1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
66 struct e1000_dev_spec_82575 {
70 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
72 struct e1000_phy_info *phy = &hw->phy;
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 struct e1000_mac_info *mac = &hw->mac;
75 struct e1000_dev_spec_82575 *dev_spec;
81 switch (hw->device_id) {
82 case E1000_DEV_ID_82575EB_COPPER:
83 case E1000_DEV_ID_82575EB_FIBER_SERDES:
84 case E1000_DEV_ID_82575GB_QUAD_COPPER:
85 mac->type = e1000_82575;
87 case E1000_DEV_ID_82576:
88 case E1000_DEV_ID_82576_FIBER:
89 case E1000_DEV_ID_82576_SERDES:
90 mac->type = e1000_82576;
93 return -E1000_ERR_MAC_INIT;
97 /* MAC initialization */
98 hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
100 /* Device-specific structure allocation */
101 hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL);
106 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
110 * The 82575 uses bits 22:23 for link mode. The mode can be changed
111 * based on the EEPROM. We cannot rely upon device ID. There
112 * is no distinguishable difference between fiber and internal
113 * SerDes mode on the 82575. There can be an external PHY attached
114 * on the SGMII interface. For this, we'll set sgmii_active to true.
116 phy->media_type = e1000_media_type_copper;
117 dev_spec->sgmii_active = false;
119 ctrl_ext = rd32(E1000_CTRL_EXT);
120 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
121 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
122 hw->phy.media_type = e1000_media_type_internal_serdes;
123 ctrl_ext |= E1000_CTRL_I2C_ENA;
124 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
125 dev_spec->sgmii_active = true;
126 ctrl_ext |= E1000_CTRL_I2C_ENA;
128 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
130 wr32(E1000_CTRL_EXT, ctrl_ext);
132 /* Set mta register count */
133 mac->mta_reg_count = 128;
134 /* Set rar entry count */
135 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
136 if (mac->type == e1000_82576)
137 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
138 /* Set if part includes ASF firmware */
139 mac->asf_firmware_present = true;
140 /* Set if manageability features are enabled. */
141 mac->arc_subsystem_valid =
142 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
145 /* physical interface link setup */
146 mac->ops.setup_physical_interface =
147 (hw->phy.media_type == e1000_media_type_copper)
148 ? igb_setup_copper_link_82575
149 : igb_setup_fiber_serdes_link_82575;
151 /* NVM initialization */
152 eecd = rd32(E1000_EECD);
154 nvm->opcode_bits = 8;
156 switch (nvm->override) {
157 case e1000_nvm_override_spi_large:
159 nvm->address_bits = 16;
161 case e1000_nvm_override_spi_small:
163 nvm->address_bits = 8;
166 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
167 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
171 nvm->type = e1000_nvm_eeprom_spi;
173 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
174 E1000_EECD_SIZE_EX_SHIFT);
177 * Added to a constant, "size" becomes the left-shift value
178 * for setting word_size.
180 size += NVM_WORD_SIZE_BASE_SHIFT;
182 /* EEPROM access above 16k is unsupported */
185 nvm->word_size = 1 << size;
187 /* setup PHY parameters */
188 if (phy->media_type != e1000_media_type_copper) {
189 phy->type = e1000_phy_none;
193 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
194 phy->reset_delay_us = 100;
196 /* PHY function pointers */
197 if (igb_sgmii_active_82575(hw)) {
198 phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575;
199 phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575;
200 phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575;
202 phy->ops.reset_phy = igb_phy_hw_reset;
203 phy->ops.read_phy_reg = igb_read_phy_reg_igp;
204 phy->ops.write_phy_reg = igb_write_phy_reg_igp;
207 /* Set phy->phy_addr and phy->id. */
208 ret_val = igb_get_phy_id_82575(hw);
212 /* Verify phy id and set remaining function pointers */
214 case M88E1111_I_PHY_ID:
215 phy->type = e1000_phy_m88;
216 phy->ops.get_phy_info = igb_get_phy_info_m88;
217 phy->ops.get_cable_length = igb_get_cable_length_m88;
218 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
220 case IGP03E1000_E_PHY_ID:
221 phy->type = e1000_phy_igp_3;
222 phy->ops.get_phy_info = igb_get_phy_info_igp;
223 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
224 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
225 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
226 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
229 return -E1000_ERR_PHY;
236 * igb_acquire_phy_82575 - Acquire rights to access PHY
237 * @hw: pointer to the HW structure
239 * Acquire access rights to the correct PHY. This is a
240 * function pointer entry point called by the api module.
242 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
246 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
248 return igb_acquire_swfw_sync_82575(hw, mask);
252 * igb_release_phy_82575 - Release rights to access PHY
253 * @hw: pointer to the HW structure
255 * A wrapper to release access rights to the correct PHY. This is a
256 * function pointer entry point called by the api module.
258 static void igb_release_phy_82575(struct e1000_hw *hw)
262 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
263 igb_release_swfw_sync_82575(hw, mask);
267 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
268 * @hw: pointer to the HW structure
269 * @offset: register offset to be read
270 * @data: pointer to the read data
272 * Reads the PHY register at offset using the serial gigabit media independent
273 * interface and stores the retrieved information in data.
275 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
278 struct e1000_phy_info *phy = &hw->phy;
281 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
282 hw_dbg("PHY Address %u is out of range\n", offset);
283 return -E1000_ERR_PARAM;
287 * Set up Op-code, Phy Address, and register address in the I2CCMD
288 * register. The MAC will take care of interfacing with the
289 * PHY to retrieve the desired data.
291 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
292 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
293 (E1000_I2CCMD_OPCODE_READ));
295 wr32(E1000_I2CCMD, i2ccmd);
297 /* Poll the ready bit to see if the I2C read completed */
298 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300 i2ccmd = rd32(E1000_I2CCMD);
301 if (i2ccmd & E1000_I2CCMD_READY)
304 if (!(i2ccmd & E1000_I2CCMD_READY)) {
305 hw_dbg("I2CCMD Read did not complete\n");
306 return -E1000_ERR_PHY;
308 if (i2ccmd & E1000_I2CCMD_ERROR) {
309 hw_dbg("I2CCMD Error bit set\n");
310 return -E1000_ERR_PHY;
313 /* Need to byte-swap the 16-bit value. */
314 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
320 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
321 * @hw: pointer to the HW structure
322 * @offset: register offset to write to
323 * @data: data to write at register offset
325 * Writes the data to PHY register at the offset using the serial gigabit
326 * media independent interface.
328 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
331 struct e1000_phy_info *phy = &hw->phy;
333 u16 phy_data_swapped;
335 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
336 hw_dbg("PHY Address %d is out of range\n", offset);
337 return -E1000_ERR_PARAM;
340 /* Swap the data bytes for the I2C interface */
341 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
344 * Set up Op-code, Phy Address, and register address in the I2CCMD
345 * register. The MAC will take care of interfacing with the
346 * PHY to retrieve the desired data.
348 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
349 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
350 E1000_I2CCMD_OPCODE_WRITE |
353 wr32(E1000_I2CCMD, i2ccmd);
355 /* Poll the ready bit to see if the I2C read completed */
356 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
358 i2ccmd = rd32(E1000_I2CCMD);
359 if (i2ccmd & E1000_I2CCMD_READY)
362 if (!(i2ccmd & E1000_I2CCMD_READY)) {
363 hw_dbg("I2CCMD Write did not complete\n");
364 return -E1000_ERR_PHY;
366 if (i2ccmd & E1000_I2CCMD_ERROR) {
367 hw_dbg("I2CCMD Error bit set\n");
368 return -E1000_ERR_PHY;
375 * igb_get_phy_id_82575 - Retrieve PHY addr and id
376 * @hw: pointer to the HW structure
378 * Retrieves the PHY address and ID for both PHY's which do and do not use
381 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
383 struct e1000_phy_info *phy = &hw->phy;
388 * For SGMII PHYs, we try the list of possible addresses until
389 * we find one that works. For non-SGMII PHYs
390 * (e.g. integrated copper PHYs), an address of 1 should
391 * work. The result of this function should mean phy->phy_addr
392 * and phy->id are set correctly.
394 if (!(igb_sgmii_active_82575(hw))) {
396 ret_val = igb_get_phy_id(hw);
401 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
402 * Therefore, we need to test 1-7
404 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
405 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
407 hw_dbg("Vendor ID 0x%08X read at address %u\n",
410 * At the time of this writing, The M88 part is
411 * the only supported SGMII PHY product.
413 if (phy_id == M88_VENDOR)
416 hw_dbg("PHY address %u was unreadable\n", phy->addr);
420 /* A valid PHY type couldn't be found. */
421 if (phy->addr == 8) {
423 ret_val = -E1000_ERR_PHY;
427 ret_val = igb_get_phy_id(hw);
434 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
435 * @hw: pointer to the HW structure
437 * Resets the PHY using the serial gigabit media independent interface.
439 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
444 * This isn't a true "hard" reset, but is the only reset
445 * available to us at this time.
448 hw_dbg("Soft resetting SGMII attached PHY...\n");
451 * SFP documentation requires the following to configure the SPF module
452 * to work on SGMII. No further documentation is given.
454 ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
458 ret_val = igb_phy_sw_reset(hw);
465 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
466 * @hw: pointer to the HW structure
467 * @active: true to enable LPLU, false to disable
469 * Sets the LPLU D0 state according to the active flag. When
470 * activating LPLU this function also disables smart speed
471 * and vice versa. LPLU will not be activated unless the
472 * device autonegotiation advertisement meets standards of
473 * either 10 or 10/100 or 10/100/1000 at all duplexes.
474 * This is a function pointer entry point only called by
475 * PHY setup routines.
477 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
479 struct e1000_phy_info *phy = &hw->phy;
483 ret_val = phy->ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
488 data |= IGP02E1000_PM_D0_LPLU;
489 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
494 /* When LPLU is enabled, we should disable SmartSpeed */
495 ret_val = phy->ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
497 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
498 ret_val = phy->ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
503 data &= ~IGP02E1000_PM_D0_LPLU;
504 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
507 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
508 * during Dx states where the power conservation is most
509 * important. During driver activity we should enable
510 * SmartSpeed, so performance is maintained.
512 if (phy->smart_speed == e1000_smart_speed_on) {
513 ret_val = phy->ops.read_phy_reg(hw,
514 IGP01E1000_PHY_PORT_CONFIG, &data);
518 data |= IGP01E1000_PSCFR_SMART_SPEED;
519 ret_val = phy->ops.write_phy_reg(hw,
520 IGP01E1000_PHY_PORT_CONFIG, data);
523 } else if (phy->smart_speed == e1000_smart_speed_off) {
524 ret_val = phy->ops.read_phy_reg(hw,
525 IGP01E1000_PHY_PORT_CONFIG, &data);
529 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
530 ret_val = phy->ops.write_phy_reg(hw,
531 IGP01E1000_PHY_PORT_CONFIG, data);
542 * igb_acquire_nvm_82575 - Request for access to EEPROM
543 * @hw: pointer to the HW structure
545 * Acquire the necessary semaphores for exclusive access to the EEPROM.
546 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
547 * Return successful if access grant bit set, else clear the request for
548 * EEPROM access and return -E1000_ERR_NVM (-1).
550 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
554 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
558 ret_val = igb_acquire_nvm(hw);
561 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
568 * igb_release_nvm_82575 - Release exclusive access to EEPROM
569 * @hw: pointer to the HW structure
571 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
572 * then release the semaphores acquired.
574 static void igb_release_nvm_82575(struct e1000_hw *hw)
577 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
581 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
582 * @hw: pointer to the HW structure
583 * @mask: specifies which semaphore to acquire
585 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
586 * will also specify which port we're acquiring the lock for.
588 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
592 u32 fwmask = mask << 16;
594 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
596 while (i < timeout) {
597 if (igb_get_hw_semaphore(hw)) {
598 ret_val = -E1000_ERR_SWFW_SYNC;
602 swfw_sync = rd32(E1000_SW_FW_SYNC);
603 if (!(swfw_sync & (fwmask | swmask)))
607 * Firmware currently using resource (fwmask)
608 * or other software thread using resource (swmask)
610 igb_put_hw_semaphore(hw);
616 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
617 ret_val = -E1000_ERR_SWFW_SYNC;
622 wr32(E1000_SW_FW_SYNC, swfw_sync);
624 igb_put_hw_semaphore(hw);
631 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
632 * @hw: pointer to the HW structure
633 * @mask: specifies which semaphore to acquire
635 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
636 * will also specify which port we're releasing the lock for.
638 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
642 while (igb_get_hw_semaphore(hw) != 0);
645 swfw_sync = rd32(E1000_SW_FW_SYNC);
647 wr32(E1000_SW_FW_SYNC, swfw_sync);
649 igb_put_hw_semaphore(hw);
653 * igb_get_cfg_done_82575 - Read config done bit
654 * @hw: pointer to the HW structure
656 * Read the management control register for the config done bit for
657 * completion status. NOTE: silicon which is EEPROM-less will fail trying
658 * to read the config done bit, so an error is *ONLY* logged and returns
659 * 0. If we were to return with error, EEPROM-less silicon
660 * would not be able to be reset or change link.
662 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
664 s32 timeout = PHY_CFG_TIMEOUT;
666 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
668 if (hw->bus.func == 1)
669 mask = E1000_NVM_CFG_DONE_PORT_1;
672 if (rd32(E1000_EEMNGCTL) & mask)
678 hw_dbg("MNG configuration cycle has not completed.\n");
680 /* If EEPROM is not marked present, init the PHY manually */
681 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
682 (hw->phy.type == e1000_phy_igp_3))
683 igb_phy_init_script_igp3(hw);
689 * igb_check_for_link_82575 - Check for link
690 * @hw: pointer to the HW structure
692 * If sgmii is enabled, then use the pcs register to determine link, otherwise
693 * use the generic interface for determining link.
695 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
700 /* SGMII link check is done through the PCS register. */
701 if ((hw->phy.media_type != e1000_media_type_copper) ||
702 (igb_sgmii_active_82575(hw)))
703 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
706 ret_val = igb_check_for_copper_link(hw);
711 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
712 * @hw: pointer to the HW structure
713 * @speed: stores the current speed
714 * @duplex: stores the current duplex
716 * Using the physical coding sub-layer (PCS), retrieve the current speed and
717 * duplex, then store the values in the pointers provided.
719 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
722 struct e1000_mac_info *mac = &hw->mac;
725 /* Set up defaults for the return values of this function */
726 mac->serdes_has_link = false;
731 * Read the PCS Status register for link state. For non-copper mode,
732 * the status register is not accurate. The PCS status register is
735 pcs = rd32(E1000_PCS_LSTAT);
738 * The link up bit determines when link is up on autoneg. The sync ok
739 * gets set once both sides sync up and agree upon link. Stable link
740 * can be determined by checking for both link up and link sync ok
742 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
743 mac->serdes_has_link = true;
745 /* Detect and store PCS speed */
746 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
754 /* Detect and store PCS duplex */
755 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
756 *duplex = FULL_DUPLEX;
758 *duplex = HALF_DUPLEX;
766 * igb_init_rx_addrs_82575 - Initialize receive address's
767 * @hw: pointer to the HW structure
768 * @rar_count: receive address registers
770 * Setups the receive address registers by setting the base receive address
771 * register to the devices MAC address and clearing all the other receive
772 * address registers to 0.
774 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
777 u8 addr[6] = {0,0,0,0,0,0};
779 * This function is essentially the same as that of
780 * e1000_init_rx_addrs_generic. However it also takes care
781 * of the special case where the register offset of the
782 * second set of RARs begins elsewhere. This is implicitly taken care by
783 * function e1000_rar_set_generic.
786 hw_dbg("e1000_init_rx_addrs_82575");
788 /* Setup the receive address */
789 hw_dbg("Programming MAC Address into RAR[0]\n");
790 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
792 /* Zero out the other (rar_entry_count - 1) receive addresses */
793 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
794 for (i = 1; i < rar_count; i++)
795 hw->mac.ops.rar_set(hw, addr, i);
799 * igb_update_mc_addr_list_82575 - Update Multicast addresses
800 * @hw: pointer to the HW structure
801 * @mc_addr_list: array of multicast addresses to program
802 * @mc_addr_count: number of multicast addresses to program
803 * @rar_used_count: the first RAR register free to program
804 * @rar_count: total number of supported Receive Address Registers
806 * Updates the Receive Address Registers and Multicast Table Array.
807 * The caller must have a packed mc_addr_list of multicast addresses.
808 * The parameter rar_count will usually be hw->mac.rar_entry_count
809 * unless there are workarounds that change this.
811 void igb_update_mc_addr_list_82575(struct e1000_hw *hw,
812 u8 *mc_addr_list, u32 mc_addr_count,
813 u32 rar_used_count, u32 rar_count)
817 u8 addr[6] = {0,0,0,0,0,0};
819 * This function is essentially the same as that of
820 * igb_update_mc_addr_list_generic. However it also takes care
821 * of the special case where the register offset of the
822 * second set of RARs begins elsewhere. This is implicitly taken care by
823 * function e1000_rar_set_generic.
827 * Load the first set of multicast addresses into the exact
828 * filters (RAR). If there are not enough to fill the RAR
829 * array, clear the filters.
831 for (i = rar_used_count; i < rar_count; i++) {
833 igb_rar_set(hw, mc_addr_list, i);
835 mc_addr_list += ETH_ALEN;
837 igb_rar_set(hw, addr, i);
841 /* Clear the old settings from the MTA */
842 hw_dbg("Clearing MTA\n");
843 for (i = 0; i < hw->mac.mta_reg_count; i++) {
844 array_wr32(E1000_MTA, i, 0);
848 /* Load any remaining multicast addresses into the hash table. */
849 for (; mc_addr_count > 0; mc_addr_count--) {
850 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
851 hw_dbg("Hash value = 0x%03X\n", hash_value);
852 igb_mta_set(hw, hash_value);
853 mc_addr_list += ETH_ALEN;
858 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
859 * @hw: pointer to the HW structure
861 * In the case of fiber serdes, shut down optics and PCS on driver unload
862 * when management pass thru is not enabled.
864 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
868 if (hw->mac.type != e1000_82576 ||
869 (hw->phy.media_type != e1000_media_type_fiber &&
870 hw->phy.media_type != e1000_media_type_internal_serdes))
873 /* if the management interface is not enabled, then power down */
874 if (!igb_enable_mng_pass_thru(hw)) {
875 /* Disable PCS to turn off link */
876 reg = rd32(E1000_PCS_CFG0);
877 reg &= ~E1000_PCS_CFG_PCS_EN;
878 wr32(E1000_PCS_CFG0, reg);
880 /* shutdown the laser */
881 reg = rd32(E1000_CTRL_EXT);
882 reg |= E1000_CTRL_EXT_SDP7_DATA;
883 wr32(E1000_CTRL_EXT, reg);
885 /* flush the write to verify completion */
894 * igb_reset_hw_82575 - Reset hardware
895 * @hw: pointer to the HW structure
897 * This resets the hardware into a known state. This is a
898 * function pointer entry point called by the api module.
900 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
906 * Prevent the PCI-E bus from sticking if there is no TLP connection
907 * on the last TLP read/write transaction when MAC is reset.
909 ret_val = igb_disable_pcie_master(hw);
911 hw_dbg("PCI-E Master disable polling has failed.\n");
913 hw_dbg("Masking off all interrupts\n");
914 wr32(E1000_IMC, 0xffffffff);
917 wr32(E1000_TCTL, E1000_TCTL_PSP);
922 ctrl = rd32(E1000_CTRL);
924 hw_dbg("Issuing a global reset to MAC\n");
925 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
927 ret_val = igb_get_auto_rd_done(hw);
930 * When auto config read does not complete, do not
931 * return with an error. This can happen in situations
932 * where there is no eeprom and prevents getting link.
934 hw_dbg("Auto Read Done did not complete\n");
937 /* If EEPROM is not present, run manual init scripts */
938 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
939 igb_reset_init_script_82575(hw);
941 /* Clear any pending interrupt events. */
942 wr32(E1000_IMC, 0xffffffff);
943 icr = rd32(E1000_ICR);
945 igb_check_alt_mac_addr(hw);
951 * igb_init_hw_82575 - Initialize hardware
952 * @hw: pointer to the HW structure
954 * This inits the hardware readying it for operation.
956 static s32 igb_init_hw_82575(struct e1000_hw *hw)
958 struct e1000_mac_info *mac = &hw->mac;
960 u16 i, rar_count = mac->rar_entry_count;
962 /* Initialize identification LED */
963 ret_val = igb_id_led_init(hw);
965 hw_dbg("Error initializing identification LED\n");
966 /* This is not fatal and we should not stop init due to this */
969 /* Disabling VLAN filtering */
970 hw_dbg("Initializing the IEEE VLAN\n");
973 /* Setup the receive address */
974 igb_init_rx_addrs_82575(hw, rar_count);
975 /* Zero out the Multicast HASH table */
976 hw_dbg("Zeroing the MTA\n");
977 for (i = 0; i < mac->mta_reg_count; i++)
978 array_wr32(E1000_MTA, i, 0);
980 /* Setup link and flow control */
981 ret_val = igb_setup_link(hw);
984 * Clear all of the statistics registers (clear on read). It is
985 * important that we do this after we have tried to establish link
986 * because the symbol error count will increment wildly if there
989 igb_clear_hw_cntrs_82575(hw);
995 * igb_setup_copper_link_82575 - Configure copper link settings
996 * @hw: pointer to the HW structure
998 * Configures the link for auto-neg or forced speed and duplex. Then we check
999 * for link, once link is established calls to configure collision distance
1000 * and flow control are called.
1002 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1008 ctrl = rd32(E1000_CTRL);
1009 ctrl |= E1000_CTRL_SLU;
1010 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1011 wr32(E1000_CTRL, ctrl);
1013 switch (hw->phy.type) {
1015 ret_val = igb_copper_link_setup_m88(hw);
1017 case e1000_phy_igp_3:
1018 ret_val = igb_copper_link_setup_igp(hw);
1019 /* Setup activity LED */
1020 led_ctrl = rd32(E1000_LEDCTL);
1021 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1022 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1023 wr32(E1000_LEDCTL, led_ctrl);
1026 ret_val = -E1000_ERR_PHY;
1033 if (hw->mac.autoneg) {
1035 * Setup autoneg and flow control advertisement
1036 * and perform autonegotiation.
1038 ret_val = igb_copper_link_autoneg(hw);
1043 * PHY will be set to 10H, 10F, 100H or 100F
1044 * depending on user settings.
1046 hw_dbg("Forcing Speed and Duplex\n");
1047 ret_val = igb_phy_force_speed_duplex(hw);
1049 hw_dbg("Error Forcing Speed and Duplex\n");
1054 ret_val = igb_configure_pcs_link_82575(hw);
1059 * Check link status. Wait up to 100 microseconds for link to become
1062 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1067 hw_dbg("Valid link established!!!\n");
1068 /* Config the MAC and PHY after link is up */
1069 igb_config_collision_dist(hw);
1070 ret_val = igb_config_fc_after_link_up(hw);
1072 hw_dbg("Unable to establish link!!!\n");
1080 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1081 * @hw: pointer to the HW structure
1083 * Configures speed and duplex for fiber and serdes links.
1085 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1090 * On the 82575, SerDes loopback mode persists until it is
1091 * explicitly turned off or a power cycle is performed. A read to
1092 * the register does not indicate its status. Therefore, we ensure
1093 * loopback mode is disabled during initialization.
1095 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1097 /* Force link up, set 1gb, set both sw defined pins */
1098 reg = rd32(E1000_CTRL);
1099 reg |= E1000_CTRL_SLU |
1100 E1000_CTRL_SPD_1000 |
1102 E1000_CTRL_SWDPIN0 |
1104 wr32(E1000_CTRL, reg);
1106 /* Set switch control to serdes energy detect */
1107 reg = rd32(E1000_CONNSW);
1108 reg |= E1000_CONNSW_ENRGSRC;
1109 wr32(E1000_CONNSW, reg);
1112 * New SerDes mode allows for forcing speed or autonegotiating speed
1113 * at 1gb. Autoneg should be default set by most drivers. This is the
1114 * mode that will be compatible with older link partners and switches.
1115 * However, both are supported by the hardware and some drivers/tools.
1117 reg = rd32(E1000_PCS_LCTL);
1119 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1120 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1122 if (hw->mac.autoneg) {
1123 /* Set PCS register for autoneg */
1124 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1125 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1126 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1127 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1128 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1130 /* Set PCS register for forced speed */
1131 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1132 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1133 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1134 E1000_PCS_LCTL_FSD | /* Force Speed */
1135 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1136 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1139 if (hw->mac.type == e1000_82576) {
1140 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1141 igb_force_mac_fc(hw);
1144 wr32(E1000_PCS_LCTL, reg);
1150 * igb_configure_pcs_link_82575 - Configure PCS link
1151 * @hw: pointer to the HW structure
1153 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1154 * only used on copper connections where the serialized gigabit media
1155 * independent interface (sgmii) is being used. Configures the link
1156 * for auto-negotiation or forces speed/duplex.
1158 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1160 struct e1000_mac_info *mac = &hw->mac;
1163 if (hw->phy.media_type != e1000_media_type_copper ||
1164 !(igb_sgmii_active_82575(hw)))
1167 /* For SGMII, we need to issue a PCS autoneg restart */
1168 reg = rd32(E1000_PCS_LCTL);
1170 /* AN time out should be disabled for SGMII mode */
1171 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1174 /* Make sure forced speed and force link are not set */
1175 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1178 * The PHY should be setup prior to calling this function.
1179 * All we need to do is restart autoneg and enable autoneg.
1181 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1183 /* Set PCS register for forced speed */
1185 /* Turn off bits for full duplex, speed, and autoneg */
1186 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1187 E1000_PCS_LCTL_FSV_100 |
1188 E1000_PCS_LCTL_FDV_FULL |
1189 E1000_PCS_LCTL_AN_ENABLE);
1191 /* Check for duplex first */
1192 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1193 reg |= E1000_PCS_LCTL_FDV_FULL;
1196 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1197 reg |= E1000_PCS_LCTL_FSV_100;
1199 /* Force speed and force link */
1200 reg |= E1000_PCS_LCTL_FSD |
1201 E1000_PCS_LCTL_FORCE_LINK |
1202 E1000_PCS_LCTL_FLV_LINK_UP;
1204 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1207 wr32(E1000_PCS_LCTL, reg);
1214 * igb_sgmii_active_82575 - Return sgmii state
1215 * @hw: pointer to the HW structure
1217 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1218 * which can be enabled for use in the embedded applications. Simply
1219 * return the current state of the sgmii interface.
1221 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1223 struct e1000_dev_spec_82575 *dev_spec;
1226 if (hw->mac.type != e1000_82575) {
1231 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
1233 ret_val = dev_spec->sgmii_active;
1240 * igb_reset_init_script_82575 - Inits HW defaults after reset
1241 * @hw: pointer to the HW structure
1243 * Inits recommended HW defaults after a reset when there is no EEPROM
1244 * detected. This is only for the 82575.
1246 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1248 if (hw->mac.type == e1000_82575) {
1249 hw_dbg("Running reset init script for 82575\n");
1250 /* SerDes configuration via SERDESCTRL */
1251 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1252 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1253 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1254 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1256 /* CCM configuration via CCMCTL register */
1257 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1258 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1260 /* PCIe lanes configuration */
1261 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1262 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1263 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1264 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1266 /* PCIe PLL Configuration */
1267 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1268 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1269 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1276 * igb_read_mac_addr_82575 - Read device MAC address
1277 * @hw: pointer to the HW structure
1279 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1283 if (igb_check_alt_mac_addr(hw))
1284 ret_val = igb_read_mac_addr(hw);
1290 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1291 * @hw: pointer to the HW structure
1293 * Clears the hardware counters by reading the counter registers.
1295 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1299 igb_clear_hw_cntrs_base(hw);
1301 temp = rd32(E1000_PRC64);
1302 temp = rd32(E1000_PRC127);
1303 temp = rd32(E1000_PRC255);
1304 temp = rd32(E1000_PRC511);
1305 temp = rd32(E1000_PRC1023);
1306 temp = rd32(E1000_PRC1522);
1307 temp = rd32(E1000_PTC64);
1308 temp = rd32(E1000_PTC127);
1309 temp = rd32(E1000_PTC255);
1310 temp = rd32(E1000_PTC511);
1311 temp = rd32(E1000_PTC1023);
1312 temp = rd32(E1000_PTC1522);
1314 temp = rd32(E1000_ALGNERRC);
1315 temp = rd32(E1000_RXERRC);
1316 temp = rd32(E1000_TNCRS);
1317 temp = rd32(E1000_CEXTERR);
1318 temp = rd32(E1000_TSCTC);
1319 temp = rd32(E1000_TSCTFC);
1321 temp = rd32(E1000_MGTPRC);
1322 temp = rd32(E1000_MGTPDC);
1323 temp = rd32(E1000_MGTPTC);
1325 temp = rd32(E1000_IAC);
1326 temp = rd32(E1000_ICRXOC);
1328 temp = rd32(E1000_ICRXPTC);
1329 temp = rd32(E1000_ICRXATC);
1330 temp = rd32(E1000_ICTXPTC);
1331 temp = rd32(E1000_ICTXATC);
1332 temp = rd32(E1000_ICTXQEC);
1333 temp = rd32(E1000_ICTXQMTC);
1334 temp = rd32(E1000_ICRXDMTC);
1336 temp = rd32(E1000_CBTMPC);
1337 temp = rd32(E1000_HTDPMC);
1338 temp = rd32(E1000_CBRMPC);
1339 temp = rd32(E1000_RPTHC);
1340 temp = rd32(E1000_HGPTC);
1341 temp = rd32(E1000_HTCBDPC);
1342 temp = rd32(E1000_HGORCL);
1343 temp = rd32(E1000_HGORCH);
1344 temp = rd32(E1000_HGOTCL);
1345 temp = rd32(E1000_HGOTCH);
1346 temp = rd32(E1000_LENERRS);
1348 /* This register should not be read in copper configurations */
1349 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1350 temp = rd32(E1000_SCVPC);
1354 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1355 * @hw: pointer to the HW structure
1357 * After rx enable if managability is enabled then there is likely some
1358 * bad data at the start of the fifo and possibly in the DMA fifo. This
1359 * function clears the fifos and flushes any packets that came in as rx was
1362 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1364 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1367 if (hw->mac.type != e1000_82575 ||
1368 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1371 /* Disable all RX queues */
1372 for (i = 0; i < 4; i++) {
1373 rxdctl[i] = rd32(E1000_RXDCTL(i));
1374 wr32(E1000_RXDCTL(i),
1375 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1377 /* Poll all queues to verify they have shut down */
1378 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1381 for (i = 0; i < 4; i++)
1382 rx_enabled |= rd32(E1000_RXDCTL(i));
1383 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1388 hw_dbg("Queue disable timed out after 10ms\n");
1390 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1391 * incoming packets are rejected. Set enable and wait 2ms so that
1392 * any packet that was coming in as RCTL.EN was set is flushed
1394 rfctl = rd32(E1000_RFCTL);
1395 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1397 rlpml = rd32(E1000_RLPML);
1398 wr32(E1000_RLPML, 0);
1400 rctl = rd32(E1000_RCTL);
1401 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1402 temp_rctl |= E1000_RCTL_LPE;
1404 wr32(E1000_RCTL, temp_rctl);
1405 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1409 /* Enable RX queues that were previously enabled and restore our
1412 for (i = 0; i < 4; i++)
1413 wr32(E1000_RXDCTL(i), rxdctl[i]);
1414 wr32(E1000_RCTL, rctl);
1417 wr32(E1000_RLPML, rlpml);
1418 wr32(E1000_RFCTL, rfctl);
1420 /* Flush receive errors generated by workaround */
1426 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1427 .reset_hw = igb_reset_hw_82575,
1428 .init_hw = igb_init_hw_82575,
1429 .check_for_link = igb_check_for_link_82575,
1430 .rar_set = igb_rar_set,
1431 .read_mac_addr = igb_read_mac_addr_82575,
1432 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1435 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1436 .acquire_phy = igb_acquire_phy_82575,
1437 .get_cfg_done = igb_get_cfg_done_82575,
1438 .release_phy = igb_release_phy_82575,
1441 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1442 .acquire_nvm = igb_acquire_nvm_82575,
1443 .read_nvm = igb_read_nvm_eerd,
1444 .release_nvm = igb_release_nvm_82575,
1445 .write_nvm = igb_write_nvm_spi,
1448 const struct e1000_info e1000_82575_info = {
1449 .get_invariants = igb_get_invariants_82575,
1450 .mac_ops = &e1000_mac_ops_82575,
1451 .phy_ops = &e1000_phy_ops_82575,
1452 .nvm_ops = &e1000_nvm_ops_82575,