]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/rrunner.c
41f877d482c70645a109492b6d2905eac48205d2
[linux-2.6-omap-h63xx.git] / drivers / net / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66 /*
67  * Implementation notes:
68  *
69  * The DMA engine only allows for DMA within physical 64KB chunks of
70  * memory. The current approach of the driver (and stack) is to use
71  * linear blocks of memory for the skbuffs. However, as the data block
72  * is always the first part of the skb and skbs are 2^n aligned so we
73  * are guarantted to get the whole block within one 64KB align 64KB
74  * chunk.
75  *
76  * On the long term, relying on being able to allocate 64KB linear
77  * chunks of memory is not feasible and the skb handling code and the
78  * stack will need to know about I/O vectors or something similar.
79  */
80
81 /*
82  * These are checked at init time to see if they are at least 256KB
83  * and increased to 256KB if they are not. This is done to avoid ending
84  * up with socket buffers smaller than the MTU size,
85  */
86 extern __u32 sysctl_wmem_max;
87 extern __u32 sysctl_rmem_max;
88
89 static int __devinit rr_init_one(struct pci_dev *pdev,
90         const struct pci_device_id *ent)
91 {
92         struct net_device *dev;
93         static int version_disp;
94         u8 pci_latency;
95         struct rr_private *rrpriv;
96         void *tmpptr;
97         dma_addr_t ring_dma;
98         int ret = -ENOMEM;
99
100         dev = alloc_hippi_dev(sizeof(struct rr_private));
101         if (!dev)
102                 goto out3;
103
104         ret = pci_enable_device(pdev);
105         if (ret) {
106                 ret = -ENODEV;
107                 goto out2;
108         }
109
110         rrpriv = netdev_priv(dev);
111
112         SET_NETDEV_DEV(dev, &pdev->dev);
113
114         if (pci_request_regions(pdev, "rrunner")) {
115                 ret = -EIO;
116                 goto out;
117         }
118
119         pci_set_drvdata(pdev, dev);
120
121         rrpriv->pci_dev = pdev;
122
123         spin_lock_init(&rrpriv->lock);
124
125         dev->irq = pdev->irq;
126         dev->open = &rr_open;
127         dev->hard_start_xmit = &rr_start_xmit;
128         dev->stop = &rr_close;
129         dev->get_stats = &rr_get_stats;
130         dev->do_ioctl = &rr_ioctl;
131
132         dev->base_addr = pci_resource_start(pdev, 0);
133
134         /* display version info if adapter is found */
135         if (!version_disp) {
136                 /* set display flag to TRUE so that */
137                 /* we only display this string ONCE */
138                 version_disp = 1;
139                 printk(version);
140         }
141
142         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
143         if (pci_latency <= 0x58){
144                 pci_latency = 0x58;
145                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
146         }
147
148         pci_set_master(pdev);
149
150         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
151                "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
152                dev->base_addr, dev->irq, pci_latency);
153
154         /*
155          * Remap the regs into kernel space.
156          */
157
158         rrpriv->regs = ioremap(dev->base_addr, 0x1000);
159
160         if (!rrpriv->regs){
161                 printk(KERN_ERR "%s:  Unable to map I/O register, "
162                         "RoadRunner will be disabled.\n", dev->name);
163                 ret = -EIO;
164                 goto out;
165         }
166
167         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
168         rrpriv->tx_ring = tmpptr;
169         rrpriv->tx_ring_dma = ring_dma;
170
171         if (!tmpptr) {
172                 ret = -ENOMEM;
173                 goto out;
174         }
175
176         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
177         rrpriv->rx_ring = tmpptr;
178         rrpriv->rx_ring_dma = ring_dma;
179
180         if (!tmpptr) {
181                 ret = -ENOMEM;
182                 goto out;
183         }
184
185         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
186         rrpriv->evt_ring = tmpptr;
187         rrpriv->evt_ring_dma = ring_dma;
188
189         if (!tmpptr) {
190                 ret = -ENOMEM;
191                 goto out;
192         }
193
194         /*
195          * Don't access any register before this point!
196          */
197 #ifdef __BIG_ENDIAN
198         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
199                 &rrpriv->regs->HostCtrl);
200 #endif
201         /*
202          * Need to add a case for little-endian 64-bit hosts here.
203          */
204
205         rr_init(dev);
206
207         dev->base_addr = 0;
208
209         ret = register_netdev(dev);
210         if (ret)
211                 goto out;
212         return 0;
213
214  out:
215         if (rrpriv->rx_ring)
216                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
217                                     rrpriv->rx_ring_dma);
218         if (rrpriv->tx_ring)
219                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
220                                     rrpriv->tx_ring_dma);
221         if (rrpriv->regs)
222                 iounmap(rrpriv->regs);
223         if (pdev) {
224                 pci_release_regions(pdev);
225                 pci_set_drvdata(pdev, NULL);
226         }
227  out2:
228         free_netdev(dev);
229  out3:
230         return ret;
231 }
232
233 static void __devexit rr_remove_one (struct pci_dev *pdev)
234 {
235         struct net_device *dev = pci_get_drvdata(pdev);
236
237         if (dev) {
238                 struct rr_private *rr = netdev_priv(dev);
239
240                 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
241                         printk(KERN_ERR "%s: trying to unload running NIC\n",
242                                dev->name);
243                         writel(HALT_NIC, &rr->regs->HostCtrl);
244                 }
245
246                 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
247                                     rr->evt_ring_dma);
248                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
249                                     rr->rx_ring_dma);
250                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
251                                     rr->tx_ring_dma);
252                 unregister_netdev(dev);
253                 iounmap(rr->regs);
254                 free_netdev(dev);
255                 pci_release_regions(pdev);
256                 pci_disable_device(pdev);
257                 pci_set_drvdata(pdev, NULL);
258         }
259 }
260
261
262 /*
263  * Commands are considered to be slow, thus there is no reason to
264  * inline this.
265  */
266 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
267 {
268         struct rr_regs __iomem *regs;
269         u32 idx;
270
271         regs = rrpriv->regs;
272         /*
273          * This is temporary - it will go away in the final version.
274          * We probably also want to make this function inline.
275          */
276         if (readl(&regs->HostCtrl) & NIC_HALTED){
277                 printk("issuing command for halted NIC, code 0x%x, "
278                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
279                 if (readl(&regs->Mode) & FATAL_ERR)
280                         printk("error codes Fail1 %02x, Fail2 %02x\n",
281                                readl(&regs->Fail1), readl(&regs->Fail2));
282         }
283
284         idx = rrpriv->info->cmd_ctrl.pi;
285
286         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
287         wmb();
288
289         idx = (idx - 1) % CMD_RING_ENTRIES;
290         rrpriv->info->cmd_ctrl.pi = idx;
291         wmb();
292
293         if (readl(&regs->Mode) & FATAL_ERR)
294                 printk("error code %02x\n", readl(&regs->Fail1));
295 }
296
297
298 /*
299  * Reset the board in a sensible manner. The NIC is already halted
300  * when we get here and a spin-lock is held.
301  */
302 static int rr_reset(struct net_device *dev)
303 {
304         struct rr_private *rrpriv;
305         struct rr_regs __iomem *regs;
306         struct eeprom *hw = NULL;
307         u32 start_pc;
308         int i;
309
310         rrpriv = netdev_priv(dev);
311         regs = rrpriv->regs;
312
313         rr_load_firmware(dev);
314
315         writel(0x01000000, &regs->TX_state);
316         writel(0xff800000, &regs->RX_state);
317         writel(0, &regs->AssistState);
318         writel(CLEAR_INTA, &regs->LocalCtrl);
319         writel(0x01, &regs->BrkPt);
320         writel(0, &regs->Timer);
321         writel(0, &regs->TimerRef);
322         writel(RESET_DMA, &regs->DmaReadState);
323         writel(RESET_DMA, &regs->DmaWriteState);
324         writel(0, &regs->DmaWriteHostHi);
325         writel(0, &regs->DmaWriteHostLo);
326         writel(0, &regs->DmaReadHostHi);
327         writel(0, &regs->DmaReadHostLo);
328         writel(0, &regs->DmaReadLen);
329         writel(0, &regs->DmaWriteLen);
330         writel(0, &regs->DmaWriteLcl);
331         writel(0, &regs->DmaWriteIPchecksum);
332         writel(0, &regs->DmaReadLcl);
333         writel(0, &regs->DmaReadIPchecksum);
334         writel(0, &regs->PciState);
335 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
336         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
337 #elif (BITS_PER_LONG == 64)
338         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
339 #else
340         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
341 #endif
342
343 #if 0
344         /*
345          * Don't worry, this is just black magic.
346          */
347         writel(0xdf000, &regs->RxBase);
348         writel(0xdf000, &regs->RxPrd);
349         writel(0xdf000, &regs->RxCon);
350         writel(0xce000, &regs->TxBase);
351         writel(0xce000, &regs->TxPrd);
352         writel(0xce000, &regs->TxCon);
353         writel(0, &regs->RxIndPro);
354         writel(0, &regs->RxIndCon);
355         writel(0, &regs->RxIndRef);
356         writel(0, &regs->TxIndPro);
357         writel(0, &regs->TxIndCon);
358         writel(0, &regs->TxIndRef);
359         writel(0xcc000, &regs->pad10[0]);
360         writel(0, &regs->DrCmndPro);
361         writel(0, &regs->DrCmndCon);
362         writel(0, &regs->DwCmndPro);
363         writel(0, &regs->DwCmndCon);
364         writel(0, &regs->DwCmndRef);
365         writel(0, &regs->DrDataPro);
366         writel(0, &regs->DrDataCon);
367         writel(0, &regs->DrDataRef);
368         writel(0, &regs->DwDataPro);
369         writel(0, &regs->DwDataCon);
370         writel(0, &regs->DwDataRef);
371 #endif
372
373         writel(0xffffffff, &regs->MbEvent);
374         writel(0, &regs->Event);
375
376         writel(0, &regs->TxPi);
377         writel(0, &regs->IpRxPi);
378
379         writel(0, &regs->EvtCon);
380         writel(0, &regs->EvtPrd);
381
382         rrpriv->info->evt_ctrl.pi = 0;
383
384         for (i = 0; i < CMD_RING_ENTRIES; i++)
385                 writel(0, &regs->CmdRing[i]);
386
387 /*
388  * Why 32 ? is this not cache line size dependent?
389  */
390         writel(RBURST_64|WBURST_64, &regs->PciState);
391         wmb();
392
393         start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
394
395 #if (DEBUG > 1)
396         printk("%s: Executing firmware at address 0x%06x\n",
397                dev->name, start_pc);
398 #endif
399
400         writel(start_pc + 0x800, &regs->Pc);
401         wmb();
402         udelay(5);
403
404         writel(start_pc, &regs->Pc);
405         wmb();
406
407         return 0;
408 }
409
410
411 /*
412  * Read a string from the EEPROM.
413  */
414 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
415                                 unsigned long offset,
416                                 unsigned char *buf,
417                                 unsigned long length)
418 {
419         struct rr_regs __iomem *regs = rrpriv->regs;
420         u32 misc, io, host, i;
421
422         io = readl(&regs->ExtIo);
423         writel(0, &regs->ExtIo);
424         misc = readl(&regs->LocalCtrl);
425         writel(0, &regs->LocalCtrl);
426         host = readl(&regs->HostCtrl);
427         writel(host | HALT_NIC, &regs->HostCtrl);
428         mb();
429
430         for (i = 0; i < length; i++){
431                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
432                 mb();
433                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
434                 mb();
435         }
436
437         writel(host, &regs->HostCtrl);
438         writel(misc, &regs->LocalCtrl);
439         writel(io, &regs->ExtIo);
440         mb();
441         return i;
442 }
443
444
445 /*
446  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
447  * it to our CPU byte-order.
448  */
449 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
450                             void * offset)
451 {
452         u32 word;
453
454         if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
455                             (char *)&word, 4) == 4))
456                 return be32_to_cpu(word);
457         return 0;
458 }
459
460
461 /*
462  * Write a string to the EEPROM.
463  *
464  * This is only called when the firmware is not running.
465  */
466 static unsigned int write_eeprom(struct rr_private *rrpriv,
467                                  unsigned long offset,
468                                  unsigned char *buf,
469                                  unsigned long length)
470 {
471         struct rr_regs __iomem *regs = rrpriv->regs;
472         u32 misc, io, data, i, j, ready, error = 0;
473
474         io = readl(&regs->ExtIo);
475         writel(0, &regs->ExtIo);
476         misc = readl(&regs->LocalCtrl);
477         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
478         mb();
479
480         for (i = 0; i < length; i++){
481                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
482                 mb();
483                 data = buf[i] << 24;
484                 /*
485                  * Only try to write the data if it is not the same
486                  * value already.
487                  */
488                 if ((readl(&regs->WinData) & 0xff000000) != data){
489                         writel(data, &regs->WinData);
490                         ready = 0;
491                         j = 0;
492                         mb();
493                         while(!ready){
494                                 udelay(20);
495                                 if ((readl(&regs->WinData) & 0xff000000) ==
496                                     data)
497                                         ready = 1;
498                                 mb();
499                                 if (j++ > 5000){
500                                         printk("data mismatch: %08x, "
501                                                "WinData %08x\n", data,
502                                                readl(&regs->WinData));
503                                         ready = 1;
504                                         error = 1;
505                                 }
506                         }
507                 }
508         }
509
510         writel(misc, &regs->LocalCtrl);
511         writel(io, &regs->ExtIo);
512         mb();
513
514         return error;
515 }
516
517
518 static int __devinit rr_init(struct net_device *dev)
519 {
520         struct rr_private *rrpriv;
521         struct rr_regs __iomem *regs;
522         struct eeprom *hw = NULL;
523         u32 sram_size, rev;
524         int i;
525
526         rrpriv = netdev_priv(dev);
527         regs = rrpriv->regs;
528
529         rev = readl(&regs->FwRev);
530         rrpriv->fw_rev = rev;
531         if (rev > 0x00020024)
532                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
533                        ((rev >> 8) & 0xff), (rev & 0xff));
534         else if (rev >= 0x00020000) {
535                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
536                        "later is recommended)\n", (rev >> 16),
537                        ((rev >> 8) & 0xff), (rev & 0xff));
538         }else{
539                 printk("  Firmware revision too old: %i.%i.%i, please "
540                        "upgrade to 2.0.37 or later.\n",
541                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
542         }
543
544 #if (DEBUG > 2)
545         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
546 #endif
547
548         /*
549          * Read the hardware address from the eeprom.  The HW address
550          * is not really necessary for HIPPI but awfully convenient.
551          * The pointer arithmetic to put it in dev_addr is ugly, but
552          * Donald Becker does it this way for the GigE version of this
553          * card and it's shorter and more portable than any
554          * other method I've seen.  -VAL
555          */
556
557         *(u16 *)(dev->dev_addr) =
558           htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
559         *(u32 *)(dev->dev_addr+2) =
560           htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
561
562         printk("  MAC: ");
563
564         for (i = 0; i < 5; i++)
565                 printk("%2.2x:", dev->dev_addr[i]);
566         printk("%2.2x\n", dev->dev_addr[i]);
567
568         sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
569         printk("  SRAM size 0x%06x\n", sram_size);
570
571         if (sysctl_rmem_max < 262144){
572                 printk("  Receive socket buffer limit too low (%i), "
573                        "setting to 262144\n", sysctl_rmem_max);
574                 sysctl_rmem_max = 262144;
575         }
576
577         if (sysctl_wmem_max < 262144){
578                 printk("  Transmit socket buffer limit too low (%i), "
579                        "setting to 262144\n", sysctl_wmem_max);
580                 sysctl_wmem_max = 262144;
581         }
582
583         return 0;
584 }
585
586
587 static int rr_init1(struct net_device *dev)
588 {
589         struct rr_private *rrpriv;
590         struct rr_regs __iomem *regs;
591         unsigned long myjif, flags;
592         struct cmd cmd;
593         u32 hostctrl;
594         int ecode = 0;
595         short i;
596
597         rrpriv = netdev_priv(dev);
598         regs = rrpriv->regs;
599
600         spin_lock_irqsave(&rrpriv->lock, flags);
601
602         hostctrl = readl(&regs->HostCtrl);
603         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
604         wmb();
605
606         if (hostctrl & PARITY_ERR){
607                 printk("%s: Parity error halting NIC - this is serious!\n",
608                        dev->name);
609                 spin_unlock_irqrestore(&rrpriv->lock, flags);
610                 ecode = -EFAULT;
611                 goto error;
612         }
613
614         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
615         set_infoaddr(regs, rrpriv->info_dma);
616
617         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
618         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
619         rrpriv->info->evt_ctrl.mode = 0;
620         rrpriv->info->evt_ctrl.pi = 0;
621         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
622
623         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
624         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
625         rrpriv->info->cmd_ctrl.mode = 0;
626         rrpriv->info->cmd_ctrl.pi = 15;
627
628         for (i = 0; i < CMD_RING_ENTRIES; i++) {
629                 writel(0, &regs->CmdRing[i]);
630         }
631
632         for (i = 0; i < TX_RING_ENTRIES; i++) {
633                 rrpriv->tx_ring[i].size = 0;
634                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
635                 rrpriv->tx_skbuff[i] = NULL;
636         }
637         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
638         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
639         rrpriv->info->tx_ctrl.mode = 0;
640         rrpriv->info->tx_ctrl.pi = 0;
641         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
642
643         /*
644          * Set dirty_tx before we start receiving interrupts, otherwise
645          * the interrupt handler might think it is supposed to process
646          * tx ints before we are up and running, which may cause a null
647          * pointer access in the int handler.
648          */
649         rrpriv->tx_full = 0;
650         rrpriv->cur_rx = 0;
651         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
652
653         rr_reset(dev);
654
655         /* Tuning values */
656         writel(0x5000, &regs->ConRetry);
657         writel(0x100, &regs->ConRetryTmr);
658         writel(0x500000, &regs->ConTmout);
659         writel(0x60, &regs->IntrTmr);
660         writel(0x500000, &regs->TxDataMvTimeout);
661         writel(0x200000, &regs->RxDataMvTimeout);
662         writel(0x80, &regs->WriteDmaThresh);
663         writel(0x80, &regs->ReadDmaThresh);
664
665         rrpriv->fw_running = 0;
666         wmb();
667
668         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
669         writel(hostctrl, &regs->HostCtrl);
670         wmb();
671
672         spin_unlock_irqrestore(&rrpriv->lock, flags);
673
674         for (i = 0; i < RX_RING_ENTRIES; i++) {
675                 struct sk_buff *skb;
676                 dma_addr_t addr;
677
678                 rrpriv->rx_ring[i].mode = 0;
679                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
680                 if (!skb) {
681                         printk(KERN_WARNING "%s: Unable to allocate memory "
682                                "for receive ring - halting NIC\n", dev->name);
683                         ecode = -ENOMEM;
684                         goto error;
685                 }
686                 rrpriv->rx_skbuff[i] = skb;
687                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
688                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
689                 /*
690                  * Sanity test to see if we conflict with the DMA
691                  * limitations of the Roadrunner.
692                  */
693                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
694                         printk("skb alloc error\n");
695
696                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
697                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
698         }
699
700         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
701         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
702         rrpriv->rx_ctrl[4].mode = 8;
703         rrpriv->rx_ctrl[4].pi = 0;
704         wmb();
705         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
706
707         udelay(1000);
708
709         /*
710          * Now start the FirmWare.
711          */
712         cmd.code = C_START_FW;
713         cmd.ring = 0;
714         cmd.index = 0;
715
716         rr_issue_cmd(rrpriv, &cmd);
717
718         /*
719          * Give the FirmWare time to chew on the `get running' command.
720          */
721         myjif = jiffies + 5 * HZ;
722         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
723                 cpu_relax();
724
725         netif_start_queue(dev);
726
727         return ecode;
728
729  error:
730         /*
731          * We might have gotten here because we are out of memory,
732          * make sure we release everything we allocated before failing
733          */
734         for (i = 0; i < RX_RING_ENTRIES; i++) {
735                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
736
737                 if (skb) {
738                         pci_unmap_single(rrpriv->pci_dev,
739                                          rrpriv->rx_ring[i].addr.addrlo,
740                                          dev->mtu + HIPPI_HLEN,
741                                          PCI_DMA_FROMDEVICE);
742                         rrpriv->rx_ring[i].size = 0;
743                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
744                         dev_kfree_skb(skb);
745                         rrpriv->rx_skbuff[i] = NULL;
746                 }
747         }
748         return ecode;
749 }
750
751
752 /*
753  * All events are considered to be slow (RX/TX ints do not generate
754  * events) and are handled here, outside the main interrupt handler,
755  * to reduce the size of the handler.
756  */
757 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
758 {
759         struct rr_private *rrpriv;
760         struct rr_regs __iomem *regs;
761         u32 tmp;
762
763         rrpriv = netdev_priv(dev);
764         regs = rrpriv->regs;
765
766         while (prodidx != eidx){
767                 switch (rrpriv->evt_ring[eidx].code){
768                 case E_NIC_UP:
769                         tmp = readl(&regs->FwRev);
770                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
771                                "up and running\n", dev->name,
772                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
773                         rrpriv->fw_running = 1;
774                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
775                         wmb();
776                         break;
777                 case E_LINK_ON:
778                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
779                         break;
780                 case E_LINK_OFF:
781                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
782                         break;
783                 case E_RX_IDLE:
784                         printk(KERN_WARNING "%s: RX data not moving\n",
785                                dev->name);
786                         goto drop;
787                 case E_WATCHDOG:
788                         printk(KERN_INFO "%s: The watchdog is here to see "
789                                "us\n", dev->name);
790                         break;
791                 case E_INTERN_ERR:
792                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
793                                dev->name);
794                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
795                                &regs->HostCtrl);
796                         wmb();
797                         break;
798                 case E_HOST_ERR:
799                         printk(KERN_ERR "%s: Host software error\n",
800                                dev->name);
801                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
802                                &regs->HostCtrl);
803                         wmb();
804                         break;
805                 /*
806                  * TX events.
807                  */
808                 case E_CON_REJ:
809                         printk(KERN_WARNING "%s: Connection rejected\n",
810                                dev->name);
811                         rrpriv->stats.tx_aborted_errors++;
812                         break;
813                 case E_CON_TMOUT:
814                         printk(KERN_WARNING "%s: Connection timeout\n",
815                                dev->name);
816                         break;
817                 case E_DISC_ERR:
818                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
819                                dev->name);
820                         rrpriv->stats.tx_aborted_errors++;
821                         break;
822                 case E_INT_PRTY:
823                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
824                                dev->name);
825                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826                                &regs->HostCtrl);
827                         wmb();
828                         break;
829                 case E_TX_IDLE:
830                         printk(KERN_WARNING "%s: Transmitter idle\n",
831                                dev->name);
832                         break;
833                 case E_TX_LINK_DROP:
834                         printk(KERN_WARNING "%s: Link lost during transmit\n",
835                                dev->name);
836                         rrpriv->stats.tx_aborted_errors++;
837                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
838                                &regs->HostCtrl);
839                         wmb();
840                         break;
841                 case E_TX_INV_RNG:
842                         printk(KERN_ERR "%s: Invalid send ring block\n",
843                                dev->name);
844                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
845                                &regs->HostCtrl);
846                         wmb();
847                         break;
848                 case E_TX_INV_BUF:
849                         printk(KERN_ERR "%s: Invalid send buffer address\n",
850                                dev->name);
851                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
852                                &regs->HostCtrl);
853                         wmb();
854                         break;
855                 case E_TX_INV_DSC:
856                         printk(KERN_ERR "%s: Invalid descriptor address\n",
857                                dev->name);
858                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
859                                &regs->HostCtrl);
860                         wmb();
861                         break;
862                 /*
863                  * RX events.
864                  */
865                 case E_RX_RNG_OUT:
866                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
867                         break;
868
869                 case E_RX_PAR_ERR:
870                         printk(KERN_WARNING "%s: Receive parity error\n",
871                                dev->name);
872                         goto drop;
873                 case E_RX_LLRC_ERR:
874                         printk(KERN_WARNING "%s: Receive LLRC error\n",
875                                dev->name);
876                         goto drop;
877                 case E_PKT_LN_ERR:
878                         printk(KERN_WARNING "%s: Receive packet length "
879                                "error\n", dev->name);
880                         goto drop;
881                 case E_DTA_CKSM_ERR:
882                         printk(KERN_WARNING "%s: Data checksum error\n",
883                                dev->name);
884                         goto drop;
885                 case E_SHT_BST:
886                         printk(KERN_WARNING "%s: Unexpected short burst "
887                                "error\n", dev->name);
888                         goto drop;
889                 case E_STATE_ERR:
890                         printk(KERN_WARNING "%s: Recv. state transition"
891                                " error\n", dev->name);
892                         goto drop;
893                 case E_UNEXP_DATA:
894                         printk(KERN_WARNING "%s: Unexpected data error\n",
895                                dev->name);
896                         goto drop;
897                 case E_LST_LNK_ERR:
898                         printk(KERN_WARNING "%s: Link lost error\n",
899                                dev->name);
900                         goto drop;
901                 case E_FRM_ERR:
902                         printk(KERN_WARNING "%s: Framming Error\n",
903                                dev->name);
904                         goto drop;
905                 case E_FLG_SYN_ERR:
906                         printk(KERN_WARNING "%s: Flag sync. lost during"
907                                "packet\n", dev->name);
908                         goto drop;
909                 case E_RX_INV_BUF:
910                         printk(KERN_ERR "%s: Invalid receive buffer "
911                                "address\n", dev->name);
912                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
913                                &regs->HostCtrl);
914                         wmb();
915                         break;
916                 case E_RX_INV_DSC:
917                         printk(KERN_ERR "%s: Invalid receive descriptor "
918                                "address\n", dev->name);
919                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
920                                &regs->HostCtrl);
921                         wmb();
922                         break;
923                 case E_RNG_BLK:
924                         printk(KERN_ERR "%s: Invalid ring block\n",
925                                dev->name);
926                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
927                                &regs->HostCtrl);
928                         wmb();
929                         break;
930                 drop:
931                         /* Label packet to be dropped.
932                          * Actual dropping occurs in rx
933                          * handling.
934                          *
935                          * The index of packet we get to drop is
936                          * the index of the packet following
937                          * the bad packet. -kbf
938                          */
939                         {
940                                 u16 index = rrpriv->evt_ring[eidx].index;
941                                 index = (index + (RX_RING_ENTRIES - 1)) %
942                                         RX_RING_ENTRIES;
943                                 rrpriv->rx_ring[index].mode |=
944                                         (PACKET_BAD | PACKET_END);
945                         }
946                         break;
947                 default:
948                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
949                                dev->name, rrpriv->evt_ring[eidx].code);
950                 }
951                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
952         }
953
954         rrpriv->info->evt_ctrl.pi = eidx;
955         wmb();
956         return eidx;
957 }
958
959
960 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
961 {
962         struct rr_private *rrpriv = netdev_priv(dev);
963         struct rr_regs __iomem *regs = rrpriv->regs;
964
965         do {
966                 struct rx_desc *desc;
967                 u32 pkt_len;
968
969                 desc = &(rrpriv->rx_ring[index]);
970                 pkt_len = desc->size;
971 #if (DEBUG > 2)
972                 printk("index %i, rxlimit %i\n", index, rxlimit);
973                 printk("len %x, mode %x\n", pkt_len, desc->mode);
974 #endif
975                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
976                         rrpriv->stats.rx_dropped++;
977                         goto defer;
978                 }
979
980                 if (pkt_len > 0){
981                         struct sk_buff *skb, *rx_skb;
982
983                         rx_skb = rrpriv->rx_skbuff[index];
984
985                         if (pkt_len < PKT_COPY_THRESHOLD) {
986                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
987                                 if (skb == NULL){
988                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
989                                         rrpriv->stats.rx_dropped++;
990                                         goto defer;
991                                 } else {
992                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
993                                                                     desc->addr.addrlo,
994                                                                     pkt_len,
995                                                                     PCI_DMA_FROMDEVICE);
996
997                                         memcpy(skb_put(skb, pkt_len),
998                                                rx_skb->data, pkt_len);
999
1000                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
1001                                                                        desc->addr.addrlo,
1002                                                                        pkt_len,
1003                                                                        PCI_DMA_FROMDEVICE);
1004                                 }
1005                         }else{
1006                                 struct sk_buff *newskb;
1007
1008                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1009                                         GFP_ATOMIC);
1010                                 if (newskb){
1011                                         dma_addr_t addr;
1012
1013                                         pci_unmap_single(rrpriv->pci_dev,
1014                                                 desc->addr.addrlo, dev->mtu +
1015                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1016                                         skb = rx_skb;
1017                                         skb_put(skb, pkt_len);
1018                                         rrpriv->rx_skbuff[index] = newskb;
1019                                         addr = pci_map_single(rrpriv->pci_dev,
1020                                                 newskb->data,
1021                                                 dev->mtu + HIPPI_HLEN,
1022                                                 PCI_DMA_FROMDEVICE);
1023                                         set_rraddr(&desc->addr, addr);
1024                                 } else {
1025                                         printk("%s: Out of memory, deferring "
1026                                                "packet\n", dev->name);
1027                                         rrpriv->stats.rx_dropped++;
1028                                         goto defer;
1029                                 }
1030                         }
1031                         skb->protocol = hippi_type_trans(skb, dev);
1032
1033                         netif_rx(skb);          /* send it up */
1034
1035                         dev->last_rx = jiffies;
1036                         rrpriv->stats.rx_packets++;
1037                         rrpriv->stats.rx_bytes += pkt_len;
1038                 }
1039         defer:
1040                 desc->mode = 0;
1041                 desc->size = dev->mtu + HIPPI_HLEN;
1042
1043                 if ((index & 7) == 7)
1044                         writel(index, &regs->IpRxPi);
1045
1046                 index = (index + 1) % RX_RING_ENTRIES;
1047         } while(index != rxlimit);
1048
1049         rrpriv->cur_rx = index;
1050         wmb();
1051 }
1052
1053
1054 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1055 {
1056         struct rr_private *rrpriv;
1057         struct rr_regs __iomem *regs;
1058         struct net_device *dev = (struct net_device *)dev_id;
1059         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1060
1061         rrpriv = netdev_priv(dev);
1062         regs = rrpriv->regs;
1063
1064         if (!(readl(&regs->HostCtrl) & RR_INT))
1065                 return IRQ_NONE;
1066
1067         spin_lock(&rrpriv->lock);
1068
1069         prodidx = readl(&regs->EvtPrd);
1070         txcsmr = (prodidx >> 8) & 0xff;
1071         rxlimit = (prodidx >> 16) & 0xff;
1072         prodidx &= 0xff;
1073
1074 #if (DEBUG > 2)
1075         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1076                prodidx, rrpriv->info->evt_ctrl.pi);
1077 #endif
1078         /*
1079          * Order here is important.  We must handle events
1080          * before doing anything else in order to catch
1081          * such things as LLRC errors, etc -kbf
1082          */
1083
1084         eidx = rrpriv->info->evt_ctrl.pi;
1085         if (prodidx != eidx)
1086                 eidx = rr_handle_event(dev, prodidx, eidx);
1087
1088         rxindex = rrpriv->cur_rx;
1089         if (rxindex != rxlimit)
1090                 rx_int(dev, rxlimit, rxindex);
1091
1092         txcon = rrpriv->dirty_tx;
1093         if (txcsmr != txcon) {
1094                 do {
1095                         /* Due to occational firmware TX producer/consumer out
1096                          * of sync. error need to check entry in ring -kbf
1097                          */
1098                         if(rrpriv->tx_skbuff[txcon]){
1099                                 struct tx_desc *desc;
1100                                 struct sk_buff *skb;
1101
1102                                 desc = &(rrpriv->tx_ring[txcon]);
1103                                 skb = rrpriv->tx_skbuff[txcon];
1104
1105                                 rrpriv->stats.tx_packets++;
1106                                 rrpriv->stats.tx_bytes += skb->len;
1107
1108                                 pci_unmap_single(rrpriv->pci_dev,
1109                                                  desc->addr.addrlo, skb->len,
1110                                                  PCI_DMA_TODEVICE);
1111                                 dev_kfree_skb_irq(skb);
1112
1113                                 rrpriv->tx_skbuff[txcon] = NULL;
1114                                 desc->size = 0;
1115                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1116                                 desc->mode = 0;
1117                         }
1118                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1119                 } while (txcsmr != txcon);
1120                 wmb();
1121
1122                 rrpriv->dirty_tx = txcon;
1123                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1124                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1125                      != rrpriv->dirty_tx)){
1126                         rrpriv->tx_full = 0;
1127                         netif_wake_queue(dev);
1128                 }
1129         }
1130
1131         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1132         writel(eidx, &regs->EvtCon);
1133         wmb();
1134
1135         spin_unlock(&rrpriv->lock);
1136         return IRQ_HANDLED;
1137 }
1138
1139 static inline void rr_raz_tx(struct rr_private *rrpriv,
1140                              struct net_device *dev)
1141 {
1142         int i;
1143
1144         for (i = 0; i < TX_RING_ENTRIES; i++) {
1145                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1146
1147                 if (skb) {
1148                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1149
1150                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1151                                 skb->len, PCI_DMA_TODEVICE);
1152                         desc->size = 0;
1153                         set_rraddr(&desc->addr, 0);
1154                         dev_kfree_skb(skb);
1155                         rrpriv->tx_skbuff[i] = NULL;
1156                 }
1157         }
1158 }
1159
1160
1161 static inline void rr_raz_rx(struct rr_private *rrpriv,
1162                              struct net_device *dev)
1163 {
1164         int i;
1165
1166         for (i = 0; i < RX_RING_ENTRIES; i++) {
1167                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1168
1169                 if (skb) {
1170                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1171
1172                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1173                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1174                         desc->size = 0;
1175                         set_rraddr(&desc->addr, 0);
1176                         dev_kfree_skb(skb);
1177                         rrpriv->rx_skbuff[i] = NULL;
1178                 }
1179         }
1180 }
1181
1182 static void rr_timer(unsigned long data)
1183 {
1184         struct net_device *dev = (struct net_device *)data;
1185         struct rr_private *rrpriv = netdev_priv(dev);
1186         struct rr_regs __iomem *regs = rrpriv->regs;
1187         unsigned long flags;
1188
1189         if (readl(&regs->HostCtrl) & NIC_HALTED){
1190                 printk("%s: Restarting nic\n", dev->name);
1191                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1192                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1193                 wmb();
1194
1195                 rr_raz_tx(rrpriv, dev);
1196                 rr_raz_rx(rrpriv, dev);
1197
1198                 if (rr_init1(dev)) {
1199                         spin_lock_irqsave(&rrpriv->lock, flags);
1200                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1201                                &regs->HostCtrl);
1202                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1203                 }
1204         }
1205         rrpriv->timer.expires = RUN_AT(5*HZ);
1206         add_timer(&rrpriv->timer);
1207 }
1208
1209
1210 static int rr_open(struct net_device *dev)
1211 {
1212         struct rr_private *rrpriv = netdev_priv(dev);
1213         struct pci_dev *pdev = rrpriv->pci_dev;
1214         struct rr_regs __iomem *regs;
1215         int ecode = 0;
1216         unsigned long flags;
1217         dma_addr_t dma_addr;
1218
1219         regs = rrpriv->regs;
1220
1221         if (rrpriv->fw_rev < 0x00020000) {
1222                 printk(KERN_WARNING "%s: trying to configure device with "
1223                        "obsolete firmware\n", dev->name);
1224                 ecode = -EBUSY;
1225                 goto error;
1226         }
1227
1228         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1229                                                256 * sizeof(struct ring_ctrl),
1230                                                &dma_addr);
1231         if (!rrpriv->rx_ctrl) {
1232                 ecode = -ENOMEM;
1233                 goto error;
1234         }
1235         rrpriv->rx_ctrl_dma = dma_addr;
1236         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1237
1238         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1239                                             &dma_addr);
1240         if (!rrpriv->info) {
1241                 ecode = -ENOMEM;
1242                 goto error;
1243         }
1244         rrpriv->info_dma = dma_addr;
1245         memset(rrpriv->info, 0, sizeof(struct rr_info));
1246         wmb();
1247
1248         spin_lock_irqsave(&rrpriv->lock, flags);
1249         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1250         readl(&regs->HostCtrl);
1251         spin_unlock_irqrestore(&rrpriv->lock, flags);
1252
1253         if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1254                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1255                        dev->name, dev->irq);
1256                 ecode = -EAGAIN;
1257                 goto error;
1258         }
1259
1260         if ((ecode = rr_init1(dev)))
1261                 goto error;
1262
1263         /* Set the timer to switch to check for link beat and perhaps switch
1264            to an alternate media type. */
1265         init_timer(&rrpriv->timer);
1266         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1267         rrpriv->timer.data = (unsigned long)dev;
1268         rrpriv->timer.function = &rr_timer;               /* timer handler */
1269         add_timer(&rrpriv->timer);
1270
1271         netif_start_queue(dev);
1272
1273         return ecode;
1274
1275  error:
1276         spin_lock_irqsave(&rrpriv->lock, flags);
1277         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1278         spin_unlock_irqrestore(&rrpriv->lock, flags);
1279
1280         if (rrpriv->info) {
1281                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1282                                     rrpriv->info_dma);
1283                 rrpriv->info = NULL;
1284         }
1285         if (rrpriv->rx_ctrl) {
1286                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1287                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1288                 rrpriv->rx_ctrl = NULL;
1289         }
1290
1291         netif_stop_queue(dev);
1292
1293         return ecode;
1294 }
1295
1296
1297 static void rr_dump(struct net_device *dev)
1298 {
1299         struct rr_private *rrpriv;
1300         struct rr_regs __iomem *regs;
1301         u32 index, cons;
1302         short i;
1303         int len;
1304
1305         rrpriv = netdev_priv(dev);
1306         regs = rrpriv->regs;
1307
1308         printk("%s: dumping NIC TX rings\n", dev->name);
1309
1310         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1311                readl(&regs->RxPrd), readl(&regs->TxPrd),
1312                readl(&regs->EvtPrd), readl(&regs->TxPi),
1313                rrpriv->info->tx_ctrl.pi);
1314
1315         printk("Error code 0x%x\n", readl(&regs->Fail1));
1316
1317         index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1318         cons = rrpriv->dirty_tx;
1319         printk("TX ring index %i, TX consumer %i\n",
1320                index, cons);
1321
1322         if (rrpriv->tx_skbuff[index]){
1323                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1324                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1325                 for (i = 0; i < len; i++){
1326                         if (!(i & 7))
1327                                 printk("\n");
1328                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1329                 }
1330                 printk("\n");
1331         }
1332
1333         if (rrpriv->tx_skbuff[cons]){
1334                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1335                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1336                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1337                        rrpriv->tx_ring[cons].mode,
1338                        rrpriv->tx_ring[cons].size,
1339                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1340                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1341                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1342                 for (i = 0; i < len; i++){
1343                         if (!(i & 7))
1344                                 printk("\n");
1345                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1346                 }
1347                 printk("\n");
1348         }
1349
1350         printk("dumping TX ring info:\n");
1351         for (i = 0; i < TX_RING_ENTRIES; i++)
1352                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1353                        rrpriv->tx_ring[i].mode,
1354                        rrpriv->tx_ring[i].size,
1355                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1356
1357 }
1358
1359
1360 static int rr_close(struct net_device *dev)
1361 {
1362         struct rr_private *rrpriv;
1363         struct rr_regs __iomem *regs;
1364         unsigned long flags;
1365         u32 tmp;
1366         short i;
1367
1368         netif_stop_queue(dev);
1369
1370         rrpriv = netdev_priv(dev);
1371         regs = rrpriv->regs;
1372
1373         /*
1374          * Lock to make sure we are not cleaning up while another CPU
1375          * is handling interrupts.
1376          */
1377         spin_lock_irqsave(&rrpriv->lock, flags);
1378
1379         tmp = readl(&regs->HostCtrl);
1380         if (tmp & NIC_HALTED){
1381                 printk("%s: NIC already halted\n", dev->name);
1382                 rr_dump(dev);
1383         }else{
1384                 tmp |= HALT_NIC | RR_CLEAR_INT;
1385                 writel(tmp, &regs->HostCtrl);
1386                 readl(&regs->HostCtrl);
1387         }
1388
1389         rrpriv->fw_running = 0;
1390
1391         del_timer_sync(&rrpriv->timer);
1392
1393         writel(0, &regs->TxPi);
1394         writel(0, &regs->IpRxPi);
1395
1396         writel(0, &regs->EvtCon);
1397         writel(0, &regs->EvtPrd);
1398
1399         for (i = 0; i < CMD_RING_ENTRIES; i++)
1400                 writel(0, &regs->CmdRing[i]);
1401
1402         rrpriv->info->tx_ctrl.entries = 0;
1403         rrpriv->info->cmd_ctrl.pi = 0;
1404         rrpriv->info->evt_ctrl.pi = 0;
1405         rrpriv->rx_ctrl[4].entries = 0;
1406
1407         rr_raz_tx(rrpriv, dev);
1408         rr_raz_rx(rrpriv, dev);
1409
1410         pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1411                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1412         rrpriv->rx_ctrl = NULL;
1413
1414         pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1415                             rrpriv->info, rrpriv->info_dma);
1416         rrpriv->info = NULL;
1417
1418         free_irq(dev->irq, dev);
1419         spin_unlock_irqrestore(&rrpriv->lock, flags);
1420
1421         return 0;
1422 }
1423
1424
1425 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1426 {
1427         struct rr_private *rrpriv = netdev_priv(dev);
1428         struct rr_regs __iomem *regs = rrpriv->regs;
1429         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1430         struct ring_ctrl *txctrl;
1431         unsigned long flags;
1432         u32 index, len = skb->len;
1433         u32 *ifield;
1434         struct sk_buff *new_skb;
1435
1436         if (readl(&regs->Mode) & FATAL_ERR)
1437                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1438                        readl(&regs->Fail1), readl(&regs->Fail2));
1439
1440         /*
1441          * We probably need to deal with tbusy here to prevent overruns.
1442          */
1443
1444         if (skb_headroom(skb) < 8){
1445                 printk("incoming skb too small - reallocating\n");
1446                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1447                         dev_kfree_skb(skb);
1448                         netif_wake_queue(dev);
1449                         return -EBUSY;
1450                 }
1451                 skb_reserve(new_skb, 8);
1452                 skb_put(new_skb, len);
1453                 skb_copy_from_linear_data(skb, new_skb->data, len);
1454                 dev_kfree_skb(skb);
1455                 skb = new_skb;
1456         }
1457
1458         ifield = (u32 *)skb_push(skb, 8);
1459
1460         ifield[0] = 0;
1461         ifield[1] = hcb->ifield;
1462
1463         /*
1464          * We don't need the lock before we are actually going to start
1465          * fiddling with the control blocks.
1466          */
1467         spin_lock_irqsave(&rrpriv->lock, flags);
1468
1469         txctrl = &rrpriv->info->tx_ctrl;
1470
1471         index = txctrl->pi;
1472
1473         rrpriv->tx_skbuff[index] = skb;
1474         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1475                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1476         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1477         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1478         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1479         wmb();
1480         writel(txctrl->pi, &regs->TxPi);
1481
1482         if (txctrl->pi == rrpriv->dirty_tx){
1483                 rrpriv->tx_full = 1;
1484                 netif_stop_queue(dev);
1485         }
1486
1487         spin_unlock_irqrestore(&rrpriv->lock, flags);
1488
1489         dev->trans_start = jiffies;
1490         return 0;
1491 }
1492
1493
1494 static struct net_device_stats *rr_get_stats(struct net_device *dev)
1495 {
1496         struct rr_private *rrpriv;
1497
1498         rrpriv = netdev_priv(dev);
1499
1500         return(&rrpriv->stats);
1501 }
1502
1503
1504 /*
1505  * Read the firmware out of the EEPROM and put it into the SRAM
1506  * (or from user space - later)
1507  *
1508  * This operation requires the NIC to be halted and is performed with
1509  * interrupts disabled and with the spinlock hold.
1510  */
1511 static int rr_load_firmware(struct net_device *dev)
1512 {
1513         struct rr_private *rrpriv;
1514         struct rr_regs __iomem *regs;
1515         unsigned long eptr, segptr;
1516         int i, j;
1517         u32 localctrl, sptr, len, tmp;
1518         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1519         struct eeprom *hw = NULL;
1520
1521         rrpriv = netdev_priv(dev);
1522         regs = rrpriv->regs;
1523
1524         if (dev->flags & IFF_UP)
1525                 return -EBUSY;
1526
1527         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1528                 printk("%s: Trying to load firmware to a running NIC.\n",
1529                        dev->name);
1530                 return -EBUSY;
1531         }
1532
1533         localctrl = readl(&regs->LocalCtrl);
1534         writel(0, &regs->LocalCtrl);
1535
1536         writel(0, &regs->EvtPrd);
1537         writel(0, &regs->RxPrd);
1538         writel(0, &regs->TxPrd);
1539
1540         /*
1541          * First wipe the entire SRAM, otherwise we might run into all
1542          * kinds of trouble ... sigh, this took almost all afternoon
1543          * to track down ;-(
1544          */
1545         io = readl(&regs->ExtIo);
1546         writel(0, &regs->ExtIo);
1547         sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1548
1549         for (i = 200; i < sram_size / 4; i++){
1550                 writel(i * 4, &regs->WinBase);
1551                 mb();
1552                 writel(0, &regs->WinData);
1553                 mb();
1554         }
1555         writel(io, &regs->ExtIo);
1556         mb();
1557
1558         eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1559                                                &hw->rncd_info.AddrRunCodeSegs);
1560         eptr = ((eptr & 0x1fffff) >> 3);
1561
1562         p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1563         p2len = (p2len << 2);
1564         p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1565         p2size = ((p2size & 0x1fffff) >> 3);
1566
1567         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1568                 printk("%s: eptr is invalid\n", dev->name);
1569                 goto out;
1570         }
1571
1572         revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1573
1574         if (revision != 1){
1575                 printk("%s: invalid firmware format (%i)\n",
1576                        dev->name, revision);
1577                 goto out;
1578         }
1579
1580         nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1581         eptr +=4;
1582 #if (DEBUG > 1)
1583         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1584 #endif
1585
1586         for (i = 0; i < nr_seg; i++){
1587                 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1588                 eptr += 4;
1589                 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1590                 eptr += 4;
1591                 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1592                 segptr = ((segptr & 0x1fffff) >> 3);
1593                 eptr += 4;
1594 #if (DEBUG > 1)
1595                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1596                        dev->name, i, sptr, len, segptr);
1597 #endif
1598                 for (j = 0; j < len; j++){
1599                         tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1600                         writel(sptr, &regs->WinBase);
1601                         mb();
1602                         writel(tmp, &regs->WinData);
1603                         mb();
1604                         segptr += 4;
1605                         sptr += 4;
1606                 }
1607         }
1608
1609 out:
1610         writel(localctrl, &regs->LocalCtrl);
1611         mb();
1612         return 0;
1613 }
1614
1615
1616 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1617 {
1618         struct rr_private *rrpriv;
1619         unsigned char *image, *oldimage;
1620         unsigned long flags;
1621         unsigned int i;
1622         int error = -EOPNOTSUPP;
1623
1624         rrpriv = netdev_priv(dev);
1625
1626         switch(cmd){
1627         case SIOCRRGFW:
1628                 if (!capable(CAP_SYS_RAWIO)){
1629                         return -EPERM;
1630                 }
1631
1632                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1633                 if (!image){
1634                         printk(KERN_ERR "%s: Unable to allocate memory "
1635                                "for EEPROM image\n", dev->name);
1636                         return -ENOMEM;
1637                 }
1638
1639
1640                 if (rrpriv->fw_running){
1641                         printk("%s: Firmware already running\n", dev->name);
1642                         error = -EPERM;
1643                         goto gf_out;
1644                 }
1645
1646                 spin_lock_irqsave(&rrpriv->lock, flags);
1647                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1648                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1649                 if (i != EEPROM_BYTES){
1650                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1651                                dev->name);
1652                         error = -EFAULT;
1653                         goto gf_out;
1654                 }
1655                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1656                 if (error)
1657                         error = -EFAULT;
1658         gf_out:
1659                 kfree(image);
1660                 return error;
1661
1662         case SIOCRRPFW:
1663                 if (!capable(CAP_SYS_RAWIO)){
1664                         return -EPERM;
1665                 }
1666
1667                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1668                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1669                 if (!image || !oldimage) {
1670                         printk(KERN_ERR "%s: Unable to allocate memory "
1671                                "for EEPROM image\n", dev->name);
1672                         error = -ENOMEM;
1673                         goto wf_out;
1674                 }
1675
1676                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1677                 if (error) {
1678                         error = -EFAULT;
1679                         goto wf_out;
1680                 }
1681
1682                 if (rrpriv->fw_running){
1683                         printk("%s: Firmware already running\n", dev->name);
1684                         error = -EPERM;
1685                         goto wf_out;
1686                 }
1687
1688                 printk("%s: Updating EEPROM firmware\n", dev->name);
1689
1690                 spin_lock_irqsave(&rrpriv->lock, flags);
1691                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1692                 if (error)
1693                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1694                                dev->name);
1695
1696                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1697                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1698
1699                 if (i != EEPROM_BYTES)
1700                         printk(KERN_ERR "%s: Error reading back EEPROM "
1701                                "image\n", dev->name);
1702
1703                 error = memcmp(image, oldimage, EEPROM_BYTES);
1704                 if (error){
1705                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1706                                dev->name);
1707                         error = -EFAULT;
1708                 }
1709         wf_out:
1710                 kfree(oldimage);
1711                 kfree(image);
1712                 return error;
1713
1714         case SIOCRRID:
1715                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1716         default:
1717                 return error;
1718         }
1719 }
1720
1721 static struct pci_device_id rr_pci_tbl[] = {
1722         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1723                 PCI_ANY_ID, PCI_ANY_ID, },
1724         { 0,}
1725 };
1726 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1727
1728 static struct pci_driver rr_driver = {
1729         .name           = "rrunner",
1730         .id_table       = rr_pci_tbl,
1731         .probe          = rr_init_one,
1732         .remove         = __devexit_p(rr_remove_one),
1733 };
1734
1735 static int __init rr_init_module(void)
1736 {
1737         return pci_register_driver(&rr_driver);
1738 }
1739
1740 static void __exit rr_cleanup_module(void)
1741 {
1742         pci_unregister_driver(&rr_driver);
1743 }
1744
1745 module_init(rr_init_module);
1746 module_exit(rr_cleanup_module);
1747
1748 /*
1749  * Local variables:
1750  * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1751  * End:
1752  */