc,
363         NvRegTxPause = 0x2e0,
364         NvRegRxPause = 0x2e4,
365         NvRegRxDropFrame = 0x2e8,
366         NvRegVlanControl = 0x300,
367 #define NVREG_VLANCONTROL_ENABLE        0x2000
368         NvRegMSIXMap0 = 0x3e0,
369         NvRegMSIXMap1 = 0x3e4,
370         NvRegMSIXIrqStatus = 0x3f0,
371
372         NvRegPowerState2 = 0x600,
373 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
374 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
375 };
376
377 /* Big endian: should work, but is untested */
378 struct ring_desc {
379         u32 PacketBuffer;
380         u32 FlagLen;
381 };
382
383 struct ring_desc_ex {
384         u32 PacketBufferHigh;
385         u32 PacketBufferLow;
386         u32 TxVlan;
387         u32 FlagLen;
388 };
389
390 typedef union _ring_type {
391         struct ring_desc* orig;
392         struct ring_desc_ex* ex;
393 } ring_type;
394
395 #define FLAG_MASK_V1 0xffff0000
396 #define FLAG_MASK_V2 0xffffc000
397 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
398 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
399
400 #define NV_TX_LASTPACKET        (1<<16)
401 #define NV_TX_RETRYERROR        (1<<19)
402 #define NV_TX_FORCED_INTERRUPT  (1<<24)
403 #define NV_TX_DEFERRED          (1<<26)
404 #define NV_TX_CARRIERLOST       (1<<27)
405 #define NV_TX_LATECOLLISION     (1<<28)
406 #define NV_TX_UNDERFLOW         (1<<29)
407 #define NV_TX_ERROR             (1<<30)
408 #define NV_TX_VALID             (1<<31)
409
410 #define NV_TX2_LASTPACKET       (1<<29)
411 #define NV_TX2_RETRYERROR       (1<<18)
412 #define NV_TX2_FORCED_INTERRUPT (1<<30)
413 #define NV_TX2_DEFERRED         (1<<25)
414 #define NV_TX2_CARRIERLOST      (1<<26)
415 #define NV_TX2_LATECOLLISION    (1<<27)
416 #define NV_TX2_UNDERFLOW        (1<<28)
417 /* error and valid are the same for both */
418 #define NV_TX2_ERROR            (1<<30)
419 #define NV_TX2_VALID            (1<<31)
420 #define NV_TX2_TSO              (1<<28)
421 #define NV_TX2_TSO_SHIFT        14
422 #define NV_TX2_TSO_MAX_SHIFT    14
423 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
424 #define NV_TX2_CHECKSUM_L3      (1<<27)
425 #define NV_TX2_CHECKSUM_L4      (1<<26)
426
427 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
428
429 #define NV_RX_DESCRIPTORVALID   (1<<16)
430 #define NV_RX_MISSEDFRAME       (1<<17)
431 #define NV_RX_SUBSTRACT1        (1<<18)
432 #define NV_RX_ERROR1            (1<<23)
433 #define NV_RX_ERROR2            (1<<24)
434 #define NV_RX_ERROR3            (1<<25)
435 #define NV_RX_ERROR4            (1<<26)
436 #define NV_RX_CRCERR            (1<<27)
437 #define NV_RX_OVERFLOW          (1<<28)
438 #define NV_RX_FRAMINGERR        (1<<29)
439 #define NV_RX_ERROR             (1<<30)
440 #define NV_RX_AVAIL             (1<<31)
441
442 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
443 #define NV_RX2_CHECKSUMOK1      (0x10000000)
444 #define NV_RX2_CHECKSUMOK2      (0x14000000)
445 #define NV_RX2_CHECKSUMOK3      (0x18000000)
446 #define NV_RX2_DESCRIPTORVALID  (1<<29)
447 #define NV_RX2_SUBSTRACT1       (1<<25)
448 #define NV_RX2_ERROR1           (1<<18)
449 #define NV_RX2_ERROR2           (1<<19)
450 #define NV_RX2_ERROR3           (1<<20)
451 #define NV_RX2_ERROR4           (1<<21)
452 #define NV_RX2_CRCERR           (1<<22)
453 #define NV_RX2_OVERFLOW         (1<<23)
454 #define NV_RX2_FRAMINGERR       (1<<24)
455 /* error and avail are the same for both */
456 #define NV_RX2_ERROR            (1<<30)
457 #define NV_RX2_AVAIL            (1<<31)
458
459 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
460 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
461
462 /* Miscelaneous hardware related defines: */
463 #define NV_PCI_REGSZ_VER1       0x270
464 #define NV_PCI_REGSZ_VER2       0x604
465
466 /* various timeout delays: all in usec */
467 #define NV_TXRX_RESET_DELAY     4
468 #define NV_TXSTOP_DELAY1        10
469 #define NV_TXSTOP_DELAY1MAX     500000
470 #define NV_TXSTOP_DELAY2        100
471 #define NV_RXSTOP_DELAY1        10
472 #define NV_RXSTOP_DELAY1MAX     500000
473 #define NV_RXSTOP_DELAY2        100
474 #define NV_SETUP5_DELAY         5
475 #define NV_SETUP5_DELAYMAX      50000
476 #define NV_POWERUP_DELAY        5
477 #define NV_POWERUP_DELAYMAX     5000
478 #define NV_MIIBUSY_DELAY        50
479 #define NV_MIIPHY_DELAY 10
480 #define NV_MIIPHY_DELAYMAX      10000
481 #define NV_MAC_RESET_DELAY      64
482
483 #define NV_WAKEUPPATTERNS       5
484 #define NV_WAKEUPMASKENTRIES    4
485
486 /* General driver defaults */
487 #define NV_WATCHDOG_TIMEO       (5*HZ)
488
489 #define RX_RING_DEFAULT         128
490 #define TX_RING_DEFAULT         256
491 #define RX_RING_MIN             128
492 #define TX_RING_MIN             64
493 #define RING_MAX_DESC_VER_1     1024
494 #define RING_MAX_DESC_VER_2_3   16384
495 /*
496  * Difference between the get and put pointers for the tx ring.
497  * This is used to throttle the amount of data outstanding in the
498  * tx ring.
499  */
500 #define TX_LIMIT_DIFFERENCE     1
501
502 /* rx/tx mac addr + type + vlan + align + slack*/
503 #define NV_RX_HEADERS           (64)
504 /* even more slack. */
505 #define NV_RX_ALLOC_PAD         (64)
506
507 /* maximum mtu size */
508 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
509 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
510
511 #define OOM_REFILL      (1+HZ/20)
512 #define POLL_WAIT       (1+HZ/100)
513 #define LINK_TIMEOUT    (3*HZ)
514 #define STATS_INTERVAL  (10*HZ)
515
516 /*
517  * desc_ver values:
518  * The nic supports three different descriptor types:
519  * - DESC_VER_1: Original
520  * - DESC_VER_2: support for jumbo frames.
521  * - DESC_VER_3: 64-bit format.
522  */
523 #define DESC_VER_1      1
524 #define DESC_VER_2      2
525 #define DESC_VER_3      3
526
527 /* PHY defines */
528 #define PHY_OUI_MARVELL 0x5043
529 #define PHY_OUI_CICADA  0x03f1
530 #define PHYID1_OUI_MASK 0x03ff
531 #define PHYID1_OUI_SHFT 6
532 #define PHYID2_OUI_MASK 0xfc00
533 #define PHYID2_OUI_SHFT 10
534 #define PHY_INIT1       0x0f000
535 #define PHY_INIT2       0x0e00
536 #define PHY_INIT3       0x01000
537 #define PHY_INIT4       0x0200
538 #define PHY_INIT5       0x0004
539 #define PHY_INIT6       0x02000
540 #define PHY_GIGABIT     0x0100
541
542 #define PHY_TIMEOUT     0x1
543 #define PHY_ERROR       0x2
544
545 #define PHY_100 0x1
546 #define PHY_1000        0x2
547 #define PHY_HALF        0x100
548
549 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
550 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
551 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
552 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
553 #define NV_PAUSEFRAME_RX_REQ     0x0010
554 #define NV_PAUSEFRAME_TX_REQ     0x0020
555 #define NV_PAUSEFRAME_AUTONEG    0x0040
556
557 /* MSI/MSI-X defines */
558 #define NV_MSI_X_MAX_VECTORS  8
559 #define NV_MSI_X_VECTORS_MASK 0x000f
560 #define NV_MSI_CAPABLE        0x0010
561 #define NV_MSI_X_CAPABLE      0x0020
562 #define NV_MSI_ENABLED        0x0040
563 #define NV_MSI_X_ENABLED      0x0080
564
565 #define NV_MSI_X_VECTOR_ALL   0x0
566 #define NV_MSI_X_VECTOR_RX    0x0
567 #define NV_MSI_X_VECTOR_TX    0x1
568 #define NV_MSI_X_VECTOR_OTHER 0x2
569
570 /* statistics */
571 struct nv_ethtool_str {
572         char name[ETH_GSTRING_LEN];
573 };
574
575 static const struct nv_ethtool_str nv_estats_str[] = {
576         { "tx_bytes" },
577         { "tx_zero_rexmt" },
578         { "tx_one_rexmt" },
579         { "tx_many_rexmt" },
580         { "tx_late_collision" },
581         { "tx_fifo_errors" },
582         { "tx_carrier_errors" },
583         { "tx_excess_deferral" },
584         { "tx_retry_error" },
585         { "tx_deferral" },
586         { "tx_packets" },
587         { "tx_pause" },
588         { "rx_frame_error" },
589         { "rx_extra_byte" },
590         { "rx_late_collision" },
591         { "rx_runt" },
592         { "rx_frame_too_long" },
593         { "rx_over_errors" },
594         { "rx_crc_errors" },
595         { "rx_frame_align_error" },
596         { "rx_length_error" },
597         { "rx_unicast" },
598         { "rx_multicast" },
599         { "rx_broadcast" },
600         { "rx_bytes" },
601         { "rx_pause" },
602         { "rx_drop_frame" },
603         { "rx_packets" },
604         { "rx_errors_total" }
605 };
606
607 struct nv_ethtool_stats {
608         u64 tx_bytes;
609         u64 tx_zero_rexmt;
610         u64 tx_one_rexmt;
611         u64 tx_many_rexmt;
612         u64 tx_late_collision;
613         u64 tx_fifo_errors;
614         u64 tx_carrier_errors;
615         u64 tx_excess_deferral;
616         u64 tx_retry_error;
617         u64 tx_deferral;
618         u64 tx_packets;
619         u64 tx_pause;
620         u64 rx_frame_error;
621         u64 rx_extra_byte;
622         u64 rx_late_collision;
623         u64 rx_runt;
624         u64 rx_frame_too_long;
625         u64 rx_over_errors;
626         u64 rx_crc_errors;
627         u64 rx_frame_align_error;
628         u64 rx_length_error;
629         u64 rx_unicast;
630         u64 rx_multicast;
631         u64 rx_broadcast;
632         u64 rx_bytes;
633         u64 rx_pause;
634         u64 rx_drop_frame;
635         u64 rx_packets;
636         u64 rx_errors_total;
637 };
638
639 /* diagnostics */
640 #define NV_TEST_COUNT_BASE 3
641 #define NV_TEST_COUNT_EXTENDED 4
642
643 static const struct nv_ethtool_str nv_etests_str[] = {
644         { "link      (online/offline)" },
645         { "register  (offline)       " },
646         { "interrupt (offline)       " },
647         { "loopback  (offline)       " }
648 };
649
650 struct register_test {
651         u32 reg;
652         u32 mask;
653 };
654
655 static const struct register_test nv_registers_test[] = {
656         { NvRegUnknownSetupReg6, 0x01 },
657         { NvRegMisc1, 0x03c },
658         { NvRegOffloadConfig, 0x03ff },
659         { NvRegMulticastAddrA, 0xffffffff },
660         { NvRegUnknownSetupReg3, 0x0ff },
661         { NvRegWakeUpFlags, 0x07777 },
662         { 0,0 }
663 };
664
665 /*
666  * SMP locking:
667  * All hardware access under dev->priv->lock, except the performance
668  * critical parts:
669  * - rx is (pseudo-) lockless: it relies on the single-threading provided
670  *      by the arch code for interrupts.
671  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
672  *      needs dev->priv->lock :-(
673  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
674  */
675
676 /* in dev: base, irq */
677 struct fe_priv {
678         spinlock_t lock;
679
680         /* General data:
681          * Locking: spin_lock(&np->lock); */
682         struct net_device_stats stats;
683         struct nv_ethtool_stats estats;
684         int in_shutdown;
685         u32 linkspeed;
686         int duplex;
687         int autoneg;
688         int fixed_mode;
689         int phyaddr;
690         int wolenabled;
691         unsigned int phy_oui;
692         u16 gigabit;
693         int intr_test;
694
695         /* General data: RO fields */
696         dma_addr_t ring_addr;
697         struct pci_dev *pci_dev;
698         u32 orig_mac[2];
699         u32 irqmask;
700         u32 desc_ver;
701         u32 txrxctl_bits;
702         u32 vlanctl_bits;
703         u32 driver_data;
704         u32 register_size;
705
706         void __iomem *base;
707
708         /* rx specific fields.
709          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
710          */
711         ring_type rx_ring;
712         unsigned int cur_rx, refill_rx;
713         struct sk_buff **rx_skbuff;
714         dma_addr_t *rx_dma;
715         unsigned int rx_buf_sz;
716         unsigned int pkt_limit;
717         struct timer_list oom_kick;
718         struct timer_list nic_poll;
719         struct timer_list stats_poll;
720         u32 nic_poll_irq;
721         int rx_ring_size;
722
723         /* media detection workaround.
724          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
725          */
726         int need_linktimer;
727         unsigned long link_timeout;
728         /*
729          * tx specific fields.
730          */
731         ring_type tx_ring;
732         unsigned int next_tx, nic_tx;
733         struct sk_buff **tx_skbuff;
734         dma_addr_t *tx_dma;
735         unsigned int *tx_dma_len;
736         u32 tx_flags;
737         int tx_ring_size;
738         int tx_limit_start;
739         int tx_limit_stop;
740
741         /* vlan fields */
742         struct vlan_group *vlangrp;
743
744         /* msi/msi-x fields */
745         u32 msi_flags;
746         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
747
748         /* flow control */
749         u32 pause_flags;
750 };
751
752 /*
753  * Maximum number of loops until we assume that a bit in the irq mask
754  * is stuck. Overridable with module param.
755  */
756 static int max_interrupt_work = 5;
757
758 /*
759  * Optimization can be either throuput mode or cpu mode
760  *
761  * Throughput Mode: Every tx and rx packet will generate an interrupt.
762  * CPU Mode: Interrupts are controlled by a timer.
763  */
764 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
765 #define NV_OPTIMIZATION_MODE_CPU        1
766 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
767
768 /*
769  * Poll interval for timer irq
770  *
771  * This interval determines how frequent an interrupt is generated.
772  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
773  * Min = 0, and Max = 65535
774  */
775 static int poll_interval = -1;
776
777 /*
778  * Disable MSI interrupts
779  */
780 static int disable_msi = 0;
781
782 /*
783  * Disable MSIX interrupts
784  */
785 static int disable_msix = 0;
786
787 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
788 {
789         return netdev_priv(dev);
790 }
791
792 static inline u8 __iomem *get_hwbase(struct net_device *dev)
793 {
794         return ((struct fe_priv *)netdev_priv(dev))->base;
795 }
796
797 static inline void pci_push(u8 __iomem *base)
798 {
799         /* force out pending posted writes */
800         readl(base);
801 }
802
803 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
804 {
805         return le32_to_cpu(prd->FlagLen)
806                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
807 }
808
809 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
810 {
811         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
812 }
813
814 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
815                                 int delay, int delaymax, const char *msg)
816 {
817         u8 __iomem *base = get_hwbase(dev);
818
819         pci_push(base);
820         do {
821                 udelay(delay);
822                 delaymax -= delay;
823                 if (delaymax < 0) {
824                         if (msg)
825                                 printk(msg);
826                         return 1;
827                 }
828         } while ((readl(base + offset) & mask) != target);
829         return 0;
830 }
831
832 #define NV_SETUP_RX_RING 0x01
833 #define NV_SETUP_TX_RING 0x02
834
835 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
836 {
837         struct fe_priv *np = get_nvpriv(dev);
838         u8 __iomem *base = get_hwbase(dev);
839
840         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
841                 if (rxtx_flags & NV_SETUP_RX_RING) {
842                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
843                 }
844                 if (rxtx_flags & NV_SETUP_TX_RING) {
845                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
846                 }
847         } else {
848                 if (rxtx_flags & NV_SETUP_RX_RING) {
849                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
850                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
851                 }
852                 if (rxtx_flags & NV_SETUP_TX_RING) {
853                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
854                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
855                 }
856         }
857 }
858
859 static void free_rings(struct net_device *dev)
860 {
861         struct fe_priv *np = get_nvpriv(dev);
862
863         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
864                 if(np->rx_ring.orig)
865                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
866                                             np->rx_ring.orig, np->ring_addr);
867         } else {
868                 if (np->rx_ring.ex)
869                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
870                                             np->rx_ring.ex, np->ring_addr);
871         }
872         if (np->rx_skbuff)
873                 kfree(np->rx_skbuff);
874         if (np->rx_dma)
875                 kfree(np->rx_dma);
876         if (np->tx_skbuff)
877                 kfree(np->tx_skbuff);
878         if (np->tx_dma)
879                 kfree(np->tx_dma);
880         if (np->tx_dma_len)
881                 kfree(np->tx_dma_len);
882 }
883
884 static int using_multi_irqs(struct net_device *dev)
885 {
886         struct fe_priv *np = get_nvpriv(dev);
887
888         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
889             ((np->msi_flags & NV_MSI_X_ENABLED) &&
890              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
891                 return 0;
892         else
893                 return 1;
894 }
895
896 static void nv_enable_irq(struct net_device *dev)
897 {
898         struct fe_priv *np = get_nvpriv(dev);
899
900         if (!using_multi_irqs(dev)) {
901                 if (np->msi_flags & NV_MSI_X_ENABLED)
902                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
903                 else
904                         enable_irq(dev->irq);
905         } else {
906                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
907                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
908                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
909         }
910 }
911
912 static void nv_disable_irq(struct net_device *dev)
913 {
914         struct fe_priv *np = get_nvpriv(dev);
915
916         if (!using_multi_irqs(dev)) {
917                 if (np->msi_flags & NV_MSI_X_ENABLED)
918                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
919                 else
920                         disable_irq(dev->irq);
921         } else {
922                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
923                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
924                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
925         }
926 }
927
928 /* In MSIX mode, a write to irqmask behaves as XOR */
929 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
930 {
931         u8 __iomem *base = get_hwbase(dev);
932
933         writel(mask, base + NvRegIrqMask);
934 }
935
936 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
937 {
938         struct fe_priv *np = get_nvpriv(dev);
939         u8 __iomem *base = get_hwbase(dev);
940
941         if (np->msi_flags & NV_MSI_X_ENABLED) {
942                 writel(mask, base + NvRegIrqMask);
943         } else {
944                 if (np->msi_flags & NV_MSI_ENABLED)
945                         writel(0, base + NvRegMSIIrqMask);
946                 writel(0, base + NvRegIrqMask);
947         }
948 }
949
950 #define MII_READ        (-1)
951 /* mii_rw: read/write a register on the PHY.
952  *
953  * Caller must guarantee serialization
954  */
955 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
956 {
957         u8 __iomem *base = get_hwbase(dev);
958         u32 reg;
959         int retval;
960
961         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
962
963         reg = readl(base + NvRegMIIControl);
964         if (reg & NVREG_MIICTL_INUSE) {
965                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
966                 udelay(NV_MIIBUSY_DELAY);
967         }
968
969         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
970         if (value != MII_READ) {
971                 writel(value, base + NvRegMIIData);
972                 reg |= NVREG_MIICTL_WRITE;
973         }
974         writel(reg, base + NvRegMIIControl);
975
976         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
977                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
978                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
979                                 dev->name, miireg, addr);
980                 retval = -1;
981         } else if (value != MII_READ) {
982                 /* it was a write operation - fewer failures are detectable */
983                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
984                                 dev->name, value, miireg, addr);
985                 retval = 0;
986         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
987                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
988                                 dev->name, miireg, addr);
989                 retval = -1;
990         } else {
991                 retval = readl(base + NvRegMIIData);
992                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
993                                 dev->name, miireg, addr, retval);
994         }
995
996         return retval;
997 }
998
999 static int phy_reset(struct net_device *dev)
1000 {
1001         struct fe_priv *np = netdev_priv(dev);
1002         u32 miicontrol;
1003         unsigned int tries = 0;
1004
1005         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1006         miicontrol |= BMCR_RESET;
1007         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1008                 return -1;
1009         }
1010
1011         /* wait for 500ms */
1012         msleep(500);
1013
1014         /* must wait till reset is deasserted */
1015         while (miicontrol & BMCR_RESET) {
1016                 msleep(10);
1017                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1018                 /* FIXME: 100 tries seem excessive */
1019                 if (tries++ > 100)
1020                         return -1;
1021         }
1022         return 0;
1023 }
1024
1025 static int phy_init(struct net_device *dev)
1026 {
1027         struct fe_priv *np = get_nvpriv(dev);
1028         u8 __iomem *base = get_hwbase(dev);
1029         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1030
1031         /* set advertise register */
1032         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1033         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1034         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1035                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1036                 return PHY_ERROR;
1037         }
1038
1039         /* get phy interface type */
1040         phyinterface = readl(base + NvRegPhyInterface);
1041
1042         /* see if gigabit phy */
1043         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1044         if (mii_status & PHY_GIGABIT) {
1045                 np->gigabit = PHY_GIGABIT;
1046                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1047                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1048                 if (phyinterface & PHY_RGMII)
1049                         mii_control_1000 |= ADVERTISE_1000FULL;
1050                 else
1051                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1052
1053                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1054                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1055                         return PHY_ERROR;
1056                 }
1057         }
1058         else
1059                 np->gigabit = 0;
1060
1061         /* reset the phy */
1062         if (phy_reset(dev)) {
1063                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1064                 return PHY_ERROR;
1065         }
1066
1067         /* phy vendor specific configuration */
1068         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1069                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1070                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1071                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1072                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1073                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1074                         return PHY_ERROR;
1075                 }
1076                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1077                 phy_reserved |= PHY_INIT5;
1078                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1079                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1080                         return PHY_ERROR;
1081                 }
1082         }
1083         if (np->phy_oui == PHY_OUI_CICADA) {
1084                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1085                 phy_reserved |= PHY_INIT6;
1086                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1087                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1088                         return PHY_ERROR;
1089                 }
1090         }
1091         /* some phys clear out pause advertisment on reset, set it back */
1092         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1093
1094         /* restart auto negotiation */
1095         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1096         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1097         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1098                 return PHY_ERROR;
1099         }
1100
1101         return 0;
1102 }
1103
1104 static void nv_start_rx(struct net_device *dev)
1105 {
1106         struct fe_priv *np = netdev_priv(dev);
1107         u8 __iomem *base = get_hwbase(dev);
1108
1109         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1110         /* Already running? Stop it. */
1111         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1112                 writel(0, base + NvRegReceiverControl);
1113                 pci_push(base);
1114         }
1115         writel(np->linkspeed, base + NvRegLinkSpeed);
1116         pci_push(base);
1117         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1118         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1119                                 dev->name, np->duplex, np->linkspeed);
1120         pci_push(base);
1121 }
1122
1123 static void nv_stop_rx(struct net_device *dev)
1124 {
1125         u8 __iomem *base = get_hwbase(dev);
1126
1127         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1128         writel(0, base + NvRegReceiverControl);
1129         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1130                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1131                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1132
1133         udelay(NV_RXSTOP_DELAY2);
1134         writel(0, base + NvRegLinkSpeed);
1135 }
1136
1137 static void nv_start_tx(struct net_device *dev)
1138 {
1139         u8 __iomem *base = get_hwbase(dev);
1140
1141         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1142         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1143         pci_push(base);
1144 }
1145
1146 static void nv_stop_tx(struct net_device *dev)
1147 {
1148         u8 __iomem *base = get_hwbase(dev);
1149
1150         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1151         writel(0, base + NvRegTransmitterControl);
1152         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1153                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1154                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1155
1156         udelay(NV_TXSTOP_DELAY2);
1157         writel(0, base + NvRegUnknownTransmitterReg);
1158 }
1159
1160 static void nv_txrx_reset(struct net_device *dev)
1161 {
1162         struct fe_priv *np = netdev_priv(dev);
1163         u8 __iomem *base = get_hwbase(dev);
1164
1165         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1166         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1167         pci_push(base);
1168         udelay(NV_TXRX_RESET_DELAY);
1169         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1170         pci_push(base);
1171 }
1172
1173 static void nv_mac_reset(struct net_device *dev)
1174 {
1175         struct fe_priv *np = netdev_priv(dev);
1176         u8 __iomem *base = get_hwbase(dev);
1177
1178         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1179         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1180         pci_push(base);
1181         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1182         pci_push(base);
1183         udelay(NV_MAC_RESET_DELAY);
1184         writel(0, base + NvRegMacReset);
1185         pci_push(base);
1186         udelay(NV_MAC_RESET_DELAY);
1187         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1188         pci_push(base);
1189 }
1190
1191 /*
1192  * nv_get_stats: dev->get_stats function
1193  * Get latest stats value from the nic.
1194  * Called with read_lock(&dev_base_lock) held for read -
1195  * only synchronized against unregister_netdevice.
1196  */
1197 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1198 {
1199         struct fe_priv *np = netdev_priv(dev);
1200
1201         /* It seems that the nic always generates interrupts and doesn't
1202          * accumulate errors internally. Thus the current values in np->stats
1203          * are already up to date.
1204          */
1205         return &np->stats;
1206 }
1207
1208 /*
1209  * nv_alloc_rx: fill rx ring entries.
1210  * Return 1 if the allocations for the skbs failed and the
1211  * rx engine is without Available descriptors
1212  */
1213 static int nv_alloc_rx(struct net_device *dev)
1214 {
1215         struct fe_priv *np = netdev_priv(dev);
1216         unsigned int refill_rx = np->refill_rx;
1217         int nr;
1218
1219         while (np->cur_rx != refill_rx) {
1220                 struct sk_buff *skb;
1221
1222                 nr = refill_rx % np->rx_ring_size;
1223                 if (np->rx_skbuff[nr] == NULL) {
1224
1225                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1226                         if (!skb)
1227                                 break;
1228
1229                         skb->dev = dev;
1230                         np->rx_skbuff[nr] = skb;
1231                 } else {
1232                         skb = np->rx_skbuff[nr];
1233                 }
1234                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1235                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1236                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1237                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1238                         wmb();
1239                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1240                 } else {
1241                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1242                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1243                         wmb();
1244                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1245                 }
1246                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1247                                         dev->name, refill_rx);
1248                 refill_rx++;
1249         }
1250         np->refill_rx = refill_rx;
1251         if (np->cur_rx - refill_rx == np->rx_ring_size)
1252                 return 1;
1253         return 0;
1254 }
1255
1256 static void nv_do_rx_refill(unsigned long data)
1257 {
1258         struct net_device *dev = (struct net_device *) data;
1259         struct fe_priv *np = netdev_priv(dev);
1260
1261         if (!using_multi_irqs(dev)) {
1262                 if (np->msi_flags & NV_MSI_X_ENABLED)
1263                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1264                 else
1265                         disable_irq(dev->irq);
1266         } else {
1267                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1268         }
1269         if (nv_alloc_rx(dev)) {
1270                 spin_lock_irq(&np->lock);
1271                 if (!np->in_shutdown)
1272                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1273                 spin_unlock_irq(&np->lock);
1274         }
1275         if (!using_multi_irqs(dev)) {
1276                 if (np->msi_flags & NV_MSI_X_ENABLED)
1277                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1278                 else
1279                         enable_irq(dev->irq);
1280         } else {
1281                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1282         }
1283 }
1284
1285 static void nv_init_rx(struct net_device *dev)
1286 {
1287         struct fe_priv *np = netdev_priv(dev);
1288         int i;
1289
1290         np->cur_rx = np->rx_ring_size;
1291         np->refill_rx = 0;
1292         for (i = 0; i < np->rx_ring_size; i++)
1293                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1294                         np->rx_ring.orig[i].FlagLen = 0;
1295                 else
1296                         np->rx_ring.ex[i].FlagLen = 0;
1297 }
1298
1299 static void nv_init_tx(struct net_device *dev)
1300 {
1301         struct fe_priv *np = netdev_priv(dev);
1302         int i;
1303
1304         np->next_tx = np->nic_tx = 0;
1305         for (i = 0; i < np->tx_ring_size; i++) {
1306                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1307                         np->tx_ring.orig[i].FlagLen = 0;
1308                 else
1309                         np->tx_ring.ex[i].FlagLen = 0;
1310                 np->tx_skbuff[i] = NULL;
1311                 np->tx_dma[i] = 0;
1312         }
1313 }
1314
1315 static int nv_init_ring(struct net_device *dev)
1316 {
1317         nv_init_tx(dev);
1318         nv_init_rx(dev);
1319         return nv_alloc_rx(dev);
1320 }
1321
1322 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1323 {
1324         struct fe_priv *np = netdev_priv(dev);
1325
1326         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1327                 dev->name, skbnr);
1328
1329         if (np->tx_dma[skbnr]) {
1330                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1331                                np->tx_dma_len[skbnr],
1332                                PCI_DMA_TODEVICE);
1333                 np->tx_dma[skbnr] = 0;
1334         }
1335
1336         if (np->tx_skbuff[skbnr]) {
1337                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1338                 np->tx_skbuff[skbnr] = NULL;
1339                 return 1;
1340         } else {
1341                 return 0;
1342         }
1343 }
1344
1345 static void nv_drain_tx(struct net_device *dev)
1346 {
1347         struct fe_priv *np = netdev_priv(dev);
1348         unsigned int i;
1349
1350         for (i = 0; i < np->tx_ring_size; i++) {
1351                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1352                         np->tx_ring.orig[i].FlagLen = 0;
1353                 else
1354                         np->tx_ring.ex[i].FlagLen = 0;
1355                 if (nv_release_txskb(dev, i))
1356                         np->stats.tx_dropped++;
1357         }
1358 }
1359
1360 static void nv_drain_rx(struct net_device *dev)
1361 {
1362         struct fe_priv *np = netdev_priv(dev);
1363         int i;
1364         for (i = 0; i < np->rx_ring_size; i++) {
1365                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1366                         np->rx_ring.orig[i].FlagLen = 0;
1367                 else
1368                         np->rx_ring.ex[i].FlagLen = 0;
1369                 wmb();
1370                 if (np->rx_skbuff[i]) {
1371                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1372                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1373                                                 PCI_DMA_FROMDEVICE);
1374                         dev_kfree_skb(np->rx_skbuff[i]);
1375                         np->rx_skbuff[i] = NULL;
1376                 }
1377         }
1378 }
1379
1380 static void drain_ring(struct net_device *dev)
1381 {
1382         nv_drain_tx(dev);
1383         nv_drain_rx(dev);
1384 }
1385
1386 /*
1387  * nv_start_xmit: dev->hard_start_xmit function
1388  * Called with dev->xmit_lock held.
1389  */
1390 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1391 {
1392         struct fe_priv *np = netdev_priv(dev);
1393         u32 tx_flags = 0;
1394         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1395         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1396         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1397         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1398         unsigned int i;
1399         u32 offset = 0;
1400         u32 bcnt;
1401         u32 size = skb->len-skb->data_len;
1402         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1403         u32 tx_flags_vlan = 0;
1404
1405         /* add fragments to entries count */
1406         for (i = 0; i < fragments; i++) {
1407                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1408                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1409         }
1410
1411         spin_lock_irq(&np->lock);
1412
1413         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1414                 spin_unlock_irq(&np->lock);
1415                 netif_stop_queue(dev);
1416                 return NETDEV_TX_BUSY;
1417         }
1418
1419         /* setup the header buffer */
1420         do {
1421                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1422                 nr = (nr + 1) % np->tx_ring_size;
1423
1424                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1425                                                 PCI_DMA_TODEVICE);
1426                 np->tx_dma_len[nr] = bcnt;
1427
1428                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1429                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1430                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1431                 } else {
1432                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1433                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1434                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1435                 }
1436                 tx_flags = np->tx_flags;
1437                 offset += bcnt;
1438                 size -= bcnt;
1439         } while(size);
1440
1441         /* setup the fragments */
1442         for (i = 0; i < fragments; i++) {
1443                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1444                 u32 size = frag->size;
1445                 offset = 0;
1446
1447                 do {
1448                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1449                         nr = (nr + 1) % np->tx_ring_size;
1450
1451                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1452                                                       PCI_DMA_TODEVICE);
1453                         np->tx_dma_len[nr] = bcnt;
1454
1455                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1456                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1457                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1458                         } else {
1459                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1460                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1461                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1462                         }
1463                         offset += bcnt;
1464                         size -= bcnt;
1465                 } while (size);
1466         }
1467
1468         /* set last fragment flag  */
1469         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1470                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1471         } else {
1472                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1473         }
1474
1475         np->tx_skbuff[nr] = skb;
1476
1477 #ifdef NETIF_F_TSO
1478         if (skb_shinfo(skb)->tso_size)
1479                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1480         else
1481 #endif
1482         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1483
1484         /* vlan tag */
1485         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1486                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1487         }
1488
1489         /* set tx flags */
1490         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1491                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1492         } else {
1493                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1494                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1495         }
1496
1497         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1498                 dev->name, np->next_tx, entries, tx_flags_extra);
1499         {
1500                 int j;
1501                 for (j=0; j<64; j++) {
1502                         if ((j%16) == 0)
1503                                 dprintk("\n%03x:", j);
1504                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1505                 }
1506                 dprintk("\n");
1507         }
1508
1509         np->next_tx += entries;
1510
1511         dev->trans_start = jiffies;
1512         spin_unlock_irq(&np->lock);
1513         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1514         pci_push(get_hwbase(dev));
1515         return NETDEV_TX_OK;
1516 }
1517
1518 /*
1519  * nv_tx_done: check for completed packets, release the skbs.
1520  *
1521  * Caller must own np->lock.
1522  */
1523 static void nv_tx_done(struct net_device *dev)
1524 {
1525         struct fe_priv *np = netdev_priv(dev);
1526         u32 Flags;
1527         unsigned int i;
1528         struct sk_buff *skb;
1529
1530         while (np->nic_tx != np->next_tx) {
1531                 i = np->nic_tx % np->tx_ring_size;
1532
1533                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1534                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1535                 else
1536                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1537
1538                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1539                                         dev->name, np->nic_tx, Flags);
1540                 if (Flags & NV_TX_VALID)
1541                         break;
1542                 if (np->desc_ver == DESC_VER_1) {
1543                         if (Flags & NV_TX_LASTPACKET) {
1544                                 skb = np->tx_skbuff[i];
1545                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1546                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1547                                         if (Flags & NV_TX_UNDERFLOW)
1548                                                 np->stats.tx_fifo_errors++;
1549                                         if (Flags & NV_TX_CARRIERLOST)
1550                                                 np->stats.tx_carrier_errors++;
1551                                         np->stats.tx_errors++;
1552                                 } else {
1553                                         np->stats.tx_packets++;
1554                                         np->stats.tx_bytes += skb->len;
1555                                 }
1556                         }
1557                 } else {
1558                         if (Flags & NV_TX2_LASTPACKET) {
1559                                 skb = np->tx_skbuff[i];
1560                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1561                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1562                                         if (Flags & NV_TX2_UNDERFLOW)
1563                                                 np->stats.tx_fifo_errors++;
1564                                         if (Flags & NV_TX2_CARRIERLOST)
1565                                                 np->stats.tx_carrier_errors++;
1566                                         np->stats.tx_errors++;
1567                                 } else {
1568                                         np->stats.tx_packets++;
1569                                         np->stats.tx_bytes += skb->len;
1570                                 }
1571                         }
1572                 }
1573                 nv_release_txskb(dev, i);
1574                 np->nic_tx++;
1575         }
1576         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1577                 netif_wake_queue(dev);
1578 }
1579
1580 /*
1581  * nv_tx_timeout: dev->tx_timeout function
1582  * Called with dev->xmit_lock held.
1583  */
1584 static void nv_tx_timeout(struct net_device *dev)
1585 {
1586         struct fe_priv *np = netdev_priv(dev);
1587         u8 __iomem *base = get_hwbase(dev);
1588         u32 status;
1589
1590         if (np->msi_flags & NV_MSI_X_ENABLED)
1591                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1592         else
1593                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1594
1595         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1596
1597         {
1598                 int i;
1599
1600                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1601                                 dev->name, (unsigned long)np->ring_addr,
1602                                 np->next_tx, np->nic_tx);
1603                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1604                 for (i=0;i<=np->register_size;i+= 32) {
1605                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1606                                         i,
1607                                         readl(base + i + 0), readl(base + i + 4),
1608                                         readl(base + i + 8), readl(base + i + 12),
1609                                         readl(base + i + 16), readl(base + i + 20),
1610                                         readl(base + i + 24), readl(base + i + 28));
1611                 }
1612                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1613                 for (i=0;i<np->tx_ring_size;i+= 4) {
1614                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1615                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1616                                        i,
1617                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1618                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1619                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1620                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1621                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1622                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1623                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1624                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1625                         } else {
1626                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1627                                        i,
1628                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1629                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1630                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1631                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1632                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1633                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1634                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1635                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1636                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1637                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1638                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1639                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1640                         }
1641                 }
1642         }
1643
1644         spin_lock_irq(&np->lock);
1645
1646         /* 1) stop tx engine */
1647         nv_stop_tx(dev);
1648
1649         /* 2) check that the packets were not sent already: */
1650         nv_tx_done(dev);
1651
1652         /* 3) if there are dead entries: clear everything */
1653         if (np->next_tx != np->nic_tx) {
1654                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1655                 nv_drain_tx(dev);
1656                 np->next_tx = np->nic_tx = 0;
1657                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1658                 netif_wake_queue(dev);
1659         }
1660
1661         /* 4) restart tx engine */
1662         nv_start_tx(dev);
1663         spin_unlock_irq(&np->lock);
1664 }
1665
1666 /*
1667  * Called when the nic notices a mismatch between the actual data len on the
1668  * wire and the len indicated in the 802 header
1669  */
1670 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1671 {
1672         int hdrlen;     /* length of the 802 header */
1673         int protolen;   /* length as stored in the proto field */
1674
1675         /* 1) calculate len according to header */
1676         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1677                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1678                 hdrlen = VLAN_HLEN;
1679         } else {
1680                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1681                 hdrlen = ETH_HLEN;
1682         }
1683         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1684                                 dev->name, datalen, protolen, hdrlen);
1685         if (protolen > ETH_DATA_LEN)
1686                 return datalen; /* Value in proto field not a len, no checks possible */
1687
1688         protolen += hdrlen;
1689         /* consistency checks: */
1690         if (datalen > ETH_ZLEN) {
1691                 if (datalen >= protolen) {
1692                         /* more data on wire than in 802 header, trim of
1693                          * additional data.
1694                          */
1695                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1696                                         dev->name, protolen);
1697                         return protolen;
1698                 } else {
1699                         /* less data on wire than mentioned in header.
1700                          * Discard the packet.
1701                          */
1702                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1703                                         dev->name);
1704                         return -1;
1705                 }
1706         } else {
1707                 /* short packet. Accept only if 802 values are also short */
1708                 if (protolen > ETH_ZLEN) {
1709                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1710                                         dev->name);
1711                         return -1;
1712                 }
1713                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1714                                 dev->name, datalen);
1715                 return datalen;
1716         }
1717 }
1718
1719 static void nv_rx_process(struct net_device *dev)
1720 {
1721         struct fe_priv *np = netdev_priv(dev);
1722         u32 Flags;
1723         u32 vlanflags = 0;
1724
1725         for (;;) {
1726                 struct sk_buff *skb;
1727                 int len;
1728                 int i;
1729                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1730                         break;  /* we scanned the whole ring - do not continue */
1731
1732                 i = np->cur_rx % np->rx_ring_size;
1733                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1734                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1735                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1736                 } else {
1737                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1738                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1739                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1740                 }
1741
1742                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1743                                         dev->name, np->cur_rx, Flags);
1744
1745                 if (Flags & NV_RX_AVAIL)
1746                         break;  /* still owned by hardware, */
1747
1748                 /*
1749                  * the packet is for us - immediately tear down the pci mapping.
1750                  * TODO: check if a prefetch of the first cacheline improves
1751                  * the performance.
1752                  */
1753                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1754                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1755                                 PCI_DMA_FROMDEVICE);
1756
1757                 {
1758                         int j;
1759                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1760                         for (j=0; j<64; j++) {
1761                                 if ((j%16) == 0)
1762                                         dprintk("\n%03x:", j);
1763                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1764                         }
1765                         dprintk("\n");
1766                 }
1767                 /* look at what we actually got: */
1768                 if (np->desc_ver == DESC_VER_1) {
1769                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1770                                 goto next_pkt;
1771
1772                         if (Flags & NV_RX_ERROR) {
1773                                 if (Flags & NV_RX_MISSEDFRAME) {
1774                                         np->stats.rx_missed_errors++;
1775                                         np->stats.rx_errors++;
1776                                         goto next_pkt;
1777                                 }
1778                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1779                                         np->stats.rx_errors++;
1780                                         goto next_pkt;
1781                                 }
1782                                 if (Flags & NV_RX_CRCERR) {
1783                                         np->stats.rx_crc_errors++;
1784                                         np->stats.rx_errors++;
1785                                         goto next_pkt;
1786                                 }
1787                                 if (Flags & NV_RX_OVERFLOW) {
1788                                         np->stats.rx_over_errors++;
1789                                         np->stats.rx_errors++;
1790                                         goto next_pkt;
1791                                 }
1792                                 if (Flags & NV_RX_ERROR4) {
1793                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1794                                         if (len < 0) {
1795                                                 np->stats.rx_errors++;
1796                                                 goto next_pkt;
1797                                         }
1798                                 }
1799                                 /* framing errors are soft errors. */
1800                                 if (Flags & NV_RX_FRAMINGERR) {
1801                                         if (Flags & NV_RX_SUBSTRACT1) {
1802                                                 len--;
1803                                         }
1804                                 }
1805                         }
1806                 } else {
1807                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1808                                 goto next_pkt;
1809
1810                         if (Flags & NV_RX2_ERROR) {
1811                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1812                                         np->stats.rx_errors++;
1813                                         goto next_pkt;
1814                                 }
1815                                 if (Flags & NV_RX2_CRCERR) {
1816                                         np->stats.rx_crc_errors++;
1817                                         np->stats.rx_errors++;
1818                                         goto next_pkt;
1819                                 }
1820                                 if (Flags & NV_RX2_OVERFLOW) {
1821                                         np->stats.rx_over_errors++;
1822                                         np->stats.rx_errors++;
1823                                         goto next_pkt;
1824                                 }
1825                                 if (Flags & NV_RX2_ERROR4) {
1826                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1827                                         if (len < 0) {
1828                                                 np->stats.rx_errors++;
1829                                                 goto next_pkt;
1830                                         }
1831                                 }
1832                                 /* framing errors are soft errors */
1833                                 if (Flags & NV_RX2_FRAMINGERR) {
1834                                         if (Flags & NV_RX2_SUBSTRACT1) {
1835                                                 len--;
1836                                         }
1837                                 }
1838                         }
1839                         if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1840                                 Flags &= NV_RX2_CHECKSUMMASK;
1841                                 if (Flags == NV_RX2_CHECKSUMOK1 ||
1842                                     Flags == NV_RX2_CHECKSUMOK2 ||
1843                                     Flags == NV_RX2_CHECKSUMOK3) {
1844                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1845                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1846                                 } else {
1847                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1848                                 }
1849                         }
1850                 }
1851                 /* got a valid packet - forward it to the network core */
1852                 skb = np->rx_skbuff[i];
1853                 np->rx_skbuff[i] = NULL;
1854
1855                 skb_put(skb, len);
1856                 skb->protocol = eth_type_trans(skb, dev);
1857                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1858                                         dev->name, np->cur_rx, len, skb->protocol);
1859                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1860                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1861                 } else {
1862                         netif_rx(skb);
1863                 }
1864                 dev->last_rx = jiffies;
1865                 np->stats.rx_packets++;
1866                 np->stats.rx_bytes += len;
1867 next_pkt:
1868                 np->cur_rx++;
1869         }
1870 }
1871
1872 static void set_bufsize(struct net_device *dev)
1873 {
1874         struct fe_priv *np = netdev_priv(dev);
1875
1876         if (dev->mtu <= ETH_DATA_LEN)
1877                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1878         else
1879                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1880 }
1881
1882 /*
1883  * nv_change_mtu: dev->change_mtu function
1884  * Called with dev_base_lock held for read.
1885  */
1886 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1887 {
1888         struct fe_priv *np = netdev_priv(dev);
1889         int old_mtu;
1890
1891         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1892                 return -EINVAL;
1893
1894         old_mtu = dev->mtu;
1895         dev->mtu = new_mtu;
1896
1897         /* return early if the buffer sizes will not change */
1898         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1899                 return 0;
1900         if (old_mtu == new_mtu)
1901                 return 0;
1902
1903         /* synchronized against open : rtnl_lock() held by caller */
1904         if (netif_running(dev)) {
1905                 u8 __iomem *base = get_hwbase(dev);
1906                 /*
1907                  * It seems that the nic preloads valid ring entries into an
1908                  * internal buffer. The procedure for flushing everything is
1909                  * guessed, there is probably a simpler approach.
1910                  * Changing the MTU is a rare event, it shouldn't matter.
1911                  */
1912                 nv_disable_irq(dev);
1913                 spin_lock_bh(&dev->xmit_lock);
1914                 spin_lock(&np->lock);
1915                 /* stop engines */
1916                 nv_stop_rx(dev);
1917                 nv_stop_tx(dev);
1918                 nv_txrx_reset(dev);
1919                 /* drain rx queue */
1920                 nv_drain_rx(dev);
1921                 nv_drain_tx(dev);
1922                 /* reinit driver view of the rx queue */
1923                 set_bufsize(dev);
1924                 if (nv_init_ring(dev)) {
1925                         if (!np->in_shutdown)
1926                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1927                 }
1928                 /* reinit nic view of the rx queue */
1929                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1930                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1931                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1932                         base + NvRegRingSizes);
1933                 pci_push(base);
1934                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1935                 pci_push(base);
1936
1937                 /* restart rx engine */
1938                 nv_start_rx(dev);
1939                 nv_start_tx(dev);
1940                 spin_unlock(&np->lock);
1941                 spin_unlock_bh(&dev->xmit_lock);
1942                 nv_enable_irq(dev);
1943         }
1944         return 0;
1945 }
1946
1947 static void nv_copy_mac_to_hw(struct net_device *dev)
1948 {
1949         u8 __iomem *base = get_hwbase(dev);
1950         u32 mac[2];
1951
1952         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1953                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1954         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1955
1956         writel(mac[0], base + NvRegMacAddrA);
1957         writel(mac[1], base + NvRegMacAddrB);
1958 }
1959
1960 /*
1961  * nv_set_mac_address: dev->set_mac_address function
1962  * Called with rtnl_lock() held.
1963  */
1964 static int nv_set_mac_address(struct net_device *dev, void *addr)
1965 {
1966         struct fe_priv *np = netdev_priv(dev);
1967         struct sockaddr *macaddr = (struct sockaddr*)addr;
1968
1969         if(!is_valid_ether_addr(macaddr->sa_data))
1970                 return -EADDRNOTAVAIL;
1971
1972         /* synchronized against open : rtnl_lock() held by caller */
1973         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1974
1975         if (netif_running(dev)) {
1976                 spin_lock_bh(&dev->xmit_lock);
1977                 spin_lock_irq(&np->lock);
1978
1979                 /* stop rx engine */
1980                 nv_stop_rx(dev);
1981
1982                 /* set mac address */
1983                 nv_copy_mac_to_hw(dev);
1984
1985                 /* restart rx engine */
1986                 nv_start_rx(dev);
1987                 spin_unlock_irq(&np->lock);
1988                 spin_unlock_bh(&dev->xmit_lock);
1989         } else {
1990                 nv_copy_mac_to_hw(dev);
1991         }
1992         return 0;
1993 }
1994
1995 /*
1996  * nv_set_multicast: dev->set_multicast function
1997  * Called with dev->xmit_lock held.
1998  */
1999 static void nv_set_multicast(struct net_device *dev)
2000 {
2001         struct fe_priv *np = netdev_priv(dev);
2002         u8 __iomem *base = get_hwbase(dev);
2003         u32 addr[2];
2004         u32 mask[2];
2005         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2006
2007         memset(addr, 0, sizeof(addr));
2008         memset(mask, 0, sizeof(mask));
2009
2010         if (dev->flags & IFF_PROMISC) {
2011                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2012                 pff |= NVREG_PFF_PROMISC;
2013         } else {
2014                 pff |= NVREG_PFF_MYADDR;
2015
2016                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2017                         u32 alwaysOff[2];
2018                         u32 alwaysOn[2];
2019
2020                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2021                         if (dev->flags & IFF_ALLMULTI) {
2022                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2023                         } else {
2024                                 struct dev_mc_list *walk;
2025
2026                                 walk = dev->mc_list;
2027                                 while (walk != NULL) {
2028                                         u32 a, b;
2029                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2030                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2031                                         alwaysOn[0] &= a;
2032                                         alwaysOff[0] &= ~a;
2033                                         alwaysOn[1] &= b;
2034                                         alwaysOff[1] &= ~b;
2035                                         walk = walk->next;
2036                                 }
2037                         }
2038                         addr[0] = alwaysOn[0];
2039                         addr[1] = alwaysOn[1];
2040                         mask[0] = alwaysOn[0] | alwaysOff[0];
2041                         mask[1] = alwaysOn[1] | alwaysOff[1];
2042                 }
2043         }
2044         addr[0] |= NVREG_MCASTADDRA_FORCE;
2045         pff |= NVREG_PFF_ALWAYS;
2046         spin_lock_irq(&np->lock);
2047         nv_stop_rx(dev);
2048         writel(addr[0], base + NvRegMulticastAddrA);
2049         writel(addr[1], base + NvRegMulticastAddrB);
2050         writel(mask[0], base + NvRegMulticastMaskA);
2051         writel(mask[1], base + NvRegMulticastMaskB);
2052         writel(pff, base + NvRegPacketFilterFlags);
2053         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2054                 dev->name);
2055         nv_start_rx(dev);
2056         spin_unlock_irq(&np->lock);
2057 }
2058
2059 void nv_update_pause(struct net_device *dev, u32 pause_flags)
2060 {
2061         struct fe_priv *np = netdev_priv(dev);
2062         u8 __iomem *base = get_hwbase(dev);
2063
2064         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2065
2066         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2067                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2068                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2069                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2070                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2071                 } else {
2072                         writel(pff, base + NvRegPacketFilterFlags);
2073                 }
2074         }
2075         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2076                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2077                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2078                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2079                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2080                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2081                 } else {
2082                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2083                         writel(regmisc, base + NvRegMisc1);
2084                 }
2085         }
2086 }
2087
2088 /**
2089  * nv_update_linkspeed: Setup the MAC according to the link partner
2090  * @dev: Network device to be configured
2091  *
2092  * The function queries the PHY and checks if there is a link partner.
2093  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2094  * set to 10 MBit HD.
2095  *
2096  * The function returns 0 if there is no link partner and 1 if there is
2097  * a good link partner.
2098  */
2099 static int nv_update_linkspeed(struct net_device *dev)
2100 {
2101         struct fe_priv *np = netdev_priv(dev);
2102         u8 __iomem *base = get_hwbase(dev);
2103         int adv = 0;
2104         int lpa = 0;
2105         int adv_lpa, adv_pause, lpa_pause;
2106         int newls = np->linkspeed;
2107         int newdup = np->duplex;
2108         int mii_status;
2109         int retval = 0;
2110         u32 control_1000, status_1000, phyreg, pause_flags;
2111
2112         /* BMSR_LSTATUS is latched, read it twice:
2113          * we want the current value.
2114          */
2115         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2116         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2117
2118         if (!(mii_status & BMSR_LSTATUS)) {
2119                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2120                                 dev->name);
2121                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2122                 newdup = 0;
2123                 retval = 0;
2124                 goto set_speed;
2125         }
2126
2127         if (np->autoneg == 0) {
2128                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2129                                 dev->name, np->fixed_mode);
2130                 if (np->fixed_mode & LPA_100FULL) {
2131                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2132                         newdup = 1;
2133                 } else if (np->fixed_mode & LPA_100HALF) {
2134                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2135                         newdup = 0;
2136                 } else if (np->fixed_mode & LPA_10FULL) {
2137                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2138                         newdup = 1;
2139                 } else {
2140                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2141                         newdup = 0;
2142                 }
2143                 retval = 1;
2144                 goto set_speed;
2145         }
2146         /* check auto negotiation is complete */
2147         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2148                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2149                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2150                 newdup = 0;
2151                 retval = 0;
2152                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2153                 goto set_speed;
2154         }
2155
2156         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2157         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2158         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2159                                 dev->name, adv, lpa);
2160
2161         retval = 1;
2162         if (np->gigabit == PHY_GIGABIT) {
2163                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2164                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2165
2166                 if ((control_1000 & ADVERTISE_1000FULL) &&
2167                         (status_1000 & LPA_1000FULL)) {
2168                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2169                                 dev->name);
2170                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2171                         newdup = 1;
2172                         goto set_speed;
2173                 }
2174         }
2175
2176         /* FIXME: handle parallel detection properly */
2177         adv_lpa = lpa & adv;
2178         if (adv_lpa & LPA_100FULL) {
2179                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2180                 newdup = 1;
2181         } else if (adv_lpa & LPA_100HALF) {
2182                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2183                 newdup = 0;
2184         } else if (adv_lpa & LPA_10FULL) {
2185                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2186                 newdup = 1;
2187         } else if (adv_lpa & LPA_10HALF) {
2188                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2189                 newdup = 0;
2190         } else {
2191                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2192                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2193                 newdup = 0;
2194         }
2195
2196 set_speed:
2197         if (np->duplex == newdup && np->linkspeed == newls)
2198                 return retval;
2199
2200         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2201                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2202
2203         np->duplex = newdup;
2204         np->linkspeed = newls;
2205
2206         if (np->gigabit == PHY_GIGABIT) {
2207                 phyreg = readl(base + NvRegRandomSeed);
2208                 phyreg &= ~(0x3FF00);
2209                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2210                         phyreg |= NVREG_RNDSEED_FORCE3;
2211                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2212                         phyreg |= NVREG_RNDSEED_FORCE2;
2213                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2214                         phyreg |= NVREG_RNDSEED_FORCE;
2215                 writel(phyreg, base + NvRegRandomSeed);
2216         }
2217
2218         phyreg = readl(base + NvRegPhyInterface);
2219         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2220         if (np->duplex == 0)
2221                 phyreg |= PHY_HALF;
2222         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2223                 phyreg |= PHY_100;
2224         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2225                 phyreg |= PHY_1000;
2226         writel(phyreg, base + NvRegPhyInterface);
2227
2228         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2229                 base + NvRegMisc1);
2230         pci_push(base);
2231         writel(np->linkspeed, base + NvRegLinkSpeed);
2232         pci_push(base);
2233
2234         pause_flags = 0;
2235         /* setup pause frame */
2236         if (np->duplex != 0) {
2237                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2238                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2239                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2240
2241                         switch (adv_pause) {
2242                         case (ADVERTISE_PAUSE_CAP):
2243                                 if (lpa_pause & LPA_PAUSE_CAP) {
2244                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2245                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2246                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2247                                 }
2248                                 break;
2249                         case (ADVERTISE_PAUSE_ASYM):
2250                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2251                                 {
2252                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2253                                 }
2254                                 break;
2255                         case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2256                                 if (lpa_pause & LPA_PAUSE_CAP)
2257                                 {
2258                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2259                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2260                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2261                                 }
2262                                 if (lpa_pause == LPA_PAUSE_ASYM)
2263                                 {
2264                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2265                                 }
2266                                 break;
2267                         }
2268                 } else {
2269                         pause_flags = np->pause_flags;
2270                 }
2271         }
2272         nv_update_pause(dev, pause_flags);
2273
2274         return retval;
2275 }
2276
2277 static void nv_linkchange(struct net_device *dev)
2278 {
2279         if (nv_update_linkspeed(dev)) {
2280                 if (!netif_carrier_ok(dev)) {
2281                         netif_carrier_on(dev);
2282                         printk(KERN_INFO "%s: link up.\n", dev->name);
2283                         nv_start_rx(dev);
2284                 }
2285         } else {
2286                 if (netif_carrier_ok(dev)) {
2287                         netif_carrier_off(dev);
2288                         printk(KERN_INFO "%s: link down.\n", dev->name);
2289                         nv_stop_rx(dev);
2290                 }
2291         }
2292 }
2293
2294 static void nv_link_irq(struct net_device *dev)
2295 {
2296         u8 __iomem *base = get_hwbase(dev);
2297         u32 miistat;
2298
2299         miistat = readl(base + NvRegMIIStatus);
2300         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2301         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2302
2303         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2304                 nv_linkchange(dev);
2305         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2306 }
2307
2308 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2309 {
2310         struct net_device *dev = (struct net_device *) data;
2311         struct fe_priv *np = netdev_priv(dev);
2312         u8 __iomem *base = get_hwbase(dev);
2313         u32 events;
2314         int i;
2315
2316         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2317
2318         for (i=0; ; i++) {
2319                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2320                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2321                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2322                 } else {
2323                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2324                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2325                 }
2326                 pci_push(base);
2327                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2328                 if (!(events & np->irqmask))
2329                         break;
2330
2331                 spin_lock(&np->lock);
2332                 nv_tx_done(dev);
2333                 spin_unlock(&np->lock);
2334
2335                 nv_rx_process(dev);
2336                 if (nv_alloc_rx(dev)) {
2337                         spin_lock(&np->lock);
2338                         if (!np->in_shutdown)
2339                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2340                         spin_unlock(&np->lock);
2341                 }
2342
2343                 if (events & NVREG_IRQ_LINK) {
2344                         spin_lock(&np->lock);
2345                         nv_link_irq(dev);
2346                         spin_unlock(&np->lock);
2347                 }
2348                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2349                         spin_lock(&np->lock);
2350                         nv_linkchange(dev);
2351                         spin_unlock(&np->lock);
2352                         np->link_timeout = jiffies + LINK_TIMEOUT;
2353                 }
2354                 if (events & (NVREG_IRQ_TX_ERR)) {
2355                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2356                                                 dev->name, events);
2357                 }
2358                 if (events & (NVREG_IRQ_UNKNOWN)) {
2359                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2360                                                 dev->name, events);
2361                 }
2362                 if (i > max_interrupt_work) {
2363                         spin_lock(&np->lock);
2364                         /* disable interrupts on the nic */
2365                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2366                                 writel(0, base + NvRegIrqMask);
2367                         else
2368                                 writel(np->irqmask, base + NvRegIrqMask);
2369                         pci_push(base);
2370
2371                         if (!np->in_shutdown) {
2372                                 np->nic_poll_irq = np->irqmask;
2373                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2374                         }
2375                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2376                         spin_unlock(&np->lock);
2377                         break;
2378                 }
2379
2380         }
2381         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2382
2383         return IRQ_RETVAL(i);
2384 }
2385
2386 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2387 {
2388         struct net_device *dev = (struct net_device *) data;
2389         struct fe_priv *np = netdev_priv(dev);
2390         u8 __iomem *base = get_hwbase(dev);
2391         u32 events;
2392         int i;
2393
2394         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2395
2396         for (i=0; ; i++) {
2397                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2398                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2399                 pci_push(base);
2400                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2401                 if (!(events & np->irqmask))
2402                         break;
2403
2404                 spin_lock_irq(&np->lock);
2405                 nv_tx_done(dev);
2406                 spin_unlock_irq(&np->lock);
2407
2408                 if (events & (NVREG_IRQ_TX_ERR)) {
2409                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2410                                                 dev->name, events);
2411                 }
2412                 if (i > max_interrupt_work) {
2413                         spin_lock_irq(&np->lock);
2414                         /* disable interrupts on the nic */
2415                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2416                         pci_push(base);
2417
2418                         if (!np->in_shutdown) {
2419                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2420                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2421                         }
2422                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2423                         spin_unlock_irq(&np->lock);
2424                         break;
2425                 }
2426
2427         }
2428         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2429
2430         return IRQ_RETVAL(i);
2431 }
2432
2433 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2434 {
2435         struct net_device *dev = (struct net_device *) data;
2436         struct fe_priv *np = netdev_priv(dev);
2437         u8 __iomem *base = get_hwbase(dev);
2438         u32 events;
2439         int i;
2440
2441         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2442
2443         for (i=0; ; i++) {
2444                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2445                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2446                 pci_push(base);
2447                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2448                 if (!(events & np->irqmask))
2449                         break;
2450
2451                 nv_rx_process(dev);
2452                 if (nv_alloc_rx(dev)) {
2453                         spin_lock_irq(&np->lock);
2454                         if (!np->in_shutdown)
2455                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2456                         spin_unlock_irq(&np->lock);
2457                 }
2458
2459                 if (i > max_interrupt_work) {
2460                         spin_lock_irq(&np->lock);
2461                         /* disable interrupts on the nic */
2462                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2463                         pci_push(base);
2464
2465                         if (!np->in_shutdown) {
2466                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2467                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2468                         }
2469                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2470                         spin_unlock_irq(&np->lock);
2471                         break;
2472                 }
2473
2474         }
2475         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2476
2477         return IRQ_RETVAL(i);
2478 }
2479
2480 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2481 {
2482         struct net_device *dev = (struct net_device *) data;
2483         struct fe_priv *np = netdev_priv(dev);
2484         u8 __iomem *base = get_hwbase(dev);
2485         u32 events;
2486         int i;
2487
2488         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2489
2490         for (i=0; ; i++) {
2491                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2492                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2493                 pci_push(base);
2494                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2495                 if (!(events & np->irqmask))
2496                         break;
2497
2498                 if (events & NVREG_IRQ_LINK) {
2499                         spin_lock_irq(&np->lock);
2500                         nv_link_irq(dev);
2501                         spin_unlock_irq(&np->lock);
2502                 }
2503                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2504                         spin_lock_irq(&np->lock);
2505                         nv_linkchange(dev);
2506                         spin_unlock_irq(&np->lock);
2507                         np->link_timeout = jiffies + LINK_TIMEOUT;
2508                 }
2509                 if (events & (NVREG_IRQ_UNKNOWN)) {
2510                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2511                                                 dev->name, events);
2512                 }
2513                 if (i > max_interrupt_work) {
2514                         spin_lock_irq(&np->lock);
2515                         /* disable interrupts on the nic */
2516                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2517                         pci_push(base);
2518
2519                         if (!np->in_shutdown) {
2520                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2521                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2522                         }
2523                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2524                         spin_unlock_irq(&np->lock);
2525                         break;
2526                 }
2527
2528         }
2529         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2530
2531         return IRQ_RETVAL(i);
2532 }
2533
2534 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2535 {
2536         struct net_device *dev = (struct net_device *) data;
2537         struct fe_priv *np = netdev_priv(dev);
2538         u8 __iomem *base = get_hwbase(dev);
2539         u32 events;
2540
2541         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2542
2543         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2544                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2545                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2546         } else {
2547                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2548                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2549         }
2550         pci_push(base);
2551         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2552         if (!(events & NVREG_IRQ_TIMER))
2553                 return IRQ_RETVAL(0);
2554
2555         spin_lock(&np->lock);
2556         np->intr_test = 1;
2557         spin_unlock(&np->lock);
2558
2559         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2560
2561         return IRQ_RETVAL(1);
2562 }
2563
2564 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2565 {
2566         u8 __iomem *base = get_hwbase(dev);
2567         int i;
2568         u32 msixmap = 0;
2569
2570         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2571          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2572          * the remaining 8 interrupts.
2573          */
2574         for (i = 0; i < 8; i++) {
2575                 if ((irqmask >> i) & 0x1) {
2576                         msixmap |= vector << (i << 2);
2577                 }
2578         }
2579         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2580
2581         msixmap = 0;
2582         for (i = 0; i < 8; i++) {
2583                 if ((irqmask >> (i + 8)) & 0x1) {
2584                         msixmap |= vector << (i << 2);
2585                 }
2586         }
2587         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2588 }
2589
2590 static int nv_request_irq(struct net_device *dev, int intr_test)
2591 {
2592         struct fe_priv *np = get_nvpriv(dev);
2593         u8 __iomem *base = get_hwbase(dev);
2594         int ret = 1;
2595         int i;
2596
2597         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2598                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2599                         np->msi_x_entry[i].entry = i;
2600                 }
2601                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2602                         np->msi_flags |= NV_MSI_X_ENABLED;
2603                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2604                                 /* Request irq for rx handling */
2605                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2606                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2607                                         pci_disable_msix(np->pci_dev);
2608                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2609                                         goto out_err;
2610                                 }
2611                                 /* Request irq for tx handling */
2612                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2613                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2614                                         pci_disable_msix(np->pci_dev);
2615                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2616                                         goto out_free_rx;
2617                                 }
2618                                 /* Request irq for link and timer handling */
2619                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2620                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2621                                         pci_disable_msix(np->pci_dev);
2622                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2623                                         goto out_free_tx;
2624                                 }
2625                                 /* map interrupts to their respective vector */
2626                                 writel(0, base + NvRegMSIXMap0);
2627                                 writel(0, base + NvRegMSIXMap1);
2628                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2629                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2630                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2631                         } else {
2632                                 /* Request irq for all interrupts */
2633                                 if ((!intr_test &&
2634                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2635                                     (intr_test &&
2636                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0)) {
2637                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2638                                         pci_disable_msix(np->pci_dev);
2639                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2640                                         goto out_err;
2641                                 }
2642
2643                                 /* map interrupts to vector 0 */
2644                                 writel(0, base + NvRegMSIXMap0);
2645                                 writel(0, base + NvRegMSIXMap1);
2646                         }
2647                 }
2648         }
2649         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2650                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2651                         np->msi_flags |= NV_MSI_ENABLED;
2652                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2653                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0)) {
2654                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2655                                 pci_disable_msi(np->pci_dev);
2656                                 np->msi_flags &= ~NV_MSI_ENABLED;
2657                                 goto out_err;
2658                         }
2659
2660                         /* map interrupts to vector 0 */
2661                         writel(0, base + NvRegMSIMap0);
2662                         writel(0, base + NvRegMSIMap1);
2663                         /* enable msi vector 0 */
2664                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2665                 }
2666         }
2667         if (ret != 0) {
2668                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) ||
2669                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, SA_SHIRQ, dev->name, dev) != 0))
2670                         goto out_err;
2671
2672         }
2673
2674         return 0;
2675 out_free_tx:
2676         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2677 out_free_rx:
2678         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2679 out_err:
2680         return 1;
2681 }
2682
2683 static void nv_free_irq(struct net_device *dev)
2684 {
2685         struct fe_priv *np = get_nvpriv(dev);
2686         int i;
2687
2688         if (np->msi_flags & NV_MSI_X_ENABLED) {
2689                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2690                         free_irq(np->msi_x_entry[i].vector, dev);
2691                 }
2692                 pci_disable_msix(np->pci_dev);
2693                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2694         } else {
2695                 free_irq(np->pci_dev->irq, dev);
2696                 if (np->msi_flags & NV_MSI_ENABLED) {
2697                         pci_disable_msi(np->pci_dev);
2698                         np->msi_flags &= ~NV_MSI_ENABLED;
2699                 }
2700         }
2701 }
2702
2703 static void nv_do_nic_poll(unsigned long data)
2704 {
2705         struct net_device *dev = (struct net_device *) data;
2706         struct fe_priv *np = netdev_priv(dev);
2707         u8 __iomem *base = get_hwbase(dev);
2708         u32 mask = 0;
2709
2710         /*
2711          * First disable irq(s) and then
2712          * reenable interrupts on the nic, we have to do this before calling
2713          * nv_nic_irq because that may decide to do otherwise
2714          */
2715
2716         if (!using_multi_irqs(dev)) {
2717                 if (np->msi_flags & NV_MSI_X_ENABLED)
2718                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2719                 else
2720                         disable_irq(dev->irq);
2721                 mask = np->irqmask;
2722         } else {
2723                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2724                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2725                         mask |= NVREG_IRQ_RX_ALL;
2726                 }
2727                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2728                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2729                         mask |= NVREG_IRQ_TX_ALL;
2730                 }
2731                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2732                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2733                         mask |= NVREG_IRQ_OTHER;
2734                 }
2735         }
2736         np->nic_poll_irq = 0;
2737
2738         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2739
2740         writel(mask, base + NvRegIrqMask);
2741         pci_push(base);
2742
2743         if (!using_multi_irqs(dev)) {
2744                 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2745                 if (np->msi_flags & NV_MSI_X_ENABLED)
2746                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2747                 else
2748                         enable_irq(dev->irq);
2749         } else {
2750                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2751                         nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2752                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2753                 }
2754                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2755                         nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2756                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2757                 }
2758                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2759                         nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2760                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2761                 }
2762         }
2763 }
2764
2765 #ifdef CONFIG_NET_POLL_CONTROLLER
2766 static void nv_poll_controller(struct net_device *dev)
2767 {
2768         nv_do_nic_poll((unsigned long) dev);
2769 }
2770 #endif
2771
2772 static void nv_do_stats_poll(unsigned long data)
2773 {
2774         struct net_device *dev = (struct net_device *) data;
2775         struct fe_priv *np = netdev_priv(dev);
2776         u8 __iomem *base = get_hwbase(dev);
2777
2778         np->estats.tx_bytes += readl(base + NvRegTxCnt);
2779         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2780         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2781         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2782         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2783         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2784         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2785         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2786         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2787         np->estats.tx_deferral += readl(base + NvRegTxDef);
2788         np->estats.tx_packets += readl(base + NvRegTxFrame);
2789         np->estats.tx_pause += readl(base + NvRegTxPause);
2790         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2791         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2792         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2793         np->estats.rx_runt += readl(base + NvRegRxRunt);
2794         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2795         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2796         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2797         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2798         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2799         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2800         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2801         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2802         np->estats.rx_bytes += readl(base + NvRegRxCnt);
2803         np->estats.rx_pause += readl(base + NvRegRxPause);
2804         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2805         np->estats.rx_packets =
2806                 np->estats.rx_unicast +
2807                 np->estats.rx_multicast +
2808                 np->estats.rx_broadcast;
2809         np->estats.rx_errors_total =
2810                 np->estats.rx_crc_errors +
2811                 np->estats.rx_over_errors +
2812                 np->estats.rx_frame_error +
2813                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2814                 np->estats.rx_late_collision +
2815                 np->estats.rx_runt +
2816                 np->estats.rx_frame_too_long;
2817
2818         if (!np->in_shutdown)
2819                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2820 }
2821
2822 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2823 {
2824         struct fe_priv *np = netdev_priv(dev);
2825         strcpy(info->driver, "forcedeth");
2826         strcpy(info->version, FORCEDETH_VERSION);
2827         strcpy(info->bus_info, pci_name(np->pci_dev));
2828 }
2829
2830 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2831 {
2832         struct fe_priv *np = netdev_priv(dev);
2833         wolinfo->supported = WAKE_MAGIC;
2834
2835         spin_lock_irq(&np->lock);
2836         if (np->wolenabled)
2837                 wolinfo->wolopts = WAKE_MAGIC;
2838         spin_unlock_irq(&np->lock);
2839 }
2840
2841 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2842 {
2843         struct fe_priv *np = netdev_priv(dev);
2844         u8 __iomem *base = get_hwbase(dev);
2845         u32 flags = 0;
2846
2847         if (wolinfo->wolopts == 0) {
2848                 np->wolenabled = 0;
2849         } else if (wolinfo->wolopts & WAKE_MAGIC) {
2850                 np->wolenabled = 1;
2851                 flags = NVREG_WAKEUPFLAGS_ENABLE;
2852         }
2853         if (netif_running(dev)) {
2854                 spin_lock_irq(&np->lock);
2855                 writel(flags, base + NvRegWakeUpFlags);
2856                 spin_unlock_irq(&np->lock);
2857         }
2858         return 0;
2859 }
2860
2861 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2862 {
2863         struct fe_priv *np = netdev_priv(dev);
2864         int adv;
2865
2866         spin_lock_irq(&np->lock);
2867         ecmd->port = PORT_MII;
2868         if (!netif_running(dev)) {
2869                 /* We do not track link speed / duplex setting if the
2870                  * interface is disabled. Force a link check */
2871                 if (nv_update_linkspeed(dev)) {
2872                         if (!netif_carrier_ok(dev))
2873                                 netif_carrier_on(dev);
2874                 } else {
2875                         if (netif_carrier_ok(dev))
2876                                 netif_carrier_off(dev);
2877                 }
2878         }
2879
2880         if (netif_carrier_ok(dev)) {
2881                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2882                 case NVREG_LINKSPEED_10:
2883                         ecmd->speed = SPEED_10;
2884                         break;
2885                 case NVREG_LINKSPEED_100:
2886                         ecmd->speed = SPEED_100;
2887                         break;
2888                 case NVREG_LINKSPEED_1000:
2889                         ecmd->speed = SPEED_1000;
2890                         break;
2891                 }
2892                 ecmd->duplex = DUPLEX_HALF;
2893                 if (np->duplex)
2894                         ecmd->duplex = DUPLEX_FULL;
2895         } else {
2896                 ecmd->speed = -1;
2897                 ecmd->duplex = -1;
2898         }
2899
2900         ecmd->autoneg = np->autoneg;
2901
2902         ecmd->advertising = ADVERTISED_MII;
2903         if (np->autoneg) {
2904                 ecmd->advertising |= ADVERTISED_Autoneg;
2905                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2906                 if (adv & ADVERTISE_10HALF)
2907                         ecmd->advertising |= ADVERTISED_10baseT_Half;
2908                 if (adv & ADVERTISE_10FULL)
2909                         ecmd->advertising |= ADVERTISED_10baseT_Full;
2910                 if (adv & ADVERTISE_100HALF)
2911                         ecmd->advertising |= ADVERTISED_100baseT_Half;
2912                 if (adv & ADVERTISE_100FULL)
2913                         ecmd->advertising |= ADVERTISED_100baseT_Full;
2914                 if (np->gigabit == PHY_GIGABIT) {
2915                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2916                         if (adv & ADVERTISE_1000FULL)
2917                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2918                 }
2919         }
2920         ecmd->supported = (SUPPORTED_Autoneg |
2921                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2922                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2923                 SUPPORTED_MII);
2924         if (np->gigabit == PHY_GIGABIT)
2925                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2926
2927         ecmd->phy_address = np->phyaddr;
2928         ecmd->transceiver = XCVR_EXTERNAL;
2929
2930         /* ignore maxtxpkt, maxrxpkt for now */
2931         spin_unlock_irq(&np->lock);
2932         return 0;
2933 }
2934
2935 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2936 {
2937         struct fe_priv *np = netdev_priv(dev);
2938
2939         if (ecmd->port != PORT_MII)
2940                 return -EINVAL;
2941         if (ecmd->transceiver != XCVR_EXTERNAL)
2942                 return -EINVAL;
2943         if (ecmd->phy_address != np->phyaddr) {
2944                 /* TODO: support switching between multiple phys. Should be
2945                  * trivial, but not enabled due to lack of test hardware. */
2946                 return -EINVAL;
2947         }
2948         if (ecmd->autoneg == AUTONEG_ENABLE) {
2949                 u32 mask;
2950
2951                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2952                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2953                 if (np->gigabit == PHY_GIGABIT)
2954                         mask |= ADVERTISED_1000baseT_Full;
2955
2956                 if ((ecmd->advertising & mask) == 0)
2957                         return -EINVAL;
2958
2959         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2960                 /* Note: autonegotiation disable, speed 1000 intentionally
2961                  * forbidden - noone should need that. */
2962
2963                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2964                         return -EINVAL;
2965                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2966                         return -EINVAL;
2967         } else {
2968                 return -EINVAL;
2969         }
2970
2971         netif_carrier_off(dev);
2972         if (netif_running(dev)) {
2973                 nv_disable_irq(dev);
2974                 spin_lock_bh(&dev->xmit_lock);
2975                 spin_lock(&np->lock);
2976                 /* stop engines */
2977                 nv_stop_rx(dev);
2978                 nv_stop_tx(dev);
2979                 spin_unlock(&np->lock);
2980                 spin_unlock_bh(&dev->xmit_lock);
2981         }
2982
2983         if (ecmd->autoneg == AUTONEG_ENABLE) {
2984                 int adv, bmcr;
2985
2986                 np->autoneg = 1;
2987
2988                 /* advertise only what has been requested */
2989                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2990                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
2991                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2992                         adv |= ADVERTISE_10HALF;
2993                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2994                         adv |= ADVERTISE_10FULL;
2995                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2996                         adv |= ADVERTISE_100HALF;
2997                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2998                         adv |= ADVERTISE_100FULL;
2999                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3000                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3001                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3002                         adv |=  ADVERTISE_PAUSE_ASYM;
3003                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3004
3005                 if (np->gigabit == PHY_GIGABIT) {
3006                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3007                         adv &= ~ADVERTISE_1000FULL;
3008                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3009                                 adv |= ADVERTISE_1000FULL;
3010                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3011                 }
3012
3013                 if (netif_running(dev))
3014                         printk(KERN_INFO "%s: link down.\n", dev->name);
3015                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3016                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3017                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3018
3019         } else {
3020                 int adv, bmcr;
3021
3022                 np->autoneg = 0;
3023
3024                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3025                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3026                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3027                         adv |= ADVERTISE_10HALF;
3028                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3029                         adv |= ADVERTISE_10FULL;
3030                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3031                         adv |= ADVERTISE_100HALF;
3032                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3033                         adv |= ADVERTISE_100FULL;
3034                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3035                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3036                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3037                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3038                 }
3039                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3040                         adv |=  ADVERTISE_PAUSE_ASYM;
3041                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3042                 }
3043                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3044                 np->fixed_mode = adv;
3045
3046                 if (np->gigabit == PHY_GIGABIT) {
3047                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3048                         adv &= ~ADVERTISE_1000FULL;
3049                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3050                 }
3051
3052                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3053                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3054                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3055                         bmcr |= BMCR_FULLDPLX;
3056                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3057                         bmcr |= BMCR_SPEED100;
3058                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3059                 if (np->phy_oui == PHY_OUI_MARVELL) {
3060                         /* reset the phy */
3061                         if (phy_reset(dev)) {
3062                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3063                                 return -EINVAL;
3064                         }
3065                 } else if (netif_running(dev)) {
3066                         /* Wait a bit and then reconfigure the nic. */
3067                         udelay(10);
3068                         nv_linkchange(dev);
3069                 }
3070         }
3071
3072         if (netif_running(dev)) {
3073                 nv_start_rx(dev);
3074                 nv_start_tx(dev);
3075                 nv_enable_irq(dev);
3076         }
3077
3078         return 0;
3079 }
3080
3081 #define FORCEDETH_REGS_VER      1
3082
3083 static int nv_get_regs_len(struct net_device *dev)
3084 {
3085         struct fe_priv *np = netdev_priv(dev);
3086         return np->register_size;
3087 }
3088
3089 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3090 {
3091         struct fe_priv *np = netdev_priv(dev);
3092         u8 __iomem *base = get_hwbase(dev);
3093         u32 *rbuf = buf;
3094         int i;
3095
3096         regs->version = FORCEDETH_REGS_VER;
3097         spin_lock_irq(&np->lock);
3098         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3099                 rbuf[i] = readl(base + i*sizeof(u32));
3100         spin_unlock_irq(&np->lock);
3101 }
3102
3103 static int nv_nway_reset(struct net_device *dev)
3104 {
3105         struct fe_priv *np = netdev_priv(dev);
3106         int ret;
3107
3108         if (np->autoneg) {
3109                 int bmcr;
3110
3111                 netif_carrier_off(dev);
3112                 if (netif_running(dev)) {
3113                         nv_disable_irq(dev);
3114                         spin_lock_bh(&dev->xmit_lock);
3115                         spin_lock(&np->lock);
3116                         /* stop engines */
3117                         nv_stop_rx(dev);
3118                         nv_stop_tx(dev);
3119                         spin_unlock(&np->lock);
3120                         spin_unlock_bh(&dev->xmit_lock);
3121                         printk(KERN_INFO "%s: link down.\n", dev->name);
3122                 }
3123
3124                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3125                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3126                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3127
3128                 if (netif_running(dev)) {
3129                         nv_start_rx(dev);
3130                         nv_start_tx(dev);
3131                         nv_enable_irq(dev);
3132                 }
3133                 ret = 0;
3134         } else {
3135                 ret = -EINVAL;
3136         }
3137
3138         return ret;
3139 }
3140
3141 static int nv_set_tso(struct net_device *dev, u32 value)
3142 {
3143         struct fe_priv *np = netdev_priv(dev);
3144
3145         if ((np->driver_data & DEV_HAS_CHECKSUM))
3146                 return ethtool_op_set_tso(dev, value);
3147         else
3148                 return -EOPNOTSUPP;
3149 }
3150
3151 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3152 {
3153         struct fe_priv *np = netdev_priv(dev);
3154
3155         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3156         ring->rx_mini_max_pending = 0;
3157         ring->rx_jumbo_max_pending = 0;
3158         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3159
3160         ring->rx_pending = np->rx_ring_size;
3161         ring->rx_mini_pending = 0;
3162         ring->rx_jumbo_pending = 0;
3163         ring->tx_pending = np->tx_ring_size;
3164 }
3165
3166 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3167 {
3168         struct fe_priv *np = netdev_priv(dev);
3169         u8 __iomem *base = get_hwbase(dev);
3170         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3171         dma_addr_t ring_addr;
3172
3173         if (ring->rx_pending < RX_RING_MIN ||
3174             ring->tx_pending < TX_RING_MIN ||
3175             ring->rx_mini_pending != 0 ||
3176             ring->rx_jumbo_pending != 0 ||
3177             (np->desc_ver == DESC_VER_1 &&
3178              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3179               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3180             (np->desc_ver != DESC_VER_1 &&
3181              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3182               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3183                 return -EINVAL;
3184         }
3185
3186         /* allocate new rings */
3187         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3188                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3189                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3190                                             &ring_addr);
3191         } else {
3192                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3193                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3194                                             &ring_addr);
3195         }
3196         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3197         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3198         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3199         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3200         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3201         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3202                 /* fall back to old rings */
3203                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3204                         if(rxtx_ring)
3205                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3206                                                     rxtx_ring, ring_addr);
3207                 } else {
3208                         if (rxtx_ring)
3209                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3210                                                     rxtx_ring, ring_addr);
3211                 }
3212                 if (rx_skbuff)
3213                         kfree(rx_skbuff);
3214                 if (rx_dma)
3215                         kfree(rx_dma);
3216                 if (tx_skbuff)
3217                         kfree(tx_skbuff);
3218                 if (tx_dma)
3219                         kfree(tx_dma);
3220                 if (tx_dma_len)
3221                         kfree(tx_dma_len);
3222                 goto exit;
3223         }
3224
3225         if (netif_running(dev)) {
3226                 nv_disable_irq(dev);
3227                 spin_lock_bh(&dev->xmit_lock);
3228                 spin_lock(&np->lock);
3229                 /* stop engines */
3230                 nv_stop_rx(dev);
3231                 nv_stop_tx(dev);
3232                 nv_txrx_reset(dev);
3233                 /* drain queues */
3234                 nv_drain_rx(dev);
3235                 nv_drain_tx(dev);
3236                 /* delete queues */
3237                 free_rings(dev);
3238         }
3239
3240         /* set new values */
3241         np->rx_ring_size = ring->rx_pending;
3242         np->tx_ring_size = ring->tx_pending;
3243         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3244         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3245         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3246                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3247                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3248         } else {
3249                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3250                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3251         }
3252         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3253         np->rx_dma = (dma_addr_t*)rx_dma;
3254         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3255         np->tx_dma = (dma_addr_t*)tx_dma;
3256         np->tx_dma_len = (unsigned int*)tx_dma_len;
3257         np->ring_addr = ring_addr;
3258
3259         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3260         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3261         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3262         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3263         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3264
3265         if (netif_running(dev)) {
3266                 /* reinit driver view of the queues */
3267                 set_bufsize(dev);
3268                 if (nv_init_ring(dev)) {
3269                         if (!np->in_shutdown)
3270                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3271                 }
3272
3273                 /* reinit nic view of the queues */
3274                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3275                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3276                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3277                         base + NvRegRingSizes);
3278                 pci_push(base);
3279                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3280                 pci_push(base);
3281
3282                 /* restart engines */
3283                 nv_start_rx(dev);
3284                 nv_start_tx(dev);
3285                 spin_unlock(&np->lock);
3286                 spin_unlock_bh(&dev->xmit_lock);
3287                 nv_enable_irq(dev);
3288         }
3289         return 0;
3290 exit:
3291         return -ENOMEM;
3292 }
3293
3294 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3295 {
3296         struct fe_priv *np = netdev_priv(dev);
3297
3298         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3299         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3300         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3301 }
3302
3303 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3304 {
3305         struct fe_priv *np = netdev_priv(dev);
3306         int adv, bmcr;
3307
3308         if ((!np->autoneg && np->duplex == 0) ||
3309             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3310                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3311                        dev->name);
3312                 return -EINVAL;
3313         }
3314         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3315                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3316                 return -EINVAL;
3317         }
3318
3319         netif_carrier_off(dev);
3320         if (netif_running(dev)) {
3321                 nv_disable_irq(dev);
3322                 spin_lock_bh(&dev->xmit_lock);
3323                 spin_lock(&np->lock);
3324                 /* stop engines */
3325                 nv_stop_rx(dev);
3326                 nv_stop_tx(dev);
3327                 spin_unlock(&np->lock);
3328                 spin_unlock_bh(&dev->xmit_lock);
3329         }
3330
3331         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3332         if (pause->rx_pause)
3333                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3334         if (pause->tx_pause)
3335                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3336
3337         if (np->autoneg && pause->autoneg) {
3338                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3339
3340                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3341                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3342                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3343                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3344                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3345                         adv |=  ADVERTISE_PAUSE_ASYM;
3346                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3347
3348                 if (netif_running(dev))
3349                         printk(KERN_INFO "%s: link down.\n", dev->name);
3350                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3351                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3352                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3353         } else {
3354                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3355                 if (pause->rx_pause)
3356                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3357                 if (pause->tx_pause)
3358                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3359
3360                 if (!netif_running(dev))
3361                         nv_update_linkspeed(dev);
3362                 else
3363                         nv_update_pause(dev, np->pause_flags);
3364         }
3365
3366         if (netif_running(dev)) {
3367                 nv_start_rx(dev);
3368                 nv_start_tx(dev);
3369                 nv_enable_irq(dev);
3370         }
3371         return 0;
3372 }
3373
3374 static u32 nv_get_rx_csum(struct net_device *dev)
3375 {
3376         struct fe_priv *np = netdev_priv(dev);
3377         return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3378 }
3379
3380 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3381 {
3382         struct fe_priv *np = netdev_priv(dev);
3383         u8 __iomem *base = get_hwbase(dev);
3384         int retcode = 0;
3385
3386         if (np->driver_data & DEV_HAS_CHECKSUM) {
3387
3388                 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3389                     (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3390                         /* already set or unset */
3391                         return 0;
3392                 }
3393
3394                 if (data) {
3395                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3396                 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3397                         np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3398                 } else {
3399                         printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3400                         return -EINVAL;
3401                 }
3402
3403                 if (netif_running(dev)) {
3404                         spin_lock_irq(&np->lock);
3405                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3406                         spin_unlock_irq(&np->lock);
3407                 }
3408         } else {
3409                 return -EINVAL;
3410         }
3411
3412         return retcode;
3413 }
3414
3415 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3416 {
3417         struct fe_priv *np = netdev_priv(dev);
3418
3419         if (np->driver_data & DEV_HAS_CHECKSUM)
3420                 return ethtool_op_set_tx_hw_csum(dev, data);
3421         else
3422                 return -EOPNOTSUPP;
3423 }
3424
3425 static int nv_set_sg(struct net_device *dev, u32 data)
3426 {
3427         struct fe_priv *np = netdev_priv(dev);
3428
3429         if (np->driver_data & DEV_HAS_CHECKSUM)
3430                 return ethtool_op_set_sg(dev, data);
3431         else
3432                 return -EOPNOTSUPP;
3433 }
3434
3435 static int nv_get_stats_count(struct net_device *dev)
3436 {
3437         struct fe_priv *np = netdev_priv(dev);
3438
3439         if (np->driver_data & DEV_HAS_STATISTICS)
3440                 return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
3441         else
3442                 return 0;
3443 }
3444
3445 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3446 {
3447         struct fe_priv *np = netdev_priv(dev);
3448
3449         /* update stats */
3450         nv_do_stats_poll((unsigned long)dev);
3451
3452         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3453 }
3454
3455 static int nv_self_test_count(struct net_device *dev)
3456 {
3457         struct fe_priv *np = netdev_priv(dev);
3458
3459         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3460                 return NV_TEST_COUNT_EXTENDED;
3461         else
3462                 return NV_TEST_COUNT_BASE;
3463 }
3464
3465 static int nv_link_test(struct net_device *dev)
3466 {
3467         struct fe_priv *np = netdev_priv(dev);
3468         int mii_status;
3469
3470         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3471         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3472
3473         /* check phy link status */
3474         if (!(mii_status & BMSR_LSTATUS))
3475                 return 0;
3476         else
3477                 return 1;
3478 }
3479
3480 static int nv_register_test(struct net_device *dev)
3481 {
3482         u8 __iomem *base = get_hwbase(dev);
3483         int i = 0;
3484         u32 orig_read, new_read;
3485
3486         do {
3487                 orig_read = readl(base + nv_registers_test[i].reg);
3488
3489                 /* xor with mask to toggle bits */
3490                 orig_read ^= nv_registers_test[i].mask;
3491
3492                 writel(orig_read, base + nv_registers_test[i].reg);
3493
3494                 new_read = readl(base + nv_registers_test[i].reg);
3495
3496                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3497                         return 0;
3498
3499                 /* restore original value */
3500                 orig_read ^= nv_registers_test[i].mask;
3501                 writel(orig_read, base + nv_registers_test[i].reg);
3502
3503         } while (nv_registers_test[++i].reg != 0);
3504
3505         return 1;
3506 }
3507
3508 static int nv_interrupt_test(struct net_device *dev)
3509 {
3510         struct fe_priv *np = netdev_priv(dev);
3511         u8 __iomem *base = get_hwbase(dev);
3512         int ret = 1;
3513         int testcnt;
3514         u32 save_msi_flags, save_poll_interval = 0;
3515
3516         if (netif_running(dev)) {
3517                 /* free current irq */
3518                 nv_free_irq(dev);
3519                 save_poll_interval = readl(base+NvRegPollingInterval);
3520         }
3521
3522         /* flag to test interrupt handler */
3523         np->intr_test = 0;
3524
3525         /* setup test irq */
3526         save_msi_flags = np->msi_flags;
3527         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3528         np->msi_flags |= 0x001; /* setup 1 vector */
3529         if (nv_request_irq(dev, 1))
3530                 return 0;
3531
3532         /* setup timer interrupt */
3533         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3534         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3535
3536         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3537
3538         /* wait for at least one interrupt */
3539         msleep(100);
3540
3541         spin_lock_irq(&np->lock);
3542
3543         /* flag should be set within ISR */
3544         testcnt = np->intr_test;
3545         if (!testcnt)
3546                 ret = 2;
3547
3548         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3549         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3550                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3551         else
3552                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3553
3554         spin_unlock_irq(&np->lock);
3555
3556         nv_free_irq(dev);
3557
3558         np->msi_flags = save_msi_flags;
3559
3560         if (netif_running(dev)) {
3561                 writel(save_poll_interval, base + NvRegPollingInterval);
3562                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3563                 /* restore original irq */
3564                 if (nv_request_irq(dev, 0))
3565                         return 0;
3566         }
3567
3568         return ret;
3569 }
3570
3571 static int nv_loopback_test(struct net_device *dev)
3572 {
3573         struct fe_priv *np = netdev_priv(dev);
3574         u8 __iomem *base = get_hwbase(dev);
3575         struct sk_buff *tx_skb, *rx_skb;
3576         dma_addr_t test_dma_addr;
3577         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3578         u32 Flags;
3579         int len, i, pkt_len;
3580         u8 *pkt_data;
3581         u32 filter_flags = 0;
3582         u32 misc1_flags = 0;
3583         int ret = 1;
3584
3585         if (netif_running(dev)) {
3586                 nv_disable_irq(dev);
3587                 filter_flags = readl(base + NvRegPacketFilterFlags);
3588                 misc1_flags = readl(base + NvRegMisc1);
3589         } else {
3590                 nv_txrx_reset(dev);
3591         }
3592
3593         /* reinit driver view of the rx queue */
3594         set_bufsize(dev);
3595         nv_init_ring(dev);
3596
3597         /* setup hardware for loopback */
3598         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3599         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3600
3601         /* reinit nic view of the rx queue */
3602         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3603         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3604         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3605                 base + NvRegRingSizes);
3606         pci_push(base);
3607
3608         /* restart rx engine */
3609         nv_start_rx(dev);
3610         nv_start_tx(dev);
3611
3612         /* setup packet for tx */
3613         pkt_len = ETH_DATA_LEN;
3614         tx_skb = dev_alloc_skb(pkt_len);
3615         pkt_data = skb_put(tx_skb, pkt_len);
3616         for (i = 0; i < pkt_len; i++)
3617                 pkt_data[i] = (u8)(i & 0xff);
3618         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3619                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3620
3621         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3622                 np->tx_ring.orig[0].PacketBuffer = cpu_to_le32(test_dma_addr);
3623                 np->tx_ring.orig[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3624         } else {
3625                 np->tx_ring.ex[0].PacketBufferHigh = cpu_to_le64(test_dma_addr) >> 32;
3626                 np->tx_ring.ex[0].PacketBufferLow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3627                 np->tx_ring.ex[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3628         }
3629         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3630         pci_push(get_hwbase(dev));
3631
3632         msleep(500);
3633
3634         /* check for rx of the packet */
3635         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3636                 Flags = le32_to_cpu(np->rx_ring.orig[0].FlagLen);
3637                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3638
3639         } else {
3640                 Flags = le32_to_cpu(np->rx_ring.ex[0].FlagLen);
3641                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3642         }
3643
3644         if (Flags & NV_RX_AVAIL) {
3645                 ret = 0;
3646         } else if (np->desc_ver == DESC_VER_1) {
3647                 if (Flags & NV_RX_ERROR)
3648                         ret = 0;
3649         } else {
3650                 if (Flags & NV_RX2_ERROR) {
3651                         ret = 0;
3652                 }
3653         }
3654
3655         if (ret) {
3656                 if (len != pkt_len) {
3657                         ret = 0;
3658                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3659                                 dev->name, len, pkt_len);
3660                 } else {
3661                         rx_skb = np->rx_skbuff[0];
3662                         for (i = 0; i < pkt_len; i++) {
3663                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3664                                         ret = 0;
3665                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3666                                                 dev->name, i);
3667                                         break;
3668                                 }
3669                         }
3670                 }
3671         } else {
3672                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3673         }
3674
3675         pci_unmap_page(np->pci_dev, test_dma_addr,
3676                        tx_skb->end-tx_skb->data,
3677                        PCI_DMA_TODEVICE);
3678         dev_kfree_skb_any(tx_skb);
3679
3680         /* stop engines */
3681         nv_stop_rx(dev);
3682         nv_stop_tx(dev);
3683         nv_txrx_reset(dev);
3684         /* drain rx queue */
3685         nv_drain_rx(dev);
3686         nv_drain_tx(dev);
3687
3688         if (netif_running(dev)) {
3689                 writel(misc1_flags, base + NvRegMisc1);
3690                 writel(filter_flags, base + NvRegPacketFilterFlags);
3691                 nv_enable_irq(dev);
3692         }
3693
3694         return ret;
3695 }
3696
3697 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3698 {
3699         struct fe_priv *np = netdev_priv(dev);
3700         u8 __iomem *base = get_hwbase(dev);
3701         int result;
3702         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3703
3704         if (!nv_link_test(dev)) {
3705                 test->flags |= ETH_TEST_FL_FAILED;
3706                 buffer[0] = 1;
3707         }
3708
3709         if (test->flags & ETH_TEST_FL_OFFLINE) {
3710                 if (netif_running(dev)) {
3711                         netif_stop_queue(dev);
3712                         spin_lock_bh(&dev->xmit_lock);
3713                         spin_lock_irq(&np->lock);
3714                         nv_disable_hw_interrupts(dev, np->irqmask);
3715                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3716                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3717                         } else {
3718                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3719                         }
3720                         /* stop engines */
3721                         nv_stop_rx(dev);
3722                         nv_stop_tx(dev);
3723                         nv_txrx_reset(dev);
3724                         /* drain rx queue */
3725                         nv_drain_rx(dev);
3726                         nv_drain_tx(dev);
3727                         spin_unlock_irq(&np->lock);
3728                         spin_unlock_bh(&dev->xmit_lock);
3729                 }
3730
3731                 if (!nv_register_test(dev)) {
3732                         test->flags |= ETH_TEST_FL_FAILED;
3733                         buffer[1] = 1;
3734                 }
3735
3736                 result = nv_interrupt_test(dev);
3737                 if (result != 1) {
3738                         test->flags |= ETH_TEST_FL_FAILED;
3739                         buffer[2] = 1;
3740                 }
3741                 if (result == 0) {
3742                         /* bail out */
3743                         return;
3744                 }
3745
3746                 if (!nv_loopback_test(dev)) {
3747                         test->flags |= ETH_TEST_FL_FAILED;
3748                         buffer[3] = 1;
3749                 }
3750
3751                 if (netif_running(dev)) {
3752                         /* reinit driver view of the rx queue */
3753                         set_bufsize(dev);
3754                         if (nv_init_ring(dev)) {
3755                                 if (!np->in_shutdown)
3756                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3757                         }
3758                         /* reinit nic view of the rx queue */
3759                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3760                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3761                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3762                                 base + NvRegRingSizes);
3763                         pci_push(base);
3764                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3765                         pci_push(base);
3766                         /* restart rx engine */
3767                         nv_start_rx(dev);
3768                         nv_start_tx(dev);
3769                         netif_start_queue(dev);
3770                         nv_enable_hw_interrupts(dev, np->irqmask);
3771                 }
3772         }
3773 }
3774
3775 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3776 {
3777         switch (stringset) {
3778         case ETH_SS_STATS:
3779                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3780                 break;
3781         case ETH_SS_TEST:
3782                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3783                 break;
3784         }
3785 }
3786
3787 static struct ethtool_ops ops = {
3788         .get_drvinfo = nv_get_drvinfo,
3789         .get_link = ethtool_op_get_link,
3790         .get_wol = nv_get_wol,
3791         .set_wol = nv_set_wol,
3792         .get_settings = nv_get_settings,
3793         .set_settings = nv_set_settings,
3794         .get_regs_len = nv_get_regs_len,
3795         .get_regs = nv_get_regs,
3796         .nway_reset = nv_nway_reset,
3797         .get_perm_addr = ethtool_op_get_perm_addr,
3798         .get_tso = ethtool_op_get_tso,
3799         .set_tso = nv_set_tso,
3800         .get_ringparam = nv_get_ringparam,
3801         .set_ringparam = nv_set_ringparam,
3802         .get_pauseparam = nv_get_pauseparam,
3803         .set_pauseparam = nv_set_pauseparam,
3804         .get_rx_csum = nv_get_rx_csum,
3805         .set_rx_csum = nv_set_rx_csum,
3806         .get_tx_csum = ethtool_op_get_tx_csum,
3807         .set_tx_csum = nv_set_tx_csum,
3808         .get_sg = ethtool_op_get_sg,
3809         .set_sg = nv_set_sg,
3810         .get_strings = nv_get_strings,
3811         .get_stats_count = nv_get_stats_count,
3812         .get_ethtool_stats = nv_get_ethtool_stats,
3813         .self_test_count = nv_self_test_count,
3814         .self_test = nv_self_test,
3815 };
3816
3817 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3818 {
3819         struct fe_priv *np = get_nvpriv(dev);
3820
3821         spin_lock_irq(&np->lock);
3822
3823         /* save vlan group */
3824         np->vlangrp = grp;
3825
3826         if (grp) {
3827                 /* enable vlan on MAC */
3828                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3829         } else {
3830                 /* disable vlan on MAC */
3831                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3832                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3833         }
3834
3835         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3836
3837         spin_unlock_irq(&np->lock);
3838 };
3839
3840 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3841 {
3842         /* nothing to do */
3843 };
3844
3845 static int nv_open(struct net_device *dev)
3846 {
3847         struct fe_priv *np = netdev_priv(dev);
3848         u8 __iomem *base = get_hwbase(dev);
3849         int ret = 1;
3850         int oom, i;
3851
3852         dprintk(KERN_DEBUG "nv_open: begin\n");
3853
3854         /* 1) erase previous misconfiguration */
3855         if (np->driver_data & DEV_HAS_POWER_CNTRL)
3856                 nv_mac_reset(dev);
3857         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3858         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3859         writel(0, base + NvRegMulticastAddrB);
3860         writel(0, base + NvRegMulticastMaskA);
3861         writel(0, base + NvRegMulticastMaskB);
3862         writel(0, base + NvRegPacketFilterFlags);
3863
3864         writel(0, base + NvRegTransmitterControl);
3865         writel(0, base + NvRegReceiverControl);
3866
3867         writel(0, base + NvRegAdapterControl);
3868
3869         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3870                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3871
3872         /* 2) initialize descriptor rings */
3873         set_bufsize(dev);
3874         oom = nv_init_ring(dev);
3875
3876         writel(0, base + NvRegLinkSpeed);
3877         writel(0, base + NvRegUnknownTransmitterReg);
3878         nv_txrx_reset(dev);
3879         writel(0, base + NvRegUnknownSetupReg6);
3880
3881         np->in_shutdown = 0;
3882
3883         /* 3) set mac address */
3884         nv_copy_mac_to_hw(dev);
3885
3886         /* 4) give hw rings */
3887         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3888         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3889                 base + NvRegRingSizes);
3890
3891         /* 5) continue setup */
3892         writel(np->linkspeed, base + NvRegLinkSpeed);
3893         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
3894         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3895         writel(np->vlanctl_bits, base + NvRegVlanControl);
3896         pci_push(base);
3897         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3898         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3899                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3900                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3901
3902         writel(0, base + NvRegUnknownSetupReg4);
3903         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3904         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3905
3906         /* 6) continue setup */
3907         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3908         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3909         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3910         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3911
3912         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3913         get_random_bytes(&i, sizeof(i));
3914         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3915         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
3916         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
3917         if (poll_interval == -1) {
3918                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3919                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3920                 else
3921                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3922         }
3923         else
3924                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3925         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3926         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3927                         base + NvRegAdapterControl);
3928         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3929         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3930         if (np->wolenabled)
3931                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3932
3933         i = readl(base + NvRegPowerState);
3934         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3935                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3936
3937         pci_push(base);
3938         udelay(10);
3939         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3940
3941         nv_disable_hw_interrupts(dev, np->irqmask);
3942         pci_push(base);
3943         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3944         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3945         pci_push(base);
3946
3947         if (nv_request_irq(dev, 0)) {
3948                 goto out_drain;
3949         }
3950
3951         /* ask for interrupts */
3952         nv_enable_hw_interrupts(dev, np->irqmask);
3953
3954         spin_lock_irq(&np->lock);
3955         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3956         writel(0, base + NvRegMulticastAddrB);
3957         writel(0, base + NvRegMulticastMaskA);
3958         writel(0, base + NvRegMulticastMaskB);
3959         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
3960         /* One manual link speed update: Interrupts are enabled, future link
3961          * speed changes cause interrupts and are handled by nv_link_irq().
3962          */
3963         {
3964                 u32 miistat;
3965                 miistat = readl(base + NvRegMIIStatus);
3966                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
3967                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
3968         }
3969         /* set linkspeed to invalid value, thus force nv_update_linkspeed
3970          * to init hw */
3971         np->linkspeed = 0;
3972         ret = nv_update_linkspeed(dev);
3973         nv_start_rx(dev);
3974         nv_start_tx(dev);
3975         netif_start_queue(dev);
3976         if (ret) {
3977                 netif_carrier_on(dev);
3978         } else {
3979                 printk("%s: no link during initialization.\n", dev->name);
3980                 netif_carrier_off(dev);
3981         }
3982         if (oom)
3983                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3984
3985         /* start statistics timer */
3986         if (np->driver_data & DEV_HAS_STATISTICS)
3987                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3988
3989         spin_unlock_irq(&np->lock);
3990
3991         return 0;
3992 out_drain:
3993         drain_ring(dev);
3994         return ret;
3995 }
3996
3997 static int nv_close(struct net_device *dev)
3998 {
3999         struct fe_priv *np = netdev_priv(dev);
4000         u8 __iomem *base;
4001
4002         spin_lock_irq(&np->lock);
4003         np->in_shutdown = 1;
4004         spin_unlock_irq(&np->lock);
4005         synchronize_irq(dev->irq);
4006
4007         del_timer_sync(&np->oom_kick);
4008         del_timer_sync(&np->nic_poll);
4009         del_timer_sync(&np->stats_poll);
4010
4011         netif_stop_queue(dev);
4012         spin_lock_irq(&np->lock);
4013         nv_stop_tx(dev);
4014         nv_stop_rx(dev);
4015         nv_txrx_reset(dev);
4016
4017         /* disable interrupts on the nic or we will lock up */
4018         base = get_hwbase(dev);
4019         nv_disable_hw_interrupts(dev, np->irqmask);
4020         pci_push(base);
4021         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4022
4023         spin_unlock_irq(&np->lock);
4024
4025         nv_free_irq(dev);
4026
4027         drain_ring(dev);
4028
4029         if (np->wolenabled)
4030                 nv_start_rx(dev);
4031
4032         /* special op: write back the misordered MAC address - otherwise
4033          * the next nv_probe would see a wrong address.
4034          */
4035         writel(np->orig_mac[0], base + NvRegMacAddrA);
4036         writel(np->orig_mac[1], base + NvRegMacAddrB);
4037
4038         /* FIXME: power down nic */
4039
4040         return 0;
4041 }
4042
4043 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4044 {
4045         struct net_device *dev;
4046         struct fe_priv *np;
4047         unsigned long addr;
4048         u8 __iomem *base;
4049         int err, i;
4050         u32 powerstate;
4051
4052         dev = alloc_etherdev(sizeof(struct fe_priv));
4053         err = -ENOMEM;
4054         if (!dev)
4055                 goto out;
4056
4057         np = netdev_priv(dev);
4058         np->pci_dev = pci_dev;
4059         spin_lock_init(&np->lock);
4060         SET_MODULE_OWNER(dev);
4061         SET_NETDEV_DEV(dev, &pci_dev->dev);
4062
4063         init_timer(&np->oom_kick);
4064         np->oom_kick.data = (unsigned long) dev;
4065         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4066         init_timer(&np->nic_poll);
4067         np->nic_poll.data = (unsigned long) dev;
4068         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4069         init_timer(&np->stats_poll);
4070         np->stats_poll.data = (unsigned long) dev;
4071         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4072
4073         err = pci_enable_device(pci_dev);
4074         if (err) {
4075                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4076                                 err, pci_name(pci_dev));
4077                 goto out_free;
4078         }
4079
4080         pci_set_master(pci_dev);
4081
4082         err = pci_request_regions(pci_dev, DRV_NAME);
4083         if (err < 0)
4084                 goto out_disable;
4085
4086         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4087                 np->register_size = NV_PCI_REGSZ_VER2;
4088         else
4089                 np->register_size = NV_PCI_REGSZ_VER1;
4090
4091         err = -EINVAL;
4092         addr = 0;
4093         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4094                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4095                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4096                                 pci_resource_len(pci_dev, i),
4097                                 pci_resource_flags(pci_dev, i));
4098                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4099                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4100                         addr = pci_resource_start(pci_dev, i);
4101                         break;
4102                 }
4103         }
4104         if (i == DEVICE_COUNT_RESOURCE) {
4105                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4106                                         pci_name(pci_dev));
4107                 goto out_relreg;
4108         }
4109
4110         /* copy of driver data */
4111         np->driver_data = id->driver_data;
4112
4113         /* handle different descriptor versions */
4114         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4115                 /* packet format 3: supports 40-bit addressing */
4116                 np->desc_ver = DESC_VER_3;
4117                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4118                 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4119                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4120                                         pci_name(pci_dev));
4121                 } else {
4122                         dev->features |= NETIF_F_HIGHDMA;
4123                         printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4124                 }
4125                 if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
4126                         printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
4127                                pci_name(pci_dev));
4128                 }
4129         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4130                 /* packet format 2: supports jumbo frames */
4131                 np->desc_ver = DESC_VER_2;
4132                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4133         } else {
4134                 /* original packet format */
4135                 np->desc_ver = DESC_VER_1;
4136                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4137         }
4138
4139         np->pkt_limit = NV_PKTLIMIT_1;
4140         if (id->driver_data & DEV_HAS_LARGEDESC)
4141                 np->pkt_limit = NV_PKTLIMIT_2;
4142
4143         if (id->driver_data & DEV_HAS_CHECKSUM) {
4144                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4145                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4146 #ifdef NETIF_F_TSO
4147                 dev->features |= NETIF_F_TSO;
4148 #endif
4149         }
4150
4151         np->vlanctl_bits = 0;
4152         if (id->driver_data & DEV_HAS_VLAN) {
4153                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4154                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4155                 dev->vlan_rx_register = nv_vlan_rx_register;
4156                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4157         }
4158
4159         np->msi_flags = 0;
4160         if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
4161                 np->msi_flags |= NV_MSI_CAPABLE;
4162         }
4163         if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
4164                 np->msi_flags |= NV_MSI_X_CAPABLE;
4165         }
4166
4167         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4168         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4169                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4170         }
4171
4172
4173         err = -ENOMEM;
4174         np->base = ioremap(addr, np->register_size);
4175         if (!np->base)
4176                 goto out_relreg;
4177         dev->base_addr = (unsigned long)np->base;
4178
4179         dev->irq = pci_dev->irq;
4180
4181         np->rx_ring_size = RX_RING_DEFAULT;
4182         np->tx_ring_size = TX_RING_DEFAULT;
4183         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4184         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4185
4186         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4187                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4188                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4189                                         &np->ring_addr);
4190                 if (!np->rx_ring.orig)
4191                         goto out_unmap;
4192                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4193         } else {
4194                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4195                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4196                                         &np->ring_addr);
4197                 if (!np->rx_ring.ex)
4198                         goto out_unmap;
4199                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4200         }
4201         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4202         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4203         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4204         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4205         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4206         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4207                 goto out_freering;
4208         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4209         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4210         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4211         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4212         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4213
4214         dev->open = nv_open;
4215         dev->stop = nv_close;
4216         dev->hard_start_xmit = nv_start_xmit;
4217         dev->get_stats = nv_get_stats;
4218         dev->change_mtu = nv_change_mtu;
4219         dev->set_mac_address = nv_set_mac_address;
4220         dev->set_multicast_list = nv_set_multicast;
4221 #ifdef CONFIG_NET_POLL_CONTROLLER
4222         dev->poll_controller = nv_poll_controller;
4223 #endif
4224         SET_ETHTOOL_OPS(dev, &ops);
4225         dev->tx_timeout = nv_tx_timeout;
4226         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4227
4228         pci_set_drvdata(pci_dev, dev);
4229
4230         /* read the mac address */
4231         base = get_hwbase(dev);
4232         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4233         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4234
4235         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
4236         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
4237         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4238         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4239         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
4240         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
4241         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4242
4243         if (!is_valid_ether_addr(dev->perm_addr)) {
4244                 /*
4245                  * Bad mac address. At least one bios sets the mac address
4246                  * to 01:23:45:67:89:ab
4247                  */
4248                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4249                         pci_name(pci_dev),
4250                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4251                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4252                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4253                 dev->dev_addr[0] = 0x00;
4254                 dev->dev_addr[1] = 0x00;
4255                 dev->dev_addr[2] = 0x6c;
4256                 get_random_bytes(&dev->dev_addr[3], 3);
4257         }
4258
4259         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4260                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4261                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4262
4263         /* disable WOL */
4264         writel(0, base + NvRegWakeUpFlags);
4265         np->wolenabled = 0;
4266
4267         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4268                 u8 revision_id;
4269                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4270
4271                 /* take phy and nic out of low power mode */
4272                 powerstate = readl(base + NvRegPowerState2);
4273                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4274                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4275                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4276                     revision_id >= 0xA3)
4277                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4278                 writel(powerstate, base + NvRegPowerState2);
4279         }
4280
4281         if (np->desc_ver == DESC_VER_1) {
4282                 np->tx_flags = NV_TX_VALID;
4283         } else {
4284                 np->tx_flags = NV_TX2_VALID;
4285         }
4286         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4287                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4288                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4289                         np->msi_flags |= 0x0003;
4290         } else {
4291                 np->irqmask = NVREG_IRQMASK_CPU;
4292                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4293                         np->msi_flags |= 0x0001;
4294         }
4295
4296         if (id->driver_data & DEV_NEED_TIMERIRQ)
4297                 np->irqmask |= NVREG_IRQ_TIMER;
4298         if (id->driver_data & DEV_NEED_LINKTIMER) {
4299                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4300                 np->need_linktimer = 1;
4301                 np->link_timeout = jiffies + LINK_TIMEOUT;
4302         } else {
4303                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4304                 np->need_linktimer = 0;
4305         }
4306
4307         /* find a suitable phy */
4308         for (i = 1; i <= 32; i++) {
4309                 int id1, id2;
4310                 int phyaddr = i & 0x1F;
4311
4312                 spin_lock_irq(&np->lock);
4313                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4314                 spin_unlock_irq(&np->lock);
4315                 if (id1 < 0 || id1 == 0xffff)
4316                         continue;
4317                 spin_lock_irq(&np->lock);
4318                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4319                 spin_unlock_irq(&np->lock);
4320                 if (id2 < 0 || id2 == 0xffff)
4321                         continue;
4322
4323                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4324                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4325                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4326                         pci_name(pci_dev), id1, id2, phyaddr);
4327                 np->phyaddr = phyaddr;
4328                 np->phy_oui = id1 | id2;
4329                 break;
4330         }
4331         if (i == 33) {
4332                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4333                        pci_name(pci_dev));
4334                 goto out_error;
4335         }
4336
4337         /* reset it */
4338         phy_init(dev);
4339
4340         /* set default link speed settings */
4341         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4342         np->duplex = 0;
4343         np->autoneg = 1;
4344
4345         err = register_netdev(dev);
4346         if (err) {
4347                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4348                 goto out_error;
4349         }
4350         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4351                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4352                         pci_name(pci_dev));
4353
4354         return 0;
4355
4356 out_error:
4357         pci_set_drvdata(pci_dev, NULL);
4358 out_freering:
4359         free_rings(dev);
4360 out_unmap:
4361         iounmap(get_hwbase(dev));
4362 out_relreg:
4363         pci_release_regions(pci_dev);
4364 out_disable:
4365         pci_disable_device(pci_dev);
4366 out_free:
4367         free_netdev(dev);
4368 out:
4369         return err;
4370 }
4371
4372 static void __devexit nv_remove(struct pci_dev *pci_dev)
4373 {
4374         struct net_device *dev = pci_get_drvdata(pci_dev);
4375
4376         unregister_netdev(dev);
4377
4378         /* free all structures */
4379         free_rings(dev);
4380         iounmap(get_hwbase(dev));
4381         pci_release_regions(pci_dev);
4382         pci_disable_device(pci_dev);
4383         free_netdev(dev);
4384         pci_set_drvdata(pci_dev, NULL);
4385 }
4386
4387 static struct pci_device_id pci_tbl[] = {
4388         {       /* nForce Ethernet Controller */
4389                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4390                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4391         },
4392         {       /* nForce2 Ethernet Controller */
4393                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4394                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4395         },
4396         {       /* nForce3 Ethernet Controller */
4397                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4398                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4399         },
4400         {       /* nForce3 Ethernet Controller */
4401                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4402                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4403         },
4404         {       /* nForce3 Ethernet Controller */
4405                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4406                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4407         },
4408         {       /* nForce3 Ethernet Controller */
4409                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4410                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4411         },
4412         {       /* nForce3 Ethernet Controller */
4413                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4414                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4415         },
4416         {       /* CK804 Ethernet Controller */
4417                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4418                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4419         },
4420         {       /* CK804 Ethernet Controller */
4421                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4422                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4423         },
4424         {       /* MCP04 Ethernet Controller */
4425                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4426                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4427         },
4428         {       /* MCP04 Ethernet Controller */
4429                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4430                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4431         },
4432         {       /* MCP51 Ethernet Controller */
4433                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4434                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4435         },
4436         {       /* MCP51 Ethernet Controller */
4437                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4438                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4439         },
4440         {       /* MCP55 Ethernet Controller */
4441                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4442                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4443         },
4444         {       /* MCP55 Ethernet Controller */
4445                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4446                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4447         },
4448         {0,},
4449 };
4450
4451 static struct pci_driver driver = {
4452         .name = "forcedeth",
4453         .id_table = pci_tbl,
4454         .probe = nv_probe,
4455         .remove = __devexit_p(nv_remove),
4456 };
4457
4458
4459 static int __init init_nic(void)
4460 {
4461         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4462         return pci_module_init(&driver);
4463 }
4464
4465 static void __exit exit_nic(void)
4466 {
4467         pci_unregister_driver(&driver);
4468 }
4469
4470 module_param(max_interrupt_work, int, 0);
4471 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4472 module_param(optimization_mode, int, 0);
4473 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4474 module_param(poll_interval, int, 0);
4475 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4476 module_param(disable_msi, int, 0);
4477 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
4478 module_param(disable_msix, int, 0);
4479 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
4480
4481 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4482 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4483 MODULE_LICENSE("GPL");
4484
4485 MODULE_DEVICE_TABLE(pci, pci_tbl);
4486
4487 module_init(init_nic);
4488 module_exit(exit_nic);