]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/igb/igb_main.c
a08921e9cbe6c293f43c69a4cdf9db04bde0390b
[linux-2.6-omap-h63xx.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98                                   struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
120 #endif
121 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
122 static void igb_tx_timeout(struct net_device *);
123 static void igb_reset_task(struct work_struct *);
124 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
125 static void igb_vlan_rx_add_vid(struct net_device *, u16);
126 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
127 static void igb_restore_vlan(struct igb_adapter *);
128
129 static int igb_suspend(struct pci_dev *, pm_message_t);
130 #ifdef CONFIG_PM
131 static int igb_resume(struct pci_dev *);
132 #endif
133 static void igb_shutdown(struct pci_dev *);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
136 static struct notifier_block dca_notifier = {
137         .notifier_call  = igb_notify_dca,
138         .next           = NULL,
139         .priority       = 0
140 };
141 #endif
142
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device *);
146 #endif
147
148 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
149                      pci_channel_state_t);
150 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
151 static void igb_io_resume(struct pci_dev *);
152
153 static struct pci_error_handlers igb_err_handler = {
154         .error_detected = igb_io_error_detected,
155         .slot_reset = igb_io_slot_reset,
156         .resume = igb_io_resume,
157 };
158
159
160 static struct pci_driver igb_driver = {
161         .name     = igb_driver_name,
162         .id_table = igb_pci_tbl,
163         .probe    = igb_probe,
164         .remove   = __devexit_p(igb_remove),
165 #ifdef CONFIG_PM
166         /* Power Managment Hooks */
167         .suspend  = igb_suspend,
168         .resume   = igb_resume,
169 #endif
170         .shutdown = igb_shutdown,
171         .err_handler = &igb_err_handler
172 };
173
174 static int global_quad_port_a; /* global quad port a indication */
175
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION);
180
181 #ifdef DEBUG
182 /**
183  * igb_get_hw_dev_name - return device name string
184  * used by hardware layer to print debugging information
185  **/
186 char *igb_get_hw_dev_name(struct e1000_hw *hw)
187 {
188         struct igb_adapter *adapter = hw->back;
189         return adapter->netdev->name;
190 }
191 #endif
192
193 /**
194  * igb_init_module - Driver Registration Routine
195  *
196  * igb_init_module is the first routine called when the driver is
197  * loaded. All it does is register with the PCI subsystem.
198  **/
199 static int __init igb_init_module(void)
200 {
201         int ret;
202         printk(KERN_INFO "%s - version %s\n",
203                igb_driver_string, igb_driver_version);
204
205         printk(KERN_INFO "%s\n", igb_copyright);
206
207         global_quad_port_a = 0;
208
209         ret = pci_register_driver(&igb_driver);
210 #ifdef CONFIG_IGB_DCA
211         dca_register_notify(&dca_notifier);
212 #endif
213         return ret;
214 }
215
216 module_init(igb_init_module);
217
218 /**
219  * igb_exit_module - Driver Exit Cleanup Routine
220  *
221  * igb_exit_module is called just before the driver is removed
222  * from memory.
223  **/
224 static void __exit igb_exit_module(void)
225 {
226 #ifdef CONFIG_IGB_DCA
227         dca_unregister_notify(&dca_notifier);
228 #endif
229         pci_unregister_driver(&igb_driver);
230 }
231
232 module_exit(igb_exit_module);
233
234 /**
235  * igb_alloc_queues - Allocate memory for all rings
236  * @adapter: board private structure to initialize
237  *
238  * We allocate one ring per queue at run-time since we don't know the
239  * number of queues at compile-time.
240  **/
241 static int igb_alloc_queues(struct igb_adapter *adapter)
242 {
243         int i;
244
245         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
246                                    sizeof(struct igb_ring), GFP_KERNEL);
247         if (!adapter->tx_ring)
248                 return -ENOMEM;
249
250         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
251                                    sizeof(struct igb_ring), GFP_KERNEL);
252         if (!adapter->rx_ring) {
253                 kfree(adapter->tx_ring);
254                 return -ENOMEM;
255         }
256
257         adapter->rx_ring->buddy = adapter->tx_ring;
258
259         for (i = 0; i < adapter->num_tx_queues; i++) {
260                 struct igb_ring *ring = &(adapter->tx_ring[i]);
261                 ring->count = adapter->tx_ring_count;
262                 ring->adapter = adapter;
263                 ring->queue_index = i;
264         }
265         for (i = 0; i < adapter->num_rx_queues; i++) {
266                 struct igb_ring *ring = &(adapter->rx_ring[i]);
267                 ring->count = adapter->rx_ring_count;
268                 ring->adapter = adapter;
269                 ring->queue_index = i;
270                 ring->itr_register = E1000_ITR;
271
272                 /* set a default napi handler for each rx_ring */
273                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
274         }
275         return 0;
276 }
277
278 static void igb_free_queues(struct igb_adapter *adapter)
279 {
280         int i;
281
282         for (i = 0; i < adapter->num_rx_queues; i++)
283                 netif_napi_del(&adapter->rx_ring[i].napi);
284
285         kfree(adapter->tx_ring);
286         kfree(adapter->rx_ring);
287 }
288
289 #define IGB_N0_QUEUE -1
290 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
291                               int tx_queue, int msix_vector)
292 {
293         u32 msixbm = 0;
294         struct e1000_hw *hw = &adapter->hw;
295         u32 ivar, index;
296
297         switch (hw->mac.type) {
298         case e1000_82575:
299                 /* The 82575 assigns vectors using a bitmask, which matches the
300                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
301                    or more queues to a vector, we write the appropriate bits
302                    into the MSIXBM register for that vector. */
303                 if (rx_queue > IGB_N0_QUEUE) {
304                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
305                         adapter->rx_ring[rx_queue].eims_value = msixbm;
306                 }
307                 if (tx_queue > IGB_N0_QUEUE) {
308                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
309                         adapter->tx_ring[tx_queue].eims_value =
310                                   E1000_EICR_TX_QUEUE0 << tx_queue;
311                 }
312                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
313                 break;
314         case e1000_82576:
315                 /* The 82576 uses a table-based method for assigning vectors.
316                    Each queue has a single entry in the table to which we write
317                    a vector number along with a "valid" bit.  Sadly, the layout
318                    of the table is somewhat counterintuitive. */
319                 if (rx_queue > IGB_N0_QUEUE) {
320                         index = (rx_queue & 0x7);
321                         ivar = array_rd32(E1000_IVAR0, index);
322                         if (rx_queue < 8) {
323                                 /* vector goes into low byte of register */
324                                 ivar = ivar & 0xFFFFFF00;
325                                 ivar |= msix_vector | E1000_IVAR_VALID;
326                         } else {
327                                 /* vector goes into third byte of register */
328                                 ivar = ivar & 0xFF00FFFF;
329                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
330                         }
331                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
332                         array_wr32(E1000_IVAR0, index, ivar);
333                 }
334                 if (tx_queue > IGB_N0_QUEUE) {
335                         index = (tx_queue & 0x7);
336                         ivar = array_rd32(E1000_IVAR0, index);
337                         if (tx_queue < 8) {
338                                 /* vector goes into second byte of register */
339                                 ivar = ivar & 0xFFFF00FF;
340                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
341                         } else {
342                                 /* vector goes into high byte of register */
343                                 ivar = ivar & 0x00FFFFFF;
344                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
345                         }
346                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
347                         array_wr32(E1000_IVAR0, index, ivar);
348                 }
349                 break;
350         default:
351                 BUG();
352                 break;
353         }
354 }
355
356 /**
357  * igb_configure_msix - Configure MSI-X hardware
358  *
359  * igb_configure_msix sets up the hardware to properly
360  * generate MSI-X interrupts.
361  **/
362 static void igb_configure_msix(struct igb_adapter *adapter)
363 {
364         u32 tmp;
365         int i, vector = 0;
366         struct e1000_hw *hw = &adapter->hw;
367
368         adapter->eims_enable_mask = 0;
369         if (hw->mac.type == e1000_82576)
370                 /* Turn on MSI-X capability first, or our settings
371                  * won't stick.  And it will take days to debug. */
372                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
373                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
374                                    E1000_GPIE_NSICR);
375
376         for (i = 0; i < adapter->num_tx_queues; i++) {
377                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
378                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
379                 adapter->eims_enable_mask |= tx_ring->eims_value;
380                 if (tx_ring->itr_val)
381                         writel(tx_ring->itr_val,
382                                hw->hw_addr + tx_ring->itr_register);
383                 else
384                         writel(1, hw->hw_addr + tx_ring->itr_register);
385         }
386
387         for (i = 0; i < adapter->num_rx_queues; i++) {
388                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
389                 rx_ring->buddy = NULL;
390                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
391                 adapter->eims_enable_mask |= rx_ring->eims_value;
392                 if (rx_ring->itr_val)
393                         writel(rx_ring->itr_val,
394                                hw->hw_addr + rx_ring->itr_register);
395                 else
396                         writel(1, hw->hw_addr + rx_ring->itr_register);
397         }
398
399
400         /* set vector for other causes, i.e. link changes */
401         switch (hw->mac.type) {
402         case e1000_82575:
403                 array_wr32(E1000_MSIXBM(0), vector++,
404                                       E1000_EIMS_OTHER);
405
406                 tmp = rd32(E1000_CTRL_EXT);
407                 /* enable MSI-X PBA support*/
408                 tmp |= E1000_CTRL_EXT_PBA_CLR;
409
410                 /* Auto-Mask interrupts upon ICR read. */
411                 tmp |= E1000_CTRL_EXT_EIAME;
412                 tmp |= E1000_CTRL_EXT_IRCA;
413
414                 wr32(E1000_CTRL_EXT, tmp);
415                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
416                 adapter->eims_other = E1000_EIMS_OTHER;
417
418                 break;
419
420         case e1000_82576:
421                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
422                 wr32(E1000_IVAR_MISC, tmp);
423
424                 adapter->eims_enable_mask = (1 << (vector)) - 1;
425                 adapter->eims_other = 1 << (vector - 1);
426                 break;
427         default:
428                 /* do nothing, since nothing else supports MSI-X */
429                 break;
430         } /* switch (hw->mac.type) */
431         wrfl();
432 }
433
434 /**
435  * igb_request_msix - Initialize MSI-X interrupts
436  *
437  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
438  * kernel.
439  **/
440 static int igb_request_msix(struct igb_adapter *adapter)
441 {
442         struct net_device *netdev = adapter->netdev;
443         int i, err = 0, vector = 0;
444
445         vector = 0;
446
447         for (i = 0; i < adapter->num_tx_queues; i++) {
448                 struct igb_ring *ring = &(adapter->tx_ring[i]);
449                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
450                 err = request_irq(adapter->msix_entries[vector].vector,
451                                   &igb_msix_tx, 0, ring->name,
452                                   &(adapter->tx_ring[i]));
453                 if (err)
454                         goto out;
455                 ring->itr_register = E1000_EITR(0) + (vector << 2);
456                 ring->itr_val = 976; /* ~4000 ints/sec */
457                 vector++;
458         }
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct igb_ring *ring = &(adapter->rx_ring[i]);
461                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
462                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
463                 else
464                         memcpy(ring->name, netdev->name, IFNAMSIZ);
465                 err = request_irq(adapter->msix_entries[vector].vector,
466                                   &igb_msix_rx, 0, ring->name,
467                                   &(adapter->rx_ring[i]));
468                 if (err)
469                         goto out;
470                 ring->itr_register = E1000_EITR(0) + (vector << 2);
471                 ring->itr_val = adapter->itr;
472                 /* overwrite the poll routine for MSIX, we've already done
473                  * netif_napi_add */
474                 ring->napi.poll = &igb_clean_rx_ring_msix;
475                 vector++;
476         }
477
478         err = request_irq(adapter->msix_entries[vector].vector,
479                           &igb_msix_other, 0, netdev->name, netdev);
480         if (err)
481                 goto out;
482
483         igb_configure_msix(adapter);
484         return 0;
485 out:
486         return err;
487 }
488
489 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
490 {
491         if (adapter->msix_entries) {
492                 pci_disable_msix(adapter->pdev);
493                 kfree(adapter->msix_entries);
494                 adapter->msix_entries = NULL;
495         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
496                 pci_disable_msi(adapter->pdev);
497         return;
498 }
499
500
501 /**
502  * igb_set_interrupt_capability - set MSI or MSI-X if supported
503  *
504  * Attempt to configure interrupts using the best available
505  * capabilities of the hardware and kernel.
506  **/
507 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
508 {
509         int err;
510         int numvecs, i;
511
512         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
513         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
514                                         GFP_KERNEL);
515         if (!adapter->msix_entries)
516                 goto msi_only;
517
518         for (i = 0; i < numvecs; i++)
519                 adapter->msix_entries[i].entry = i;
520
521         err = pci_enable_msix(adapter->pdev,
522                               adapter->msix_entries,
523                               numvecs);
524         if (err == 0)
525                 goto out;
526
527         igb_reset_interrupt_capability(adapter);
528
529         /* If we can't do MSI-X, try MSI */
530 msi_only:
531         adapter->num_rx_queues = 1;
532         adapter->num_tx_queues = 1;
533         if (!pci_enable_msi(adapter->pdev))
534                 adapter->flags |= IGB_FLAG_HAS_MSI;
535 out:
536         /* Notify the stack of the (possibly) reduced Tx Queue count. */
537         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
538         return;
539 }
540
541 /**
542  * igb_request_irq - initialize interrupts
543  *
544  * Attempts to configure interrupts using the best available
545  * capabilities of the hardware and kernel.
546  **/
547 static int igb_request_irq(struct igb_adapter *adapter)
548 {
549         struct net_device *netdev = adapter->netdev;
550         struct e1000_hw *hw = &adapter->hw;
551         int err = 0;
552
553         if (adapter->msix_entries) {
554                 err = igb_request_msix(adapter);
555                 if (!err)
556                         goto request_done;
557                 /* fall back to MSI */
558                 igb_reset_interrupt_capability(adapter);
559                 if (!pci_enable_msi(adapter->pdev))
560                         adapter->flags |= IGB_FLAG_HAS_MSI;
561                 igb_free_all_tx_resources(adapter);
562                 igb_free_all_rx_resources(adapter);
563                 adapter->num_rx_queues = 1;
564                 igb_alloc_queues(adapter);
565         } else {
566                 switch (hw->mac.type) {
567                 case e1000_82575:
568                         wr32(E1000_MSIXBM(0),
569                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
570                         break;
571                 case e1000_82576:
572                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
573                         break;
574                 default:
575                         break;
576                 }
577         }
578
579         if (adapter->flags & IGB_FLAG_HAS_MSI) {
580                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
581                                   netdev->name, netdev);
582                 if (!err)
583                         goto request_done;
584                 /* fall back to legacy interrupts */
585                 igb_reset_interrupt_capability(adapter);
586                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
587         }
588
589         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
590                           netdev->name, netdev);
591
592         if (err)
593                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
594                         err);
595
596 request_done:
597         return err;
598 }
599
600 static void igb_free_irq(struct igb_adapter *adapter)
601 {
602         struct net_device *netdev = adapter->netdev;
603
604         if (adapter->msix_entries) {
605                 int vector = 0, i;
606
607                 for (i = 0; i < adapter->num_tx_queues; i++)
608                         free_irq(adapter->msix_entries[vector++].vector,
609                                 &(adapter->tx_ring[i]));
610                 for (i = 0; i < adapter->num_rx_queues; i++)
611                         free_irq(adapter->msix_entries[vector++].vector,
612                                 &(adapter->rx_ring[i]));
613
614                 free_irq(adapter->msix_entries[vector++].vector, netdev);
615                 return;
616         }
617
618         free_irq(adapter->pdev->irq, netdev);
619 }
620
621 /**
622  * igb_irq_disable - Mask off interrupt generation on the NIC
623  * @adapter: board private structure
624  **/
625 static void igb_irq_disable(struct igb_adapter *adapter)
626 {
627         struct e1000_hw *hw = &adapter->hw;
628
629         if (adapter->msix_entries) {
630                 wr32(E1000_EIAM, 0);
631                 wr32(E1000_EIMC, ~0);
632                 wr32(E1000_EIAC, 0);
633         }
634
635         wr32(E1000_IAM, 0);
636         wr32(E1000_IMC, ~0);
637         wrfl();
638         synchronize_irq(adapter->pdev->irq);
639 }
640
641 /**
642  * igb_irq_enable - Enable default interrupt generation settings
643  * @adapter: board private structure
644  **/
645 static void igb_irq_enable(struct igb_adapter *adapter)
646 {
647         struct e1000_hw *hw = &adapter->hw;
648
649         if (adapter->msix_entries) {
650                 wr32(E1000_EIAC, adapter->eims_enable_mask);
651                 wr32(E1000_EIAM, adapter->eims_enable_mask);
652                 wr32(E1000_EIMS, adapter->eims_enable_mask);
653                 wr32(E1000_IMS, E1000_IMS_LSC);
654         } else {
655                 wr32(E1000_IMS, IMS_ENABLE_MASK);
656                 wr32(E1000_IAM, IMS_ENABLE_MASK);
657         }
658 }
659
660 static void igb_update_mng_vlan(struct igb_adapter *adapter)
661 {
662         struct net_device *netdev = adapter->netdev;
663         u16 vid = adapter->hw.mng_cookie.vlan_id;
664         u16 old_vid = adapter->mng_vlan_id;
665         if (adapter->vlgrp) {
666                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
667                         if (adapter->hw.mng_cookie.status &
668                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
669                                 igb_vlan_rx_add_vid(netdev, vid);
670                                 adapter->mng_vlan_id = vid;
671                         } else
672                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
673
674                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
675                                         (vid != old_vid) &&
676                             !vlan_group_get_device(adapter->vlgrp, old_vid))
677                                 igb_vlan_rx_kill_vid(netdev, old_vid);
678                 } else
679                         adapter->mng_vlan_id = vid;
680         }
681 }
682
683 /**
684  * igb_release_hw_control - release control of the h/w to f/w
685  * @adapter: address of board private structure
686  *
687  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
688  * For ASF and Pass Through versions of f/w this means that the
689  * driver is no longer loaded.
690  *
691  **/
692 static void igb_release_hw_control(struct igb_adapter *adapter)
693 {
694         struct e1000_hw *hw = &adapter->hw;
695         u32 ctrl_ext;
696
697         /* Let firmware take over control of h/w */
698         ctrl_ext = rd32(E1000_CTRL_EXT);
699         wr32(E1000_CTRL_EXT,
700                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
701 }
702
703
704 /**
705  * igb_get_hw_control - get control of the h/w from f/w
706  * @adapter: address of board private structure
707  *
708  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
709  * For ASF and Pass Through versions of f/w this means that
710  * the driver is loaded.
711  *
712  **/
713 static void igb_get_hw_control(struct igb_adapter *adapter)
714 {
715         struct e1000_hw *hw = &adapter->hw;
716         u32 ctrl_ext;
717
718         /* Let firmware know the driver has taken over */
719         ctrl_ext = rd32(E1000_CTRL_EXT);
720         wr32(E1000_CTRL_EXT,
721                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
722 }
723
724 /**
725  * igb_configure - configure the hardware for RX and TX
726  * @adapter: private board structure
727  **/
728 static void igb_configure(struct igb_adapter *adapter)
729 {
730         struct net_device *netdev = adapter->netdev;
731         int i;
732
733         igb_get_hw_control(adapter);
734         igb_set_multi(netdev);
735
736         igb_restore_vlan(adapter);
737
738         igb_configure_tx(adapter);
739         igb_setup_rctl(adapter);
740         igb_configure_rx(adapter);
741
742         igb_rx_fifo_flush_82575(&adapter->hw);
743
744         /* call IGB_DESC_UNUSED which always leaves
745          * at least 1 descriptor unused to make sure
746          * next_to_use != next_to_clean */
747         for (i = 0; i < adapter->num_rx_queues; i++) {
748                 struct igb_ring *ring = &adapter->rx_ring[i];
749                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
750         }
751
752
753         adapter->tx_queue_len = netdev->tx_queue_len;
754 }
755
756
757 /**
758  * igb_up - Open the interface and prepare it to handle traffic
759  * @adapter: board private structure
760  **/
761
762 int igb_up(struct igb_adapter *adapter)
763 {
764         struct e1000_hw *hw = &adapter->hw;
765         int i;
766
767         /* hardware has been reset, we need to reload some things */
768         igb_configure(adapter);
769
770         clear_bit(__IGB_DOWN, &adapter->state);
771
772         for (i = 0; i < adapter->num_rx_queues; i++)
773                 napi_enable(&adapter->rx_ring[i].napi);
774         if (adapter->msix_entries)
775                 igb_configure_msix(adapter);
776
777         /* Clear any pending interrupts. */
778         rd32(E1000_ICR);
779         igb_irq_enable(adapter);
780
781         /* Fire a link change interrupt to start the watchdog. */
782         wr32(E1000_ICS, E1000_ICS_LSC);
783         return 0;
784 }
785
786 void igb_down(struct igb_adapter *adapter)
787 {
788         struct e1000_hw *hw = &adapter->hw;
789         struct net_device *netdev = adapter->netdev;
790         u32 tctl, rctl;
791         int i;
792
793         /* signal that we're down so the interrupt handler does not
794          * reschedule our watchdog timer */
795         set_bit(__IGB_DOWN, &adapter->state);
796
797         /* disable receives in the hardware */
798         rctl = rd32(E1000_RCTL);
799         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
800         /* flush and sleep below */
801
802         netif_tx_stop_all_queues(netdev);
803
804         /* disable transmits in the hardware */
805         tctl = rd32(E1000_TCTL);
806         tctl &= ~E1000_TCTL_EN;
807         wr32(E1000_TCTL, tctl);
808         /* flush both disables and wait for them to finish */
809         wrfl();
810         msleep(10);
811
812         for (i = 0; i < adapter->num_rx_queues; i++)
813                 napi_disable(&adapter->rx_ring[i].napi);
814
815         igb_irq_disable(adapter);
816
817         del_timer_sync(&adapter->watchdog_timer);
818         del_timer_sync(&adapter->phy_info_timer);
819
820         netdev->tx_queue_len = adapter->tx_queue_len;
821         netif_carrier_off(netdev);
822         adapter->link_speed = 0;
823         adapter->link_duplex = 0;
824
825         if (!pci_channel_offline(adapter->pdev))
826                 igb_reset(adapter);
827         igb_clean_all_tx_rings(adapter);
828         igb_clean_all_rx_rings(adapter);
829 }
830
831 void igb_reinit_locked(struct igb_adapter *adapter)
832 {
833         WARN_ON(in_interrupt());
834         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
835                 msleep(1);
836         igb_down(adapter);
837         igb_up(adapter);
838         clear_bit(__IGB_RESETTING, &adapter->state);
839 }
840
841 void igb_reset(struct igb_adapter *adapter)
842 {
843         struct e1000_hw *hw = &adapter->hw;
844         struct e1000_mac_info *mac = &hw->mac;
845         struct e1000_fc_info *fc = &hw->fc;
846         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
847         u16 hwm;
848
849         /* Repartition Pba for greater than 9k mtu
850          * To take effect CTRL.RST is required.
851          */
852         if (mac->type != e1000_82576) {
853         pba = E1000_PBA_34K;
854         }
855         else {
856                 pba = E1000_PBA_64K;
857         }
858
859         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
860             (mac->type < e1000_82576)) {
861                 /* adjust PBA for jumbo frames */
862                 wr32(E1000_PBA, pba);
863
864                 /* To maintain wire speed transmits, the Tx FIFO should be
865                  * large enough to accommodate two full transmit packets,
866                  * rounded up to the next 1KB and expressed in KB.  Likewise,
867                  * the Rx FIFO should be large enough to accommodate at least
868                  * one full receive packet and is similarly rounded up and
869                  * expressed in KB. */
870                 pba = rd32(E1000_PBA);
871                 /* upper 16 bits has Tx packet buffer allocation size in KB */
872                 tx_space = pba >> 16;
873                 /* lower 16 bits has Rx packet buffer allocation size in KB */
874                 pba &= 0xffff;
875                 /* the tx fifo also stores 16 bytes of information about the tx
876                  * but don't include ethernet FCS because hardware appends it */
877                 min_tx_space = (adapter->max_frame_size +
878                                 sizeof(struct e1000_tx_desc) -
879                                 ETH_FCS_LEN) * 2;
880                 min_tx_space = ALIGN(min_tx_space, 1024);
881                 min_tx_space >>= 10;
882                 /* software strips receive CRC, so leave room for it */
883                 min_rx_space = adapter->max_frame_size;
884                 min_rx_space = ALIGN(min_rx_space, 1024);
885                 min_rx_space >>= 10;
886
887                 /* If current Tx allocation is less than the min Tx FIFO size,
888                  * and the min Tx FIFO size is less than the current Rx FIFO
889                  * allocation, take space away from current Rx allocation */
890                 if (tx_space < min_tx_space &&
891                     ((min_tx_space - tx_space) < pba)) {
892                         pba = pba - (min_tx_space - tx_space);
893
894                         /* if short on rx space, rx wins and must trump tx
895                          * adjustment */
896                         if (pba < min_rx_space)
897                                 pba = min_rx_space;
898                 }
899                 wr32(E1000_PBA, pba);
900         }
901
902         /* flow control settings */
903         /* The high water mark must be low enough to fit one full frame
904          * (or the size used for early receive) above it in the Rx FIFO.
905          * Set it to the lower of:
906          * - 90% of the Rx FIFO size, or
907          * - the full Rx FIFO size minus one full frame */
908         hwm = min(((pba << 10) * 9 / 10),
909                         ((pba << 10) - 2 * adapter->max_frame_size));
910
911         if (mac->type < e1000_82576) {
912                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
913                 fc->low_water = fc->high_water - 8;
914         } else {
915                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
916                 fc->low_water = fc->high_water - 16;
917         }
918         fc->pause_time = 0xFFFF;
919         fc->send_xon = 1;
920         fc->type = fc->original_type;
921
922         /* Allow time for pending master requests to run */
923         adapter->hw.mac.ops.reset_hw(&adapter->hw);
924         wr32(E1000_WUC, 0);
925
926         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
927                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
928
929         igb_update_mng_vlan(adapter);
930
931         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
932         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
933
934         igb_reset_adaptive(&adapter->hw);
935         igb_get_phy_info(&adapter->hw);
936 }
937
938 /**
939  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940  * @pdev: PCI device information struct
941  *
942  * Returns true if an adapter needs ioport resources
943  **/
944 static int igb_is_need_ioport(struct pci_dev *pdev)
945 {
946         switch (pdev->device) {
947         /* Currently there are no adapters that need ioport resources */
948         default:
949                 return false;
950         }
951 }
952
953 static const struct net_device_ops igb_netdev_ops = {
954         .ndo_open               = igb_open,
955         .ndo_stop               = igb_close,
956         .ndo_start_xmit         = igb_xmit_frame_adv,
957         .ndo_get_stats          = igb_get_stats,
958         .ndo_set_multicast_list = igb_set_multi,
959         .ndo_set_mac_address    = igb_set_mac,
960         .ndo_change_mtu         = igb_change_mtu,
961         .ndo_do_ioctl           = igb_ioctl,
962         .ndo_tx_timeout         = igb_tx_timeout,
963         .ndo_validate_addr      = eth_validate_addr,
964         .ndo_vlan_rx_register   = igb_vlan_rx_register,
965         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
966         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
967 #ifdef CONFIG_NET_POLL_CONTROLLER
968         .ndo_poll_controller    = igb_netpoll,
969 #endif
970 };
971
972 /**
973  * igb_probe - Device Initialization Routine
974  * @pdev: PCI device information struct
975  * @ent: entry in igb_pci_tbl
976  *
977  * Returns 0 on success, negative on failure
978  *
979  * igb_probe initializes an adapter identified by a pci_dev structure.
980  * The OS initialization, configuring of the adapter private structure,
981  * and a hardware reset occur.
982  **/
983 static int __devinit igb_probe(struct pci_dev *pdev,
984                                const struct pci_device_id *ent)
985 {
986         struct net_device *netdev;
987         struct igb_adapter *adapter;
988         struct e1000_hw *hw;
989         struct pci_dev *us_dev;
990         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
991         unsigned long mmio_start, mmio_len;
992         int i, err, pci_using_dac, pos;
993         u16 eeprom_data = 0, state = 0;
994         u16 eeprom_apme_mask = IGB_EEPROM_APME;
995         u32 part_num;
996         int bars, need_ioport;
997
998         /* do not allocate ioport bars when not needed */
999         need_ioport = igb_is_need_ioport(pdev);
1000         if (need_ioport) {
1001                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1002                 err = pci_enable_device(pdev);
1003         } else {
1004                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1005                 err = pci_enable_device_mem(pdev);
1006         }
1007         if (err)
1008                 return err;
1009
1010         pci_using_dac = 0;
1011         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1012         if (!err) {
1013                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1014                 if (!err)
1015                         pci_using_dac = 1;
1016         } else {
1017                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1018                 if (err) {
1019                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1020                         if (err) {
1021                                 dev_err(&pdev->dev, "No usable DMA "
1022                                         "configuration, aborting\n");
1023                                 goto err_dma;
1024                         }
1025                 }
1026         }
1027
1028         /* 82575 requires that the pci-e link partner disable the L0s state */
1029         switch (pdev->device) {
1030         case E1000_DEV_ID_82575EB_COPPER:
1031         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1032         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1033                 us_dev = pdev->bus->self;
1034                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1035                 if (pos) {
1036                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1037                                              &state);
1038                         state &= ~PCIE_LINK_STATE_L0S;
1039                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1040                                               state);
1041                         dev_info(&pdev->dev,
1042                                  "Disabling ASPM L0s upstream switch port %s\n",
1043                                  pci_name(us_dev));
1044                 }
1045         default:
1046                 break;
1047         }
1048
1049         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1050         if (err)
1051                 goto err_pci_reg;
1052
1053         pci_enable_pcie_error_reporting(pdev);
1054
1055         pci_set_master(pdev);
1056         pci_save_state(pdev);
1057
1058         err = -ENOMEM;
1059         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1060         if (!netdev)
1061                 goto err_alloc_etherdev;
1062
1063         SET_NETDEV_DEV(netdev, &pdev->dev);
1064
1065         pci_set_drvdata(pdev, netdev);
1066         adapter = netdev_priv(netdev);
1067         adapter->netdev = netdev;
1068         adapter->pdev = pdev;
1069         hw = &adapter->hw;
1070         hw->back = adapter;
1071         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1072         adapter->bars = bars;
1073         adapter->need_ioport = need_ioport;
1074
1075         mmio_start = pci_resource_start(pdev, 0);
1076         mmio_len = pci_resource_len(pdev, 0);
1077
1078         err = -EIO;
1079         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1080         if (!adapter->hw.hw_addr)
1081                 goto err_ioremap;
1082
1083         netdev->netdev_ops = &igb_netdev_ops;
1084         igb_set_ethtool_ops(netdev);
1085         netdev->watchdog_timeo = 5 * HZ;
1086
1087         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1088
1089         netdev->mem_start = mmio_start;
1090         netdev->mem_end = mmio_start + mmio_len;
1091
1092         /* PCI config space info */
1093         hw->vendor_id = pdev->vendor;
1094         hw->device_id = pdev->device;
1095         hw->revision_id = pdev->revision;
1096         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1097         hw->subsystem_device_id = pdev->subsystem_device;
1098
1099         /* setup the private structure */
1100         hw->back = adapter;
1101         /* Copy the default MAC, PHY and NVM function pointers */
1102         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1103         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1104         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1105         /* Initialize skew-specific constants */
1106         err = ei->get_invariants(hw);
1107         if (err)
1108                 goto err_hw_init;
1109
1110         err = igb_sw_init(adapter);
1111         if (err)
1112                 goto err_sw_init;
1113
1114         igb_get_bus_info_pcie(hw);
1115
1116         /* set flags */
1117         switch (hw->mac.type) {
1118         case e1000_82576:
1119         case e1000_82575:
1120                 adapter->flags |= IGB_FLAG_HAS_DCA;
1121                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1122                 break;
1123         default:
1124                 break;
1125         }
1126
1127         hw->phy.autoneg_wait_to_complete = false;
1128         hw->mac.adaptive_ifs = true;
1129
1130         /* Copper options */
1131         if (hw->phy.media_type == e1000_media_type_copper) {
1132                 hw->phy.mdix = AUTO_ALL_MODES;
1133                 hw->phy.disable_polarity_correction = false;
1134                 hw->phy.ms_type = e1000_ms_hw_default;
1135         }
1136
1137         if (igb_check_reset_block(hw))
1138                 dev_info(&pdev->dev,
1139                         "PHY reset is blocked due to SOL/IDER session.\n");
1140
1141         netdev->features = NETIF_F_SG |
1142                            NETIF_F_HW_CSUM |
1143                            NETIF_F_HW_VLAN_TX |
1144                            NETIF_F_HW_VLAN_RX |
1145                            NETIF_F_HW_VLAN_FILTER;
1146
1147         netdev->features |= NETIF_F_TSO;
1148         netdev->features |= NETIF_F_TSO6;
1149
1150 #ifdef CONFIG_IGB_LRO
1151         netdev->features |= NETIF_F_LRO;
1152 #endif
1153
1154         netdev->vlan_features |= NETIF_F_TSO;
1155         netdev->vlan_features |= NETIF_F_TSO6;
1156         netdev->vlan_features |= NETIF_F_HW_CSUM;
1157         netdev->vlan_features |= NETIF_F_SG;
1158
1159         if (pci_using_dac)
1160                 netdev->features |= NETIF_F_HIGHDMA;
1161
1162         netdev->features |= NETIF_F_LLTX;
1163         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1164
1165         /* before reading the NVM, reset the controller to put the device in a
1166          * known good starting state */
1167         hw->mac.ops.reset_hw(hw);
1168
1169         /* make sure the NVM is good */
1170         if (igb_validate_nvm_checksum(hw) < 0) {
1171                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1172                 err = -EIO;
1173                 goto err_eeprom;
1174         }
1175
1176         /* copy the MAC address out of the NVM */
1177         if (hw->mac.ops.read_mac_addr(hw))
1178                 dev_err(&pdev->dev, "NVM Read Error\n");
1179
1180         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1181         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1182
1183         if (!is_valid_ether_addr(netdev->perm_addr)) {
1184                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1185                 err = -EIO;
1186                 goto err_eeprom;
1187         }
1188
1189         init_timer(&adapter->watchdog_timer);
1190         adapter->watchdog_timer.function = &igb_watchdog;
1191         adapter->watchdog_timer.data = (unsigned long) adapter;
1192
1193         init_timer(&adapter->phy_info_timer);
1194         adapter->phy_info_timer.function = &igb_update_phy_info;
1195         adapter->phy_info_timer.data = (unsigned long) adapter;
1196
1197         INIT_WORK(&adapter->reset_task, igb_reset_task);
1198         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1199
1200         /* Initialize link & ring properties that are user-changeable */
1201         adapter->tx_ring->count = 256;
1202         for (i = 0; i < adapter->num_tx_queues; i++)
1203                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1204         adapter->rx_ring->count = 256;
1205         for (i = 0; i < adapter->num_rx_queues; i++)
1206                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1207
1208         adapter->fc_autoneg = true;
1209         hw->mac.autoneg = true;
1210         hw->phy.autoneg_advertised = 0x2f;
1211
1212         hw->fc.original_type = e1000_fc_default;
1213         hw->fc.type = e1000_fc_default;
1214
1215         adapter->itr_setting = 3;
1216         adapter->itr = IGB_START_ITR;
1217
1218         igb_validate_mdi_setting(hw);
1219
1220         adapter->rx_csum = 1;
1221
1222         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1223          * enable the ACPI Magic Packet filter
1224          */
1225
1226         if (hw->bus.func == 0 ||
1227             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1228                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1229                                      &eeprom_data);
1230
1231         if (eeprom_data & eeprom_apme_mask)
1232                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1233
1234         /* now that we have the eeprom settings, apply the special cases where
1235          * the eeprom may be wrong or the board simply won't support wake on
1236          * lan on a particular port */
1237         switch (pdev->device) {
1238         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1239                 adapter->eeprom_wol = 0;
1240                 break;
1241         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1242         case E1000_DEV_ID_82576_FIBER:
1243         case E1000_DEV_ID_82576_SERDES:
1244                 /* Wake events only supported on port A for dual fiber
1245                  * regardless of eeprom setting */
1246                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1247                         adapter->eeprom_wol = 0;
1248                 break;
1249         }
1250
1251         /* initialize the wol settings based on the eeprom settings */
1252         adapter->wol = adapter->eeprom_wol;
1253         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1254
1255         /* reset the hardware with the new settings */
1256         igb_reset(adapter);
1257
1258         /* let the f/w know that the h/w is now under the control of the
1259          * driver. */
1260         igb_get_hw_control(adapter);
1261
1262         /* tell the stack to leave us alone until igb_open() is called */
1263         netif_carrier_off(netdev);
1264         netif_tx_stop_all_queues(netdev);
1265
1266         strcpy(netdev->name, "eth%d");
1267         err = register_netdev(netdev);
1268         if (err)
1269                 goto err_register;
1270
1271 #ifdef CONFIG_IGB_DCA
1272         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1273             (dca_add_requester(&pdev->dev) == 0)) {
1274                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1275                 dev_info(&pdev->dev, "DCA enabled\n");
1276                 /* Always use CB2 mode, difference is masked
1277                  * in the CB driver. */
1278                 wr32(E1000_DCA_CTRL, 2);
1279                 igb_setup_dca(adapter);
1280         }
1281 #endif
1282
1283         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1284         /* print bus type/speed/width info */
1285         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1286                  netdev->name,
1287                  ((hw->bus.speed == e1000_bus_speed_2500)
1288                   ? "2.5Gb/s" : "unknown"),
1289                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1290                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1291                   ? "Width x1" : "unknown"),
1292                  netdev->dev_addr);
1293
1294         igb_read_part_num(hw, &part_num);
1295         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1296                 (part_num >> 8), (part_num & 0xff));
1297
1298         dev_info(&pdev->dev,
1299                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1300                 adapter->msix_entries ? "MSI-X" :
1301                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1302                 adapter->num_rx_queues, adapter->num_tx_queues);
1303
1304         return 0;
1305
1306 err_register:
1307         igb_release_hw_control(adapter);
1308 err_eeprom:
1309         if (!igb_check_reset_block(hw))
1310                 igb_reset_phy(hw);
1311
1312         if (hw->flash_address)
1313                 iounmap(hw->flash_address);
1314
1315         igb_remove_device(hw);
1316         igb_free_queues(adapter);
1317 err_sw_init:
1318 err_hw_init:
1319         iounmap(hw->hw_addr);
1320 err_ioremap:
1321         free_netdev(netdev);
1322 err_alloc_etherdev:
1323         pci_release_selected_regions(pdev, bars);
1324 err_pci_reg:
1325 err_dma:
1326         pci_disable_device(pdev);
1327         return err;
1328 }
1329
1330 /**
1331  * igb_remove - Device Removal Routine
1332  * @pdev: PCI device information struct
1333  *
1334  * igb_remove is called by the PCI subsystem to alert the driver
1335  * that it should release a PCI device.  The could be caused by a
1336  * Hot-Plug event, or because the driver is going to be removed from
1337  * memory.
1338  **/
1339 static void __devexit igb_remove(struct pci_dev *pdev)
1340 {
1341         struct net_device *netdev = pci_get_drvdata(pdev);
1342         struct igb_adapter *adapter = netdev_priv(netdev);
1343 #ifdef CONFIG_IGB_DCA
1344         struct e1000_hw *hw = &adapter->hw;
1345 #endif
1346
1347         /* flush_scheduled work may reschedule our watchdog task, so
1348          * explicitly disable watchdog tasks from being rescheduled  */
1349         set_bit(__IGB_DOWN, &adapter->state);
1350         del_timer_sync(&adapter->watchdog_timer);
1351         del_timer_sync(&adapter->phy_info_timer);
1352
1353         flush_scheduled_work();
1354
1355 #ifdef CONFIG_IGB_DCA
1356         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1357                 dev_info(&pdev->dev, "DCA disabled\n");
1358                 dca_remove_requester(&pdev->dev);
1359                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1360                 wr32(E1000_DCA_CTRL, 1);
1361         }
1362 #endif
1363
1364         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1365          * would have already happened in close and is redundant. */
1366         igb_release_hw_control(adapter);
1367
1368         unregister_netdev(netdev);
1369
1370         if (!igb_check_reset_block(&adapter->hw))
1371                 igb_reset_phy(&adapter->hw);
1372
1373         igb_remove_device(&adapter->hw);
1374         igb_reset_interrupt_capability(adapter);
1375
1376         igb_free_queues(adapter);
1377
1378         iounmap(adapter->hw.hw_addr);
1379         if (adapter->hw.flash_address)
1380                 iounmap(adapter->hw.flash_address);
1381         pci_release_selected_regions(pdev, adapter->bars);
1382
1383         free_netdev(netdev);
1384
1385         pci_disable_pcie_error_reporting(pdev);
1386
1387         pci_disable_device(pdev);
1388 }
1389
1390 /**
1391  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1392  * @adapter: board private structure to initialize
1393  *
1394  * igb_sw_init initializes the Adapter private data structure.
1395  * Fields are initialized based on PCI device information and
1396  * OS network device settings (MTU size).
1397  **/
1398 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1399 {
1400         struct e1000_hw *hw = &adapter->hw;
1401         struct net_device *netdev = adapter->netdev;
1402         struct pci_dev *pdev = adapter->pdev;
1403
1404         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1405
1406         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1407         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1408         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1409         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1410         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1411         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1412
1413         /* Number of supported queues. */
1414         /* Having more queues than CPUs doesn't make sense. */
1415         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1416         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1417
1418         /* This call may decrease the number of queues depending on
1419          * interrupt mode. */
1420         igb_set_interrupt_capability(adapter);
1421
1422         if (igb_alloc_queues(adapter)) {
1423                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1424                 return -ENOMEM;
1425         }
1426
1427         /* Explicitly disable IRQ since the NIC can be in any state. */
1428         igb_irq_disable(adapter);
1429
1430         set_bit(__IGB_DOWN, &adapter->state);
1431         return 0;
1432 }
1433
1434 /**
1435  * igb_open - Called when a network interface is made active
1436  * @netdev: network interface device structure
1437  *
1438  * Returns 0 on success, negative value on failure
1439  *
1440  * The open entry point is called when a network interface is made
1441  * active by the system (IFF_UP).  At this point all resources needed
1442  * for transmit and receive operations are allocated, the interrupt
1443  * handler is registered with the OS, the watchdog timer is started,
1444  * and the stack is notified that the interface is ready.
1445  **/
1446 static int igb_open(struct net_device *netdev)
1447 {
1448         struct igb_adapter *adapter = netdev_priv(netdev);
1449         struct e1000_hw *hw = &adapter->hw;
1450         int err;
1451         int i;
1452
1453         /* disallow open during test */
1454         if (test_bit(__IGB_TESTING, &adapter->state))
1455                 return -EBUSY;
1456
1457         /* allocate transmit descriptors */
1458         err = igb_setup_all_tx_resources(adapter);
1459         if (err)
1460                 goto err_setup_tx;
1461
1462         /* allocate receive descriptors */
1463         err = igb_setup_all_rx_resources(adapter);
1464         if (err)
1465                 goto err_setup_rx;
1466
1467         /* e1000_power_up_phy(adapter); */
1468
1469         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1470         if ((adapter->hw.mng_cookie.status &
1471              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1472                 igb_update_mng_vlan(adapter);
1473
1474         /* before we allocate an interrupt, we must be ready to handle it.
1475          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1476          * as soon as we call pci_request_irq, so we have to setup our
1477          * clean_rx handler before we do so.  */
1478         igb_configure(adapter);
1479
1480         err = igb_request_irq(adapter);
1481         if (err)
1482                 goto err_req_irq;
1483
1484         /* From here on the code is the same as igb_up() */
1485         clear_bit(__IGB_DOWN, &adapter->state);
1486
1487         for (i = 0; i < adapter->num_rx_queues; i++)
1488                 napi_enable(&adapter->rx_ring[i].napi);
1489
1490         /* Clear any pending interrupts. */
1491         rd32(E1000_ICR);
1492
1493         igb_irq_enable(adapter);
1494
1495         netif_tx_start_all_queues(netdev);
1496
1497         /* Fire a link status change interrupt to start the watchdog. */
1498         wr32(E1000_ICS, E1000_ICS_LSC);
1499
1500         return 0;
1501
1502 err_req_irq:
1503         igb_release_hw_control(adapter);
1504         /* e1000_power_down_phy(adapter); */
1505         igb_free_all_rx_resources(adapter);
1506 err_setup_rx:
1507         igb_free_all_tx_resources(adapter);
1508 err_setup_tx:
1509         igb_reset(adapter);
1510
1511         return err;
1512 }
1513
1514 /**
1515  * igb_close - Disables a network interface
1516  * @netdev: network interface device structure
1517  *
1518  * Returns 0, this is not allowed to fail
1519  *
1520  * The close entry point is called when an interface is de-activated
1521  * by the OS.  The hardware is still under the driver's control, but
1522  * needs to be disabled.  A global MAC reset is issued to stop the
1523  * hardware, and all transmit and receive resources are freed.
1524  **/
1525 static int igb_close(struct net_device *netdev)
1526 {
1527         struct igb_adapter *adapter = netdev_priv(netdev);
1528
1529         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1530         igb_down(adapter);
1531
1532         igb_free_irq(adapter);
1533
1534         igb_free_all_tx_resources(adapter);
1535         igb_free_all_rx_resources(adapter);
1536
1537         /* kill manageability vlan ID if supported, but not if a vlan with
1538          * the same ID is registered on the host OS (let 8021q kill it) */
1539         if ((adapter->hw.mng_cookie.status &
1540                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1541              !(adapter->vlgrp &&
1542                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1543                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1544
1545         return 0;
1546 }
1547
1548 /**
1549  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1550  * @adapter: board private structure
1551  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1552  *
1553  * Return 0 on success, negative on failure
1554  **/
1555
1556 int igb_setup_tx_resources(struct igb_adapter *adapter,
1557                            struct igb_ring *tx_ring)
1558 {
1559         struct pci_dev *pdev = adapter->pdev;
1560         int size;
1561
1562         size = sizeof(struct igb_buffer) * tx_ring->count;
1563         tx_ring->buffer_info = vmalloc(size);
1564         if (!tx_ring->buffer_info)
1565                 goto err;
1566         memset(tx_ring->buffer_info, 0, size);
1567
1568         /* round up to nearest 4K */
1569         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1570                         + sizeof(u32);
1571         tx_ring->size = ALIGN(tx_ring->size, 4096);
1572
1573         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1574                                              &tx_ring->dma);
1575
1576         if (!tx_ring->desc)
1577                 goto err;
1578
1579         tx_ring->adapter = adapter;
1580         tx_ring->next_to_use = 0;
1581         tx_ring->next_to_clean = 0;
1582         return 0;
1583
1584 err:
1585         vfree(tx_ring->buffer_info);
1586         dev_err(&adapter->pdev->dev,
1587                 "Unable to allocate memory for the transmit descriptor ring\n");
1588         return -ENOMEM;
1589 }
1590
1591 /**
1592  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1593  *                                (Descriptors) for all queues
1594  * @adapter: board private structure
1595  *
1596  * Return 0 on success, negative on failure
1597  **/
1598 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1599 {
1600         int i, err = 0;
1601         int r_idx;
1602
1603         for (i = 0; i < adapter->num_tx_queues; i++) {
1604                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1605                 if (err) {
1606                         dev_err(&adapter->pdev->dev,
1607                                 "Allocation for Tx Queue %u failed\n", i);
1608                         for (i--; i >= 0; i--)
1609                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1610                         break;
1611                 }
1612         }
1613
1614         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1615                 r_idx = i % adapter->num_tx_queues;
1616                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1617         }       
1618         return err;
1619 }
1620
1621 /**
1622  * igb_configure_tx - Configure transmit Unit after Reset
1623  * @adapter: board private structure
1624  *
1625  * Configure the Tx unit of the MAC after a reset.
1626  **/
1627 static void igb_configure_tx(struct igb_adapter *adapter)
1628 {
1629         u64 tdba, tdwba;
1630         struct e1000_hw *hw = &adapter->hw;
1631         u32 tctl;
1632         u32 txdctl, txctrl;
1633         int i;
1634
1635         for (i = 0; i < adapter->num_tx_queues; i++) {
1636                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1637
1638                 wr32(E1000_TDLEN(i),
1639                                 ring->count * sizeof(struct e1000_tx_desc));
1640                 tdba = ring->dma;
1641                 wr32(E1000_TDBAL(i),
1642                                 tdba & 0x00000000ffffffffULL);
1643                 wr32(E1000_TDBAH(i), tdba >> 32);
1644
1645                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1646                 tdwba |= 1; /* enable head wb */
1647                 wr32(E1000_TDWBAL(i),
1648                                 tdwba & 0x00000000ffffffffULL);
1649                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1650
1651                 ring->head = E1000_TDH(i);
1652                 ring->tail = E1000_TDT(i);
1653                 writel(0, hw->hw_addr + ring->tail);
1654                 writel(0, hw->hw_addr + ring->head);
1655                 txdctl = rd32(E1000_TXDCTL(i));
1656                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1657                 wr32(E1000_TXDCTL(i), txdctl);
1658
1659                 /* Turn off Relaxed Ordering on head write-backs.  The
1660                  * writebacks MUST be delivered in order or it will
1661                  * completely screw up our bookeeping.
1662                  */
1663                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1664                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1665                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1666         }
1667
1668
1669
1670         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1671
1672         /* Program the Transmit Control Register */
1673
1674         tctl = rd32(E1000_TCTL);
1675         tctl &= ~E1000_TCTL_CT;
1676         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1677                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1678
1679         igb_config_collision_dist(hw);
1680
1681         /* Setup Transmit Descriptor Settings for eop descriptor */
1682         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1683
1684         /* Enable transmits */
1685         tctl |= E1000_TCTL_EN;
1686
1687         wr32(E1000_TCTL, tctl);
1688 }
1689
1690 /**
1691  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1692  * @adapter: board private structure
1693  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1694  *
1695  * Returns 0 on success, negative on failure
1696  **/
1697
1698 int igb_setup_rx_resources(struct igb_adapter *adapter,
1699                            struct igb_ring *rx_ring)
1700 {
1701         struct pci_dev *pdev = adapter->pdev;
1702         int size, desc_len;
1703
1704 #ifdef CONFIG_IGB_LRO
1705         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1706         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1707         if (!rx_ring->lro_mgr.lro_arr)
1708                 goto err;
1709         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1710 #endif
1711
1712         size = sizeof(struct igb_buffer) * rx_ring->count;
1713         rx_ring->buffer_info = vmalloc(size);
1714         if (!rx_ring->buffer_info)
1715                 goto err;
1716         memset(rx_ring->buffer_info, 0, size);
1717
1718         desc_len = sizeof(union e1000_adv_rx_desc);
1719
1720         /* Round up to nearest 4K */
1721         rx_ring->size = rx_ring->count * desc_len;
1722         rx_ring->size = ALIGN(rx_ring->size, 4096);
1723
1724         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1725                                              &rx_ring->dma);
1726
1727         if (!rx_ring->desc)
1728                 goto err;
1729
1730         rx_ring->next_to_clean = 0;
1731         rx_ring->next_to_use = 0;
1732
1733         rx_ring->adapter = adapter;
1734
1735         return 0;
1736
1737 err:
1738 #ifdef CONFIG_IGB_LRO
1739         vfree(rx_ring->lro_mgr.lro_arr);
1740         rx_ring->lro_mgr.lro_arr = NULL;
1741 #endif
1742         vfree(rx_ring->buffer_info);
1743         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1744                 "the receive descriptor ring\n");
1745         return -ENOMEM;
1746 }
1747
1748 /**
1749  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1750  *                                (Descriptors) for all queues
1751  * @adapter: board private structure
1752  *
1753  * Return 0 on success, negative on failure
1754  **/
1755 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1756 {
1757         int i, err = 0;
1758
1759         for (i = 0; i < adapter->num_rx_queues; i++) {
1760                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1761                 if (err) {
1762                         dev_err(&adapter->pdev->dev,
1763                                 "Allocation for Rx Queue %u failed\n", i);
1764                         for (i--; i >= 0; i--)
1765                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1766                         break;
1767                 }
1768         }
1769
1770         return err;
1771 }
1772
1773 /**
1774  * igb_setup_rctl - configure the receive control registers
1775  * @adapter: Board private structure
1776  **/
1777 static void igb_setup_rctl(struct igb_adapter *adapter)
1778 {
1779         struct e1000_hw *hw = &adapter->hw;
1780         u32 rctl;
1781         u32 srrctl = 0;
1782         int i;
1783
1784         rctl = rd32(E1000_RCTL);
1785
1786         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1788
1789         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1790                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792         /*
1793          * enable stripping of CRC. It's unlikely this will break BMC
1794          * redirection as it did with e1000. Newer features require
1795          * that the HW strips the CRC.
1796         */
1797         rctl |= E1000_RCTL_SECRC;
1798
1799         /*
1800          * disable store bad packets, long packet enable, and clear size bits.
1801          */
1802         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_LPE | E1000_RCTL_SZ_256);
1803
1804         if (adapter->netdev->mtu <= ETH_DATA_LEN) {
1805                 /* Setup buffer sizes */
1806                 switch (adapter->rx_buffer_len) {
1807                 case IGB_RXBUFFER_256:
1808                         rctl |= E1000_RCTL_SZ_256;
1809                         break;
1810                 case IGB_RXBUFFER_512:
1811                         rctl |= E1000_RCTL_SZ_512;
1812                         break;
1813                 case IGB_RXBUFFER_1024:
1814                         rctl |= E1000_RCTL_SZ_1024;
1815                         break;
1816                 default:
1817                         rctl |= E1000_RCTL_SZ_2048;
1818                         break;
1819                 }
1820         } else {
1821                 rctl |= E1000_RCTL_LPE;
1822                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1823         }
1824
1825         /* 82575 and greater support packet-split where the protocol
1826          * header is placed in skb->data and the packet data is
1827          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1828          * In the case of a non-split, skb->data is linearly filled,
1829          * followed by the page buffers.  Therefore, skb->data is
1830          * sized to hold the largest protocol header.
1831          */
1832         /* allocations using alloc_page take too long for regular MTU
1833          * so only enable packet split for jumbo frames */
1834         if (rctl & E1000_RCTL_LPE) {
1835                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1836                 srrctl |= adapter->rx_ps_hdr_size <<
1837                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1838                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1839         } else {
1840                 adapter->rx_ps_hdr_size = 0;
1841                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1842         }
1843
1844         for (i = 0; i < adapter->num_rx_queues; i++)
1845                 wr32(E1000_SRRCTL(i), srrctl);
1846
1847         wr32(E1000_RCTL, rctl);
1848 }
1849
1850 /**
1851  * igb_configure_rx - Configure receive Unit after Reset
1852  * @adapter: board private structure
1853  *
1854  * Configure the Rx unit of the MAC after a reset.
1855  **/
1856 static void igb_configure_rx(struct igb_adapter *adapter)
1857 {
1858         u64 rdba;
1859         struct e1000_hw *hw = &adapter->hw;
1860         u32 rctl, rxcsum;
1861         u32 rxdctl;
1862         int i;
1863
1864         /* disable receives while setting up the descriptors */
1865         rctl = rd32(E1000_RCTL);
1866         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1867         wrfl();
1868         mdelay(10);
1869
1870         if (adapter->itr_setting > 3)
1871                 wr32(E1000_ITR, adapter->itr);
1872
1873         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1874          * the Base and Length of the Rx Descriptor Ring */
1875         for (i = 0; i < adapter->num_rx_queues; i++) {
1876                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1877                 rdba = ring->dma;
1878                 wr32(E1000_RDBAL(i),
1879                                 rdba & 0x00000000ffffffffULL);
1880                 wr32(E1000_RDBAH(i), rdba >> 32);
1881                 wr32(E1000_RDLEN(i),
1882                                ring->count * sizeof(union e1000_adv_rx_desc));
1883
1884                 ring->head = E1000_RDH(i);
1885                 ring->tail = E1000_RDT(i);
1886                 writel(0, hw->hw_addr + ring->tail);
1887                 writel(0, hw->hw_addr + ring->head);
1888
1889                 rxdctl = rd32(E1000_RXDCTL(i));
1890                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1891                 rxdctl &= 0xFFF00000;
1892                 rxdctl |= IGB_RX_PTHRESH;
1893                 rxdctl |= IGB_RX_HTHRESH << 8;
1894                 rxdctl |= IGB_RX_WTHRESH << 16;
1895                 wr32(E1000_RXDCTL(i), rxdctl);
1896 #ifdef CONFIG_IGB_LRO
1897                 /* Intitial LRO Settings */
1898                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1899                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1900                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1901                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1902                 ring->lro_mgr.dev = adapter->netdev;
1903                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1904                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1905 #endif
1906         }
1907
1908         if (adapter->num_rx_queues > 1) {
1909                 u32 random[10];
1910                 u32 mrqc;
1911                 u32 j, shift;
1912                 union e1000_reta {
1913                         u32 dword;
1914                         u8  bytes[4];
1915                 } reta;
1916
1917                 get_random_bytes(&random[0], 40);
1918
1919                 if (hw->mac.type >= e1000_82576)
1920                         shift = 0;
1921                 else
1922                         shift = 6;
1923                 for (j = 0; j < (32 * 4); j++) {
1924                         reta.bytes[j & 3] =
1925                                 (j % adapter->num_rx_queues) << shift;
1926                         if ((j & 3) == 3)
1927                                 writel(reta.dword,
1928                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1929                 }
1930                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1931
1932                 /* Fill out hash function seeds */
1933                 for (j = 0; j < 10; j++)
1934                         array_wr32(E1000_RSSRK(0), j, random[j]);
1935
1936                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1937                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1938                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1939                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1940                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1941                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1942                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1943                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1944
1945
1946                 wr32(E1000_MRQC, mrqc);
1947
1948                 /* Multiqueue and raw packet checksumming are mutually
1949                  * exclusive.  Note that this not the same as TCP/IP
1950                  * checksumming, which works fine. */
1951                 rxcsum = rd32(E1000_RXCSUM);
1952                 rxcsum |= E1000_RXCSUM_PCSD;
1953                 wr32(E1000_RXCSUM, rxcsum);
1954         } else {
1955                 /* Enable Receive Checksum Offload for TCP and UDP */
1956                 rxcsum = rd32(E1000_RXCSUM);
1957                 if (adapter->rx_csum) {
1958                         rxcsum |= E1000_RXCSUM_TUOFL;
1959
1960                         /* Enable IPv4 payload checksum for UDP fragments
1961                          * Must be used in conjunction with packet-split. */
1962                         if (adapter->rx_ps_hdr_size)
1963                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1964                 } else {
1965                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1966                         /* don't need to clear IPPCSE as it defaults to 0 */
1967                 }
1968                 wr32(E1000_RXCSUM, rxcsum);
1969         }
1970
1971         if (adapter->vlgrp)
1972                 wr32(E1000_RLPML,
1973                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1974         else
1975                 wr32(E1000_RLPML, adapter->max_frame_size);
1976
1977         /* Enable Receives */
1978         wr32(E1000_RCTL, rctl);
1979 }
1980
1981 /**
1982  * igb_free_tx_resources - Free Tx Resources per Queue
1983  * @tx_ring: Tx descriptor ring for a specific queue
1984  *
1985  * Free all transmit software resources
1986  **/
1987 void igb_free_tx_resources(struct igb_ring *tx_ring)
1988 {
1989         struct pci_dev *pdev = tx_ring->adapter->pdev;
1990
1991         igb_clean_tx_ring(tx_ring);
1992
1993         vfree(tx_ring->buffer_info);
1994         tx_ring->buffer_info = NULL;
1995
1996         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1997
1998         tx_ring->desc = NULL;
1999 }
2000
2001 /**
2002  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2003  * @adapter: board private structure
2004  *
2005  * Free all transmit software resources
2006  **/
2007 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2008 {
2009         int i;
2010
2011         for (i = 0; i < adapter->num_tx_queues; i++)
2012                 igb_free_tx_resources(&adapter->tx_ring[i]);
2013 }
2014
2015 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2016                                            struct igb_buffer *buffer_info)
2017 {
2018         if (buffer_info->dma) {
2019                 pci_unmap_page(adapter->pdev,
2020                                 buffer_info->dma,
2021                                 buffer_info->length,
2022                                 PCI_DMA_TODEVICE);
2023                 buffer_info->dma = 0;
2024         }
2025         if (buffer_info->skb) {
2026                 dev_kfree_skb_any(buffer_info->skb);
2027                 buffer_info->skb = NULL;
2028         }
2029         buffer_info->time_stamp = 0;
2030         /* buffer_info must be completely set up in the transmit path */
2031 }
2032
2033 /**
2034  * igb_clean_tx_ring - Free Tx Buffers
2035  * @tx_ring: ring to be cleaned
2036  **/
2037 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2038 {
2039         struct igb_adapter *adapter = tx_ring->adapter;
2040         struct igb_buffer *buffer_info;
2041         unsigned long size;
2042         unsigned int i;
2043
2044         if (!tx_ring->buffer_info)
2045                 return;
2046         /* Free all the Tx ring sk_buffs */
2047
2048         for (i = 0; i < tx_ring->count; i++) {
2049                 buffer_info = &tx_ring->buffer_info[i];
2050                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2051         }
2052
2053         size = sizeof(struct igb_buffer) * tx_ring->count;
2054         memset(tx_ring->buffer_info, 0, size);
2055
2056         /* Zero out the descriptor ring */
2057
2058         memset(tx_ring->desc, 0, tx_ring->size);
2059
2060         tx_ring->next_to_use = 0;
2061         tx_ring->next_to_clean = 0;
2062
2063         writel(0, adapter->hw.hw_addr + tx_ring->head);
2064         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2065 }
2066
2067 /**
2068  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2069  * @adapter: board private structure
2070  **/
2071 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2072 {
2073         int i;
2074
2075         for (i = 0; i < adapter->num_tx_queues; i++)
2076                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2077 }
2078
2079 /**
2080  * igb_free_rx_resources - Free Rx Resources
2081  * @rx_ring: ring to clean the resources from
2082  *
2083  * Free all receive software resources
2084  **/
2085 void igb_free_rx_resources(struct igb_ring *rx_ring)
2086 {
2087         struct pci_dev *pdev = rx_ring->adapter->pdev;
2088
2089         igb_clean_rx_ring(rx_ring);
2090
2091         vfree(rx_ring->buffer_info);
2092         rx_ring->buffer_info = NULL;
2093
2094 #ifdef CONFIG_IGB_LRO
2095         vfree(rx_ring->lro_mgr.lro_arr);
2096         rx_ring->lro_mgr.lro_arr = NULL;
2097 #endif 
2098
2099         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2100
2101         rx_ring->desc = NULL;
2102 }
2103
2104 /**
2105  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2106  * @adapter: board private structure
2107  *
2108  * Free all receive software resources
2109  **/
2110 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2111 {
2112         int i;
2113
2114         for (i = 0; i < adapter->num_rx_queues; i++)
2115                 igb_free_rx_resources(&adapter->rx_ring[i]);
2116 }
2117
2118 /**
2119  * igb_clean_rx_ring - Free Rx Buffers per Queue
2120  * @rx_ring: ring to free buffers from
2121  **/
2122 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2123 {
2124         struct igb_adapter *adapter = rx_ring->adapter;
2125         struct igb_buffer *buffer_info;
2126         struct pci_dev *pdev = adapter->pdev;
2127         unsigned long size;
2128         unsigned int i;
2129
2130         if (!rx_ring->buffer_info)
2131                 return;
2132         /* Free all the Rx ring sk_buffs */
2133         for (i = 0; i < rx_ring->count; i++) {
2134                 buffer_info = &rx_ring->buffer_info[i];
2135                 if (buffer_info->dma) {
2136                         if (adapter->rx_ps_hdr_size)
2137                                 pci_unmap_single(pdev, buffer_info->dma,
2138                                                  adapter->rx_ps_hdr_size,
2139                                                  PCI_DMA_FROMDEVICE);
2140                         else
2141                                 pci_unmap_single(pdev, buffer_info->dma,
2142                                                  adapter->rx_buffer_len,
2143                                                  PCI_DMA_FROMDEVICE);
2144                         buffer_info->dma = 0;
2145                 }
2146
2147                 if (buffer_info->skb) {
2148                         dev_kfree_skb(buffer_info->skb);
2149                         buffer_info->skb = NULL;
2150                 }
2151                 if (buffer_info->page) {
2152                         if (buffer_info->page_dma)
2153                                 pci_unmap_page(pdev, buffer_info->page_dma,
2154                                                PAGE_SIZE / 2,
2155                                                PCI_DMA_FROMDEVICE);
2156                         put_page(buffer_info->page);
2157                         buffer_info->page = NULL;
2158                         buffer_info->page_dma = 0;
2159                         buffer_info->page_offset = 0;
2160                 }
2161         }
2162
2163         size = sizeof(struct igb_buffer) * rx_ring->count;
2164         memset(rx_ring->buffer_info, 0, size);
2165
2166         /* Zero out the descriptor ring */
2167         memset(rx_ring->desc, 0, rx_ring->size);
2168
2169         rx_ring->next_to_clean = 0;
2170         rx_ring->next_to_use = 0;
2171
2172         writel(0, adapter->hw.hw_addr + rx_ring->head);
2173         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2174 }
2175
2176 /**
2177  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2178  * @adapter: board private structure
2179  **/
2180 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2181 {
2182         int i;
2183
2184         for (i = 0; i < adapter->num_rx_queues; i++)
2185                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2186 }
2187
2188 /**
2189  * igb_set_mac - Change the Ethernet Address of the NIC
2190  * @netdev: network interface device structure
2191  * @p: pointer to an address structure
2192  *
2193  * Returns 0 on success, negative on failure
2194  **/
2195 static int igb_set_mac(struct net_device *netdev, void *p)
2196 {
2197         struct igb_adapter *adapter = netdev_priv(netdev);
2198         struct sockaddr *addr = p;
2199
2200         if (!is_valid_ether_addr(addr->sa_data))
2201                 return -EADDRNOTAVAIL;
2202
2203         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2204         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2205
2206         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2207
2208         return 0;
2209 }
2210
2211 /**
2212  * igb_set_multi - Multicast and Promiscuous mode set
2213  * @netdev: network interface device structure
2214  *
2215  * The set_multi entry point is called whenever the multicast address
2216  * list or the network interface flags are updated.  This routine is
2217  * responsible for configuring the hardware for proper multicast,
2218  * promiscuous mode, and all-multi behavior.
2219  **/
2220 static void igb_set_multi(struct net_device *netdev)
2221 {
2222         struct igb_adapter *adapter = netdev_priv(netdev);
2223         struct e1000_hw *hw = &adapter->hw;
2224         struct e1000_mac_info *mac = &hw->mac;
2225         struct dev_mc_list *mc_ptr;
2226         u8  *mta_list;
2227         u32 rctl;
2228         int i;
2229
2230         /* Check for Promiscuous and All Multicast modes */
2231
2232         rctl = rd32(E1000_RCTL);
2233
2234         if (netdev->flags & IFF_PROMISC) {
2235                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2236                 rctl &= ~E1000_RCTL_VFE;
2237         } else {
2238                 if (netdev->flags & IFF_ALLMULTI) {
2239                         rctl |= E1000_RCTL_MPE;
2240                         rctl &= ~E1000_RCTL_UPE;
2241                 } else
2242                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2243                 rctl |= E1000_RCTL_VFE;
2244         }
2245         wr32(E1000_RCTL, rctl);
2246
2247         if (!netdev->mc_count) {
2248                 /* nothing to program, so clear mc list */
2249                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2250                                           mac->rar_entry_count);
2251                 return;
2252         }
2253
2254         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2255         if (!mta_list)
2256                 return;
2257
2258         /* The shared function expects a packed array of only addresses. */
2259         mc_ptr = netdev->mc_list;
2260
2261         for (i = 0; i < netdev->mc_count; i++) {
2262                 if (!mc_ptr)
2263                         break;
2264                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2265                 mc_ptr = mc_ptr->next;
2266         }
2267         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2268                                       mac->rar_entry_count);
2269         kfree(mta_list);
2270 }
2271
2272 /* Need to wait a few seconds after link up to get diagnostic information from
2273  * the phy */
2274 static void igb_update_phy_info(unsigned long data)
2275 {
2276         struct igb_adapter *adapter = (struct igb_adapter *) data;
2277         igb_get_phy_info(&adapter->hw);
2278 }
2279
2280 /**
2281  * igb_watchdog - Timer Call-back
2282  * @data: pointer to adapter cast into an unsigned long
2283  **/
2284 static void igb_watchdog(unsigned long data)
2285 {
2286         struct igb_adapter *adapter = (struct igb_adapter *)data;
2287         /* Do the rest outside of interrupt context */
2288         schedule_work(&adapter->watchdog_task);
2289 }
2290
2291 static void igb_watchdog_task(struct work_struct *work)
2292 {
2293         struct igb_adapter *adapter = container_of(work,
2294                                         struct igb_adapter, watchdog_task);
2295         struct e1000_hw *hw = &adapter->hw;
2296
2297         struct net_device *netdev = adapter->netdev;
2298         struct igb_ring *tx_ring = adapter->tx_ring;
2299         struct e1000_mac_info *mac = &adapter->hw.mac;
2300         u32 link;
2301         u32 eics = 0;
2302         s32 ret_val;
2303         int i;
2304
2305         if ((netif_carrier_ok(netdev)) &&
2306             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2307                 goto link_up;
2308
2309         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2310         if ((ret_val == E1000_ERR_PHY) &&
2311             (hw->phy.type == e1000_phy_igp_3) &&
2312             (rd32(E1000_CTRL) &
2313              E1000_PHY_CTRL_GBE_DISABLE))
2314                 dev_info(&adapter->pdev->dev,
2315                          "Gigabit has been disabled, downgrading speed\n");
2316
2317         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2318             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2319                 link = mac->serdes_has_link;
2320         else
2321                 link = rd32(E1000_STATUS) &
2322                                       E1000_STATUS_LU;
2323
2324         if (link) {
2325                 if (!netif_carrier_ok(netdev)) {
2326                         u32 ctrl;
2327                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2328                                                    &adapter->link_speed,
2329                                                    &adapter->link_duplex);
2330
2331                         ctrl = rd32(E1000_CTRL);
2332                         /* Links status message must follow this format */
2333                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2334                                  "Flow Control: %s\n",
2335                                  netdev->name,
2336                                  adapter->link_speed,
2337                                  adapter->link_duplex == FULL_DUPLEX ?
2338                                  "Full Duplex" : "Half Duplex",
2339                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2340                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2341                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2342                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2343
2344                         /* tweak tx_queue_len according to speed/duplex and
2345                          * adjust the timeout factor */
2346                         netdev->tx_queue_len = adapter->tx_queue_len;
2347                         adapter->tx_timeout_factor = 1;
2348                         switch (adapter->link_speed) {
2349                         case SPEED_10:
2350                                 netdev->tx_queue_len = 10;
2351                                 adapter->tx_timeout_factor = 14;
2352                                 break;
2353                         case SPEED_100:
2354                                 netdev->tx_queue_len = 100;
2355                                 /* maybe add some timeout factor ? */
2356                                 break;
2357                         }
2358
2359                         netif_carrier_on(netdev);
2360                         netif_tx_wake_all_queues(netdev);
2361
2362                         if (!test_bit(__IGB_DOWN, &adapter->state))
2363                                 mod_timer(&adapter->phy_info_timer,
2364                                           round_jiffies(jiffies + 2 * HZ));
2365                 }
2366         } else {
2367                 if (netif_carrier_ok(netdev)) {
2368                         adapter->link_speed = 0;
2369                         adapter->link_duplex = 0;
2370                         /* Links status message must follow this format */
2371                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2372                                netdev->name);
2373                         netif_carrier_off(netdev);
2374                         netif_tx_stop_all_queues(netdev);
2375                         if (!test_bit(__IGB_DOWN, &adapter->state))
2376                                 mod_timer(&adapter->phy_info_timer,
2377                                           round_jiffies(jiffies + 2 * HZ));
2378                 }
2379         }
2380
2381 link_up:
2382         igb_update_stats(adapter);
2383
2384         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2385         adapter->tpt_old = adapter->stats.tpt;
2386         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2387         adapter->colc_old = adapter->stats.colc;
2388
2389         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2390         adapter->gorc_old = adapter->stats.gorc;
2391         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2392         adapter->gotc_old = adapter->stats.gotc;
2393
2394         igb_update_adaptive(&adapter->hw);
2395
2396         if (!netif_carrier_ok(netdev)) {
2397                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2398                         /* We've lost link, so the controller stops DMA,
2399                          * but we've got queued Tx work that's never going
2400                          * to get done, so reset controller to flush Tx.
2401                          * (Do the reset outside of interrupt context). */
2402                         adapter->tx_timeout_count++;
2403                         schedule_work(&adapter->reset_task);
2404                 }
2405         }
2406
2407         /* Cause software interrupt to ensure rx ring is cleaned */
2408         if (adapter->msix_entries) {
2409                 for (i = 0; i < adapter->num_rx_queues; i++)
2410                         eics |= adapter->rx_ring[i].eims_value;
2411                 wr32(E1000_EICS, eics);
2412         } else {
2413                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2414         }
2415
2416         /* Force detection of hung controller every watchdog period */
2417         tx_ring->detect_tx_hung = true;
2418
2419         /* Reset the timer */
2420         if (!test_bit(__IGB_DOWN, &adapter->state))
2421                 mod_timer(&adapter->watchdog_timer,
2422                           round_jiffies(jiffies + 2 * HZ));
2423 }
2424
2425 enum latency_range {
2426         lowest_latency = 0,
2427         low_latency = 1,
2428         bulk_latency = 2,
2429         latency_invalid = 255
2430 };
2431
2432
2433 /**
2434  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2435  *
2436  *      Stores a new ITR value based on strictly on packet size.  This
2437  *      algorithm is less sophisticated than that used in igb_update_itr,
2438  *      due to the difficulty of synchronizing statistics across multiple
2439  *      receive rings.  The divisors and thresholds used by this fuction
2440  *      were determined based on theoretical maximum wire speed and testing
2441  *      data, in order to minimize response time while increasing bulk
2442  *      throughput.
2443  *      This functionality is controlled by the InterruptThrottleRate module
2444  *      parameter (see igb_param.c)
2445  *      NOTE:  This function is called only when operating in a multiqueue
2446  *             receive environment.
2447  * @rx_ring: pointer to ring
2448  **/
2449 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2450 {
2451         int new_val = rx_ring->itr_val;
2452         int avg_wire_size = 0;
2453         struct igb_adapter *adapter = rx_ring->adapter;
2454
2455         if (!rx_ring->total_packets)
2456                 goto clear_counts; /* no packets, so don't do anything */
2457
2458         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2459          * ints/sec - ITR timer value of 120 ticks.
2460          */
2461         if (adapter->link_speed != SPEED_1000) {
2462                 new_val = 120;
2463                 goto set_itr_val;
2464         }
2465         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2466
2467         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2468         avg_wire_size += 24;
2469
2470         /* Don't starve jumbo frames */
2471         avg_wire_size = min(avg_wire_size, 3000);
2472
2473         /* Give a little boost to mid-size frames */
2474         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2475                 new_val = avg_wire_size / 3;
2476         else
2477                 new_val = avg_wire_size / 2;
2478
2479 set_itr_val:
2480         if (new_val != rx_ring->itr_val) {
2481                 rx_ring->itr_val = new_val;
2482                 rx_ring->set_itr = 1;
2483         }
2484 clear_counts:
2485         rx_ring->total_bytes = 0;
2486         rx_ring->total_packets = 0;
2487 }
2488
2489 /**
2490  * igb_update_itr - update the dynamic ITR value based on statistics
2491  *      Stores a new ITR value based on packets and byte
2492  *      counts during the last interrupt.  The advantage of per interrupt
2493  *      computation is faster updates and more accurate ITR for the current
2494  *      traffic pattern.  Constants in this function were computed
2495  *      based on theoretical maximum wire speed and thresholds were set based
2496  *      on testing data as well as attempting to minimize response time
2497  *      while increasing bulk throughput.
2498  *      this functionality is controlled by the InterruptThrottleRate module
2499  *      parameter (see igb_param.c)
2500  *      NOTE:  These calculations are only valid when operating in a single-
2501  *             queue environment.
2502  * @adapter: pointer to adapter
2503  * @itr_setting: current adapter->itr
2504  * @packets: the number of packets during this measurement interval
2505  * @bytes: the number of bytes during this measurement interval
2506  **/
2507 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2508                                    int packets, int bytes)
2509 {
2510         unsigned int retval = itr_setting;
2511
2512         if (packets == 0)
2513                 goto update_itr_done;
2514
2515         switch (itr_setting) {
2516         case lowest_latency:
2517                 /* handle TSO and jumbo frames */
2518                 if (bytes/packets > 8000)
2519                         retval = bulk_latency;
2520                 else if ((packets < 5) && (bytes > 512))
2521                         retval = low_latency;
2522                 break;
2523         case low_latency:  /* 50 usec aka 20000 ints/s */
2524                 if (bytes > 10000) {
2525                         /* this if handles the TSO accounting */
2526                         if (bytes/packets > 8000) {
2527                                 retval = bulk_latency;
2528                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2529                                 retval = bulk_latency;
2530                         } else if ((packets > 35)) {
2531                                 retval = lowest_latency;
2532                         }
2533                 } else if (bytes/packets > 2000) {
2534                         retval = bulk_latency;
2535                 } else if (packets <= 2 && bytes < 512) {
2536                         retval = lowest_latency;
2537                 }
2538                 break;
2539         case bulk_latency: /* 250 usec aka 4000 ints/s */
2540                 if (bytes > 25000) {
2541                         if (packets > 35)
2542                                 retval = low_latency;
2543                 } else if (bytes < 6000) {
2544                         retval = low_latency;
2545                 }
2546                 break;
2547         }
2548
2549 update_itr_done:
2550         return retval;
2551 }
2552
2553 static void igb_set_itr(struct igb_adapter *adapter)
2554 {
2555         u16 current_itr;
2556         u32 new_itr = adapter->itr;
2557
2558         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2559         if (adapter->link_speed != SPEED_1000) {
2560                 current_itr = 0;
2561                 new_itr = 4000;
2562                 goto set_itr_now;
2563         }
2564
2565         adapter->rx_itr = igb_update_itr(adapter,
2566                                     adapter->rx_itr,
2567                                     adapter->rx_ring->total_packets,
2568                                     adapter->rx_ring->total_bytes);
2569
2570         if (adapter->rx_ring->buddy) {
2571                 adapter->tx_itr = igb_update_itr(adapter,
2572                                             adapter->tx_itr,
2573                                             adapter->tx_ring->total_packets,
2574                                             adapter->tx_ring->total_bytes);
2575
2576                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2577         } else {
2578                 current_itr = adapter->rx_itr;
2579         }
2580
2581         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2582         if (adapter->itr_setting == 3 &&
2583             current_itr == lowest_latency)
2584                 current_itr = low_latency;
2585
2586         switch (current_itr) {
2587         /* counts and packets in update_itr are dependent on these numbers */
2588         case lowest_latency:
2589                 new_itr = 70000;
2590                 break;
2591         case low_latency:
2592                 new_itr = 20000; /* aka hwitr = ~200 */
2593                 break;
2594         case bulk_latency:
2595                 new_itr = 4000;
2596                 break;
2597         default:
2598                 break;
2599         }
2600
2601 set_itr_now:
2602         adapter->rx_ring->total_bytes = 0;
2603         adapter->rx_ring->total_packets = 0;
2604         if (adapter->rx_ring->buddy) {
2605                 adapter->rx_ring->buddy->total_bytes = 0;
2606                 adapter->rx_ring->buddy->total_packets = 0;
2607         }
2608
2609         if (new_itr != adapter->itr) {
2610                 /* this attempts to bias the interrupt rate towards Bulk
2611                  * by adding intermediate steps when interrupt rate is
2612                  * increasing */
2613                 new_itr = new_itr > adapter->itr ?
2614                              min(adapter->itr + (new_itr >> 2), new_itr) :
2615                              new_itr;
2616                 /* Don't write the value here; it resets the adapter's
2617                  * internal timer, and causes us to delay far longer than
2618                  * we should between interrupts.  Instead, we write the ITR
2619                  * value at the beginning of the next interrupt so the timing
2620                  * ends up being correct.
2621                  */
2622                 adapter->itr = new_itr;
2623                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2624                 adapter->rx_ring->set_itr = 1;
2625         }
2626
2627         return;
2628 }
2629
2630
2631 #define IGB_TX_FLAGS_CSUM               0x00000001
2632 #define IGB_TX_FLAGS_VLAN               0x00000002
2633 #define IGB_TX_FLAGS_TSO                0x00000004
2634 #define IGB_TX_FLAGS_IPV4               0x00000008
2635 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2636 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2637
2638 static inline int igb_tso_adv(struct igb_adapter *adapter,
2639                               struct igb_ring *tx_ring,
2640                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2641 {
2642         struct e1000_adv_tx_context_desc *context_desc;
2643         unsigned int i;
2644         int err;
2645         struct igb_buffer *buffer_info;
2646         u32 info = 0, tu_cmd = 0;
2647         u32 mss_l4len_idx, l4len;
2648         *hdr_len = 0;
2649
2650         if (skb_header_cloned(skb)) {
2651                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2652                 if (err)
2653                         return err;
2654         }
2655
2656         l4len = tcp_hdrlen(skb);
2657         *hdr_len += l4len;
2658
2659         if (skb->protocol == htons(ETH_P_IP)) {
2660                 struct iphdr *iph = ip_hdr(skb);
2661                 iph->tot_len = 0;
2662                 iph->check = 0;
2663                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2664                                                          iph->daddr, 0,
2665                                                          IPPROTO_TCP,
2666                                                          0);
2667         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2668                 ipv6_hdr(skb)->payload_len = 0;
2669                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2670                                                        &ipv6_hdr(skb)->daddr,
2671                                                        0, IPPROTO_TCP, 0);
2672         }
2673
2674         i = tx_ring->next_to_use;
2675
2676         buffer_info = &tx_ring->buffer_info[i];
2677         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2678         /* VLAN MACLEN IPLEN */
2679         if (tx_flags & IGB_TX_FLAGS_VLAN)
2680                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2681         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2682         *hdr_len += skb_network_offset(skb);
2683         info |= skb_network_header_len(skb);
2684         *hdr_len += skb_network_header_len(skb);
2685         context_desc->vlan_macip_lens = cpu_to_le32(info);
2686
2687         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2688         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2689
2690         if (skb->protocol == htons(ETH_P_IP))
2691                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2692         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2693
2694         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2695
2696         /* MSS L4LEN IDX */
2697         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2698         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2699
2700         /* Context index must be unique per ring. */
2701         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2702                 mss_l4len_idx |= tx_ring->queue_index << 4;
2703
2704         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2705         context_desc->seqnum_seed = 0;
2706
2707         buffer_info->time_stamp = jiffies;
2708         buffer_info->dma = 0;
2709         i++;
2710         if (i == tx_ring->count)
2711                 i = 0;
2712
2713         tx_ring->next_to_use = i;
2714
2715         return true;
2716 }
2717
2718 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2719                                         struct igb_ring *tx_ring,
2720                                         struct sk_buff *skb, u32 tx_flags)
2721 {
2722         struct e1000_adv_tx_context_desc *context_desc;
2723         unsigned int i;
2724         struct igb_buffer *buffer_info;
2725         u32 info = 0, tu_cmd = 0;
2726
2727         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2728             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2729                 i = tx_ring->next_to_use;
2730                 buffer_info = &tx_ring->buffer_info[i];
2731                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2732
2733                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2734                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2735                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2736                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2737                         info |= skb_network_header_len(skb);
2738
2739                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2740
2741                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2742
2743                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2744                         switch (skb->protocol) {
2745                         case __constant_htons(ETH_P_IP):
2746                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2747                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2748                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2749                                 break;
2750                         case __constant_htons(ETH_P_IPV6):
2751                                 /* XXX what about other V6 headers?? */
2752                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2753                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754                                 break;
2755                         default:
2756                                 if (unlikely(net_ratelimit()))
2757                                         dev_warn(&adapter->pdev->dev,
2758                                             "partial checksum but proto=%x!\n",
2759                                             skb->protocol);
2760                                 break;
2761                         }
2762                 }
2763
2764                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2765                 context_desc->seqnum_seed = 0;
2766                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2767                         context_desc->mss_l4len_idx =
2768                                 cpu_to_le32(tx_ring->queue_index << 4);
2769
2770                 buffer_info->time_stamp = jiffies;
2771                 buffer_info->dma = 0;
2772
2773                 i++;
2774                 if (i == tx_ring->count)
2775                         i = 0;
2776                 tx_ring->next_to_use = i;
2777
2778                 return true;
2779         }
2780
2781
2782         return false;
2783 }
2784
2785 #define IGB_MAX_TXD_PWR 16
2786 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2787
2788 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2789                                  struct igb_ring *tx_ring,
2790                                  struct sk_buff *skb)
2791 {
2792         struct igb_buffer *buffer_info;
2793         unsigned int len = skb_headlen(skb);
2794         unsigned int count = 0, i;
2795         unsigned int f;
2796
2797         i = tx_ring->next_to_use;
2798
2799         buffer_info = &tx_ring->buffer_info[i];
2800         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2801         buffer_info->length = len;
2802         /* set time_stamp *before* dma to help avoid a possible race */
2803         buffer_info->time_stamp = jiffies;
2804         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2805                                           PCI_DMA_TODEVICE);
2806         count++;
2807         i++;
2808         if (i == tx_ring->count)
2809                 i = 0;
2810
2811         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2812                 struct skb_frag_struct *frag;
2813
2814                 frag = &skb_shinfo(skb)->frags[f];
2815                 len = frag->size;
2816
2817                 buffer_info = &tx_ring->buffer_info[i];
2818                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2819                 buffer_info->length = len;
2820                 buffer_info->time_stamp = jiffies;
2821                 buffer_info->dma = pci_map_page(adapter->pdev,
2822                                                 frag->page,
2823                                                 frag->page_offset,
2824                                                 len,
2825                                                 PCI_DMA_TODEVICE);
2826
2827                 count++;
2828                 i++;
2829                 if (i == tx_ring->count)
2830                         i = 0;
2831         }
2832
2833         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2834         tx_ring->buffer_info[i].skb = skb;
2835
2836         return count;
2837 }
2838
2839 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2840                                     struct igb_ring *tx_ring,
2841                                     int tx_flags, int count, u32 paylen,
2842                                     u8 hdr_len)
2843 {
2844         union e1000_adv_tx_desc *tx_desc = NULL;
2845         struct igb_buffer *buffer_info;
2846         u32 olinfo_status = 0, cmd_type_len;
2847         unsigned int i;
2848
2849         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2850                         E1000_ADVTXD_DCMD_DEXT);
2851
2852         if (tx_flags & IGB_TX_FLAGS_VLAN)
2853                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2854
2855         if (tx_flags & IGB_TX_FLAGS_TSO) {
2856                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2857
2858                 /* insert tcp checksum */
2859                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2860
2861                 /* insert ip checksum */
2862                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2863                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2864
2865         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2866                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2867         }
2868
2869         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2870             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2871                          IGB_TX_FLAGS_VLAN)))
2872                 olinfo_status |= tx_ring->queue_index << 4;
2873
2874         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2875
2876         i = tx_ring->next_to_use;
2877         while (count--) {
2878                 buffer_info = &tx_ring->buffer_info[i];
2879                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2880                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2881                 tx_desc->read.cmd_type_len =
2882                         cpu_to_le32(cmd_type_len | buffer_info->length);
2883                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2884                 i++;
2885                 if (i == tx_ring->count)
2886                         i = 0;
2887         }
2888
2889         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2890         /* Force memory writes to complete before letting h/w
2891          * know there are new descriptors to fetch.  (Only
2892          * applicable for weak-ordered memory model archs,
2893          * such as IA-64). */
2894         wmb();
2895
2896         tx_ring->next_to_use = i;
2897         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2898         /* we need this if more than one processor can write to our tail
2899          * at a time, it syncronizes IO on IA64/Altix systems */
2900         mmiowb();
2901 }
2902
2903 static int __igb_maybe_stop_tx(struct net_device *netdev,
2904                                struct igb_ring *tx_ring, int size)
2905 {
2906         struct igb_adapter *adapter = netdev_priv(netdev);
2907
2908         netif_stop_subqueue(netdev, tx_ring->queue_index);
2909
2910         /* Herbert's original patch had:
2911          *  smp_mb__after_netif_stop_queue();
2912          * but since that doesn't exist yet, just open code it. */
2913         smp_mb();
2914
2915         /* We need to check again in a case another CPU has just
2916          * made room available. */
2917         if (IGB_DESC_UNUSED(tx_ring) < size)
2918                 return -EBUSY;
2919
2920         /* A reprieve! */
2921         netif_wake_subqueue(netdev, tx_ring->queue_index);
2922         ++adapter->restart_queue;
2923         return 0;
2924 }
2925
2926 static int igb_maybe_stop_tx(struct net_device *netdev,
2927                              struct igb_ring *tx_ring, int size)
2928 {
2929         if (IGB_DESC_UNUSED(tx_ring) >= size)
2930                 return 0;
2931         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2932 }
2933
2934 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2935
2936 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2937                                    struct net_device *netdev,
2938                                    struct igb_ring *tx_ring)
2939 {
2940         struct igb_adapter *adapter = netdev_priv(netdev);
2941         unsigned int tx_flags = 0;
2942         unsigned int len;
2943         u8 hdr_len = 0;
2944         int tso = 0;
2945
2946         len = skb_headlen(skb);
2947
2948         if (test_bit(__IGB_DOWN, &adapter->state)) {
2949                 dev_kfree_skb_any(skb);
2950                 return NETDEV_TX_OK;
2951         }
2952
2953         if (skb->len <= 0) {
2954                 dev_kfree_skb_any(skb);
2955                 return NETDEV_TX_OK;
2956         }
2957
2958         /* need: 1 descriptor per page,
2959          *       + 2 desc gap to keep tail from touching head,
2960          *       + 1 desc for skb->data,
2961          *       + 1 desc for context descriptor,
2962          * otherwise try next time */
2963         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2964                 /* this is a hard error */
2965                 return NETDEV_TX_BUSY;
2966         }
2967         skb_orphan(skb);
2968
2969         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2970                 tx_flags |= IGB_TX_FLAGS_VLAN;
2971                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2972         }
2973
2974         if (skb->protocol == htons(ETH_P_IP))
2975                 tx_flags |= IGB_TX_FLAGS_IPV4;
2976
2977         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2978                                               &hdr_len) : 0;
2979
2980         if (tso < 0) {
2981                 dev_kfree_skb_any(skb);
2982                 return NETDEV_TX_OK;
2983         }
2984
2985         if (tso)
2986                 tx_flags |= IGB_TX_FLAGS_TSO;
2987         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2988                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2989                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2990
2991         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2992                          igb_tx_map_adv(adapter, tx_ring, skb),
2993                          skb->len, hdr_len);
2994
2995         netdev->trans_start = jiffies;
2996
2997         /* Make sure there is space in the ring for the next send. */
2998         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2999
3000         return NETDEV_TX_OK;
3001 }
3002
3003 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3004 {
3005         struct igb_adapter *adapter = netdev_priv(netdev);
3006         struct igb_ring *tx_ring;
3007
3008         int r_idx = 0;
3009         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3010         tx_ring = adapter->multi_tx_table[r_idx];
3011
3012         /* This goes back to the question of how to logically map a tx queue
3013          * to a flow.  Right now, performance is impacted slightly negatively
3014          * if using multiple tx queues.  If the stack breaks away from a
3015          * single qdisc implementation, we can look at this again. */
3016         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3017 }
3018
3019 /**
3020  * igb_tx_timeout - Respond to a Tx Hang
3021  * @netdev: network interface device structure
3022  **/
3023 static void igb_tx_timeout(struct net_device *netdev)
3024 {
3025         struct igb_adapter *adapter = netdev_priv(netdev);
3026         struct e1000_hw *hw = &adapter->hw;
3027
3028         /* Do the reset outside of interrupt context */
3029         adapter->tx_timeout_count++;
3030         schedule_work(&adapter->reset_task);
3031         wr32(E1000_EICS, adapter->eims_enable_mask &
3032                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3033 }
3034
3035 static void igb_reset_task(struct work_struct *work)
3036 {
3037         struct igb_adapter *adapter;
3038         adapter = container_of(work, struct igb_adapter, reset_task);
3039
3040         igb_reinit_locked(adapter);
3041 }
3042
3043 /**
3044  * igb_get_stats - Get System Network Statistics
3045  * @netdev: network interface device structure
3046  *
3047  * Returns the address of the device statistics structure.
3048  * The statistics are actually updated from the timer callback.
3049  **/
3050 static struct net_device_stats *
3051 igb_get_stats(struct net_device *netdev)
3052 {
3053         struct igb_adapter *adapter = netdev_priv(netdev);
3054
3055         /* only return the current stats */
3056         return &adapter->net_stats;
3057 }
3058
3059 /**
3060  * igb_change_mtu - Change the Maximum Transfer Unit
3061  * @netdev: network interface device structure
3062  * @new_mtu: new value for maximum frame size
3063  *
3064  * Returns 0 on success, negative on failure
3065  **/
3066 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3067 {
3068         struct igb_adapter *adapter = netdev_priv(netdev);
3069         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3070
3071         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3072             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3073                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3074                 return -EINVAL;
3075         }
3076
3077 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3078         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3079                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3080                 return -EINVAL;
3081         }
3082
3083         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3084                 msleep(1);
3085         /* igb_down has a dependency on max_frame_size */
3086         adapter->max_frame_size = max_frame;
3087         if (netif_running(netdev))
3088                 igb_down(adapter);
3089
3090         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3091          * means we reserve 2 more, this pushes us to allocate from the next
3092          * larger slab size.
3093          * i.e. RXBUFFER_2048 --> size-4096 slab
3094          */
3095
3096         if (max_frame <= IGB_RXBUFFER_256)
3097                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3098         else if (max_frame <= IGB_RXBUFFER_512)
3099                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3100         else if (max_frame <= IGB_RXBUFFER_1024)
3101                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3102         else if (max_frame <= IGB_RXBUFFER_2048)
3103                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3104         else
3105 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3106                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3107 #else
3108                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3109 #endif
3110         /* adjust allocation if LPE protects us, and we aren't using SBP */
3111         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3112              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3113                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3114
3115         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3116                  netdev->mtu, new_mtu);
3117         netdev->mtu = new_mtu;
3118
3119         if (netif_running(netdev))
3120                 igb_up(adapter);
3121         else
3122                 igb_reset(adapter);
3123
3124         clear_bit(__IGB_RESETTING, &adapter->state);
3125
3126         return 0;
3127 }
3128
3129 /**
3130  * igb_update_stats - Update the board statistics counters
3131  * @adapter: board private structure
3132  **/
3133
3134 void igb_update_stats(struct igb_adapter *adapter)
3135 {
3136         struct e1000_hw *hw = &adapter->hw;
3137         struct pci_dev *pdev = adapter->pdev;
3138         u16 phy_tmp;
3139
3140 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3141
3142         /*
3143          * Prevent stats update while adapter is being reset, or if the pci
3144          * connection is down.
3145          */
3146         if (adapter->link_speed == 0)
3147                 return;
3148         if (pci_channel_offline(pdev))
3149                 return;
3150
3151         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3152         adapter->stats.gprc += rd32(E1000_GPRC);
3153         adapter->stats.gorc += rd32(E1000_GORCL);
3154         rd32(E1000_GORCH); /* clear GORCL */
3155         adapter->stats.bprc += rd32(E1000_BPRC);
3156         adapter->stats.mprc += rd32(E1000_MPRC);
3157         adapter->stats.roc += rd32(E1000_ROC);
3158
3159         adapter->stats.prc64 += rd32(E1000_PRC64);
3160         adapter->stats.prc127 += rd32(E1000_PRC127);
3161         adapter->stats.prc255 += rd32(E1000_PRC255);
3162         adapter->stats.prc511 += rd32(E1000_PRC511);
3163         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3164         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3165         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3166         adapter->stats.sec += rd32(E1000_SEC);
3167
3168         adapter->stats.mpc += rd32(E1000_MPC);
3169         adapter->stats.scc += rd32(E1000_SCC);
3170         adapter->stats.ecol += rd32(E1000_ECOL);
3171         adapter->stats.mcc += rd32(E1000_MCC);
3172         adapter->stats.latecol += rd32(E1000_LATECOL);
3173         adapter->stats.dc += rd32(E1000_DC);
3174         adapter->stats.rlec += rd32(E1000_RLEC);
3175         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3176         adapter->stats.xontxc += rd32(E1000_XONTXC);
3177         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3178         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3179         adapter->stats.fcruc += rd32(E1000_FCRUC);
3180         adapter->stats.gptc += rd32(E1000_GPTC);
3181         adapter->stats.gotc += rd32(E1000_GOTCL);
3182         rd32(E1000_GOTCH); /* clear GOTCL */
3183         adapter->stats.rnbc += rd32(E1000_RNBC);
3184         adapter->stats.ruc += rd32(E1000_RUC);
3185         adapter->stats.rfc += rd32(E1000_RFC);
3186         adapter->stats.rjc += rd32(E1000_RJC);
3187         adapter->stats.tor += rd32(E1000_TORH);
3188         adapter->stats.tot += rd32(E1000_TOTH);
3189         adapter->stats.tpr += rd32(E1000_TPR);
3190
3191         adapter->stats.ptc64 += rd32(E1000_PTC64);
3192         adapter->stats.ptc127 += rd32(E1000_PTC127);
3193         adapter->stats.ptc255 += rd32(E1000_PTC255);
3194         adapter->stats.ptc511 += rd32(E1000_PTC511);
3195         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3196         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3197
3198         adapter->stats.mptc += rd32(E1000_MPTC);
3199         adapter->stats.bptc += rd32(E1000_BPTC);
3200
3201         /* used for adaptive IFS */
3202
3203         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3204         adapter->stats.tpt += hw->mac.tx_packet_delta;
3205         hw->mac.collision_delta = rd32(E1000_COLC);
3206         adapter->stats.colc += hw->mac.collision_delta;
3207
3208         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3209         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3210         adapter->stats.tncrs += rd32(E1000_TNCRS);
3211         adapter->stats.tsctc += rd32(E1000_TSCTC);
3212         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3213
3214         adapter->stats.iac += rd32(E1000_IAC);
3215         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3216         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3217         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3218         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3219         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3220         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3221         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3222         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3223
3224         /* Fill out the OS statistics structure */
3225         adapter->net_stats.multicast = adapter->stats.mprc;
3226         adapter->net_stats.collisions = adapter->stats.colc;
3227
3228         /* Rx Errors */
3229
3230         /* RLEC on some newer hardware can be incorrect so build
3231         * our own version based on RUC and ROC */
3232         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3233                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3234                 adapter->stats.ruc + adapter->stats.roc +
3235                 adapter->stats.cexterr;
3236         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3237                                               adapter->stats.roc;
3238         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3239         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3240         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3241
3242         /* Tx Errors */
3243         adapter->net_stats.tx_errors = adapter->stats.ecol +
3244                                        adapter->stats.latecol;
3245         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3246         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3247         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3248
3249         /* Tx Dropped needs to be maintained elsewhere */
3250
3251         /* Phy Stats */
3252         if (hw->phy.media_type == e1000_media_type_copper) {
3253                 if ((adapter->link_speed == SPEED_1000) &&
3254                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3255                                               &phy_tmp))) {
3256                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3257                         adapter->phy_stats.idle_errors += phy_tmp;
3258                 }
3259         }
3260
3261         /* Management Stats */
3262         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3263         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3264         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3265 }
3266
3267
3268 static irqreturn_t igb_msix_other(int irq, void *data)
3269 {
3270         struct net_device *netdev = data;
3271         struct igb_adapter *adapter = netdev_priv(netdev);
3272         struct e1000_hw *hw = &adapter->hw;
3273         u32 icr = rd32(E1000_ICR);
3274
3275         /* reading ICR causes bit 31 of EICR to be cleared */
3276         if (!(icr & E1000_ICR_LSC))
3277                 goto no_link_interrupt;
3278         hw->mac.get_link_status = 1;
3279         /* guard against interrupt when we're going down */
3280         if (!test_bit(__IGB_DOWN, &adapter->state))
3281                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3282         
3283 no_link_interrupt:
3284         wr32(E1000_IMS, E1000_IMS_LSC);
3285         wr32(E1000_EIMS, adapter->eims_other);
3286
3287         return IRQ_HANDLED;
3288 }
3289
3290 static irqreturn_t igb_msix_tx(int irq, void *data)
3291 {
3292         struct igb_ring *tx_ring = data;
3293         struct igb_adapter *adapter = tx_ring->adapter;
3294         struct e1000_hw *hw = &adapter->hw;
3295
3296 #ifdef CONFIG_IGB_DCA
3297         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3298                 igb_update_tx_dca(tx_ring);
3299 #endif
3300         tx_ring->total_bytes = 0;
3301         tx_ring->total_packets = 0;
3302
3303         /* auto mask will automatically reenable the interrupt when we write
3304          * EICS */
3305         if (!igb_clean_tx_irq(tx_ring))
3306                 /* Ring was not completely cleaned, so fire another interrupt */
3307                 wr32(E1000_EICS, tx_ring->eims_value);
3308         else
3309                 wr32(E1000_EIMS, tx_ring->eims_value);
3310
3311         return IRQ_HANDLED;
3312 }
3313
3314 static void igb_write_itr(struct igb_ring *ring)
3315 {
3316         struct e1000_hw *hw = &ring->adapter->hw;
3317         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3318                 switch (hw->mac.type) {
3319                 case e1000_82576:
3320                         wr32(ring->itr_register,
3321                              ring->itr_val |
3322                              0x80000000);
3323                         break;
3324                 default:
3325                         wr32(ring->itr_register,
3326                              ring->itr_val |
3327                              (ring->itr_val << 16));
3328                         break;
3329                 }
3330                 ring->set_itr = 0;
3331         }
3332 }
3333
3334 static irqreturn_t igb_msix_rx(int irq, void *data)
3335 {
3336         struct igb_ring *rx_ring = data;
3337         struct igb_adapter *adapter = rx_ring->adapter;
3338
3339         /* Write the ITR value calculated at the end of the
3340          * previous interrupt.
3341          */
3342
3343         igb_write_itr(rx_ring);
3344
3345         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3346                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3347
3348 #ifdef CONFIG_IGB_DCA
3349         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3350                 igb_update_rx_dca(rx_ring);
3351 #endif
3352                 return IRQ_HANDLED;
3353 }
3354
3355 #ifdef CONFIG_IGB_DCA
3356 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3357 {
3358         u32 dca_rxctrl;
3359         struct igb_adapter *adapter = rx_ring->adapter;
3360         struct e1000_hw *hw = &adapter->hw;
3361         int cpu = get_cpu();
3362         int q = rx_ring - adapter->rx_ring;
3363
3364         if (rx_ring->cpu != cpu) {
3365                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3366                 if (hw->mac.type == e1000_82576) {
3367                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3368                         dca_rxctrl |= dca_get_tag(cpu) <<
3369                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3370                 } else {
3371                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3372                         dca_rxctrl |= dca_get_tag(cpu);
3373                 }
3374                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3375                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3376                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3377                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3378                 rx_ring->cpu = cpu;
3379         }
3380         put_cpu();
3381 }
3382
3383 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3384 {
3385         u32 dca_txctrl;
3386         struct igb_adapter *adapter = tx_ring->adapter;
3387         struct e1000_hw *hw = &adapter->hw;
3388         int cpu = get_cpu();
3389         int q = tx_ring - adapter->tx_ring;
3390
3391         if (tx_ring->cpu != cpu) {
3392                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3393                 if (hw->mac.type == e1000_82576) {
3394                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3395                         dca_txctrl |= dca_get_tag(cpu) <<
3396                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3397                 } else {
3398                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3399                         dca_txctrl |= dca_get_tag(cpu);
3400                 }
3401                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3402                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3403                 tx_ring->cpu = cpu;
3404         }
3405         put_cpu();
3406 }
3407
3408 static void igb_setup_dca(struct igb_adapter *adapter)
3409 {
3410         int i;
3411
3412         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3413                 return;
3414
3415         for (i = 0; i < adapter->num_tx_queues; i++) {
3416                 adapter->tx_ring[i].cpu = -1;
3417                 igb_update_tx_dca(&adapter->tx_ring[i]);
3418         }
3419         for (i = 0; i < adapter->num_rx_queues; i++) {
3420                 adapter->rx_ring[i].cpu = -1;
3421                 igb_update_rx_dca(&adapter->rx_ring[i]);
3422         }
3423 }
3424
3425 static int __igb_notify_dca(struct device *dev, void *data)
3426 {
3427         struct net_device *netdev = dev_get_drvdata(dev);
3428         struct igb_adapter *adapter = netdev_priv(netdev);
3429         struct e1000_hw *hw = &adapter->hw;
3430         unsigned long event = *(unsigned long *)data;
3431
3432         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3433                 goto out;
3434
3435         switch (event) {
3436         case DCA_PROVIDER_ADD:
3437                 /* if already enabled, don't do it again */
3438                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3439                         break;
3440                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3441                 /* Always use CB2 mode, difference is masked
3442                  * in the CB driver. */
3443                 wr32(E1000_DCA_CTRL, 2);
3444                 if (dca_add_requester(dev) == 0) {
3445                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3446                         igb_setup_dca(adapter);
3447                         break;
3448                 }
3449                 /* Fall Through since DCA is disabled. */
3450         case DCA_PROVIDER_REMOVE:
3451                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3452                         /* without this a class_device is left
3453                          * hanging around in the sysfs model */
3454                         dca_remove_requester(dev);
3455                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3456                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3457                         wr32(E1000_DCA_CTRL, 1);
3458                 }
3459                 break;
3460         }
3461 out:
3462         return 0;
3463 }
3464
3465 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3466                           void *p)
3467 {
3468         int ret_val;
3469
3470         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3471                                          __igb_notify_dca);
3472
3473         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3474 }
3475 #endif /* CONFIG_IGB_DCA */
3476
3477 /**
3478  * igb_intr_msi - Interrupt Handler
3479  * @irq: interrupt number
3480  * @data: pointer to a network interface device structure
3481  **/
3482 static irqreturn_t igb_intr_msi(int irq, void *data)
3483 {
3484         struct net_device *netdev = data;
3485         struct igb_adapter *adapter = netdev_priv(netdev);
3486         struct e1000_hw *hw = &adapter->hw;
3487         /* read ICR disables interrupts using IAM */
3488         u32 icr = rd32(E1000_ICR);
3489
3490         igb_write_itr(adapter->rx_ring);
3491
3492         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3493                 hw->mac.get_link_status = 1;
3494                 if (!test_bit(__IGB_DOWN, &adapter->state))
3495                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3496         }
3497
3498         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3499
3500         return IRQ_HANDLED;
3501 }
3502
3503 /**
3504  * igb_intr - Interrupt Handler
3505  * @irq: interrupt number
3506  * @data: pointer to a network interface device structure
3507  **/
3508 static irqreturn_t igb_intr(int irq, void *data)
3509 {
3510         struct net_device *netdev = data;
3511         struct igb_adapter *adapter = netdev_priv(netdev);
3512         struct e1000_hw *hw = &adapter->hw;
3513         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3514          * need for the IMC write */
3515         u32 icr = rd32(E1000_ICR);
3516         u32 eicr = 0;
3517         if (!icr)
3518                 return IRQ_NONE;  /* Not our interrupt */
3519
3520         igb_write_itr(adapter->rx_ring);
3521
3522         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3523          * not set, then the adapter didn't send an interrupt */
3524         if (!(icr & E1000_ICR_INT_ASSERTED))
3525                 return IRQ_NONE;
3526
3527         eicr = rd32(E1000_EICR);
3528
3529         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3530                 hw->mac.get_link_status = 1;
3531                 /* guard against interrupt when we're going down */
3532                 if (!test_bit(__IGB_DOWN, &adapter->state))
3533                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3534         }
3535
3536         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3537
3538         return IRQ_HANDLED;
3539 }
3540
3541 /**
3542  * igb_poll - NAPI Rx polling callback
3543  * @napi: napi polling structure
3544  * @budget: count of how many packets we should handle
3545  **/
3546 static int igb_poll(struct napi_struct *napi, int budget)
3547 {
3548         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3549         struct igb_adapter *adapter = rx_ring->adapter;
3550         struct net_device *netdev = adapter->netdev;
3551         int tx_clean_complete, work_done = 0;
3552
3553         /* this poll routine only supports one tx and one rx queue */
3554 #ifdef CONFIG_IGB_DCA
3555         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3556                 igb_update_tx_dca(&adapter->tx_ring[0]);
3557 #endif
3558         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3559
3560 #ifdef CONFIG_IGB_DCA
3561         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3562                 igb_update_rx_dca(&adapter->rx_ring[0]);
3563 #endif
3564         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3565
3566         /* If no Tx and not enough Rx work done, exit the polling mode */
3567         if ((tx_clean_complete && (work_done < budget)) ||
3568             !netif_running(netdev)) {
3569                 if (adapter->itr_setting & 3)
3570                         igb_set_itr(adapter);
3571                 netif_rx_complete(netdev, napi);
3572                 if (!test_bit(__IGB_DOWN, &adapter->state))
3573                         igb_irq_enable(adapter);
3574                 return 0;
3575         }
3576
3577         return 1;
3578 }
3579
3580 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3581 {
3582         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3583         struct igb_adapter *adapter = rx_ring->adapter;
3584         struct e1000_hw *hw = &adapter->hw;
3585         struct net_device *netdev = adapter->netdev;
3586         int work_done = 0;
3587
3588 #ifdef CONFIG_IGB_DCA
3589         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3590                 igb_update_rx_dca(rx_ring);
3591 #endif
3592         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3593
3594
3595         /* If not enough Rx work done, exit the polling mode */
3596         if ((work_done == 0) || !netif_running(netdev)) {
3597                 netif_rx_complete(netdev, napi);
3598
3599                 if (adapter->itr_setting & 3) {
3600                         if (adapter->num_rx_queues == 1)
3601                                 igb_set_itr(adapter);
3602                         else
3603                                 igb_update_ring_itr(rx_ring);
3604                 }
3605
3606                 if (!test_bit(__IGB_DOWN, &adapter->state))
3607                         wr32(E1000_EIMS, rx_ring->eims_value);
3608
3609                 return 0;
3610         }
3611
3612         return 1;
3613 }
3614
3615 static inline u32 get_head(struct igb_ring *tx_ring)
3616 {
3617         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3618         return le32_to_cpu(*(volatile __le32 *)end);
3619 }
3620
3621 /**
3622  * igb_clean_tx_irq - Reclaim resources after transmit completes
3623  * @adapter: board private structure
3624  * returns true if ring is completely cleaned
3625  **/
3626 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3627 {
3628         struct igb_adapter *adapter = tx_ring->adapter;
3629         struct e1000_hw *hw = &adapter->hw;
3630         struct net_device *netdev = adapter->netdev;
3631         struct e1000_tx_desc *tx_desc;
3632         struct igb_buffer *buffer_info;
3633         struct sk_buff *skb;
3634         unsigned int i;
3635         u32 head, oldhead;
3636         unsigned int count = 0;
3637         unsigned int total_bytes = 0, total_packets = 0;
3638         bool retval = true;
3639
3640         rmb();
3641         head = get_head(tx_ring);
3642         i = tx_ring->next_to_clean;
3643         while (1) {
3644                 while (i != head) {
3645                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3646                         buffer_info = &tx_ring->buffer_info[i];
3647                         skb = buffer_info->skb;
3648
3649                         if (skb) {
3650                                 unsigned int segs, bytecount;
3651                                 /* gso_segs is currently only valid for tcp */
3652                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3653                                 /* multiply data chunks by size of headers */
3654                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3655                                             skb->len;
3656                                 total_packets += segs;
3657                                 total_bytes += bytecount;
3658                         }
3659
3660                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3661
3662                         i++;
3663                         if (i == tx_ring->count)
3664                                 i = 0;
3665
3666                         count++;
3667                         if (count == IGB_MAX_TX_CLEAN) {
3668                                 retval = false;
3669                                 goto done_cleaning;
3670                         }
3671                 }
3672                 oldhead = head;
3673                 rmb();
3674                 head = get_head(tx_ring);
3675                 if (head == oldhead)
3676                         goto done_cleaning;
3677         }  /* while (1) */
3678
3679 done_cleaning:
3680         tx_ring->next_to_clean = i;
3681
3682         if (unlikely(count &&
3683                      netif_carrier_ok(netdev) &&
3684                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3685                 /* Make sure that anybody stopping the queue after this
3686                  * sees the new next_to_clean.
3687                  */
3688                 smp_mb();
3689                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3690                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3691                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3692                         ++adapter->restart_queue;
3693                 }
3694         }
3695
3696         if (tx_ring->detect_tx_hung) {
3697                 /* Detect a transmit hang in hardware, this serializes the
3698                  * check with the clearing of time_stamp and movement of i */
3699                 tx_ring->detect_tx_hung = false;
3700                 if (tx_ring->buffer_info[i].time_stamp &&
3701                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3702                                (adapter->tx_timeout_factor * HZ))
3703                     && !(rd32(E1000_STATUS) &
3704                          E1000_STATUS_TXOFF)) {
3705
3706                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3707                         /* detected Tx unit hang */
3708                         dev_err(&adapter->pdev->dev,
3709                                 "Detected Tx Unit Hang\n"
3710                                 "  Tx Queue             <%d>\n"
3711                                 "  TDH                  <%x>\n"
3712                                 "  TDT                  <%x>\n"
3713                                 "  next_to_use          <%x>\n"
3714                                 "  next_to_clean        <%x>\n"
3715                                 "  head (WB)            <%x>\n"
3716                                 "buffer_info[next_to_clean]\n"
3717                                 "  time_stamp           <%lx>\n"
3718                                 "  jiffies              <%lx>\n"
3719                                 "  desc.status          <%x>\n",
3720                                 tx_ring->queue_index,
3721                                 readl(adapter->hw.hw_addr + tx_ring->head),
3722                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3723                                 tx_ring->next_to_use,
3724                                 tx_ring->next_to_clean,
3725                                 head,
3726                                 tx_ring->buffer_info[i].time_stamp,
3727                                 jiffies,
3728                                 tx_desc->upper.fields.status);
3729                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3730                 }
3731         }
3732         tx_ring->total_bytes += total_bytes;
3733         tx_ring->total_packets += total_packets;
3734         tx_ring->tx_stats.bytes += total_bytes;
3735         tx_ring->tx_stats.packets += total_packets;
3736         adapter->net_stats.tx_bytes += total_bytes;
3737         adapter->net_stats.tx_packets += total_packets;
3738         return retval;
3739 }
3740
3741 #ifdef CONFIG_IGB_LRO
3742  /**
3743  * igb_get_skb_hdr - helper function for LRO header processing
3744  * @skb: pointer to sk_buff to be added to LRO packet
3745  * @iphdr: pointer to ip header structure
3746  * @tcph: pointer to tcp header structure
3747  * @hdr_flags: pointer to header flags
3748  * @priv: pointer to the receive descriptor for the current sk_buff
3749  **/
3750 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3751                            u64 *hdr_flags, void *priv)
3752 {
3753         union e1000_adv_rx_desc *rx_desc = priv;
3754         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3755                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3756
3757         /* Verify that this is a valid IPv4 TCP packet */
3758         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3759                           E1000_RXDADV_PKTTYPE_TCP))
3760                 return -1;
3761
3762         /* Set network headers */
3763         skb_reset_network_header(skb);
3764         skb_set_transport_header(skb, ip_hdrlen(skb));
3765         *iphdr = ip_hdr(skb);
3766         *tcph = tcp_hdr(skb);
3767         *hdr_flags = LRO_IPV4 | LRO_TCP;
3768
3769         return 0;
3770
3771 }
3772 #endif /* CONFIG_IGB_LRO */
3773
3774 /**
3775  * igb_receive_skb - helper function to handle rx indications
3776  * @ring: pointer to receive ring receving this packet 
3777  * @status: descriptor status field as written by hardware
3778  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3779  * @skb: pointer to sk_buff to be indicated to stack
3780  **/
3781 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3782                             union e1000_adv_rx_desc * rx_desc,
3783                             struct sk_buff *skb)
3784 {
3785         struct igb_adapter * adapter = ring->adapter;
3786         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3787
3788 #ifdef CONFIG_IGB_LRO
3789         if (adapter->netdev->features & NETIF_F_LRO &&
3790             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3791                 if (vlan_extracted)
3792                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3793                                            adapter->vlgrp,
3794                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3795                                            rx_desc);
3796                 else
3797                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3798                 ring->lro_used = 1;
3799         } else {
3800 #endif
3801                 if (vlan_extracted)
3802                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3803                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3804                 else
3805
3806                         netif_receive_skb(skb);
3807 #ifdef CONFIG_IGB_LRO
3808         }
3809 #endif
3810 }
3811
3812
3813 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3814                                        u32 status_err, struct sk_buff *skb)
3815 {
3816         skb->ip_summed = CHECKSUM_NONE;
3817
3818         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3819         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3820                 return;
3821         /* TCP/UDP checksum error bit is set */
3822         if (status_err &
3823             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3824                 /* let the stack verify checksum errors */
3825                 adapter->hw_csum_err++;
3826                 return;
3827         }
3828         /* It must be a TCP or UDP packet with a valid checksum */
3829         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3830                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3831
3832         adapter->hw_csum_good++;
3833 }
3834
3835 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3836                                  int *work_done, int budget)
3837 {
3838         struct igb_adapter *adapter = rx_ring->adapter;
3839         struct net_device *netdev = adapter->netdev;
3840         struct pci_dev *pdev = adapter->pdev;
3841         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3842         struct igb_buffer *buffer_info , *next_buffer;
3843         struct sk_buff *skb;
3844         unsigned int i;
3845         u32 length, hlen, staterr;
3846         bool cleaned = false;
3847         int cleaned_count = 0;
3848         unsigned int total_bytes = 0, total_packets = 0;
3849
3850         i = rx_ring->next_to_clean;
3851         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3852         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3853
3854         while (staterr & E1000_RXD_STAT_DD) {
3855                 if (*work_done >= budget)
3856                         break;
3857                 (*work_done)++;
3858                 buffer_info = &rx_ring->buffer_info[i];
3859
3860                 /* HW will not DMA in data larger than the given buffer, even
3861                  * if it parses the (NFS, of course) header to be larger.  In
3862                  * that case, it fills the header buffer and spills the rest
3863                  * into the page.
3864                  */
3865                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3866                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3867                 if (hlen > adapter->rx_ps_hdr_size)
3868                         hlen = adapter->rx_ps_hdr_size;
3869
3870                 length = le16_to_cpu(rx_desc->wb.upper.length);
3871                 cleaned = true;
3872                 cleaned_count++;
3873
3874                 skb = buffer_info->skb;
3875                 prefetch(skb->data - NET_IP_ALIGN);
3876                 buffer_info->skb = NULL;
3877                 if (!adapter->rx_ps_hdr_size) {
3878                         pci_unmap_single(pdev, buffer_info->dma,
3879                                          adapter->rx_buffer_len +
3880                                            NET_IP_ALIGN,
3881                                          PCI_DMA_FROMDEVICE);
3882                         skb_put(skb, length);
3883                         goto send_up;
3884                 }
3885
3886                 if (!skb_shinfo(skb)->nr_frags) {
3887                         pci_unmap_single(pdev, buffer_info->dma,
3888                                          adapter->rx_ps_hdr_size +
3889                                            NET_IP_ALIGN,
3890                                          PCI_DMA_FROMDEVICE);
3891                         skb_put(skb, hlen);
3892                 }
3893
3894                 if (length) {
3895                         pci_unmap_page(pdev, buffer_info->page_dma,
3896                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3897                         buffer_info->page_dma = 0;
3898
3899                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3900                                                 buffer_info->page,
3901                                                 buffer_info->page_offset,
3902                                                 length);
3903
3904                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3905                             (page_count(buffer_info->page) != 1))
3906                                 buffer_info->page = NULL;
3907                         else
3908                                 get_page(buffer_info->page);
3909
3910                         skb->len += length;
3911                         skb->data_len += length;
3912
3913                         skb->truesize += length;
3914                 }
3915 send_up:
3916                 i++;
3917                 if (i == rx_ring->count)
3918                         i = 0;
3919                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3920                 prefetch(next_rxd);
3921                 next_buffer = &rx_ring->buffer_info[i];
3922
3923                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3924                         buffer_info->skb = next_buffer->skb;
3925                         buffer_info->dma = next_buffer->dma;
3926                         next_buffer->skb = skb;
3927                         next_buffer->dma = 0;
3928                         goto next_desc;
3929                 }
3930
3931                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3932                         dev_kfree_skb_irq(skb);
3933                         goto next_desc;
3934                 }
3935
3936                 total_bytes += skb->len;
3937                 total_packets++;
3938
3939                 igb_rx_checksum_adv(adapter, staterr, skb);
3940
3941                 skb->protocol = eth_type_trans(skb, netdev);
3942
3943                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3944
3945 next_desc:
3946                 rx_desc->wb.upper.status_error = 0;
3947
3948                 /* return some buffers to hardware, one at a time is too slow */
3949                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3950                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3951                         cleaned_count = 0;
3952                 }
3953
3954                 /* use prefetched values */
3955                 rx_desc = next_rxd;
3956                 buffer_info = next_buffer;
3957
3958                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3959         }
3960
3961         rx_ring->next_to_clean = i;
3962         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3963
3964 #ifdef CONFIG_IGB_LRO
3965         if (rx_ring->lro_used) {
3966                 lro_flush_all(&rx_ring->lro_mgr);
3967                 rx_ring->lro_used = 0;
3968         }
3969 #endif
3970
3971         if (cleaned_count)
3972                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3973
3974         rx_ring->total_packets += total_packets;
3975         rx_ring->total_bytes += total_bytes;
3976         rx_ring->rx_stats.packets += total_packets;
3977         rx_ring->rx_stats.bytes += total_bytes;
3978         adapter->net_stats.rx_bytes += total_bytes;
3979         adapter->net_stats.rx_packets += total_packets;
3980         return cleaned;
3981 }
3982
3983
3984 /**
3985  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3986  * @adapter: address of board private structure
3987  **/
3988 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3989                                      int cleaned_count)
3990 {
3991         struct igb_adapter *adapter = rx_ring->adapter;
3992         struct net_device *netdev = adapter->netdev;
3993         struct pci_dev *pdev = adapter->pdev;
3994         union e1000_adv_rx_desc *rx_desc;
3995         struct igb_buffer *buffer_info;
3996         struct sk_buff *skb;
3997         unsigned int i;
3998
3999         i = rx_ring->next_to_use;
4000         buffer_info = &rx_ring->buffer_info[i];
4001
4002         while (cleaned_count--) {
4003                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4004
4005                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4006                         if (!buffer_info->page) {
4007                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4008                                 if (!buffer_info->page) {
4009                                         adapter->alloc_rx_buff_failed++;
4010                                         goto no_buffers;
4011                                 }
4012                                 buffer_info->page_offset = 0;
4013                         } else {
4014                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4015                         }
4016                         buffer_info->page_dma =
4017                                 pci_map_page(pdev,
4018                                              buffer_info->page,
4019                                              buffer_info->page_offset,
4020                                              PAGE_SIZE / 2,
4021                                              PCI_DMA_FROMDEVICE);
4022                 }
4023
4024                 if (!buffer_info->skb) {
4025                         int bufsz;
4026
4027                         if (adapter->rx_ps_hdr_size)
4028                                 bufsz = adapter->rx_ps_hdr_size;
4029                         else
4030                                 bufsz = adapter->rx_buffer_len;
4031                         bufsz += NET_IP_ALIGN;
4032                         skb = netdev_alloc_skb(netdev, bufsz);
4033
4034                         if (!skb) {
4035                                 adapter->alloc_rx_buff_failed++;
4036                                 goto no_buffers;
4037                         }
4038
4039                         /* Make buffer alignment 2 beyond a 16 byte boundary
4040                          * this will result in a 16 byte aligned IP header after
4041                          * the 14 byte MAC header is removed
4042                          */
4043                         skb_reserve(skb, NET_IP_ALIGN);
4044
4045                         buffer_info->skb = skb;
4046                         buffer_info->dma = pci_map_single(pdev, skb->data,
4047                                                           bufsz,
4048                                                           PCI_DMA_FROMDEVICE);
4049
4050                 }
4051                 /* Refresh the desc even if buffer_addrs didn't change because
4052                  * each write-back erases this info. */
4053                 if (adapter->rx_ps_hdr_size) {
4054                         rx_desc->read.pkt_addr =
4055                              cpu_to_le64(buffer_info->page_dma);
4056                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4057                 } else {
4058                         rx_desc->read.pkt_addr =
4059                              cpu_to_le64(buffer_info->dma);
4060                         rx_desc->read.hdr_addr = 0;
4061                 }
4062
4063                 i++;
4064                 if (i == rx_ring->count)
4065                         i = 0;
4066                 buffer_info = &rx_ring->buffer_info[i];
4067         }
4068
4069 no_buffers:
4070         if (rx_ring->next_to_use != i) {
4071                 rx_ring->next_to_use = i;
4072                 if (i == 0)
4073                         i = (rx_ring->count - 1);
4074                 else
4075                         i--;
4076
4077                 /* Force memory writes to complete before letting h/w
4078                  * know there are new descriptors to fetch.  (Only
4079                  * applicable for weak-ordered memory model archs,
4080                  * such as IA-64). */
4081                 wmb();
4082                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4083         }
4084 }
4085
4086 /**
4087  * igb_mii_ioctl -
4088  * @netdev:
4089  * @ifreq:
4090  * @cmd:
4091  **/
4092 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4093 {
4094         struct igb_adapter *adapter = netdev_priv(netdev);
4095         struct mii_ioctl_data *data = if_mii(ifr);
4096
4097         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4098                 return -EOPNOTSUPP;
4099
4100         switch (cmd) {
4101         case SIOCGMIIPHY:
4102                 data->phy_id = adapter->hw.phy.addr;
4103                 break;
4104         case SIOCGMIIREG:
4105                 if (!capable(CAP_NET_ADMIN))
4106                         return -EPERM;
4107                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4108                                      &data->val_out))
4109                         return -EIO;
4110                 break;
4111         case SIOCSMIIREG:
4112         default:
4113                 return -EOPNOTSUPP;
4114         }
4115         return 0;
4116 }
4117
4118 /**
4119  * igb_ioctl -
4120  * @netdev:
4121  * @ifreq:
4122  * @cmd:
4123  **/
4124 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4125 {
4126         switch (cmd) {
4127         case SIOCGMIIPHY:
4128         case SIOCGMIIREG:
4129         case SIOCSMIIREG:
4130                 return igb_mii_ioctl(netdev, ifr, cmd);
4131         default:
4132                 return -EOPNOTSUPP;
4133         }
4134 }
4135
4136 static void igb_vlan_rx_register(struct net_device *netdev,
4137                                  struct vlan_group *grp)
4138 {
4139         struct igb_adapter *adapter = netdev_priv(netdev);
4140         struct e1000_hw *hw = &adapter->hw;
4141         u32 ctrl, rctl;
4142
4143         igb_irq_disable(adapter);
4144         adapter->vlgrp = grp;
4145
4146         if (grp) {
4147                 /* enable VLAN tag insert/strip */
4148                 ctrl = rd32(E1000_CTRL);
4149                 ctrl |= E1000_CTRL_VME;
4150                 wr32(E1000_CTRL, ctrl);
4151
4152                 /* enable VLAN receive filtering */
4153                 rctl = rd32(E1000_RCTL);
4154                 rctl &= ~E1000_RCTL_CFIEN;
4155                 wr32(E1000_RCTL, rctl);
4156                 igb_update_mng_vlan(adapter);
4157                 wr32(E1000_RLPML,
4158                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4159         } else {
4160                 /* disable VLAN tag insert/strip */
4161                 ctrl = rd32(E1000_CTRL);
4162                 ctrl &= ~E1000_CTRL_VME;
4163                 wr32(E1000_CTRL, ctrl);
4164
4165                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4166                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4167                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4168                 }
4169                 wr32(E1000_RLPML,
4170                                 adapter->max_frame_size);
4171         }
4172
4173         if (!test_bit(__IGB_DOWN, &adapter->state))
4174                 igb_irq_enable(adapter);
4175 }
4176
4177 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4178 {
4179         struct igb_adapter *adapter = netdev_priv(netdev);
4180         struct e1000_hw *hw = &adapter->hw;
4181         u32 vfta, index;
4182
4183         if ((adapter->hw.mng_cookie.status &
4184              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4185             (vid == adapter->mng_vlan_id))
4186                 return;
4187         /* add VID to filter table */
4188         index = (vid >> 5) & 0x7F;
4189         vfta = array_rd32(E1000_VFTA, index);
4190         vfta |= (1 << (vid & 0x1F));
4191         igb_write_vfta(&adapter->hw, index, vfta);
4192 }
4193
4194 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4195 {
4196         struct igb_adapter *adapter = netdev_priv(netdev);
4197         struct e1000_hw *hw = &adapter->hw;
4198         u32 vfta, index;
4199
4200         igb_irq_disable(adapter);
4201         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4202
4203         if (!test_bit(__IGB_DOWN, &adapter->state))
4204                 igb_irq_enable(adapter);
4205
4206         if ((adapter->hw.mng_cookie.status &
4207              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4208             (vid == adapter->mng_vlan_id)) {
4209                 /* release control to f/w */
4210                 igb_release_hw_control(adapter);
4211                 return;
4212         }
4213
4214         /* remove VID from filter table */
4215         index = (vid >> 5) & 0x7F;
4216         vfta = array_rd32(E1000_VFTA, index);
4217         vfta &= ~(1 << (vid & 0x1F));
4218         igb_write_vfta(&adapter->hw, index, vfta);
4219 }
4220
4221 static void igb_restore_vlan(struct igb_adapter *adapter)
4222 {
4223         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4224
4225         if (adapter->vlgrp) {
4226                 u16 vid;
4227                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4228                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4229                                 continue;
4230                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4231                 }
4232         }
4233 }
4234
4235 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4236 {
4237         struct e1000_mac_info *mac = &adapter->hw.mac;
4238
4239         mac->autoneg = 0;
4240
4241         /* Fiber NICs only allow 1000 gbps Full duplex */
4242         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4243                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4244                 dev_err(&adapter->pdev->dev,
4245                         "Unsupported Speed/Duplex configuration\n");
4246                 return -EINVAL;
4247         }
4248
4249         switch (spddplx) {
4250         case SPEED_10 + DUPLEX_HALF:
4251                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4252                 break;
4253         case SPEED_10 + DUPLEX_FULL:
4254                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4255                 break;
4256         case SPEED_100 + DUPLEX_HALF:
4257                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4258                 break;
4259         case SPEED_100 + DUPLEX_FULL:
4260                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4261                 break;
4262         case SPEED_1000 + DUPLEX_FULL:
4263                 mac->autoneg = 1;
4264                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4265                 break;
4266         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4267         default:
4268                 dev_err(&adapter->pdev->dev,
4269                         "Unsupported Speed/Duplex configuration\n");
4270                 return -EINVAL;
4271         }
4272         return 0;
4273 }
4274
4275
4276 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4277 {
4278         struct net_device *netdev = pci_get_drvdata(pdev);
4279         struct igb_adapter *adapter = netdev_priv(netdev);
4280         struct e1000_hw *hw = &adapter->hw;
4281         u32 ctrl, rctl, status;
4282         u32 wufc = adapter->wol;
4283 #ifdef CONFIG_PM
4284         int retval = 0;
4285 #endif
4286
4287         netif_device_detach(netdev);
4288
4289         if (netif_running(netdev))
4290                 igb_close(netdev);
4291
4292         igb_reset_interrupt_capability(adapter);
4293
4294         igb_free_queues(adapter);
4295
4296 #ifdef CONFIG_PM
4297         retval = pci_save_state(pdev);
4298         if (retval)
4299                 return retval;
4300 #endif
4301
4302         status = rd32(E1000_STATUS);
4303         if (status & E1000_STATUS_LU)
4304                 wufc &= ~E1000_WUFC_LNKC;
4305
4306         if (wufc) {
4307                 igb_setup_rctl(adapter);
4308                 igb_set_multi(netdev);
4309
4310                 /* turn on all-multi mode if wake on multicast is enabled */
4311                 if (wufc & E1000_WUFC_MC) {
4312                         rctl = rd32(E1000_RCTL);
4313                         rctl |= E1000_RCTL_MPE;
4314                         wr32(E1000_RCTL, rctl);
4315                 }
4316
4317                 ctrl = rd32(E1000_CTRL);
4318                 /* advertise wake from D3Cold */
4319                 #define E1000_CTRL_ADVD3WUC 0x00100000
4320                 /* phy power management enable */
4321                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4322                 ctrl |= E1000_CTRL_ADVD3WUC;
4323                 wr32(E1000_CTRL, ctrl);
4324
4325                 /* Allow time for pending master requests to run */
4326                 igb_disable_pcie_master(&adapter->hw);
4327
4328                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4329                 wr32(E1000_WUFC, wufc);
4330         } else {
4331                 wr32(E1000_WUC, 0);
4332                 wr32(E1000_WUFC, 0);
4333         }
4334
4335         /* make sure adapter isn't asleep if manageability/wol is enabled */
4336         if (wufc || adapter->en_mng_pt) {
4337                 pci_enable_wake(pdev, PCI_D3hot, 1);
4338                 pci_enable_wake(pdev, PCI_D3cold, 1);
4339         } else {
4340                 igb_shutdown_fiber_serdes_link_82575(hw);
4341                 pci_enable_wake(pdev, PCI_D3hot, 0);
4342                 pci_enable_wake(pdev, PCI_D3cold, 0);
4343         }
4344
4345         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4346          * would have already happened in close and is redundant. */
4347         igb_release_hw_control(adapter);
4348
4349         pci_disable_device(pdev);
4350
4351         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4352
4353         return 0;
4354 }
4355
4356 #ifdef CONFIG_PM
4357 static int igb_resume(struct pci_dev *pdev)
4358 {
4359         struct net_device *netdev = pci_get_drvdata(pdev);
4360         struct igb_adapter *adapter = netdev_priv(netdev);
4361         struct e1000_hw *hw = &adapter->hw;
4362         u32 err;
4363
4364         pci_set_power_state(pdev, PCI_D0);
4365         pci_restore_state(pdev);
4366
4367         if (adapter->need_ioport)
4368                 err = pci_enable_device(pdev);
4369         else
4370                 err = pci_enable_device_mem(pdev);
4371         if (err) {
4372                 dev_err(&pdev->dev,
4373                         "igb: Cannot enable PCI device from suspend\n");
4374                 return err;
4375         }
4376         pci_set_master(pdev);
4377
4378         pci_enable_wake(pdev, PCI_D3hot, 0);
4379         pci_enable_wake(pdev, PCI_D3cold, 0);
4380
4381         igb_set_interrupt_capability(adapter);
4382
4383         if (igb_alloc_queues(adapter)) {
4384                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4385                 return -ENOMEM;
4386         }
4387
4388         /* e1000_power_up_phy(adapter); */
4389
4390         igb_reset(adapter);
4391         wr32(E1000_WUS, ~0);
4392
4393         if (netif_running(netdev)) {
4394                 err = igb_open(netdev);
4395                 if (err)
4396                         return err;
4397         }
4398
4399         netif_device_attach(netdev);
4400
4401         /* let the f/w know that the h/w is now under the control of the
4402          * driver. */
4403         igb_get_hw_control(adapter);
4404
4405         return 0;
4406 }
4407 #endif
4408
4409 static void igb_shutdown(struct pci_dev *pdev)
4410 {
4411         igb_suspend(pdev, PMSG_SUSPEND);
4412 }
4413
4414 #ifdef CONFIG_NET_POLL_CONTROLLER
4415 /*
4416  * Polling 'interrupt' - used by things like netconsole to send skbs
4417  * without having to re-enable interrupts. It's not called while
4418  * the interrupt routine is executing.
4419  */
4420 static void igb_netpoll(struct net_device *netdev)
4421 {
4422         struct igb_adapter *adapter = netdev_priv(netdev);
4423         int i;
4424         int work_done = 0;
4425
4426         igb_irq_disable(adapter);
4427         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4428
4429         for (i = 0; i < adapter->num_tx_queues; i++)
4430                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4431
4432         for (i = 0; i < adapter->num_rx_queues; i++)
4433                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4434                                      &work_done,
4435                                      adapter->rx_ring[i].napi.weight);
4436
4437         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4438         igb_irq_enable(adapter);
4439 }
4440 #endif /* CONFIG_NET_POLL_CONTROLLER */
4441
4442 /**
4443  * igb_io_error_detected - called when PCI error is detected
4444  * @pdev: Pointer to PCI device
4445  * @state: The current pci connection state
4446  *
4447  * This function is called after a PCI bus error affecting
4448  * this device has been detected.
4449  */
4450 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4451                                               pci_channel_state_t state)
4452 {
4453         struct net_device *netdev = pci_get_drvdata(pdev);
4454         struct igb_adapter *adapter = netdev_priv(netdev);
4455
4456         netif_device_detach(netdev);
4457
4458         if (netif_running(netdev))
4459                 igb_down(adapter);
4460         pci_disable_device(pdev);
4461
4462         /* Request a slot slot reset. */
4463         return PCI_ERS_RESULT_NEED_RESET;
4464 }
4465
4466 /**
4467  * igb_io_slot_reset - called after the pci bus has been reset.
4468  * @pdev: Pointer to PCI device
4469  *
4470  * Restart the card from scratch, as if from a cold-boot. Implementation
4471  * resembles the first-half of the igb_resume routine.
4472  */
4473 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4474 {
4475         struct net_device *netdev = pci_get_drvdata(pdev);
4476         struct igb_adapter *adapter = netdev_priv(netdev);
4477         struct e1000_hw *hw = &adapter->hw;
4478         pci_ers_result_t result;
4479         int err;
4480
4481         if (adapter->need_ioport)
4482                 err = pci_enable_device(pdev);
4483         else
4484                 err = pci_enable_device_mem(pdev);
4485
4486         if (err) {
4487                 dev_err(&pdev->dev,
4488                         "Cannot re-enable PCI device after reset.\n");
4489                 result = PCI_ERS_RESULT_DISCONNECT;
4490         } else {
4491                 pci_set_master(pdev);
4492                 pci_restore_state(pdev);
4493
4494                 pci_enable_wake(pdev, PCI_D3hot, 0);
4495                 pci_enable_wake(pdev, PCI_D3cold, 0);
4496
4497                 igb_reset(adapter);
4498                 wr32(E1000_WUS, ~0);
4499                 result = PCI_ERS_RESULT_RECOVERED;
4500         }
4501
4502         pci_cleanup_aer_uncorrect_error_status(pdev);
4503
4504         return result;
4505 }
4506
4507 /**
4508  * igb_io_resume - called when traffic can start flowing again.
4509  * @pdev: Pointer to PCI device
4510  *
4511  * This callback is called when the error recovery driver tells us that
4512  * its OK to resume normal operation. Implementation resembles the
4513  * second-half of the igb_resume routine.
4514  */
4515 static void igb_io_resume(struct pci_dev *pdev)
4516 {
4517         struct net_device *netdev = pci_get_drvdata(pdev);
4518         struct igb_adapter *adapter = netdev_priv(netdev);
4519
4520         if (netif_running(netdev)) {
4521                 if (igb_up(adapter)) {
4522                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4523                         return;
4524                 }
4525         }
4526
4527         netif_device_attach(netdev);
4528
4529         /* let the f/w know that the h/w is now under the control of the
4530          * driver. */
4531         igb_get_hw_control(adapter);
4532 }
4533
4534 /* igb_main.c */