]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/s2io.c
[PATCH] s2io: additional stats
[linux-2.6-omap-h63xx.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/config.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/init.h>
59 #include <linux/delay.h>
60 #include <linux/stddef.h>
61 #include <linux/ioctl.h>
62 #include <linux/timex.h>
63 #include <linux/sched.h>
64 #include <linux/ethtool.h>
65 #include <linux/workqueue.h>
66 #include <linux/if_vlan.h>
67 #include <linux/ip.h>
68 #include <linux/tcp.h>
69 #include <net/tcp.h>
70
71 #include <asm/system.h>
72 #include <asm/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/div64.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.11.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 /* Module Loadable parameters. */
375 static unsigned int tx_fifo_num = 1;
376 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
377     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
378 static unsigned int rx_ring_num = 1;
379 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
380     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
381 static unsigned int rts_frm_len[MAX_RX_RINGS] =
382     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
383 static unsigned int rx_ring_mode = 1;
384 static unsigned int use_continuous_tx_intrs = 1;
385 static unsigned int rmac_pause_time = 0x100;
386 static unsigned int mc_pause_threshold_q0q3 = 187;
387 static unsigned int mc_pause_threshold_q4q7 = 187;
388 static unsigned int shared_splits;
389 static unsigned int tmac_util_period = 5;
390 static unsigned int rmac_util_period = 5;
391 static unsigned int bimodal = 0;
392 static unsigned int l3l4hdr_size = 128;
393 #ifndef CONFIG_S2IO_NAPI
394 static unsigned int indicate_max_pkts;
395 #endif
396 /* Frequency of Rx desc syncs expressed as power of 2 */
397 static unsigned int rxsync_frequency = 3;
398 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
399 static unsigned int intr_type = 0;
400 /* Large receive offload feature */
401 static unsigned int lro = 0;
402 /* Max pkts to be aggregated by LRO at one time. If not specified,
403  * aggregation happens until we hit max IP pkt size(64K)
404  */
405 static unsigned int lro_max_pkts = 0xFFFF;
406
407 /*
408  * S2IO device table.
409  * This table lists all the devices that this driver supports.
410  */
411 static struct pci_device_id s2io_tbl[] __devinitdata = {
412         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
413          PCI_ANY_ID, PCI_ANY_ID},
414         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
415          PCI_ANY_ID, PCI_ANY_ID},
416         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
417          PCI_ANY_ID, PCI_ANY_ID},
418         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
419          PCI_ANY_ID, PCI_ANY_ID},
420         {0,}
421 };
422
423 MODULE_DEVICE_TABLE(pci, s2io_tbl);
424
425 static struct pci_driver s2io_driver = {
426       .name = "S2IO",
427       .id_table = s2io_tbl,
428       .probe = s2io_init_nic,
429       .remove = __devexit_p(s2io_rem_nic),
430 };
431
432 /* A simplifier macro used both by init and free shared_mem Fns(). */
433 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
434
435 /**
436  * init_shared_mem - Allocation and Initialization of Memory
437  * @nic: Device private variable.
438  * Description: The function allocates all the memory areas shared
439  * between the NIC and the driver. This includes Tx descriptors,
440  * Rx descriptors and the statistics block.
441  */
442
443 static int init_shared_mem(struct s2io_nic *nic)
444 {
445         u32 size;
446         void *tmp_v_addr, *tmp_v_addr_next;
447         dma_addr_t tmp_p_addr, tmp_p_addr_next;
448         RxD_block_t *pre_rxd_blk = NULL;
449         int i, j, blk_cnt, rx_sz, tx_sz;
450         int lst_size, lst_per_page;
451         struct net_device *dev = nic->dev;
452         unsigned long tmp;
453         buffAdd_t *ba;
454
455         mac_info_t *mac_control;
456         struct config_param *config;
457
458         mac_control = &nic->mac_control;
459         config = &nic->config;
460
461
462         /* Allocation and initialization of TXDLs in FIOFs */
463         size = 0;
464         for (i = 0; i < config->tx_fifo_num; i++) {
465                 size += config->tx_cfg[i].fifo_len;
466         }
467         if (size > MAX_AVAILABLE_TXDS) {
468                 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
469                           __FUNCTION__);
470                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
471                 return FAILURE;
472         }
473
474         lst_size = (sizeof(TxD_t) * config->max_txds);
475         tx_sz = lst_size * size;
476         lst_per_page = PAGE_SIZE / lst_size;
477
478         for (i = 0; i < config->tx_fifo_num; i++) {
479                 int fifo_len = config->tx_cfg[i].fifo_len;
480                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
481                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
482                                                           GFP_KERNEL);
483                 if (!mac_control->fifos[i].list_info) {
484                         DBG_PRINT(ERR_DBG,
485                                   "Malloc failed for list_info\n");
486                         return -ENOMEM;
487                 }
488                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
489         }
490         for (i = 0; i < config->tx_fifo_num; i++) {
491                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
492                                                 lst_per_page);
493                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
494                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
495                     config->tx_cfg[i].fifo_len - 1;
496                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
497                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
498                     config->tx_cfg[i].fifo_len - 1;
499                 mac_control->fifos[i].fifo_no = i;
500                 mac_control->fifos[i].nic = nic;
501                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
502
503                 for (j = 0; j < page_num; j++) {
504                         int k = 0;
505                         dma_addr_t tmp_p;
506                         void *tmp_v;
507                         tmp_v = pci_alloc_consistent(nic->pdev,
508                                                      PAGE_SIZE, &tmp_p);
509                         if (!tmp_v) {
510                                 DBG_PRINT(ERR_DBG,
511                                           "pci_alloc_consistent ");
512                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
513                                 return -ENOMEM;
514                         }
515                         /* If we got a zero DMA address(can happen on
516                          * certain platforms like PPC), reallocate.
517                          * Store virtual address of page we don't want,
518                          * to be freed later.
519                          */
520                         if (!tmp_p) {
521                                 mac_control->zerodma_virt_addr = tmp_v;
522                                 DBG_PRINT(INIT_DBG, 
523                                 "%s: Zero DMA address for TxDL. ", dev->name);
524                                 DBG_PRINT(INIT_DBG, 
525                                 "Virtual address %p\n", tmp_v);
526                                 tmp_v = pci_alloc_consistent(nic->pdev,
527                                                      PAGE_SIZE, &tmp_p);
528                                 if (!tmp_v) {
529                                         DBG_PRINT(ERR_DBG,
530                                           "pci_alloc_consistent ");
531                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
532                                         return -ENOMEM;
533                                 }
534                         }
535                         while (k < lst_per_page) {
536                                 int l = (j * lst_per_page) + k;
537                                 if (l == config->tx_cfg[i].fifo_len)
538                                         break;
539                                 mac_control->fifos[i].list_info[l].list_virt_addr =
540                                     tmp_v + (k * lst_size);
541                                 mac_control->fifos[i].list_info[l].list_phy_addr =
542                                     tmp_p + (k * lst_size);
543                                 k++;
544                         }
545                 }
546         }
547
548         nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
549         if (!nic->ufo_in_band_v)
550                 return -ENOMEM;
551
552         /* Allocation and initialization of RXDs in Rings */
553         size = 0;
554         for (i = 0; i < config->rx_ring_num; i++) {
555                 if (config->rx_cfg[i].num_rxd %
556                     (rxd_count[nic->rxd_mode] + 1)) {
557                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
558                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
559                                   i);
560                         DBG_PRINT(ERR_DBG, "RxDs per Block");
561                         return FAILURE;
562                 }
563                 size += config->rx_cfg[i].num_rxd;
564                 mac_control->rings[i].block_count =
565                         config->rx_cfg[i].num_rxd /
566                         (rxd_count[nic->rxd_mode] + 1 );
567                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
568                         mac_control->rings[i].block_count;
569         }
570         if (nic->rxd_mode == RXD_MODE_1)
571                 size = (size * (sizeof(RxD1_t)));
572         else
573                 size = (size * (sizeof(RxD3_t)));
574         rx_sz = size;
575
576         for (i = 0; i < config->rx_ring_num; i++) {
577                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
578                 mac_control->rings[i].rx_curr_get_info.offset = 0;
579                 mac_control->rings[i].rx_curr_get_info.ring_len =
580                     config->rx_cfg[i].num_rxd - 1;
581                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
582                 mac_control->rings[i].rx_curr_put_info.offset = 0;
583                 mac_control->rings[i].rx_curr_put_info.ring_len =
584                     config->rx_cfg[i].num_rxd - 1;
585                 mac_control->rings[i].nic = nic;
586                 mac_control->rings[i].ring_no = i;
587
588                 blk_cnt = config->rx_cfg[i].num_rxd /
589                                 (rxd_count[nic->rxd_mode] + 1);
590                 /*  Allocating all the Rx blocks */
591                 for (j = 0; j < blk_cnt; j++) {
592                         rx_block_info_t *rx_blocks;
593                         int l;
594
595                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
596                         size = SIZE_OF_BLOCK; //size is always page size
597                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
598                                                           &tmp_p_addr);
599                         if (tmp_v_addr == NULL) {
600                                 /*
601                                  * In case of failure, free_shared_mem()
602                                  * is called, which should free any
603                                  * memory that was alloced till the
604                                  * failure happened.
605                                  */
606                                 rx_blocks->block_virt_addr = tmp_v_addr;
607                                 return -ENOMEM;
608                         }
609                         memset(tmp_v_addr, 0, size);
610                         rx_blocks->block_virt_addr = tmp_v_addr;
611                         rx_blocks->block_dma_addr = tmp_p_addr;
612                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
613                                                   rxd_count[nic->rxd_mode],
614                                                   GFP_KERNEL);
615                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
616                                 rx_blocks->rxds[l].virt_addr =
617                                         rx_blocks->block_virt_addr +
618                                         (rxd_size[nic->rxd_mode] * l);
619                                 rx_blocks->rxds[l].dma_addr =
620                                         rx_blocks->block_dma_addr +
621                                         (rxd_size[nic->rxd_mode] * l);
622                         }
623                 }
624                 /* Interlinking all Rx Blocks */
625                 for (j = 0; j < blk_cnt; j++) {
626                         tmp_v_addr =
627                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
628                         tmp_v_addr_next =
629                                 mac_control->rings[i].rx_blocks[(j + 1) %
630                                               blk_cnt].block_virt_addr;
631                         tmp_p_addr =
632                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
633                         tmp_p_addr_next =
634                                 mac_control->rings[i].rx_blocks[(j + 1) %
635                                               blk_cnt].block_dma_addr;
636
637                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
638                         pre_rxd_blk->reserved_2_pNext_RxD_block =
639                             (unsigned long) tmp_v_addr_next;
640                         pre_rxd_blk->pNext_RxD_Blk_physical =
641                             (u64) tmp_p_addr_next;
642                 }
643         }
644         if (nic->rxd_mode >= RXD_MODE_3A) {
645                 /*
646                  * Allocation of Storages for buffer addresses in 2BUFF mode
647                  * and the buffers as well.
648                  */
649                 for (i = 0; i < config->rx_ring_num; i++) {
650                         blk_cnt = config->rx_cfg[i].num_rxd /
651                            (rxd_count[nic->rxd_mode]+ 1);
652                         mac_control->rings[i].ba =
653                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
654                                      GFP_KERNEL);
655                         if (!mac_control->rings[i].ba)
656                                 return -ENOMEM;
657                         for (j = 0; j < blk_cnt; j++) {
658                                 int k = 0;
659                                 mac_control->rings[i].ba[j] =
660                                         kmalloc((sizeof(buffAdd_t) *
661                                                 (rxd_count[nic->rxd_mode] + 1)),
662                                                 GFP_KERNEL);
663                                 if (!mac_control->rings[i].ba[j])
664                                         return -ENOMEM;
665                                 while (k != rxd_count[nic->rxd_mode]) {
666                                         ba = &mac_control->rings[i].ba[j][k];
667
668                                         ba->ba_0_org = (void *) kmalloc
669                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
670                                         if (!ba->ba_0_org)
671                                                 return -ENOMEM;
672                                         tmp = (unsigned long)ba->ba_0_org;
673                                         tmp += ALIGN_SIZE;
674                                         tmp &= ~((unsigned long) ALIGN_SIZE);
675                                         ba->ba_0 = (void *) tmp;
676
677                                         ba->ba_1_org = (void *) kmalloc
678                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
679                                         if (!ba->ba_1_org)
680                                                 return -ENOMEM;
681                                         tmp = (unsigned long) ba->ba_1_org;
682                                         tmp += ALIGN_SIZE;
683                                         tmp &= ~((unsigned long) ALIGN_SIZE);
684                                         ba->ba_1 = (void *) tmp;
685                                         k++;
686                                 }
687                         }
688                 }
689         }
690
691         /* Allocation and initialization of Statistics block */
692         size = sizeof(StatInfo_t);
693         mac_control->stats_mem = pci_alloc_consistent
694             (nic->pdev, size, &mac_control->stats_mem_phy);
695
696         if (!mac_control->stats_mem) {
697                 /*
698                  * In case of failure, free_shared_mem() is called, which
699                  * should free any memory that was alloced till the
700                  * failure happened.
701                  */
702                 return -ENOMEM;
703         }
704         mac_control->stats_mem_sz = size;
705
706         tmp_v_addr = mac_control->stats_mem;
707         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
708         memset(tmp_v_addr, 0, size);
709         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
710                   (unsigned long long) tmp_p_addr);
711
712         return SUCCESS;
713 }
714
715 /**
716  * free_shared_mem - Free the allocated Memory
717  * @nic:  Device private variable.
718  * Description: This function is to free all memory locations allocated by
719  * the init_shared_mem() function and return it to the kernel.
720  */
721
722 static void free_shared_mem(struct s2io_nic *nic)
723 {
724         int i, j, blk_cnt, size;
725         void *tmp_v_addr;
726         dma_addr_t tmp_p_addr;
727         mac_info_t *mac_control;
728         struct config_param *config;
729         int lst_size, lst_per_page;
730         struct net_device *dev = nic->dev;
731
732         if (!nic)
733                 return;
734
735         mac_control = &nic->mac_control;
736         config = &nic->config;
737
738         lst_size = (sizeof(TxD_t) * config->max_txds);
739         lst_per_page = PAGE_SIZE / lst_size;
740
741         for (i = 0; i < config->tx_fifo_num; i++) {
742                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
743                                                 lst_per_page);
744                 for (j = 0; j < page_num; j++) {
745                         int mem_blks = (j * lst_per_page);
746                         if (!mac_control->fifos[i].list_info)
747                                 return; 
748                         if (!mac_control->fifos[i].list_info[mem_blks].
749                                  list_virt_addr)
750                                 break;
751                         pci_free_consistent(nic->pdev, PAGE_SIZE,
752                                             mac_control->fifos[i].
753                                             list_info[mem_blks].
754                                             list_virt_addr,
755                                             mac_control->fifos[i].
756                                             list_info[mem_blks].
757                                             list_phy_addr);
758                 }
759                 /* If we got a zero DMA address during allocation,
760                  * free the page now
761                  */
762                 if (mac_control->zerodma_virt_addr) {
763                         pci_free_consistent(nic->pdev, PAGE_SIZE,
764                                             mac_control->zerodma_virt_addr,
765                                             (dma_addr_t)0);
766                         DBG_PRINT(INIT_DBG, 
767                                 "%s: Freeing TxDL with zero DMA addr. ",
768                                 dev->name);
769                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
770                                 mac_control->zerodma_virt_addr);
771                 }
772                 kfree(mac_control->fifos[i].list_info);
773         }
774
775         size = SIZE_OF_BLOCK;
776         for (i = 0; i < config->rx_ring_num; i++) {
777                 blk_cnt = mac_control->rings[i].block_count;
778                 for (j = 0; j < blk_cnt; j++) {
779                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
780                                 block_virt_addr;
781                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
782                                 block_dma_addr;
783                         if (tmp_v_addr == NULL)
784                                 break;
785                         pci_free_consistent(nic->pdev, size,
786                                             tmp_v_addr, tmp_p_addr);
787                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
788                 }
789         }
790
791         if (nic->rxd_mode >= RXD_MODE_3A) {
792                 /* Freeing buffer storage addresses in 2BUFF mode. */
793                 for (i = 0; i < config->rx_ring_num; i++) {
794                         blk_cnt = config->rx_cfg[i].num_rxd /
795                             (rxd_count[nic->rxd_mode] + 1);
796                         for (j = 0; j < blk_cnt; j++) {
797                                 int k = 0;
798                                 if (!mac_control->rings[i].ba[j])
799                                         continue;
800                                 while (k != rxd_count[nic->rxd_mode]) {
801                                         buffAdd_t *ba =
802                                                 &mac_control->rings[i].ba[j][k];
803                                         kfree(ba->ba_0_org);
804                                         kfree(ba->ba_1_org);
805                                         k++;
806                                 }
807                                 kfree(mac_control->rings[i].ba[j]);
808                         }
809                         kfree(mac_control->rings[i].ba);
810                 }
811         }
812
813         if (mac_control->stats_mem) {
814                 pci_free_consistent(nic->pdev,
815                                     mac_control->stats_mem_sz,
816                                     mac_control->stats_mem,
817                                     mac_control->stats_mem_phy);
818         }
819         if (nic->ufo_in_band_v)
820                 kfree(nic->ufo_in_band_v);
821 }
822
823 /**
824  * s2io_verify_pci_mode -
825  */
826
827 static int s2io_verify_pci_mode(nic_t *nic)
828 {
829         XENA_dev_config_t __iomem *bar0 = nic->bar0;
830         register u64 val64 = 0;
831         int     mode;
832
833         val64 = readq(&bar0->pci_mode);
834         mode = (u8)GET_PCI_MODE(val64);
835
836         if ( val64 & PCI_MODE_UNKNOWN_MODE)
837                 return -1;      /* Unknown PCI mode */
838         return mode;
839 }
840
841 #define NEC_VENID   0x1033
842 #define NEC_DEVID   0x0125
843 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
844 {
845         struct pci_dev *tdev = NULL;
846         while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
847                 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
848                         if (tdev->bus == s2io_pdev->bus->parent)
849                                 return 1;
850                 }
851         }
852         return 0;
853 }
854
855 int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
856 /**
857  * s2io_print_pci_mode -
858  */
859 static int s2io_print_pci_mode(nic_t *nic)
860 {
861         XENA_dev_config_t __iomem *bar0 = nic->bar0;
862         register u64 val64 = 0;
863         int     mode;
864         struct config_param *config = &nic->config;
865
866         val64 = readq(&bar0->pci_mode);
867         mode = (u8)GET_PCI_MODE(val64);
868
869         if ( val64 & PCI_MODE_UNKNOWN_MODE)
870                 return -1;      /* Unknown PCI mode */
871
872         config->bus_speed = bus_speed[mode];
873
874         if (s2io_on_nec_bridge(nic->pdev)) {
875                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
876                                                         nic->dev->name);
877                 return mode;
878         }
879
880         if (val64 & PCI_MODE_32_BITS) {
881                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
882         } else {
883                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
884         }
885
886         switch(mode) {
887                 case PCI_MODE_PCI_33:
888                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
889                         break;
890                 case PCI_MODE_PCI_66:
891                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
892                         break;
893                 case PCI_MODE_PCIX_M1_66:
894                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
895                         break;
896                 case PCI_MODE_PCIX_M1_100:
897                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
898                         break;
899                 case PCI_MODE_PCIX_M1_133:
900                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
901                         break;
902                 case PCI_MODE_PCIX_M2_66:
903                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
904                         break;
905                 case PCI_MODE_PCIX_M2_100:
906                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
907                         break;
908                 case PCI_MODE_PCIX_M2_133:
909                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
910                         break;
911                 default:
912                         return -1;      /* Unsupported bus speed */
913         }
914
915         return mode;
916 }
917
918 /**
919  *  init_nic - Initialization of hardware
920  *  @nic: device peivate variable
921  *  Description: The function sequentially configures every block
922  *  of the H/W from their reset values.
923  *  Return Value:  SUCCESS on success and
924  *  '-1' on failure (endian settings incorrect).
925  */
926
927 static int init_nic(struct s2io_nic *nic)
928 {
929         XENA_dev_config_t __iomem *bar0 = nic->bar0;
930         struct net_device *dev = nic->dev;
931         register u64 val64 = 0;
932         void __iomem *add;
933         u32 time;
934         int i, j;
935         mac_info_t *mac_control;
936         struct config_param *config;
937         int dtx_cnt = 0;
938         unsigned long long mem_share;
939         int mem_size;
940
941         mac_control = &nic->mac_control;
942         config = &nic->config;
943
944         /* to set the swapper controle on the card */
945         if(s2io_set_swapper(nic)) {
946                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
947                 return -1;
948         }
949
950         /*
951          * Herc requires EOI to be removed from reset before XGXS, so..
952          */
953         if (nic->device_type & XFRAME_II_DEVICE) {
954                 val64 = 0xA500000000ULL;
955                 writeq(val64, &bar0->sw_reset);
956                 msleep(500);
957                 val64 = readq(&bar0->sw_reset);
958         }
959
960         /* Remove XGXS from reset state */
961         val64 = 0;
962         writeq(val64, &bar0->sw_reset);
963         msleep(500);
964         val64 = readq(&bar0->sw_reset);
965
966         /*  Enable Receiving broadcasts */
967         add = &bar0->mac_cfg;
968         val64 = readq(&bar0->mac_cfg);
969         val64 |= MAC_RMAC_BCAST_ENABLE;
970         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
971         writel((u32) val64, add);
972         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
973         writel((u32) (val64 >> 32), (add + 4));
974
975         /* Read registers in all blocks */
976         val64 = readq(&bar0->mac_int_mask);
977         val64 = readq(&bar0->mc_int_mask);
978         val64 = readq(&bar0->xgxs_int_mask);
979
980         /*  Set MTU */
981         val64 = dev->mtu;
982         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
983
984         if (nic->device_type & XFRAME_II_DEVICE) {
985                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
986                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
987                                           &bar0->dtx_control, UF);
988                         if (dtx_cnt & 0x1)
989                                 msleep(1); /* Necessary!! */
990                         dtx_cnt++;
991                 }
992         } else {
993                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
994                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
995                                           &bar0->dtx_control, UF);
996                         val64 = readq(&bar0->dtx_control);
997                         dtx_cnt++;
998                 }
999         }
1000
1001         /*  Tx DMA Initialization */
1002         val64 = 0;
1003         writeq(val64, &bar0->tx_fifo_partition_0);
1004         writeq(val64, &bar0->tx_fifo_partition_1);
1005         writeq(val64, &bar0->tx_fifo_partition_2);
1006         writeq(val64, &bar0->tx_fifo_partition_3);
1007
1008
1009         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1010                 val64 |=
1011                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1012                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1013                                     ((i * 32) + 5), 3);
1014
1015                 if (i == (config->tx_fifo_num - 1)) {
1016                         if (i % 2 == 0)
1017                                 i++;
1018                 }
1019
1020                 switch (i) {
1021                 case 1:
1022                         writeq(val64, &bar0->tx_fifo_partition_0);
1023                         val64 = 0;
1024                         break;
1025                 case 3:
1026                         writeq(val64, &bar0->tx_fifo_partition_1);
1027                         val64 = 0;
1028                         break;
1029                 case 5:
1030                         writeq(val64, &bar0->tx_fifo_partition_2);
1031                         val64 = 0;
1032                         break;
1033                 case 7:
1034                         writeq(val64, &bar0->tx_fifo_partition_3);
1035                         break;
1036                 }
1037         }
1038
1039         /* Enable Tx FIFO partition 0. */
1040         val64 = readq(&bar0->tx_fifo_partition_0);
1041         val64 |= BIT(0);        /* To enable the FIFO partition. */
1042         writeq(val64, &bar0->tx_fifo_partition_0);
1043
1044         /*
1045          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1046          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1047          */
1048         if ((nic->device_type == XFRAME_I_DEVICE) &&
1049                 (get_xena_rev_id(nic->pdev) < 4))
1050                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1051
1052         val64 = readq(&bar0->tx_fifo_partition_0);
1053         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1054                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1055
1056         /*
1057          * Initialization of Tx_PA_CONFIG register to ignore packet
1058          * integrity checking.
1059          */
1060         val64 = readq(&bar0->tx_pa_cfg);
1061         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1062             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1063         writeq(val64, &bar0->tx_pa_cfg);
1064
1065         /* Rx DMA intialization. */
1066         val64 = 0;
1067         for (i = 0; i < config->rx_ring_num; i++) {
1068                 val64 |=
1069                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1070                          3);
1071         }
1072         writeq(val64, &bar0->rx_queue_priority);
1073
1074         /*
1075          * Allocating equal share of memory to all the
1076          * configured Rings.
1077          */
1078         val64 = 0;
1079         if (nic->device_type & XFRAME_II_DEVICE)
1080                 mem_size = 32;
1081         else
1082                 mem_size = 64;
1083
1084         for (i = 0; i < config->rx_ring_num; i++) {
1085                 switch (i) {
1086                 case 0:
1087                         mem_share = (mem_size / config->rx_ring_num +
1088                                      mem_size % config->rx_ring_num);
1089                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1090                         continue;
1091                 case 1:
1092                         mem_share = (mem_size / config->rx_ring_num);
1093                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1094                         continue;
1095                 case 2:
1096                         mem_share = (mem_size / config->rx_ring_num);
1097                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1098                         continue;
1099                 case 3:
1100                         mem_share = (mem_size / config->rx_ring_num);
1101                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1102                         continue;
1103                 case 4:
1104                         mem_share = (mem_size / config->rx_ring_num);
1105                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1106                         continue;
1107                 case 5:
1108                         mem_share = (mem_size / config->rx_ring_num);
1109                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1110                         continue;
1111                 case 6:
1112                         mem_share = (mem_size / config->rx_ring_num);
1113                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1114                         continue;
1115                 case 7:
1116                         mem_share = (mem_size / config->rx_ring_num);
1117                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1118                         continue;
1119                 }
1120         }
1121         writeq(val64, &bar0->rx_queue_cfg);
1122
1123         /*
1124          * Filling Tx round robin registers
1125          * as per the number of FIFOs
1126          */
1127         switch (config->tx_fifo_num) {
1128         case 1:
1129                 val64 = 0x0000000000000000ULL;
1130                 writeq(val64, &bar0->tx_w_round_robin_0);
1131                 writeq(val64, &bar0->tx_w_round_robin_1);
1132                 writeq(val64, &bar0->tx_w_round_robin_2);
1133                 writeq(val64, &bar0->tx_w_round_robin_3);
1134                 writeq(val64, &bar0->tx_w_round_robin_4);
1135                 break;
1136         case 2:
1137                 val64 = 0x0000010000010000ULL;
1138                 writeq(val64, &bar0->tx_w_round_robin_0);
1139                 val64 = 0x0100000100000100ULL;
1140                 writeq(val64, &bar0->tx_w_round_robin_1);
1141                 val64 = 0x0001000001000001ULL;
1142                 writeq(val64, &bar0->tx_w_round_robin_2);
1143                 val64 = 0x0000010000010000ULL;
1144                 writeq(val64, &bar0->tx_w_round_robin_3);
1145                 val64 = 0x0100000000000000ULL;
1146                 writeq(val64, &bar0->tx_w_round_robin_4);
1147                 break;
1148         case 3:
1149                 val64 = 0x0001000102000001ULL;
1150                 writeq(val64, &bar0->tx_w_round_robin_0);
1151                 val64 = 0x0001020000010001ULL;
1152                 writeq(val64, &bar0->tx_w_round_robin_1);
1153                 val64 = 0x0200000100010200ULL;
1154                 writeq(val64, &bar0->tx_w_round_robin_2);
1155                 val64 = 0x0001000102000001ULL;
1156                 writeq(val64, &bar0->tx_w_round_robin_3);
1157                 val64 = 0x0001020000000000ULL;
1158                 writeq(val64, &bar0->tx_w_round_robin_4);
1159                 break;
1160         case 4:
1161                 val64 = 0x0001020300010200ULL;
1162                 writeq(val64, &bar0->tx_w_round_robin_0);
1163                 val64 = 0x0100000102030001ULL;
1164                 writeq(val64, &bar0->tx_w_round_robin_1);
1165                 val64 = 0x0200010000010203ULL;
1166                 writeq(val64, &bar0->tx_w_round_robin_2);
1167                 val64 = 0x0001020001000001ULL;
1168                 writeq(val64, &bar0->tx_w_round_robin_3);
1169                 val64 = 0x0203000100000000ULL;
1170                 writeq(val64, &bar0->tx_w_round_robin_4);
1171                 break;
1172         case 5:
1173                 val64 = 0x0001000203000102ULL;
1174                 writeq(val64, &bar0->tx_w_round_robin_0);
1175                 val64 = 0x0001020001030004ULL;
1176                 writeq(val64, &bar0->tx_w_round_robin_1);
1177                 val64 = 0x0001000203000102ULL;
1178                 writeq(val64, &bar0->tx_w_round_robin_2);
1179                 val64 = 0x0001020001030004ULL;
1180                 writeq(val64, &bar0->tx_w_round_robin_3);
1181                 val64 = 0x0001000000000000ULL;
1182                 writeq(val64, &bar0->tx_w_round_robin_4);
1183                 break;
1184         case 6:
1185                 val64 = 0x0001020304000102ULL;
1186                 writeq(val64, &bar0->tx_w_round_robin_0);
1187                 val64 = 0x0304050001020001ULL;
1188                 writeq(val64, &bar0->tx_w_round_robin_1);
1189                 val64 = 0x0203000100000102ULL;
1190                 writeq(val64, &bar0->tx_w_round_robin_2);
1191                 val64 = 0x0304000102030405ULL;
1192                 writeq(val64, &bar0->tx_w_round_robin_3);
1193                 val64 = 0x0001000200000000ULL;
1194                 writeq(val64, &bar0->tx_w_round_robin_4);
1195                 break;
1196         case 7:
1197                 val64 = 0x0001020001020300ULL;
1198                 writeq(val64, &bar0->tx_w_round_robin_0);
1199                 val64 = 0x0102030400010203ULL;
1200                 writeq(val64, &bar0->tx_w_round_robin_1);
1201                 val64 = 0x0405060001020001ULL;
1202                 writeq(val64, &bar0->tx_w_round_robin_2);
1203                 val64 = 0x0304050000010200ULL;
1204                 writeq(val64, &bar0->tx_w_round_robin_3);
1205                 val64 = 0x0102030000000000ULL;
1206                 writeq(val64, &bar0->tx_w_round_robin_4);
1207                 break;
1208         case 8:
1209                 val64 = 0x0001020300040105ULL;
1210                 writeq(val64, &bar0->tx_w_round_robin_0);
1211                 val64 = 0x0200030106000204ULL;
1212                 writeq(val64, &bar0->tx_w_round_robin_1);
1213                 val64 = 0x0103000502010007ULL;
1214                 writeq(val64, &bar0->tx_w_round_robin_2);
1215                 val64 = 0x0304010002060500ULL;
1216                 writeq(val64, &bar0->tx_w_round_robin_3);
1217                 val64 = 0x0103020400000000ULL;
1218                 writeq(val64, &bar0->tx_w_round_robin_4);
1219                 break;
1220         }
1221
1222         /* Filling the Rx round robin registers as per the
1223          * number of Rings and steering based on QoS.
1224          */
1225         switch (config->rx_ring_num) {
1226         case 1:
1227                 val64 = 0x8080808080808080ULL;
1228                 writeq(val64, &bar0->rts_qos_steering);
1229                 break;
1230         case 2:
1231                 val64 = 0x0000010000010000ULL;
1232                 writeq(val64, &bar0->rx_w_round_robin_0);
1233                 val64 = 0x0100000100000100ULL;
1234                 writeq(val64, &bar0->rx_w_round_robin_1);
1235                 val64 = 0x0001000001000001ULL;
1236                 writeq(val64, &bar0->rx_w_round_robin_2);
1237                 val64 = 0x0000010000010000ULL;
1238                 writeq(val64, &bar0->rx_w_round_robin_3);
1239                 val64 = 0x0100000000000000ULL;
1240                 writeq(val64, &bar0->rx_w_round_robin_4);
1241
1242                 val64 = 0x8080808040404040ULL;
1243                 writeq(val64, &bar0->rts_qos_steering);
1244                 break;
1245         case 3:
1246                 val64 = 0x0001000102000001ULL;
1247                 writeq(val64, &bar0->rx_w_round_robin_0);
1248                 val64 = 0x0001020000010001ULL;
1249                 writeq(val64, &bar0->rx_w_round_robin_1);
1250                 val64 = 0x0200000100010200ULL;
1251                 writeq(val64, &bar0->rx_w_round_robin_2);
1252                 val64 = 0x0001000102000001ULL;
1253                 writeq(val64, &bar0->rx_w_round_robin_3);
1254                 val64 = 0x0001020000000000ULL;
1255                 writeq(val64, &bar0->rx_w_round_robin_4);
1256
1257                 val64 = 0x8080804040402020ULL;
1258                 writeq(val64, &bar0->rts_qos_steering);
1259                 break;
1260         case 4:
1261                 val64 = 0x0001020300010200ULL;
1262                 writeq(val64, &bar0->rx_w_round_robin_0);
1263                 val64 = 0x0100000102030001ULL;
1264                 writeq(val64, &bar0->rx_w_round_robin_1);
1265                 val64 = 0x0200010000010203ULL;
1266                 writeq(val64, &bar0->rx_w_round_robin_2);
1267                 val64 = 0x0001020001000001ULL;  
1268                 writeq(val64, &bar0->rx_w_round_robin_3);
1269                 val64 = 0x0203000100000000ULL;
1270                 writeq(val64, &bar0->rx_w_round_robin_4);
1271
1272                 val64 = 0x8080404020201010ULL;
1273                 writeq(val64, &bar0->rts_qos_steering);
1274                 break;
1275         case 5:
1276                 val64 = 0x0001000203000102ULL;
1277                 writeq(val64, &bar0->rx_w_round_robin_0);
1278                 val64 = 0x0001020001030004ULL;
1279                 writeq(val64, &bar0->rx_w_round_robin_1);
1280                 val64 = 0x0001000203000102ULL;
1281                 writeq(val64, &bar0->rx_w_round_robin_2);
1282                 val64 = 0x0001020001030004ULL;
1283                 writeq(val64, &bar0->rx_w_round_robin_3);
1284                 val64 = 0x0001000000000000ULL;
1285                 writeq(val64, &bar0->rx_w_round_robin_4);
1286
1287                 val64 = 0x8080404020201008ULL;
1288                 writeq(val64, &bar0->rts_qos_steering);
1289                 break;
1290         case 6:
1291                 val64 = 0x0001020304000102ULL;
1292                 writeq(val64, &bar0->rx_w_round_robin_0);
1293                 val64 = 0x0304050001020001ULL;
1294                 writeq(val64, &bar0->rx_w_round_robin_1);
1295                 val64 = 0x0203000100000102ULL;
1296                 writeq(val64, &bar0->rx_w_round_robin_2);
1297                 val64 = 0x0304000102030405ULL;
1298                 writeq(val64, &bar0->rx_w_round_robin_3);
1299                 val64 = 0x0001000200000000ULL;
1300                 writeq(val64, &bar0->rx_w_round_robin_4);
1301
1302                 val64 = 0x8080404020100804ULL;
1303                 writeq(val64, &bar0->rts_qos_steering);
1304                 break;
1305         case 7:
1306                 val64 = 0x0001020001020300ULL;
1307                 writeq(val64, &bar0->rx_w_round_robin_0);
1308                 val64 = 0x0102030400010203ULL;
1309                 writeq(val64, &bar0->rx_w_round_robin_1);
1310                 val64 = 0x0405060001020001ULL;
1311                 writeq(val64, &bar0->rx_w_round_robin_2);
1312                 val64 = 0x0304050000010200ULL;
1313                 writeq(val64, &bar0->rx_w_round_robin_3);
1314                 val64 = 0x0102030000000000ULL;
1315                 writeq(val64, &bar0->rx_w_round_robin_4);
1316
1317                 val64 = 0x8080402010080402ULL;
1318                 writeq(val64, &bar0->rts_qos_steering);
1319                 break;
1320         case 8:
1321                 val64 = 0x0001020300040105ULL;
1322                 writeq(val64, &bar0->rx_w_round_robin_0);
1323                 val64 = 0x0200030106000204ULL;
1324                 writeq(val64, &bar0->rx_w_round_robin_1);
1325                 val64 = 0x0103000502010007ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_2);
1327                 val64 = 0x0304010002060500ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_3);
1329                 val64 = 0x0103020400000000ULL;
1330                 writeq(val64, &bar0->rx_w_round_robin_4);
1331
1332                 val64 = 0x8040201008040201ULL;
1333                 writeq(val64, &bar0->rts_qos_steering);
1334                 break;
1335         }
1336
1337         /* UDP Fix */
1338         val64 = 0;
1339         for (i = 0; i < 8; i++)
1340                 writeq(val64, &bar0->rts_frm_len_n[i]);
1341
1342         /* Set the default rts frame length for the rings configured */
1343         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1344         for (i = 0 ; i < config->rx_ring_num ; i++)
1345                 writeq(val64, &bar0->rts_frm_len_n[i]);
1346
1347         /* Set the frame length for the configured rings
1348          * desired by the user
1349          */
1350         for (i = 0; i < config->rx_ring_num; i++) {
1351                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1352                  * specified frame length steering.
1353                  * If the user provides the frame length then program
1354                  * the rts_frm_len register for those values or else
1355                  * leave it as it is.
1356                  */
1357                 if (rts_frm_len[i] != 0) {
1358                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1359                                 &bar0->rts_frm_len_n[i]);
1360                 }
1361         }
1362
1363         /* Program statistics memory */
1364         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1365
1366         if (nic->device_type == XFRAME_II_DEVICE) {
1367                 val64 = STAT_BC(0x320);
1368                 writeq(val64, &bar0->stat_byte_cnt);
1369         }
1370
1371         /*
1372          * Initializing the sampling rate for the device to calculate the
1373          * bandwidth utilization.
1374          */
1375         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1376             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1377         writeq(val64, &bar0->mac_link_util);
1378
1379
1380         /*
1381          * Initializing the Transmit and Receive Traffic Interrupt
1382          * Scheme.
1383          */
1384         /*
1385          * TTI Initialization. Default Tx timer gets us about
1386          * 250 interrupts per sec. Continuous interrupts are enabled
1387          * by default.
1388          */
1389         if (nic->device_type == XFRAME_II_DEVICE) {
1390                 int count = (nic->config.bus_speed * 125)/2;
1391                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1392         } else {
1393
1394                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1395         }
1396         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1397             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1398             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1399                 if (use_continuous_tx_intrs)
1400                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1401         writeq(val64, &bar0->tti_data1_mem);
1402
1403         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1404             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1405             TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1406         writeq(val64, &bar0->tti_data2_mem);
1407
1408         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1409         writeq(val64, &bar0->tti_command_mem);
1410
1411         /*
1412          * Once the operation completes, the Strobe bit of the command
1413          * register will be reset. We poll for this particular condition
1414          * We wait for a maximum of 500ms for the operation to complete,
1415          * if it's not complete by then we return error.
1416          */
1417         time = 0;
1418         while (TRUE) {
1419                 val64 = readq(&bar0->tti_command_mem);
1420                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1421                         break;
1422                 }
1423                 if (time > 10) {
1424                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1425                                   dev->name);
1426                         return -1;
1427                 }
1428                 msleep(50);
1429                 time++;
1430         }
1431
1432         if (nic->config.bimodal) {
1433                 int k = 0;
1434                 for (k = 0; k < config->rx_ring_num; k++) {
1435                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1436                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1437                         writeq(val64, &bar0->tti_command_mem);
1438
1439                 /*
1440                  * Once the operation completes, the Strobe bit of the command
1441                  * register will be reset. We poll for this particular condition
1442                  * We wait for a maximum of 500ms for the operation to complete,
1443                  * if it's not complete by then we return error.
1444                 */
1445                         time = 0;
1446                         while (TRUE) {
1447                                 val64 = readq(&bar0->tti_command_mem);
1448                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1449                                         break;
1450                                 }
1451                                 if (time > 10) {
1452                                         DBG_PRINT(ERR_DBG,
1453                                                 "%s: TTI init Failed\n",
1454                                         dev->name);
1455                                         return -1;
1456                                 }
1457                                 time++;
1458                                 msleep(50);
1459                         }
1460                 }
1461         } else {
1462
1463                 /* RTI Initialization */
1464                 if (nic->device_type == XFRAME_II_DEVICE) {
1465                         /*
1466                          * Programmed to generate Apprx 500 Intrs per
1467                          * second
1468                          */
1469                         int count = (nic->config.bus_speed * 125)/4;
1470                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1471                 } else {
1472                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1473                 }
1474                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1475                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1476                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1477
1478                 writeq(val64, &bar0->rti_data1_mem);
1479
1480                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1481                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1482                 if (nic->intr_type == MSI_X)
1483                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1484                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1485                 else
1486                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1487                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1488                 writeq(val64, &bar0->rti_data2_mem);
1489
1490                 for (i = 0; i < config->rx_ring_num; i++) {
1491                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1492                                         | RTI_CMD_MEM_OFFSET(i);
1493                         writeq(val64, &bar0->rti_command_mem);
1494
1495                         /*
1496                          * Once the operation completes, the Strobe bit of the
1497                          * command register will be reset. We poll for this
1498                          * particular condition. We wait for a maximum of 500ms
1499                          * for the operation to complete, if it's not complete
1500                          * by then we return error.
1501                          */
1502                         time = 0;
1503                         while (TRUE) {
1504                                 val64 = readq(&bar0->rti_command_mem);
1505                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1506                                         break;
1507                                 }
1508                                 if (time > 10) {
1509                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1510                                                   dev->name);
1511                                         return -1;
1512                                 }
1513                                 time++;
1514                                 msleep(50);
1515                         }
1516                 }
1517         }
1518
1519         /*
1520          * Initializing proper values as Pause threshold into all
1521          * the 8 Queues on Rx side.
1522          */
1523         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1524         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1525
1526         /* Disable RMAC PAD STRIPPING */
1527         add = &bar0->mac_cfg;
1528         val64 = readq(&bar0->mac_cfg);
1529         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1530         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1531         writel((u32) (val64), add);
1532         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1533         writel((u32) (val64 >> 32), (add + 4));
1534         val64 = readq(&bar0->mac_cfg);
1535
1536         /* Enable FCS stripping by adapter */
1537         add = &bar0->mac_cfg;
1538         val64 = readq(&bar0->mac_cfg);
1539         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1540         if (nic->device_type == XFRAME_II_DEVICE)
1541                 writeq(val64, &bar0->mac_cfg);
1542         else {
1543                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544                 writel((u32) (val64), add);
1545                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546                 writel((u32) (val64 >> 32), (add + 4));
1547         }
1548
1549         /*
1550          * Set the time value to be inserted in the pause frame
1551          * generated by xena.
1552          */
1553         val64 = readq(&bar0->rmac_pause_cfg);
1554         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1555         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1556         writeq(val64, &bar0->rmac_pause_cfg);
1557
1558         /*
1559          * Set the Threshold Limit for Generating the pause frame
1560          * If the amount of data in any Queue exceeds ratio of
1561          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1562          * pause frame is generated
1563          */
1564         val64 = 0;
1565         for (i = 0; i < 4; i++) {
1566                 val64 |=
1567                     (((u64) 0xFF00 | nic->mac_control.
1568                       mc_pause_threshold_q0q3)
1569                      << (i * 2 * 8));
1570         }
1571         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1572
1573         val64 = 0;
1574         for (i = 0; i < 4; i++) {
1575                 val64 |=
1576                     (((u64) 0xFF00 | nic->mac_control.
1577                       mc_pause_threshold_q4q7)
1578                      << (i * 2 * 8));
1579         }
1580         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1581
1582         /*
1583          * TxDMA will stop Read request if the number of read split has
1584          * exceeded the limit pointed by shared_splits
1585          */
1586         val64 = readq(&bar0->pic_control);
1587         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1588         writeq(val64, &bar0->pic_control);
1589
1590         if (nic->config.bus_speed == 266) {
1591                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1592                 writeq(0x0, &bar0->read_retry_delay);
1593                 writeq(0x0, &bar0->write_retry_delay);
1594         }
1595
1596         /*
1597          * Programming the Herc to split every write transaction
1598          * that does not start on an ADB to reduce disconnects.
1599          */
1600         if (nic->device_type == XFRAME_II_DEVICE) {
1601                 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1602                 writeq(val64, &bar0->misc_control);
1603                 val64 = readq(&bar0->pic_control2);
1604                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1605                 writeq(val64, &bar0->pic_control2);
1606         }
1607         if (strstr(nic->product_name, "CX4")) {
1608                 val64 = TMAC_AVG_IPG(0x17);
1609                 writeq(val64, &bar0->tmac_avg_ipg);
1610         }
1611
1612         return SUCCESS;
1613 }
1614 #define LINK_UP_DOWN_INTERRUPT          1
1615 #define MAC_RMAC_ERR_TIMER              2
1616
1617 static int s2io_link_fault_indication(nic_t *nic)
1618 {
1619         if (nic->intr_type != INTA)
1620                 return MAC_RMAC_ERR_TIMER;
1621         if (nic->device_type == XFRAME_II_DEVICE)
1622                 return LINK_UP_DOWN_INTERRUPT;
1623         else
1624                 return MAC_RMAC_ERR_TIMER;
1625 }
1626
1627 /**
1628  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1629  *  @nic: device private variable,
1630  *  @mask: A mask indicating which Intr block must be modified and,
1631  *  @flag: A flag indicating whether to enable or disable the Intrs.
1632  *  Description: This function will either disable or enable the interrupts
1633  *  depending on the flag argument. The mask argument can be used to
1634  *  enable/disable any Intr block.
1635  *  Return Value: NONE.
1636  */
1637
1638 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1639 {
1640         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1641         register u64 val64 = 0, temp64 = 0;
1642
1643         /*  Top level interrupt classification */
1644         /*  PIC Interrupts */
1645         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1646                 /*  Enable PIC Intrs in the general intr mask register */
1647                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1648                 if (flag == ENABLE_INTRS) {
1649                         temp64 = readq(&bar0->general_int_mask);
1650                         temp64 &= ~((u64) val64);
1651                         writeq(temp64, &bar0->general_int_mask);
1652                         /*
1653                          * If Hercules adapter enable GPIO otherwise
1654                          * disabled all PCIX, Flash, MDIO, IIC and GPIO
1655                          * interrupts for now.
1656                          * TODO
1657                          */
1658                         if (s2io_link_fault_indication(nic) ==
1659                                         LINK_UP_DOWN_INTERRUPT ) {
1660                                 temp64 = readq(&bar0->pic_int_mask);
1661                                 temp64 &= ~((u64) PIC_INT_GPIO);
1662                                 writeq(temp64, &bar0->pic_int_mask);
1663                                 temp64 = readq(&bar0->gpio_int_mask);
1664                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1665                                 writeq(temp64, &bar0->gpio_int_mask);
1666                         } else {
1667                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1668                         }
1669                         /*
1670                          * No MSI Support is available presently, so TTI and
1671                          * RTI interrupts are also disabled.
1672                          */
1673                 } else if (flag == DISABLE_INTRS) {
1674                         /*
1675                          * Disable PIC Intrs in the general
1676                          * intr mask register
1677                          */
1678                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1679                         temp64 = readq(&bar0->general_int_mask);
1680                         val64 |= temp64;
1681                         writeq(val64, &bar0->general_int_mask);
1682                 }
1683         }
1684
1685         /*  DMA Interrupts */
1686         /*  Enabling/Disabling Tx DMA interrupts */
1687         if (mask & TX_DMA_INTR) {
1688                 /* Enable TxDMA Intrs in the general intr mask register */
1689                 val64 = TXDMA_INT_M;
1690                 if (flag == ENABLE_INTRS) {
1691                         temp64 = readq(&bar0->general_int_mask);
1692                         temp64 &= ~((u64) val64);
1693                         writeq(temp64, &bar0->general_int_mask);
1694                         /*
1695                          * Keep all interrupts other than PFC interrupt
1696                          * and PCC interrupt disabled in DMA level.
1697                          */
1698                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1699                                                       TXDMA_PCC_INT_M);
1700                         writeq(val64, &bar0->txdma_int_mask);
1701                         /*
1702                          * Enable only the MISC error 1 interrupt in PFC block
1703                          */
1704                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1705                         writeq(val64, &bar0->pfc_err_mask);
1706                         /*
1707                          * Enable only the FB_ECC error interrupt in PCC block
1708                          */
1709                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1710                         writeq(val64, &bar0->pcc_err_mask);
1711                 } else if (flag == DISABLE_INTRS) {
1712                         /*
1713                          * Disable TxDMA Intrs in the general intr mask
1714                          * register
1715                          */
1716                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1717                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1718                         temp64 = readq(&bar0->general_int_mask);
1719                         val64 |= temp64;
1720                         writeq(val64, &bar0->general_int_mask);
1721                 }
1722         }
1723
1724         /*  Enabling/Disabling Rx DMA interrupts */
1725         if (mask & RX_DMA_INTR) {
1726                 /*  Enable RxDMA Intrs in the general intr mask register */
1727                 val64 = RXDMA_INT_M;
1728                 if (flag == ENABLE_INTRS) {
1729                         temp64 = readq(&bar0->general_int_mask);
1730                         temp64 &= ~((u64) val64);
1731                         writeq(temp64, &bar0->general_int_mask);
1732                         /*
1733                          * All RxDMA block interrupts are disabled for now
1734                          * TODO
1735                          */
1736                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1737                 } else if (flag == DISABLE_INTRS) {
1738                         /*
1739                          * Disable RxDMA Intrs in the general intr mask
1740                          * register
1741                          */
1742                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1743                         temp64 = readq(&bar0->general_int_mask);
1744                         val64 |= temp64;
1745                         writeq(val64, &bar0->general_int_mask);
1746                 }
1747         }
1748
1749         /*  MAC Interrupts */
1750         /*  Enabling/Disabling MAC interrupts */
1751         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1752                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1753                 if (flag == ENABLE_INTRS) {
1754                         temp64 = readq(&bar0->general_int_mask);
1755                         temp64 &= ~((u64) val64);
1756                         writeq(temp64, &bar0->general_int_mask);
1757                         /*
1758                          * All MAC block error interrupts are disabled for now
1759                          * TODO
1760                          */
1761                 } else if (flag == DISABLE_INTRS) {
1762                         /*
1763                          * Disable MAC Intrs in the general intr mask register
1764                          */
1765                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1766                         writeq(DISABLE_ALL_INTRS,
1767                                &bar0->mac_rmac_err_mask);
1768
1769                         temp64 = readq(&bar0->general_int_mask);
1770                         val64 |= temp64;
1771                         writeq(val64, &bar0->general_int_mask);
1772                 }
1773         }
1774
1775         /*  XGXS Interrupts */
1776         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1777                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1778                 if (flag == ENABLE_INTRS) {
1779                         temp64 = readq(&bar0->general_int_mask);
1780                         temp64 &= ~((u64) val64);
1781                         writeq(temp64, &bar0->general_int_mask);
1782                         /*
1783                          * All XGXS block error interrupts are disabled for now
1784                          * TODO
1785                          */
1786                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1787                 } else if (flag == DISABLE_INTRS) {
1788                         /*
1789                          * Disable MC Intrs in the general intr mask register
1790                          */
1791                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1792                         temp64 = readq(&bar0->general_int_mask);
1793                         val64 |= temp64;
1794                         writeq(val64, &bar0->general_int_mask);
1795                 }
1796         }
1797
1798         /*  Memory Controller(MC) interrupts */
1799         if (mask & MC_INTR) {
1800                 val64 = MC_INT_M;
1801                 if (flag == ENABLE_INTRS) {
1802                         temp64 = readq(&bar0->general_int_mask);
1803                         temp64 &= ~((u64) val64);
1804                         writeq(temp64, &bar0->general_int_mask);
1805                         /*
1806                          * Enable all MC Intrs.
1807                          */
1808                         writeq(0x0, &bar0->mc_int_mask);
1809                         writeq(0x0, &bar0->mc_err_mask);
1810                 } else if (flag == DISABLE_INTRS) {
1811                         /*
1812                          * Disable MC Intrs in the general intr mask register
1813                          */
1814                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1815                         temp64 = readq(&bar0->general_int_mask);
1816                         val64 |= temp64;
1817                         writeq(val64, &bar0->general_int_mask);
1818                 }
1819         }
1820
1821
1822         /*  Tx traffic interrupts */
1823         if (mask & TX_TRAFFIC_INTR) {
1824                 val64 = TXTRAFFIC_INT_M;
1825                 if (flag == ENABLE_INTRS) {
1826                         temp64 = readq(&bar0->general_int_mask);
1827                         temp64 &= ~((u64) val64);
1828                         writeq(temp64, &bar0->general_int_mask);
1829                         /*
1830                          * Enable all the Tx side interrupts
1831                          * writing 0 Enables all 64 TX interrupt levels
1832                          */
1833                         writeq(0x0, &bar0->tx_traffic_mask);
1834                 } else if (flag == DISABLE_INTRS) {
1835                         /*
1836                          * Disable Tx Traffic Intrs in the general intr mask
1837                          * register.
1838                          */
1839                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1840                         temp64 = readq(&bar0->general_int_mask);
1841                         val64 |= temp64;
1842                         writeq(val64, &bar0->general_int_mask);
1843                 }
1844         }
1845
1846         /*  Rx traffic interrupts */
1847         if (mask & RX_TRAFFIC_INTR) {
1848                 val64 = RXTRAFFIC_INT_M;
1849                 if (flag == ENABLE_INTRS) {
1850                         temp64 = readq(&bar0->general_int_mask);
1851                         temp64 &= ~((u64) val64);
1852                         writeq(temp64, &bar0->general_int_mask);
1853                         /* writing 0 Enables all 8 RX interrupt levels */
1854                         writeq(0x0, &bar0->rx_traffic_mask);
1855                 } else if (flag == DISABLE_INTRS) {
1856                         /*
1857                          * Disable Rx Traffic Intrs in the general intr mask
1858                          * register.
1859                          */
1860                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1861                         temp64 = readq(&bar0->general_int_mask);
1862                         val64 |= temp64;
1863                         writeq(val64, &bar0->general_int_mask);
1864                 }
1865         }
1866 }
1867
1868 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1869 {
1870         int ret = 0;
1871
1872         if (flag == FALSE) {
1873                 if ((!herc && (rev_id >= 4)) || herc) {
1874                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1875                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1876                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1877                                 ret = 1;
1878                         }
1879                 }else {
1880                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1881                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1882                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1883                                 ret = 1;
1884                         }
1885                 }
1886         } else {
1887                 if ((!herc && (rev_id >= 4)) || herc) {
1888                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889                              ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1890                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1891                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1892                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1893                                 ret = 1;
1894                         }
1895                 } else {
1896                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1897                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1898                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1899                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1900                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1901                                 ret = 1;
1902                         }
1903                 }
1904         }
1905
1906         return ret;
1907 }
1908 /**
1909  *  verify_xena_quiescence - Checks whether the H/W is ready
1910  *  @val64 :  Value read from adapter status register.
1911  *  @flag : indicates if the adapter enable bit was ever written once
1912  *  before.
1913  *  Description: Returns whether the H/W is ready to go or not. Depending
1914  *  on whether adapter enable bit was written or not the comparison
1915  *  differs and the calling function passes the input argument flag to
1916  *  indicate this.
1917  *  Return: 1 If xena is quiescence
1918  *          0 If Xena is not quiescence
1919  */
1920
1921 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1922 {
1923         int ret = 0, herc;
1924         u64 tmp64 = ~((u64) val64);
1925         int rev_id = get_xena_rev_id(sp->pdev);
1926
1927         herc = (sp->device_type == XFRAME_II_DEVICE);
1928         if (!
1929             (tmp64 &
1930              (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1931               ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1932               ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1933               ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1934               ADAPTER_STATUS_P_PLL_LOCK))) {
1935                 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1936         }
1937
1938         return ret;
1939 }
1940
1941 /**
1942  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1943  * @sp: Pointer to device specifc structure
1944  * Description :
1945  * New procedure to clear mac address reading  problems on Alpha platforms
1946  *
1947  */
1948
1949 static void fix_mac_address(nic_t * sp)
1950 {
1951         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1952         u64 val64;
1953         int i = 0;
1954
1955         while (fix_mac[i] != END_SIGN) {
1956                 writeq(fix_mac[i++], &bar0->gpio_control);
1957                 udelay(10);
1958                 val64 = readq(&bar0->gpio_control);
1959         }
1960 }
1961
1962 /**
1963  *  start_nic - Turns the device on
1964  *  @nic : device private variable.
1965  *  Description:
1966  *  This function actually turns the device on. Before this  function is
1967  *  called,all Registers are configured from their reset states
1968  *  and shared memory is allocated but the NIC is still quiescent. On
1969  *  calling this function, the device interrupts are cleared and the NIC is
1970  *  literally switched on by writing into the adapter control register.
1971  *  Return Value:
1972  *  SUCCESS on success and -1 on failure.
1973  */
1974
1975 static int start_nic(struct s2io_nic *nic)
1976 {
1977         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1978         struct net_device *dev = nic->dev;
1979         register u64 val64 = 0;
1980         u16 interruptible;
1981         u16 subid, i;
1982         mac_info_t *mac_control;
1983         struct config_param *config;
1984
1985         mac_control = &nic->mac_control;
1986         config = &nic->config;
1987
1988         /*  PRC Initialization and configuration */
1989         for (i = 0; i < config->rx_ring_num; i++) {
1990                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1991                        &bar0->prc_rxd0_n[i]);
1992
1993                 val64 = readq(&bar0->prc_ctrl_n[i]);
1994                 if (nic->config.bimodal)
1995                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1996                 if (nic->rxd_mode == RXD_MODE_1)
1997                         val64 |= PRC_CTRL_RC_ENABLED;
1998                 else
1999                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2000                 if (nic->device_type == XFRAME_II_DEVICE)
2001                         val64 |= PRC_CTRL_GROUP_READS;
2002                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2003                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2004                 writeq(val64, &bar0->prc_ctrl_n[i]);
2005         }
2006
2007         if (nic->rxd_mode == RXD_MODE_3B) {
2008                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2009                 val64 = readq(&bar0->rx_pa_cfg);
2010                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2011                 writeq(val64, &bar0->rx_pa_cfg);
2012         }
2013
2014         /*
2015          * Enabling MC-RLDRAM. After enabling the device, we timeout
2016          * for around 100ms, which is approximately the time required
2017          * for the device to be ready for operation.
2018          */
2019         val64 = readq(&bar0->mc_rldram_mrs);
2020         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2021         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2022         val64 = readq(&bar0->mc_rldram_mrs);
2023
2024         msleep(100);    /* Delay by around 100 ms. */
2025
2026         /* Enabling ECC Protection. */
2027         val64 = readq(&bar0->adapter_control);
2028         val64 &= ~ADAPTER_ECC_EN;
2029         writeq(val64, &bar0->adapter_control);
2030
2031         /*
2032          * Clearing any possible Link state change interrupts that
2033          * could have popped up just before Enabling the card.
2034          */
2035         val64 = readq(&bar0->mac_rmac_err_reg);
2036         if (val64)
2037                 writeq(val64, &bar0->mac_rmac_err_reg);
2038
2039         /*
2040          * Verify if the device is ready to be enabled, if so enable
2041          * it.
2042          */
2043         val64 = readq(&bar0->adapter_status);
2044         if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2045                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2046                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2047                           (unsigned long long) val64);
2048                 return FAILURE;
2049         }
2050
2051         /*  Enable select interrupts */
2052         if (nic->intr_type != INTA)
2053                 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2054         else {
2055                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2056                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2057                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2058                 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
2059         }
2060
2061         /*
2062          * With some switches, link might be already up at this point.
2063          * Because of this weird behavior, when we enable laser,
2064          * we may not get link. We need to handle this. We cannot
2065          * figure out which switch is misbehaving. So we are forced to
2066          * make a global change.
2067          */
2068
2069         /* Enabling Laser. */
2070         val64 = readq(&bar0->adapter_control);
2071         val64 |= ADAPTER_EOI_TX_ON;
2072         writeq(val64, &bar0->adapter_control);
2073
2074         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2075                 /*
2076                  * Dont see link state interrupts initally on some switches,
2077                  * so directly scheduling the link state task here.
2078                  */
2079                 schedule_work(&nic->set_link_task);
2080         }
2081         /* SXE-002: Initialize link and activity LED */
2082         subid = nic->pdev->subsystem_device;
2083         if (((subid & 0xFF) >= 0x07) &&
2084             (nic->device_type == XFRAME_I_DEVICE)) {
2085                 val64 = readq(&bar0->gpio_control);
2086                 val64 |= 0x0000800000000000ULL;
2087                 writeq(val64, &bar0->gpio_control);
2088                 val64 = 0x0411040400000000ULL;
2089                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2090         }
2091
2092         return SUCCESS;
2093 }
2094 /**
2095  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2096  */
2097 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2098 {
2099         nic_t *nic = fifo_data->nic;
2100         struct sk_buff *skb;
2101         TxD_t *txds;
2102         u16 j, frg_cnt;
2103
2104         txds = txdlp;
2105         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2106                 pci_unmap_single(nic->pdev, (dma_addr_t)
2107                         txds->Buffer_Pointer, sizeof(u64),
2108                         PCI_DMA_TODEVICE);
2109                 txds++;
2110         }
2111
2112         skb = (struct sk_buff *) ((unsigned long)
2113                         txds->Host_Control);
2114         if (!skb) {
2115                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2116                 return NULL;
2117         }
2118         pci_unmap_single(nic->pdev, (dma_addr_t)
2119                          txds->Buffer_Pointer,
2120                          skb->len - skb->data_len,
2121                          PCI_DMA_TODEVICE);
2122         frg_cnt = skb_shinfo(skb)->nr_frags;
2123         if (frg_cnt) {
2124                 txds++;
2125                 for (j = 0; j < frg_cnt; j++, txds++) {
2126                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2127                         if (!txds->Buffer_Pointer)
2128                                 break;
2129                         pci_unmap_page(nic->pdev, (dma_addr_t) 
2130                                         txds->Buffer_Pointer,
2131                                        frag->size, PCI_DMA_TODEVICE);
2132                 }
2133         }
2134         txdlp->Host_Control = 0;
2135         return(skb);
2136 }
2137
2138 /**
2139  *  free_tx_buffers - Free all queued Tx buffers
2140  *  @nic : device private variable.
2141  *  Description:
2142  *  Free all queued Tx buffers.
2143  *  Return Value: void
2144 */
2145
2146 static void free_tx_buffers(struct s2io_nic *nic)
2147 {
2148         struct net_device *dev = nic->dev;
2149         struct sk_buff *skb;
2150         TxD_t *txdp;
2151         int i, j;
2152         mac_info_t *mac_control;
2153         struct config_param *config;
2154         int cnt = 0;
2155
2156         mac_control = &nic->mac_control;
2157         config = &nic->config;
2158
2159         for (i = 0; i < config->tx_fifo_num; i++) {
2160                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2161                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2162                             list_virt_addr;
2163                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2164                         if (skb) {
2165                                 dev_kfree_skb(skb);
2166                                 cnt++;
2167                         }
2168                 }
2169                 DBG_PRINT(INTR_DBG,
2170                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2171                           dev->name, cnt, i);
2172                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2173                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2174         }
2175 }
2176
2177 /**
2178  *   stop_nic -  To stop the nic
2179  *   @nic ; device private variable.
2180  *   Description:
2181  *   This function does exactly the opposite of what the start_nic()
2182  *   function does. This function is called to stop the device.
2183  *   Return Value:
2184  *   void.
2185  */
2186
2187 static void stop_nic(struct s2io_nic *nic)
2188 {
2189         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2190         register u64 val64 = 0;
2191         u16 interruptible, i;
2192         mac_info_t *mac_control;
2193         struct config_param *config;
2194
2195         mac_control = &nic->mac_control;
2196         config = &nic->config;
2197
2198         /*  Disable all interrupts */
2199         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2200         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2201         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2202         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2203
2204         /*  Disable PRCs */
2205         for (i = 0; i < config->rx_ring_num; i++) {
2206                 val64 = readq(&bar0->prc_ctrl_n[i]);
2207                 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2208                 writeq(val64, &bar0->prc_ctrl_n[i]);
2209         }
2210 }
2211
2212 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2213 {
2214         struct net_device *dev = nic->dev;
2215         struct sk_buff *frag_list;
2216         void *tmp;
2217
2218         /* Buffer-1 receives L3/L4 headers */
2219         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2220                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2221                         PCI_DMA_FROMDEVICE);
2222
2223         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2224         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2225         if (skb_shinfo(skb)->frag_list == NULL) {
2226                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2227                 return -ENOMEM ;
2228         }
2229         frag_list = skb_shinfo(skb)->frag_list;
2230         frag_list->next = NULL;
2231         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2232         frag_list->data = tmp;
2233         frag_list->tail = tmp;
2234
2235         /* Buffer-2 receives L4 data payload */
2236         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2237                                 frag_list->data, dev->mtu,
2238                                 PCI_DMA_FROMDEVICE);
2239         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2240         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2241
2242         return SUCCESS;
2243 }
2244
2245 /**
2246  *  fill_rx_buffers - Allocates the Rx side skbs
2247  *  @nic:  device private variable
2248  *  @ring_no: ring number
2249  *  Description:
2250  *  The function allocates Rx side skbs and puts the physical
2251  *  address of these buffers into the RxD buffer pointers, so that the NIC
2252  *  can DMA the received frame into these locations.
2253  *  The NIC supports 3 receive modes, viz
2254  *  1. single buffer,
2255  *  2. three buffer and
2256  *  3. Five buffer modes.
2257  *  Each mode defines how many fragments the received frame will be split
2258  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2259  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2260  *  is split into 3 fragments. As of now only single buffer mode is
2261  *  supported.
2262  *   Return Value:
2263  *  SUCCESS on success or an appropriate -ve value on failure.
2264  */
2265
2266 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2267 {
2268         struct net_device *dev = nic->dev;
2269         struct sk_buff *skb;
2270         RxD_t *rxdp;
2271         int off, off1, size, block_no, block_no1;
2272         u32 alloc_tab = 0;
2273         u32 alloc_cnt;
2274         mac_info_t *mac_control;
2275         struct config_param *config;
2276         u64 tmp;
2277         buffAdd_t *ba;
2278 #ifndef CONFIG_S2IO_NAPI
2279         unsigned long flags;
2280 #endif
2281         RxD_t *first_rxdp = NULL;
2282
2283         mac_control = &nic->mac_control;
2284         config = &nic->config;
2285         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2286             atomic_read(&nic->rx_bufs_left[ring_no]);
2287
2288         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2289         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2290         while (alloc_tab < alloc_cnt) {
2291                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2292                     block_index;
2293                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2294
2295                 rxdp = mac_control->rings[ring_no].
2296                                 rx_blocks[block_no].rxds[off].virt_addr;
2297
2298                 if ((block_no == block_no1) && (off == off1) &&
2299                                         (rxdp->Host_Control)) {
2300                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2301                                   dev->name);
2302                         DBG_PRINT(INTR_DBG, " info equated\n");
2303                         goto end;
2304                 }
2305                 if (off && (off == rxd_count[nic->rxd_mode])) {
2306                         mac_control->rings[ring_no].rx_curr_put_info.
2307                             block_index++;
2308                         if (mac_control->rings[ring_no].rx_curr_put_info.
2309                             block_index == mac_control->rings[ring_no].
2310                                         block_count)
2311                                 mac_control->rings[ring_no].rx_curr_put_info.
2312                                         block_index = 0;
2313                         block_no = mac_control->rings[ring_no].
2314                                         rx_curr_put_info.block_index;
2315                         if (off == rxd_count[nic->rxd_mode])
2316                                 off = 0;
2317                         mac_control->rings[ring_no].rx_curr_put_info.
2318                                 offset = off;
2319                         rxdp = mac_control->rings[ring_no].
2320                                 rx_blocks[block_no].block_virt_addr;
2321                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2322                                   dev->name, rxdp);
2323                 }
2324 #ifndef CONFIG_S2IO_NAPI
2325                 spin_lock_irqsave(&nic->put_lock, flags);
2326                 mac_control->rings[ring_no].put_pos =
2327                     (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2328                 spin_unlock_irqrestore(&nic->put_lock, flags);
2329 #endif
2330                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2331                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2332                                 (rxdp->Control_2 & BIT(0)))) {
2333                         mac_control->rings[ring_no].rx_curr_put_info.
2334                                         offset = off;
2335                         goto end;
2336                 }
2337                 /* calculate size of skb based on ring mode */
2338                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2339                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2340                 if (nic->rxd_mode == RXD_MODE_1)
2341                         size += NET_IP_ALIGN;
2342                 else if (nic->rxd_mode == RXD_MODE_3B)
2343                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2344                 else
2345                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2346
2347                 /* allocate skb */
2348                 skb = dev_alloc_skb(size);
2349                 if(!skb) {
2350                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2351                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2352                         if (first_rxdp) {
2353                                 wmb();
2354                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2355                         }
2356                         return -ENOMEM ;
2357                 }
2358                 if (nic->rxd_mode == RXD_MODE_1) {
2359                         /* 1 buffer mode - normal operation mode */
2360                         memset(rxdp, 0, sizeof(RxD1_t));
2361                         skb_reserve(skb, NET_IP_ALIGN);
2362                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2363                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364                                 PCI_DMA_FROMDEVICE);
2365                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2366
2367                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2368                         /*
2369                          * 2 or 3 buffer mode -
2370                          * Both 2 buffer mode and 3 buffer mode provides 128
2371                          * byte aligned receive buffers.
2372                          *
2373                          * 3 buffer mode provides header separation where in
2374                          * skb->data will have L3/L4 headers where as
2375                          * skb_shinfo(skb)->frag_list will have the L4 data
2376                          * payload
2377                          */
2378
2379                         memset(rxdp, 0, sizeof(RxD3_t));
2380                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2381                         skb_reserve(skb, BUF0_LEN);
2382                         tmp = (u64)(unsigned long) skb->data;
2383                         tmp += ALIGN_SIZE;
2384                         tmp &= ~ALIGN_SIZE;
2385                         skb->data = (void *) (unsigned long)tmp;
2386                         skb->tail = (void *) (unsigned long)tmp;
2387
2388                         ((RxD3_t*)rxdp)->Buffer0_ptr =
2389                             pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2390                                            PCI_DMA_FROMDEVICE);
2391                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2392                         if (nic->rxd_mode == RXD_MODE_3B) {
2393                                 /* Two buffer mode */
2394
2395                                 /*
2396                                  * Buffer2 will have L3/L4 header plus 
2397                                  * L4 payload
2398                                  */
2399                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2400                                 (nic->pdev, skb->data, dev->mtu + 4,
2401                                                 PCI_DMA_FROMDEVICE);
2402
2403                                 /* Buffer-1 will be dummy buffer not used */
2404                                 ((RxD3_t*)rxdp)->Buffer1_ptr =
2405                                 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2406                                         PCI_DMA_FROMDEVICE);
2407                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2408                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2409                                                                 (dev->mtu + 4);
2410                         } else {
2411                                 /* 3 buffer mode */
2412                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2413                                         dev_kfree_skb_irq(skb);
2414                                         if (first_rxdp) {
2415                                                 wmb();
2416                                                 first_rxdp->Control_1 |=
2417                                                         RXD_OWN_XENA;
2418                                         }
2419                                         return -ENOMEM ;
2420                                 }
2421                         }
2422                         rxdp->Control_2 |= BIT(0);
2423                 }
2424                 rxdp->Host_Control = (unsigned long) (skb);
2425                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2426                         rxdp->Control_1 |= RXD_OWN_XENA;
2427                 off++;
2428                 if (off == (rxd_count[nic->rxd_mode] + 1))
2429                         off = 0;
2430                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2431
2432                 rxdp->Control_2 |= SET_RXD_MARKER;
2433                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2434                         if (first_rxdp) {
2435                                 wmb();
2436                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2437                         }
2438                         first_rxdp = rxdp;
2439                 }
2440                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2441                 alloc_tab++;
2442         }
2443
2444       end:
2445         /* Transfer ownership of first descriptor to adapter just before
2446          * exiting. Before that, use memory barrier so that ownership
2447          * and other fields are seen by adapter correctly.
2448          */
2449         if (first_rxdp) {
2450                 wmb();
2451                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2452         }
2453
2454         return SUCCESS;
2455 }
2456
2457 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2458 {
2459         struct net_device *dev = sp->dev;
2460         int j;
2461         struct sk_buff *skb;
2462         RxD_t *rxdp;
2463         mac_info_t *mac_control;
2464         buffAdd_t *ba;
2465
2466         mac_control = &sp->mac_control;
2467         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2468                 rxdp = mac_control->rings[ring_no].
2469                                 rx_blocks[blk].rxds[j].virt_addr;
2470                 skb = (struct sk_buff *)
2471                         ((unsigned long) rxdp->Host_Control);
2472                 if (!skb) {
2473                         continue;
2474                 }
2475                 if (sp->rxd_mode == RXD_MODE_1) {
2476                         pci_unmap_single(sp->pdev, (dma_addr_t)
2477                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2478                                  dev->mtu +
2479                                  HEADER_ETHERNET_II_802_3_SIZE
2480                                  + HEADER_802_2_SIZE +
2481                                  HEADER_SNAP_SIZE,
2482                                  PCI_DMA_FROMDEVICE);
2483                         memset(rxdp, 0, sizeof(RxD1_t));
2484                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2485                         ba = &mac_control->rings[ring_no].
2486                                 ba[blk][j];
2487                         pci_unmap_single(sp->pdev, (dma_addr_t)
2488                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2489                                  BUF0_LEN,
2490                                  PCI_DMA_FROMDEVICE);
2491                         pci_unmap_single(sp->pdev, (dma_addr_t)
2492                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2493                                  BUF1_LEN,
2494                                  PCI_DMA_FROMDEVICE);
2495                         pci_unmap_single(sp->pdev, (dma_addr_t)
2496                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2497                                  dev->mtu + 4,
2498                                  PCI_DMA_FROMDEVICE);
2499                         memset(rxdp, 0, sizeof(RxD3_t));
2500                 } else {
2501                         pci_unmap_single(sp->pdev, (dma_addr_t)
2502                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2503                                 PCI_DMA_FROMDEVICE);
2504                         pci_unmap_single(sp->pdev, (dma_addr_t)
2505                                 ((RxD3_t*)rxdp)->Buffer1_ptr, 
2506                                 l3l4hdr_size + 4,
2507                                 PCI_DMA_FROMDEVICE);
2508                         pci_unmap_single(sp->pdev, (dma_addr_t)
2509                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2510                                 PCI_DMA_FROMDEVICE);
2511                         memset(rxdp, 0, sizeof(RxD3_t));
2512                 }
2513                 dev_kfree_skb(skb);
2514                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2515         }
2516 }
2517
2518 /**
2519  *  free_rx_buffers - Frees all Rx buffers
2520  *  @sp: device private variable.
2521  *  Description:
2522  *  This function will free all Rx buffers allocated by host.
2523  *  Return Value:
2524  *  NONE.
2525  */
2526
2527 static void free_rx_buffers(struct s2io_nic *sp)
2528 {
2529         struct net_device *dev = sp->dev;
2530         int i, blk = 0, buf_cnt = 0;
2531         mac_info_t *mac_control;
2532         struct config_param *config;
2533
2534         mac_control = &sp->mac_control;
2535         config = &sp->config;
2536
2537         for (i = 0; i < config->rx_ring_num; i++) {
2538                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2539                         free_rxd_blk(sp,i,blk);
2540
2541                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2542                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2543                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2544                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2545                 atomic_set(&sp->rx_bufs_left[i], 0);
2546                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2547                           dev->name, buf_cnt, i);
2548         }
2549 }
2550
2551 /**
2552  * s2io_poll - Rx interrupt handler for NAPI support
2553  * @dev : pointer to the device structure.
2554  * @budget : The number of packets that were budgeted to be processed
2555  * during  one pass through the 'Poll" function.
2556  * Description:
2557  * Comes into picture only if NAPI support has been incorporated. It does
2558  * the same thing that rx_intr_handler does, but not in a interrupt context
2559  * also It will process only a given number of packets.
2560  * Return value:
2561  * 0 on success and 1 if there are No Rx packets to be processed.
2562  */
2563
2564 #if defined(CONFIG_S2IO_NAPI)
2565 static int s2io_poll(struct net_device *dev, int *budget)
2566 {
2567         nic_t *nic = dev->priv;
2568         int pkt_cnt = 0, org_pkts_to_process;
2569         mac_info_t *mac_control;
2570         struct config_param *config;
2571         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2572         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2573         int i;
2574
2575         atomic_inc(&nic->isr_cnt);
2576         mac_control = &nic->mac_control;
2577         config = &nic->config;
2578
2579         nic->pkts_to_process = *budget;
2580         if (nic->pkts_to_process > dev->quota)
2581                 nic->pkts_to_process = dev->quota;
2582         org_pkts_to_process = nic->pkts_to_process;
2583
2584         writeq(val64, &bar0->rx_traffic_int);
2585         val64 = readl(&bar0->rx_traffic_int);
2586
2587         for (i = 0; i < config->rx_ring_num; i++) {
2588                 rx_intr_handler(&mac_control->rings[i]);
2589                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2590                 if (!nic->pkts_to_process) {
2591                         /* Quota for the current iteration has been met */
2592                         goto no_rx;
2593                 }
2594         }
2595         if (!pkt_cnt)
2596                 pkt_cnt = 1;
2597
2598         dev->quota -= pkt_cnt;
2599         *budget -= pkt_cnt;
2600         netif_rx_complete(dev);
2601
2602         for (i = 0; i < config->rx_ring_num; i++) {
2603                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2604                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2605                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2606                         break;
2607                 }
2608         }
2609         /* Re enable the Rx interrupts. */
2610         writeq(0x0, &bar0->rx_traffic_mask);
2611         val64 = readl(&bar0->rx_traffic_mask);
2612         atomic_dec(&nic->isr_cnt);
2613         return 0;
2614
2615 no_rx:
2616         dev->quota -= pkt_cnt;
2617         *budget -= pkt_cnt;
2618
2619         for (i = 0; i < config->rx_ring_num; i++) {
2620                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2621                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2622                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2623                         break;
2624                 }
2625         }
2626         atomic_dec(&nic->isr_cnt);
2627         return 1;
2628 }
2629 #endif
2630
2631 /**
2632  *  rx_intr_handler - Rx interrupt handler
2633  *  @nic: device private variable.
2634  *  Description:
2635  *  If the interrupt is because of a received frame or if the
2636  *  receive ring contains fresh as yet un-processed frames,this function is
2637  *  called. It picks out the RxD at which place the last Rx processing had
2638  *  stopped and sends the skb to the OSM's Rx handler and then increments
2639  *  the offset.
2640  *  Return Value:
2641  *  NONE.
2642  */
2643 static void rx_intr_handler(ring_info_t *ring_data)
2644 {
2645         nic_t *nic = ring_data->nic;
2646         struct net_device *dev = (struct net_device *) nic->dev;
2647         int get_block, put_block, put_offset;
2648         rx_curr_get_info_t get_info, put_info;
2649         RxD_t *rxdp;
2650         struct sk_buff *skb;
2651 #ifndef CONFIG_S2IO_NAPI
2652         int pkt_cnt = 0;
2653 #endif
2654         int i;
2655
2656         spin_lock(&nic->rx_lock);
2657         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2658                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2659                           __FUNCTION__, dev->name);
2660                 spin_unlock(&nic->rx_lock);
2661                 return;
2662         }
2663
2664         get_info = ring_data->rx_curr_get_info;
2665         get_block = get_info.block_index;
2666         put_info = ring_data->rx_curr_put_info;
2667         put_block = put_info.block_index;
2668         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2669 #ifndef CONFIG_S2IO_NAPI
2670         spin_lock(&nic->put_lock);
2671         put_offset = ring_data->put_pos;
2672         spin_unlock(&nic->put_lock);
2673 #else
2674         put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2675                 put_info.offset;
2676 #endif
2677         while (RXD_IS_UP2DT(rxdp)) {
2678                 /* If your are next to put index then it's FIFO full condition */
2679                 if ((get_block == put_block) &&
2680                     (get_info.offset + 1) == put_info.offset) {
2681                         DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2682                         break;
2683                 }
2684                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2685                 if (skb == NULL) {
2686                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2687                                   dev->name);
2688                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2689                         spin_unlock(&nic->rx_lock);
2690                         return;
2691                 }
2692                 if (nic->rxd_mode == RXD_MODE_1) {
2693                         pci_unmap_single(nic->pdev, (dma_addr_t)
2694                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2695                                  dev->mtu +
2696                                  HEADER_ETHERNET_II_802_3_SIZE +
2697                                  HEADER_802_2_SIZE +
2698                                  HEADER_SNAP_SIZE,
2699                                  PCI_DMA_FROMDEVICE);
2700                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2701                         pci_unmap_single(nic->pdev, (dma_addr_t)
2702                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2703                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2704                         pci_unmap_single(nic->pdev, (dma_addr_t)
2705                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2706                                  BUF1_LEN, PCI_DMA_FROMDEVICE);
2707                         pci_unmap_single(nic->pdev, (dma_addr_t)
2708                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2709                                  dev->mtu + 4,
2710                                  PCI_DMA_FROMDEVICE);
2711                 } else {
2712                         pci_unmap_single(nic->pdev, (dma_addr_t)
2713                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2714                                          PCI_DMA_FROMDEVICE);
2715                         pci_unmap_single(nic->pdev, (dma_addr_t)
2716                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2717                                          l3l4hdr_size + 4,
2718                                          PCI_DMA_FROMDEVICE);
2719                         pci_unmap_single(nic->pdev, (dma_addr_t)
2720                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2721                                          dev->mtu, PCI_DMA_FROMDEVICE);
2722                 }
2723                 prefetch(skb->data);
2724                 rx_osm_handler(ring_data, rxdp);
2725                 get_info.offset++;
2726                 ring_data->rx_curr_get_info.offset = get_info.offset;
2727                 rxdp = ring_data->rx_blocks[get_block].
2728                                 rxds[get_info.offset].virt_addr;
2729                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2730                         get_info.offset = 0;
2731                         ring_data->rx_curr_get_info.offset = get_info.offset;
2732                         get_block++;
2733                         if (get_block == ring_data->block_count)
2734                                 get_block = 0;
2735                         ring_data->rx_curr_get_info.block_index = get_block;
2736                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2737                 }
2738
2739 #ifdef CONFIG_S2IO_NAPI
2740                 nic->pkts_to_process -= 1;
2741                 if (!nic->pkts_to_process)
2742                         break;
2743 #else
2744                 pkt_cnt++;
2745                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2746                         break;
2747 #endif
2748         }
2749         if (nic->lro) {
2750                 /* Clear all LRO sessions before exiting */
2751                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2752                         lro_t *lro = &nic->lro0_n[i];
2753                         if (lro->in_use) {
2754                                 update_L3L4_header(nic, lro);
2755                                 queue_rx_frame(lro->parent);
2756                                 clear_lro_session(lro);
2757                         }
2758                 }
2759         }
2760
2761         spin_unlock(&nic->rx_lock);
2762 }
2763
2764 /**
2765  *  tx_intr_handler - Transmit interrupt handler
2766  *  @nic : device private variable
2767  *  Description:
2768  *  If an interrupt was raised to indicate DMA complete of the
2769  *  Tx packet, this function is called. It identifies the last TxD
2770  *  whose buffer was freed and frees all skbs whose data have already
2771  *  DMA'ed into the NICs internal memory.
2772  *  Return Value:
2773  *  NONE
2774  */
2775
2776 static void tx_intr_handler(fifo_info_t *fifo_data)
2777 {
2778         nic_t *nic = fifo_data->nic;
2779         struct net_device *dev = (struct net_device *) nic->dev;
2780         tx_curr_get_info_t get_info, put_info;
2781         struct sk_buff *skb;
2782         TxD_t *txdlp;
2783
2784         get_info = fifo_data->tx_curr_get_info;
2785         put_info = fifo_data->tx_curr_put_info;
2786         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2787             list_virt_addr;
2788         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2789                (get_info.offset != put_info.offset) &&
2790                (txdlp->Host_Control)) {
2791                 /* Check for TxD errors */
2792                 if (txdlp->Control_1 & TXD_T_CODE) {
2793                         unsigned long long err;
2794                         err = txdlp->Control_1 & TXD_T_CODE;
2795                         if (err & 0x1) {
2796                                 nic->mac_control.stats_info->sw_stat.
2797                                                 parity_err_cnt++;
2798                         }
2799                         if ((err >> 48) == 0xA) {
2800                                 DBG_PRINT(TX_DBG, "TxD returned due \
2801 to loss of link\n");
2802                         }
2803                         else {
2804                                 DBG_PRINT(ERR_DBG, "***TxD error \
2805 %llx\n", err);
2806                         }
2807                 }
2808
2809                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2810                 if (skb == NULL) {
2811                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2812                         __FUNCTION__);
2813                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2814                         return;
2815                 }
2816
2817                 /* Updating the statistics block */
2818                 nic->stats.tx_bytes += skb->len;
2819                 dev_kfree_skb_irq(skb);
2820
2821                 get_info.offset++;
2822                 if (get_info.offset == get_info.fifo_len + 1)
2823                         get_info.offset = 0;
2824                 txdlp = (TxD_t *) fifo_data->list_info
2825                     [get_info.offset].list_virt_addr;
2826                 fifo_data->tx_curr_get_info.offset =
2827                     get_info.offset;
2828         }
2829
2830         spin_lock(&nic->tx_lock);
2831         if (netif_queue_stopped(dev))
2832                 netif_wake_queue(dev);
2833         spin_unlock(&nic->tx_lock);
2834 }
2835
2836 /**
2837  *  s2io_mdio_write - Function to write in to MDIO registers
2838  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2839  *  @addr     : address value
2840  *  @value    : data value
2841  *  @dev      : pointer to net_device structure
2842  *  Description:
2843  *  This function is used to write values to the MDIO registers
2844  *  NONE
2845  */
2846 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2847 {
2848         u64 val64 = 0x0;
2849         nic_t *sp = dev->priv;
2850         XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2851
2852         //address transaction
2853         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2854                         | MDIO_MMD_DEV_ADDR(mmd_type)
2855                         | MDIO_MMS_PRT_ADDR(0x0);
2856         writeq(val64, &bar0->mdio_control);
2857         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2858         writeq(val64, &bar0->mdio_control);
2859         udelay(100);
2860
2861         //Data transaction
2862         val64 = 0x0;
2863         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2864                         | MDIO_MMD_DEV_ADDR(mmd_type)
2865                         | MDIO_MMS_PRT_ADDR(0x0)
2866                         | MDIO_MDIO_DATA(value)
2867                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2868         writeq(val64, &bar0->mdio_control);
2869         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2870         writeq(val64, &bar0->mdio_control);
2871         udelay(100);
2872
2873         val64 = 0x0;
2874         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2875         | MDIO_MMD_DEV_ADDR(mmd_type)
2876         | MDIO_MMS_PRT_ADDR(0x0)
2877         | MDIO_OP(MDIO_OP_READ_TRANS);
2878         writeq(val64, &bar0->mdio_control);
2879         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2880         writeq(val64, &bar0->mdio_control);
2881         udelay(100);
2882
2883 }
2884
2885 /**
2886  *  s2io_mdio_read - Function to write in to MDIO registers
2887  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2888  *  @addr     : address value
2889  *  @dev      : pointer to net_device structure
2890  *  Description:
2891  *  This function is used to read values to the MDIO registers
2892  *  NONE
2893  */
2894 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2895 {
2896         u64 val64 = 0x0;
2897         u64 rval64 = 0x0;
2898         nic_t *sp = dev->priv;
2899         XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2900
2901         /* address transaction */
2902         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2903                         | MDIO_MMD_DEV_ADDR(mmd_type)
2904                         | MDIO_MMS_PRT_ADDR(0x0);
2905         writeq(val64, &bar0->mdio_control);
2906         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2907         writeq(val64, &bar0->mdio_control);
2908         udelay(100);
2909
2910         /* Data transaction */
2911         val64 = 0x0;
2912         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2913                         | MDIO_MMD_DEV_ADDR(mmd_type)
2914                         | MDIO_MMS_PRT_ADDR(0x0)
2915                         | MDIO_OP(MDIO_OP_READ_TRANS);
2916         writeq(val64, &bar0->mdio_control);
2917         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2918         writeq(val64, &bar0->mdio_control);
2919         udelay(100);
2920
2921         /* Read the value from regs */
2922         rval64 = readq(&bar0->mdio_control);
2923         rval64 = rval64 & 0xFFFF0000;
2924         rval64 = rval64 >> 16;
2925         return rval64;
2926 }
2927 /**
2928  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2929  *  @counter      : couter value to be updated
2930  *  @flag         : flag to indicate the status
2931  *  @type         : counter type
2932  *  Description:
2933  *  This function is to check the status of the xpak counters value
2934  *  NONE
2935  */
2936
2937 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2938 {
2939         u64 mask = 0x3;
2940         u64 val64;
2941         int i;
2942         for(i = 0; i <index; i++)
2943                 mask = mask << 0x2;
2944
2945         if(flag > 0)
2946         {
2947                 *counter = *counter + 1;
2948                 val64 = *regs_stat & mask;
2949                 val64 = val64 >> (index * 0x2);
2950                 val64 = val64 + 1;
2951                 if(val64 == 3)
2952                 {
2953                         switch(type)
2954                         {
2955                         case 1:
2956                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2957                                           "service. Excessive temperatures may "
2958                                           "result in premature transceiver "
2959                                           "failure \n");
2960                         break;
2961                         case 2:
2962                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2963                                           "service Excessive bias currents may "
2964                                           "indicate imminent laser diode "
2965                                           "failure \n");
2966                         break;
2967                         case 3:
2968                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2969                                           "service Excessive laser output "
2970                                           "power may saturate far-end "
2971                                           "receiver\n");
2972                         break;
2973                         default:
2974                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2975                                           "type \n");
2976                         }
2977                         val64 = 0x0;
2978                 }
2979                 val64 = val64 << (index * 0x2);
2980                 *regs_stat = (*regs_stat & (~mask)) | (val64);
2981
2982         } else {
2983                 *regs_stat = *regs_stat & (~mask);
2984         }
2985 }
2986
2987 /**
2988  *  s2io_updt_xpak_counter - Function to update the xpak counters
2989  *  @dev         : pointer to net_device struct
2990  *  Description:
2991  *  This function is to upate the status of the xpak counters value
2992  *  NONE
2993  */
2994 static void s2io_updt_xpak_counter(struct net_device *dev)
2995 {
2996         u16 flag  = 0x0;
2997         u16 type  = 0x0;
2998         u16 val16 = 0x0;
2999         u64 val64 = 0x0;
3000         u64 addr  = 0x0;
3001
3002         nic_t *sp = dev->priv;
3003         StatInfo_t *stat_info = sp->mac_control.stats_info;
3004
3005         /* Check the communication with the MDIO slave */
3006         addr = 0x0000;
3007         val64 = 0x0;
3008         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3009         if((val64 == 0xFFFF) || (val64 == 0x0000))
3010         {
3011                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3012                           "Returned %llx\n", (unsigned long long)val64);
3013                 return;
3014         }
3015
3016         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3017         if(val64 != 0x2040)
3018         {
3019                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3020                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3021                           (unsigned long long)val64);
3022                 return;
3023         }
3024
3025         /* Loading the DOM register to MDIO register */
3026         addr = 0xA100;
3027         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3028         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3029
3030         /* Reading the Alarm flags */
3031         addr = 0xA070;
3032         val64 = 0x0;
3033         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3034
3035         flag = CHECKBIT(val64, 0x7);
3036         type = 1;
3037         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3038                                 &stat_info->xpak_stat.xpak_regs_stat,
3039                                 0x0, flag, type);
3040
3041         if(CHECKBIT(val64, 0x6))
3042                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3043
3044         flag = CHECKBIT(val64, 0x3);
3045         type = 2;
3046         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3047                                 &stat_info->xpak_stat.xpak_regs_stat,
3048                                 0x2, flag, type);
3049
3050         if(CHECKBIT(val64, 0x2))
3051                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3052
3053         flag = CHECKBIT(val64, 0x1);
3054         type = 3;
3055         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3056                                 &stat_info->xpak_stat.xpak_regs_stat,
3057                                 0x4, flag, type);
3058
3059         if(CHECKBIT(val64, 0x0))
3060                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3061
3062         /* Reading the Warning flags */
3063         addr = 0xA074;
3064         val64 = 0x0;
3065         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3066
3067         if(CHECKBIT(val64, 0x7))
3068                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3069
3070         if(CHECKBIT(val64, 0x6))
3071                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3072
3073         if(CHECKBIT(val64, 0x3))
3074                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3075
3076         if(CHECKBIT(val64, 0x2))
3077                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3078
3079         if(CHECKBIT(val64, 0x1))
3080                 stat_info->xpak_stat.warn_laser_output_power_high++;
3081
3082         if(CHECKBIT(val64, 0x0))
3083                 stat_info->xpak_stat.warn_laser_output_power_low++;
3084 }
3085
3086 /**
3087  *  alarm_intr_handler - Alarm Interrrupt handler
3088  *  @nic: device private variable
3089  *  Description: If the interrupt was neither because of Rx packet or Tx
3090  *  complete, this function is called. If the interrupt was to indicate
3091  *  a loss of link, the OSM link status handler is invoked for any other
3092  *  alarm interrupt the block that raised the interrupt is displayed
3093  *  and a H/W reset is issued.
3094  *  Return Value:
3095  *  NONE
3096 */
3097
3098 static void alarm_intr_handler(struct s2io_nic *nic)
3099 {
3100         struct net_device *dev = (struct net_device *) nic->dev;
3101         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3102         register u64 val64 = 0, err_reg = 0;
3103         u64 cnt;
3104         int i;
3105         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3106         /* Handling the XPAK counters update */
3107         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3108                 /* waiting for an hour */
3109                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3110         } else {
3111                 s2io_updt_xpak_counter(dev);
3112                 /* reset the count to zero */
3113                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3114         }
3115
3116         /* Handling link status change error Intr */
3117         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3118                 err_reg = readq(&bar0->mac_rmac_err_reg);
3119                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3120                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3121                         schedule_work(&nic->set_link_task);
3122                 }
3123         }
3124
3125         /* Handling Ecc errors */
3126         val64 = readq(&bar0->mc_err_reg);
3127         writeq(val64, &bar0->mc_err_reg);
3128         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3129                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3130                         nic->mac_control.stats_info->sw_stat.
3131                                 double_ecc_errs++;
3132                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3133                                   dev->name);
3134                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3135                         if (nic->device_type != XFRAME_II_DEVICE) {
3136                                 /* Reset XframeI only if critical error */
3137                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3138                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3139                                         netif_stop_queue(dev);
3140                                         schedule_work(&nic->rst_timer_task);
3141                                         nic->mac_control.stats_info->sw_stat.
3142                                                         soft_reset_cnt++;
3143                                 }
3144                         }
3145                 } else {
3146                         nic->mac_control.stats_info->sw_stat.
3147                                 single_ecc_errs++;
3148                 }
3149         }
3150
3151         /* In case of a serious error, the device will be Reset. */
3152         val64 = readq(&bar0->serr_source);
3153         if (val64 & SERR_SOURCE_ANY) {
3154                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3155                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3156                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n", 
3157                           (unsigned long long)val64);
3158                 netif_stop_queue(dev);
3159                 schedule_work(&nic->rst_timer_task);
3160                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3161         }
3162
3163         /*
3164          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3165          * Error occurs, the adapter will be recycled by disabling the
3166          * adapter enable bit and enabling it again after the device
3167          * becomes Quiescent.
3168          */
3169         val64 = readq(&bar0->pcc_err_reg);
3170         writeq(val64, &bar0->pcc_err_reg);
3171         if (val64 & PCC_FB_ECC_DB_ERR) {
3172                 u64 ac = readq(&bar0->adapter_control);
3173                 ac &= ~(ADAPTER_CNTL_EN);
3174                 writeq(ac, &bar0->adapter_control);
3175                 ac = readq(&bar0->adapter_control);
3176                 schedule_work(&nic->set_link_task);
3177         }
3178         /* Check for data parity error */
3179         val64 = readq(&bar0->pic_int_status);
3180         if (val64 & PIC_INT_GPIO) {
3181                 val64 = readq(&bar0->gpio_int_reg);
3182                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3183                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3184                         schedule_work(&nic->rst_timer_task);
3185                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3186                 }
3187         }
3188
3189         /* Check for ring full counter */
3190         if (nic->device_type & XFRAME_II_DEVICE) {
3191                 val64 = readq(&bar0->ring_bump_counter1);
3192                 for (i=0; i<4; i++) {
3193                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3194                         cnt >>= 64 - ((i+1)*16);
3195                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3196                                 += cnt;
3197                 }
3198
3199                 val64 = readq(&bar0->ring_bump_counter2);
3200                 for (i=0; i<4; i++) {
3201                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3202                         cnt >>= 64 - ((i+1)*16);
3203                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3204                                 += cnt;
3205                 }
3206         }
3207
3208         /* Other type of interrupts are not being handled now,  TODO */
3209 }
3210
3211 /**
3212  *  wait_for_cmd_complete - waits for a command to complete.
3213  *  @sp : private member of the device structure, which is a pointer to the
3214  *  s2io_nic structure.
3215  *  Description: Function that waits for a command to Write into RMAC
3216  *  ADDR DATA registers to be completed and returns either success or
3217  *  error depending on whether the command was complete or not.
3218  *  Return value:
3219  *   SUCCESS on success and FAILURE on failure.
3220  */
3221
3222 static int wait_for_cmd_complete(void *addr, u64 busy_bit)
3223 {
3224         int ret = FAILURE, cnt = 0;
3225         u64 val64;
3226
3227         while (TRUE) {
3228                 val64 = readq(addr);
3229                 if (!(val64 & busy_bit)) {
3230                         ret = SUCCESS;
3231                         break;
3232                 }
3233
3234                 if(in_interrupt())
3235                         mdelay(50);
3236                 else
3237                         msleep(50);
3238
3239                 if (cnt++ > 10)
3240                         break;
3241         }
3242         return ret;
3243 }
3244
3245 /**
3246  *  s2io_reset - Resets the card.
3247  *  @sp : private member of the device structure.
3248  *  Description: Function to Reset the card. This function then also
3249  *  restores the previously saved PCI configuration space registers as
3250  *  the card reset also resets the configuration space.
3251  *  Return value:
3252  *  void.
3253  */
3254
3255 static void s2io_reset(nic_t * sp)
3256 {
3257         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3258         u64 val64;
3259         u16 subid, pci_cmd;
3260
3261         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3262         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3263
3264         val64 = SW_RESET_ALL;
3265         writeq(val64, &bar0->sw_reset);
3266
3267         /*
3268          * At this stage, if the PCI write is indeed completed, the
3269          * card is reset and so is the PCI Config space of the device.
3270          * So a read cannot be issued at this stage on any of the
3271          * registers to ensure the write into "sw_reset" register
3272          * has gone through.
3273          * Question: Is there any system call that will explicitly force
3274          * all the write commands still pending on the bus to be pushed
3275          * through?
3276          * As of now I'am just giving a 250ms delay and hoping that the
3277          * PCI write to sw_reset register is done by this time.
3278          */
3279         msleep(250);
3280         if (strstr(sp->product_name, "CX4")) {
3281                 msleep(750);
3282         }
3283
3284         /* Restore the PCI state saved during initialization. */
3285         pci_restore_state(sp->pdev);
3286         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3287                                      pci_cmd);
3288         s2io_init_pci(sp);
3289
3290         msleep(250);
3291
3292         /* Set swapper to enable I/O register access */
3293         s2io_set_swapper(sp);
3294
3295         /* Restore the MSIX table entries from local variables */
3296         restore_xmsi_data(sp);
3297
3298         /* Clear certain PCI/PCI-X fields after reset */
3299         if (sp->device_type == XFRAME_II_DEVICE) {
3300                 /* Clear parity err detect bit */
3301                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3302
3303                 /* Clearing PCIX Ecc status register */
3304                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3305
3306                 /* Clearing PCI_STATUS error reflected here */
3307                 writeq(BIT(62), &bar0->txpic_int_reg);
3308         }
3309
3310         /* Reset device statistics maintained by OS */
3311         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3312
3313         /* SXE-002: Configure link and activity LED to turn it off */
3314         subid = sp->pdev->subsystem_device;
3315         if (((subid & 0xFF) >= 0x07) &&
3316             (sp->device_type == XFRAME_I_DEVICE)) {
3317                 val64 = readq(&bar0->gpio_control);
3318                 val64 |= 0x0000800000000000ULL;
3319                 writeq(val64, &bar0->gpio_control);
3320                 val64 = 0x0411040400000000ULL;
3321                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3322         }
3323
3324         /*
3325          * Clear spurious ECC interrupts that would have occured on
3326          * XFRAME II cards after reset.
3327          */
3328         if (sp->device_type == XFRAME_II_DEVICE) {
3329                 val64 = readq(&bar0->pcc_err_reg);
3330                 writeq(val64, &bar0->pcc_err_reg);
3331         }
3332
3333         sp->device_enabled_once = FALSE;
3334 }
3335
3336 /**
3337  *  s2io_set_swapper - to set the swapper controle on the card
3338  *  @sp : private member of the device structure,
3339  *  pointer to the s2io_nic structure.
3340  *  Description: Function to set the swapper control on the card
3341  *  correctly depending on the 'endianness' of the system.
3342  *  Return value:
3343  *  SUCCESS on success and FAILURE on failure.
3344  */
3345
3346 static int s2io_set_swapper(nic_t * sp)
3347 {
3348         struct net_device *dev = sp->dev;
3349         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3350         u64 val64, valt, valr;
3351
3352         /*
3353          * Set proper endian settings and verify the same by reading
3354          * the PIF Feed-back register.
3355          */
3356
3357         val64 = readq(&bar0->pif_rd_swapper_fb);
3358         if (val64 != 0x0123456789ABCDEFULL) {
3359                 int i = 0;
3360                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3361                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3362                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3363                                 0};                     /* FE=0, SE=0 */
3364
3365                 while(i<4) {
3366                         writeq(value[i], &bar0->swapper_ctrl);
3367                         val64 = readq(&bar0->pif_rd_swapper_fb);
3368                         if (val64 == 0x0123456789ABCDEFULL)
3369                                 break;
3370                         i++;
3371                 }
3372                 if (i == 4) {
3373                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3374                                 dev->name);
3375                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3376                                 (unsigned long long) val64);
3377                         return FAILURE;
3378                 }
3379                 valr = value[i];
3380         } else {
3381                 valr = readq(&bar0->swapper_ctrl);
3382         }
3383
3384         valt = 0x0123456789ABCDEFULL;
3385         writeq(valt, &bar0->xmsi_address);
3386         val64 = readq(&bar0->xmsi_address);
3387
3388         if(val64 != valt) {
3389                 int i = 0;
3390                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3391                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3392                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3393                                 0};                     /* FE=0, SE=0 */
3394
3395                 while(i<4) {
3396                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3397                         writeq(valt, &bar0->xmsi_address);
3398                         val64 = readq(&bar0->xmsi_address);
3399                         if(val64 == valt)
3400                                 break;
3401                         i++;
3402                 }
3403                 if(i == 4) {
3404                         unsigned long long x = val64;
3405                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3406                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3407                         return FAILURE;
3408                 }
3409         }
3410         val64 = readq(&bar0->swapper_ctrl);
3411         val64 &= 0xFFFF000000000000ULL;
3412
3413 #ifdef  __BIG_ENDIAN
3414         /*
3415          * The device by default set to a big endian format, so a
3416          * big endian driver need not set anything.
3417          */
3418         val64 |= (SWAPPER_CTRL_TXP_FE |
3419                  SWAPPER_CTRL_TXP_SE |
3420                  SWAPPER_CTRL_TXD_R_FE |
3421                  SWAPPER_CTRL_TXD_W_FE |
3422                  SWAPPER_CTRL_TXF_R_FE |
3423                  SWAPPER_CTRL_RXD_R_FE |
3424                  SWAPPER_CTRL_RXD_W_FE |
3425                  SWAPPER_CTRL_RXF_W_FE |
3426                  SWAPPER_CTRL_XMSI_FE |
3427                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3428         if (sp->intr_type == INTA)
3429                 val64 |= SWAPPER_CTRL_XMSI_SE;
3430         writeq(val64, &bar0->swapper_ctrl);
3431 #else
3432         /*
3433          * Initially we enable all bits to make it accessible by the
3434          * driver, then we selectively enable only those bits that
3435          * we want to set.
3436          */
3437         val64 |= (SWAPPER_CTRL_TXP_FE |
3438                  SWAPPER_CTRL_TXP_SE |
3439                  SWAPPER_CTRL_TXD_R_FE |
3440                  SWAPPER_CTRL_TXD_R_SE |
3441                  SWAPPER_CTRL_TXD_W_FE |
3442                  SWAPPER_CTRL_TXD_W_SE |
3443                  SWAPPER_CTRL_TXF_R_FE |
3444                  SWAPPER_CTRL_RXD_R_FE |
3445                  SWAPPER_CTRL_RXD_R_SE |
3446                  SWAPPER_CTRL_RXD_W_FE |
3447                  SWAPPER_CTRL_RXD_W_SE |
3448                  SWAPPER_CTRL_RXF_W_FE |
3449                  SWAPPER_CTRL_XMSI_FE |
3450                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3451         if (sp->intr_type == INTA)
3452                 val64 |= SWAPPER_CTRL_XMSI_SE;
3453         writeq(val64, &bar0->swapper_ctrl);
3454 #endif
3455         val64 = readq(&bar0->swapper_ctrl);
3456
3457         /*
3458          * Verifying if endian settings are accurate by reading a
3459          * feedback register.
3460          */
3461         val64 = readq(&bar0->pif_rd_swapper_fb);
3462         if (val64 != 0x0123456789ABCDEFULL) {
3463                 /* Endian settings are incorrect, calls for another dekko. */
3464                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3465                           dev->name);
3466                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3467                           (unsigned long long) val64);
3468                 return FAILURE;
3469         }
3470
3471         return SUCCESS;
3472 }
3473
3474 static int wait_for_msix_trans(nic_t *nic, int i)
3475 {
3476         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3477         u64 val64;
3478         int ret = 0, cnt = 0;
3479
3480         do {
3481                 val64 = readq(&bar0->xmsi_access);
3482                 if (!(val64 & BIT(15)))
3483                         break;
3484                 mdelay(1);
3485                 cnt++;
3486         } while(cnt < 5);
3487         if (cnt == 5) {
3488                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3489                 ret = 1;
3490         }
3491
3492         return ret;
3493 }
3494
3495 static void restore_xmsi_data(nic_t *nic)
3496 {
3497         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3498         u64 val64;
3499         int i;
3500
3501         for (i=0; i< nic->avail_msix_vectors; i++) {
3502                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3503                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3504                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3505                 writeq(val64, &bar0->xmsi_access);
3506                 if (wait_for_msix_trans(nic, i)) {
3507                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3508                         continue;
3509                 }
3510         }
3511 }
3512
3513 static void store_xmsi_data(nic_t *nic)
3514 {
3515         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3516         u64 val64, addr, data;
3517         int i;
3518
3519         /* Store and display */
3520         for (i=0; i< nic->avail_msix_vectors; i++) {
3521                 val64 = (BIT(15) | vBIT(i, 26, 6));
3522                 writeq(val64, &bar0->xmsi_access);
3523                 if (wait_for_msix_trans(nic, i)) {
3524                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3525                         continue;
3526                 }
3527                 addr = readq(&bar0->xmsi_address);
3528                 data = readq(&bar0->xmsi_data);
3529                 if (addr && data) {
3530                         nic->msix_info[i].addr = addr;
3531                         nic->msix_info[i].data = data;
3532                 }
3533         }
3534 }
3535
3536 int s2io_enable_msi(nic_t *nic)
3537 {
3538         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3539         u16 msi_ctrl, msg_val;
3540         struct config_param *config = &nic->config;
3541         struct net_device *dev = nic->dev;
3542         u64 val64, tx_mat, rx_mat;
3543         int i, err;
3544
3545         val64 = readq(&bar0->pic_control);
3546         val64 &= ~BIT(1);
3547         writeq(val64, &bar0->pic_control);
3548
3549         err = pci_enable_msi(nic->pdev);
3550         if (err) {
3551                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3552                           nic->dev->name);
3553                 return err;
3554         }
3555
3556         /*
3557          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3558          * for interrupt handling.
3559          */
3560         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3561         msg_val ^= 0x1;
3562         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3563         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3564
3565         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3566         msi_ctrl |= 0x10;
3567         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3568
3569         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3570         tx_mat = readq(&bar0->tx_mat0_n[0]);
3571         for (i=0; i<config->tx_fifo_num; i++) {
3572                 tx_mat |= TX_MAT_SET(i, 1);
3573         }
3574         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3575
3576         rx_mat = readq(&bar0->rx_mat);
3577         for (i=0; i<config->rx_ring_num; i++) {
3578                 rx_mat |= RX_MAT_SET(i, 1);
3579         }
3580         writeq(rx_mat, &bar0->rx_mat);
3581
3582         dev->irq = nic->pdev->irq;
3583         return 0;
3584 }
3585
3586 static int s2io_enable_msi_x(nic_t *nic)
3587 {
3588         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3589         u64 tx_mat, rx_mat;
3590         u16 msi_control; /* Temp variable */
3591         int ret, i, j, msix_indx = 1;
3592
3593         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3594                                GFP_KERNEL);
3595         if (nic->entries == NULL) {
3596                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3597                 return -ENOMEM;
3598         }
3599         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3600
3601         nic->s2io_entries =
3602                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3603                                    GFP_KERNEL);
3604         if (nic->s2io_entries == NULL) {
3605                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3606                 kfree(nic->entries);
3607                 return -ENOMEM;
3608         }
3609         memset(nic->s2io_entries, 0,
3610                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3611
3612         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3613                 nic->entries[i].entry = i;
3614                 nic->s2io_entries[i].entry = i;
3615                 nic->s2io_entries[i].arg = NULL;
3616                 nic->s2io_entries[i].in_use = 0;
3617         }
3618
3619         tx_mat = readq(&bar0->tx_mat0_n[0]);
3620         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3621                 tx_mat |= TX_MAT_SET(i, msix_indx);
3622                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3623                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3624                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3625         }
3626         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3627
3628         if (!nic->config.bimodal) {
3629                 rx_mat = readq(&bar0->rx_mat);
3630                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3631                         rx_mat |= RX_MAT_SET(j, msix_indx);
3632                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3633                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3634                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3635                 }
3636                 writeq(rx_mat, &bar0->rx_mat);
3637         } else {
3638                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3639                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3640                         tx_mat |= TX_MAT_SET(i, msix_indx);
3641                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3642                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3643                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3644                 }
3645                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3646         }
3647
3648         nic->avail_msix_vectors = 0;
3649         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3650         /* We fail init if error or we get less vectors than min required */
3651         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3652                 nic->avail_msix_vectors = ret;
3653                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3654         }
3655         if (ret) {
3656                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3657                 kfree(nic->entries);
3658                 kfree(nic->s2io_entries);
3659                 nic->entries = NULL;
3660                 nic->s2io_entries = NULL;
3661                 nic->avail_msix_vectors = 0;
3662                 return -ENOMEM;
3663         }
3664         if (!nic->avail_msix_vectors)
3665                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3666
3667         /*
3668          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3669          * in the herc NIC. (Temp change, needs to be removed later)
3670          */
3671         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3672         msi_control |= 0x1; /* Enable MSI */
3673         pci_write_config_word(nic->pdev, 0x42, msi_control);
3674
3675         return 0;
3676 }
3677
3678 /* ********************************************************* *
3679  * Functions defined below concern the OS part of the driver *
3680  * ********************************************************* */
3681
3682 /**
3683  *  s2io_open - open entry point of the driver
3684  *  @dev : pointer to the device structure.
3685  *  Description:
3686  *  This function is the open entry point of the driver. It mainly calls a
3687  *  function to allocate Rx buffers and inserts them into the buffer
3688  *  descriptors and then enables the Rx part of the NIC.
3689  *  Return value:
3690  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3691  *   file on failure.
3692  */
3693
3694 static int s2io_open(struct net_device *dev)
3695 {
3696         nic_t *sp = dev->priv;
3697         int err = 0;
3698
3699         /*
3700          * Make sure you have link off by default every time
3701          * Nic is initialized
3702          */
3703         netif_carrier_off(dev);
3704         sp->last_link_state = 0;
3705
3706         /* Initialize H/W and enable interrupts */
3707         err = s2io_card_up(sp);
3708         if (err) {
3709                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3710                           dev->name);
3711                 if (err == -ENODEV)
3712                         goto hw_init_failed;
3713                 else
3714                         goto hw_enable_failed;
3715         }
3716
3717         /* Store the values of the MSIX table in the nic_t structure */
3718         store_xmsi_data(sp);
3719
3720         /* After proper initialization of H/W, register ISR */
3721         if (sp->intr_type == MSI) {
3722                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle, 
3723                         SA_SHIRQ, sp->name, dev);
3724                 if (err) {
3725                         DBG_PRINT(ERR_DBG, "%s: MSI registration \
3726 failed\n", dev->name);
3727                         goto isr_registration_failed;
3728                 }
3729         }
3730         if (sp->intr_type == MSI_X) {
3731                 int i;
3732
3733                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3734                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3735                                 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3736                                         dev->name, i);
3737                                 err = request_irq(sp->entries[i].vector,
3738                                           s2io_msix_fifo_handle, 0, sp->desc1,
3739                                           sp->s2io_entries[i].arg);
3740                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1, 
3741                                     (unsigned long long)sp->msix_info[i].addr);
3742                         } else {
3743                                 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3744                                         dev->name, i);
3745                                 err = request_irq(sp->entries[i].vector,
3746                                           s2io_msix_ring_handle, 0, sp->desc2,
3747                                           sp->s2io_entries[i].arg);
3748                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2, 
3749                                      (unsigned long long)sp->msix_info[i].addr);
3750                         }
3751                         if (err) {
3752                                 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3753 failed\n", dev->name, i);
3754                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3755                                 goto isr_registration_failed;
3756                         }
3757                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3758                 }
3759         }
3760         if (sp->intr_type == INTA) {
3761                 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3762                                 sp->name, dev);
3763                 if (err) {
3764                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3765                                   dev->name);
3766                         goto isr_registration_failed;
3767                 }
3768         }
3769
3770         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3771                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3772                 err = -ENODEV;
3773                 goto setting_mac_address_failed;
3774         }
3775
3776         netif_start_queue(dev);
3777         return 0;
3778
3779 setting_mac_address_failed:
3780         if (sp->intr_type != MSI_X)
3781                 free_irq(sp->pdev->irq, dev);
3782 isr_registration_failed:
3783         del_timer_sync(&sp->alarm_timer);
3784         if (sp->intr_type == MSI_X) {
3785                 int i;
3786                 u16 msi_control; /* Temp variable */
3787
3788                 for (i=1; (sp->s2io_entries[i].in_use == 
3789                                 MSIX_REGISTERED_SUCCESS); i++) {
3790                         int vector = sp->entries[i].vector;
3791                         void *arg = sp->s2io_entries[i].arg;
3792
3793                         free_irq(vector, arg);
3794                 }
3795                 pci_disable_msix(sp->pdev);
3796
3797                 /* Temp */
3798                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3799                 msi_control &= 0xFFFE; /* Disable MSI */
3800                 pci_write_config_word(sp->pdev, 0x42, msi_control);
3801         }
3802         else if (sp->intr_type == MSI)
3803                 pci_disable_msi(sp->pdev);
3804 hw_enable_failed:
3805         s2io_reset(sp);
3806 hw_init_failed:
3807         if (sp->intr_type == MSI_X) {
3808                 if (sp->entries)
3809                         kfree(sp->entries);
3810                 if (sp->s2io_entries)
3811                         kfree(sp->s2io_entries);
3812         }
3813         return err;
3814 }
3815
3816 /**
3817  *  s2io_close -close entry point of the driver
3818  *  @dev : device pointer.
3819  *  Description:
3820  *  This is the stop entry point of the driver. It needs to undo exactly
3821  *  whatever was done by the open entry point,thus it's usually referred to
3822  *  as the close function.Among other things this function mainly stops the
3823  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3824  *  Return value:
3825  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3826  *  file on failure.
3827  */
3828
3829 static int s2io_close(struct net_device *dev)
3830 {
3831         nic_t *sp = dev->priv;
3832
3833         flush_scheduled_work();
3834         netif_stop_queue(dev);
3835         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3836         s2io_card_down(sp, 1);
3837
3838         sp->device_close_flag = TRUE;   /* Device is shut down. */
3839         return 0;
3840 }
3841
3842 /**
3843  *  s2io_xmit - Tx entry point of te driver
3844  *  @skb : the socket buffer containing the Tx data.
3845  *  @dev : device pointer.
3846  *  Description :
3847  *  This function is the Tx entry point of the driver. S2IO NIC supports
3848  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3849  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3850  *  not be upadted.
3851  *  Return value:
3852  *  0 on success & 1 on failure.
3853  */
3854
3855 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3856 {
3857         nic_t *sp = dev->priv;
3858         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3859         register u64 val64;
3860         TxD_t *txdp;
3861         TxFIFO_element_t __iomem *tx_fifo;
3862         unsigned long flags;
3863 #ifdef NETIF_F_TSO
3864         int mss;
3865 #endif
3866         u16 vlan_tag = 0;
3867         int vlan_priority = 0;
3868         mac_info_t *mac_control;
3869         struct config_param *config;
3870
3871         mac_control = &sp->mac_control;
3872         config = &sp->config;
3873
3874         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3875         spin_lock_irqsave(&sp->tx_lock, flags);
3876         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3877                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3878                           dev->name);
3879                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3880                 dev_kfree_skb(skb);
3881                 return 0;
3882         }
3883
3884         queue = 0;
3885
3886         /* Get Fifo number to Transmit based on vlan priority */
3887         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3888                 vlan_tag = vlan_tx_tag_get(skb);
3889                 vlan_priority = vlan_tag >> 13;
3890                 queue = config->fifo_mapping[vlan_priority];
3891         }
3892
3893         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3894         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3895         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3896                 list_virt_addr;
3897
3898         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3899         /* Avoid "put" pointer going beyond "get" pointer */
3900         if (txdp->Host_Control ||
3901                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3902                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3903                 netif_stop_queue(dev);
3904                 dev_kfree_skb(skb);
3905                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3906                 return 0;
3907         }
3908
3909         /* A buffer with no data will be dropped */
3910         if (!skb->len) {
3911                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3912                 dev_kfree_skb(skb);
3913                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3914                 return 0;
3915         }
3916
3917         txdp->Control_1 = 0;
3918         txdp->Control_2 = 0;
3919 #ifdef NETIF_F_TSO
3920         mss = skb_shinfo(skb)->tso_size;
3921         if (mss) {
3922                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3923                 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3924         }
3925 #endif
3926         if (skb->ip_summed == CHECKSUM_HW) {
3927                 txdp->Control_2 |=
3928                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3929                      TXD_TX_CKO_UDP_EN);
3930         }
3931         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3932         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3933         txdp->Control_2 |= config->tx_intr_type;
3934
3935         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3936                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3937                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3938         }
3939
3940         frg_len = skb->len - skb->data_len;
3941         if (skb_shinfo(skb)->ufo_size) {
3942                 int ufo_size;
3943
3944                 ufo_size = skb_shinfo(skb)->ufo_size;
3945                 ufo_size &= ~7;
3946                 txdp->Control_1 |= TXD_UFO_EN;
3947                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3948                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3949 #ifdef __BIG_ENDIAN
3950                 sp->ufo_in_band_v[put_off] =
3951                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3952 #else
3953                 sp->ufo_in_band_v[put_off] =
3954                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3955 #endif
3956                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3957                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3958                                         sp->ufo_in_band_v,
3959                                         sizeof(u64), PCI_DMA_TODEVICE);
3960                 txdp++;
3961                 txdp->Control_1 = 0;
3962                 txdp->Control_2 = 0;
3963         }
3964
3965         txdp->Buffer_Pointer = pci_map_single
3966             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3967         txdp->Host_Control = (unsigned long) skb;
3968         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3969
3970         if (skb_shinfo(skb)->ufo_size)
3971                 txdp->Control_1 |= TXD_UFO_EN;
3972
3973         frg_cnt = skb_shinfo(skb)->nr_frags;
3974         /* For fragmented SKB. */
3975         for (i = 0; i < frg_cnt; i++) {
3976                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3977                 /* A '0' length fragment will be ignored */
3978                 if (!frag->size)
3979                         continue;
3980                 txdp++;
3981                 txdp->Buffer_Pointer = (u64) pci_map_page
3982                     (sp->pdev, frag->page, frag->page_offset,
3983                      frag->size, PCI_DMA_TODEVICE);
3984                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3985                 if (skb_shinfo(skb)->ufo_size)
3986                         txdp->Control_1 |= TXD_UFO_EN;
3987         }
3988         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3989
3990         if (skb_shinfo(skb)->ufo_size)
3991                 frg_cnt++; /* as Txd0 was used for inband header */
3992
3993         tx_fifo = mac_control->tx_FIFO_start[queue];
3994         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3995         writeq(val64, &tx_fifo->TxDL_Pointer);
3996
3997         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3998                  TX_FIFO_LAST_LIST);
3999
4000 #ifdef NETIF_F_TSO
4001         if (mss)
4002                 val64 |= TX_FIFO_SPECIAL_FUNC;
4003 #endif
4004         if (skb_shinfo(skb)->ufo_size)
4005                 val64 |= TX_FIFO_SPECIAL_FUNC;
4006         writeq(val64, &tx_fifo->List_Control);
4007
4008         mmiowb();
4009
4010         put_off++;
4011         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4012                 put_off = 0;
4013         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4014
4015         /* Avoid "put" pointer going beyond "get" pointer */
4016         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4017                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4018                 DBG_PRINT(TX_DBG,
4019                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4020                           put_off, get_off);
4021                 netif_stop_queue(dev);
4022         }
4023
4024         dev->trans_start = jiffies;
4025         spin_unlock_irqrestore(&sp->tx_lock, flags);
4026
4027         return 0;
4028 }
4029
4030 static void
4031 s2io_alarm_handle(unsigned long data)
4032 {
4033         nic_t *sp = (nic_t *)data;
4034
4035         alarm_intr_handler(sp);
4036         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4037 }
4038
4039 static irqreturn_t
4040 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4041 {
4042         struct net_device *dev = (struct net_device *) dev_id;
4043         nic_t *sp = dev->priv;
4044         int i;
4045         int ret;
4046         mac_info_t *mac_control;
4047         struct config_param *config;
4048
4049         atomic_inc(&sp->isr_cnt);
4050         mac_control = &sp->mac_control;
4051         config = &sp->config;
4052         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4053
4054         /* If Intr is because of Rx Traffic */
4055         for (i = 0; i < config->rx_ring_num; i++)
4056                 rx_intr_handler(&mac_control->rings[i]);
4057
4058         /* If Intr is because of Tx Traffic */
4059         for (i = 0; i < config->tx_fifo_num; i++)
4060                 tx_intr_handler(&mac_control->fifos[i]);
4061
4062         /*
4063          * If the Rx buffer count is below the panic threshold then
4064          * reallocate the buffers from the interrupt handler itself,
4065          * else schedule a tasklet to reallocate the buffers.
4066          */
4067         for (i = 0; i < config->rx_ring_num; i++) {
4068                 if (!sp->lro) {
4069                         int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4070                         int level = rx_buffer_level(sp, rxb_size, i);
4071
4072                         if ((level == PANIC) && (!TASKLET_IN_USE)) {
4073                                 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", 
4074                                                         dev->name);
4075                                 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4076                                 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4077                                         DBG_PRINT(ERR_DBG, "%s:Out of memory",
4078                                                   dev->name);
4079                                         DBG_PRINT(ERR_DBG, " in ISR!!\n");
4080                                         clear_bit(0, (&sp->tasklet_status));
4081                                         atomic_dec(&sp->isr_cnt);
4082                                         return IRQ_HANDLED;
4083                                 }
4084                                 clear_bit(0, (&sp->tasklet_status));
4085                         } else if (level == LOW) {
4086                                 tasklet_schedule(&sp->task);
4087                         }
4088                 }
4089                 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4090                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4091                                                         dev->name);
4092                                 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4093                                 break;
4094                 }
4095         }
4096
4097         atomic_dec(&sp->isr_cnt);
4098         return IRQ_HANDLED;
4099 }
4100
4101 static irqreturn_t
4102 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4103 {
4104         ring_info_t *ring = (ring_info_t *)dev_id;
4105         nic_t *sp = ring->nic;
4106         struct net_device *dev = (struct net_device *) dev_id;
4107         int rxb_size, level, rng_n;
4108
4109         atomic_inc(&sp->isr_cnt);
4110         rx_intr_handler(ring);
4111
4112         rng_n = ring->ring_no;
4113         if (!sp->lro) {
4114                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4115                 level = rx_buffer_level(sp, rxb_size, rng_n);
4116
4117                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4118                         int ret;
4119                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4120                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4121                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4122                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4123                                           __FUNCTION__);
4124                                 clear_bit(0, (&sp->tasklet_status));
4125                                 return IRQ_HANDLED;
4126                         }
4127                         clear_bit(0, (&sp->tasklet_status));
4128                 } else if (level == LOW) {
4129                         tasklet_schedule(&sp->task);
4130                 }
4131         }
4132         else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4133                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4134                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4135         }
4136
4137         atomic_dec(&sp->isr_cnt);
4138
4139         return IRQ_HANDLED;
4140 }
4141
4142 static irqreturn_t
4143 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4144 {
4145         fifo_info_t *fifo = (fifo_info_t *)dev_id;
4146         nic_t *sp = fifo->nic;
4147
4148         atomic_inc(&sp->isr_cnt);
4149         tx_intr_handler(fifo);
4150         atomic_dec(&sp->isr_cnt);
4151         return IRQ_HANDLED;
4152 }
4153 static void s2io_txpic_intr_handle(nic_t *sp)
4154 {
4155         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4156         u64 val64;
4157
4158         val64 = readq(&bar0->pic_int_status);
4159         if (val64 & PIC_INT_GPIO) {
4160                 val64 = readq(&bar0->gpio_int_reg);
4161                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4162                     (val64 & GPIO_INT_REG_LINK_UP)) {
4163                         /*
4164                          * This is unstable state so clear both up/down
4165                          * interrupt and adapter to re-evaluate the link state.
4166                          */
4167                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4168                         val64 |= GPIO_INT_REG_LINK_UP;
4169                         writeq(val64, &bar0->gpio_int_reg);
4170                         val64 = readq(&bar0->gpio_int_mask);
4171                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4172                                    GPIO_INT_MASK_LINK_DOWN);
4173                         writeq(val64, &bar0->gpio_int_mask);
4174                 }
4175                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4176                         val64 = readq(&bar0->adapter_status);
4177                         if (verify_xena_quiescence(sp, val64,
4178                                                    sp->device_enabled_once)) {
4179                                 /* Enable Adapter */
4180                                 val64 = readq(&bar0->adapter_control);
4181                                 val64 |= ADAPTER_CNTL_EN;
4182                                 writeq(val64, &bar0->adapter_control);
4183                                 val64 |= ADAPTER_LED_ON;
4184                                 writeq(val64, &bar0->adapter_control);
4185                                 if (!sp->device_enabled_once)
4186                                         sp->device_enabled_once = 1;
4187
4188                                 s2io_link(sp, LINK_UP);
4189                                 /*
4190                                  * unmask link down interrupt and mask link-up
4191                                  * intr
4192                                  */
4193                                 val64 = readq(&bar0->gpio_int_mask);
4194                                 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4195                                 val64 |= GPIO_INT_MASK_LINK_UP;
4196                                 writeq(val64, &bar0->gpio_int_mask);
4197
4198                         }
4199                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4200                         val64 = readq(&bar0->adapter_status);
4201                         if (verify_xena_quiescence(sp, val64,
4202                                                    sp->device_enabled_once)) {
4203                                 s2io_link(sp, LINK_DOWN);
4204                                 /* Link is down so unmaks link up interrupt */
4205                                 val64 = readq(&bar0->gpio_int_mask);
4206                                 val64 &= ~GPIO_INT_MASK_LINK_UP;
4207                                 val64 |= GPIO_INT_MASK_LINK_DOWN;
4208                                 writeq(val64, &bar0->gpio_int_mask);
4209                         }
4210                 }
4211         }
4212         val64 = readq(&bar0->gpio_int_mask);
4213 }
4214
4215 /**
4216  *  s2io_isr - ISR handler of the device .
4217  *  @irq: the irq of the device.
4218  *  @dev_id: a void pointer to the dev structure of the NIC.
4219  *  @pt_regs: pointer to the registers pushed on the stack.
4220  *  Description:  This function is the ISR handler of the device. It
4221  *  identifies the reason for the interrupt and calls the relevant
4222  *  service routines. As a contongency measure, this ISR allocates the
4223  *  recv buffers, if their numbers are below the panic value which is
4224  *  presently set to 25% of the original number of rcv buffers allocated.
4225  *  Return value:
4226  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4227  *   IRQ_NONE: will be returned if interrupt is not from our device
4228  */
4229 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4230 {
4231         struct net_device *dev = (struct net_device *) dev_id;
4232         nic_t *sp = dev->priv;
4233         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4234         int i;
4235         u64 reason = 0, val64;
4236         mac_info_t *mac_control;
4237         struct config_param *config;
4238
4239         atomic_inc(&sp->isr_cnt);
4240         mac_control = &sp->mac_control;
4241         config = &sp->config;
4242
4243         /*
4244          * Identify the cause for interrupt and call the appropriate
4245          * interrupt handler. Causes for the interrupt could be;
4246          * 1. Rx of packet.
4247          * 2. Tx complete.
4248          * 3. Link down.
4249          * 4. Error in any functional blocks of the NIC.
4250          */
4251         reason = readq(&bar0->general_int_status);
4252
4253         if (!reason) {
4254                 /* The interrupt was not raised by Xena. */
4255                 atomic_dec(&sp->isr_cnt);
4256                 return IRQ_NONE;
4257         }
4258
4259         val64 = 0xFFFFFFFFFFFFFFFFULL;
4260 #ifdef CONFIG_S2IO_NAPI
4261         if (reason & GEN_INTR_RXTRAFFIC) {
4262                 if (netif_rx_schedule_prep(dev)) {
4263                         writeq(val64, &bar0->rx_traffic_mask);
4264                         __netif_rx_schedule(dev);
4265                 }
4266         }
4267 #else
4268         /*
4269          * Rx handler is called by default, without checking for the
4270          * cause of interrupt.
4271          * rx_traffic_int reg is an R1 register, writing all 1's
4272          * will ensure that the actual interrupt causing bit get's
4273          * cleared and hence a read can be avoided.
4274          */
4275         writeq(val64, &bar0->rx_traffic_int);
4276         for (i = 0; i < config->rx_ring_num; i++) {
4277                 rx_intr_handler(&mac_control->rings[i]);
4278         }
4279 #endif
4280
4281         /*
4282          * tx_traffic_int reg is an R1 register, writing all 1's
4283          * will ensure that the actual interrupt causing bit get's
4284          * cleared and hence a read can be avoided.
4285          */
4286         writeq(val64, &bar0->tx_traffic_int);
4287
4288         for (i = 0; i < config->tx_fifo_num; i++)
4289                 tx_intr_handler(&mac_control->fifos[i]);
4290
4291         if (reason & GEN_INTR_TXPIC)
4292                 s2io_txpic_intr_handle(sp);
4293         /*
4294          * If the Rx buffer count is below the panic threshold then
4295          * reallocate the buffers from the interrupt handler itself,
4296          * else schedule a tasklet to reallocate the buffers.
4297          */
4298 #ifndef CONFIG_S2IO_NAPI
4299         for (i = 0; i < config->rx_ring_num; i++) {
4300                 if (!sp->lro) {
4301                         int ret;
4302                         int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4303                         int level = rx_buffer_level(sp, rxb_size, i);
4304
4305                         if ((level == PANIC) && (!TASKLET_IN_USE)) {
4306                                 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", 
4307                                                         dev->name);
4308                                 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4309                                 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4310                                         DBG_PRINT(ERR_DBG, "%s:Out of memory",
4311                                                   dev->name);
4312                                         DBG_PRINT(ERR_DBG, " in ISR!!\n");
4313                                         clear_bit(0, (&sp->tasklet_status));
4314                                         atomic_dec(&sp->isr_cnt);
4315                                         return IRQ_HANDLED;
4316                                 }
4317                                 clear_bit(0, (&sp->tasklet_status));
4318                         } else if (level == LOW) {
4319                                 tasklet_schedule(&sp->task);
4320                         }
4321                 }
4322                 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4323                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4324                                                         dev->name);
4325                                 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4326                                 break;
4327                 }
4328         }
4329 #endif
4330
4331         atomic_dec(&sp->isr_cnt);
4332         return IRQ_HANDLED;
4333 }
4334
4335 /**
4336  * s2io_updt_stats -
4337  */
4338 static void s2io_updt_stats(nic_t *sp)
4339 {
4340         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4341         u64 val64;
4342         int cnt = 0;
4343
4344         if (atomic_read(&sp->card_state) == CARD_UP) {
4345                 /* Apprx 30us on a 133 MHz bus */
4346                 val64 = SET_UPDT_CLICKS(10) |
4347                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4348                 writeq(val64, &bar0->stat_cfg);
4349                 do {
4350                         udelay(100);
4351                         val64 = readq(&bar0->stat_cfg);
4352                         if (!(val64 & BIT(0)))
4353                                 break;
4354                         cnt++;
4355                         if (cnt == 5)
4356                                 break; /* Updt failed */
4357                 } while(1);
4358         }
4359 }
4360
4361 /**
4362  *  s2io_get_stats - Updates the device statistics structure.
4363  *  @dev : pointer to the device structure.
4364  *  Description:
4365  *  This function updates the device statistics structure in the s2io_nic
4366  *  structure and returns a pointer to the same.
4367  *  Return value:
4368  *  pointer to the updated net_device_stats structure.
4369  */
4370
4371 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4372 {
4373         nic_t *sp = dev->priv;
4374         mac_info_t *mac_control;
4375         struct config_param *config;
4376
4377
4378         mac_control = &sp->mac_control;
4379         config = &sp->config;
4380
4381         /* Configure Stats for immediate updt */
4382         s2io_updt_stats(sp);
4383
4384         sp->stats.tx_packets =
4385                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4386         sp->stats.tx_errors =
4387                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4388         sp->stats.rx_errors =
4389                 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4390         sp->stats.multicast =
4391                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4392         sp->stats.rx_length_errors =
4393                 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
4394
4395         return (&sp->stats);
4396 }
4397
4398 /**
4399  *  s2io_set_multicast - entry point for multicast address enable/disable.
4400  *  @dev : pointer to the device structure
4401  *  Description:
4402  *  This function is a driver entry point which gets called by the kernel
4403  *  whenever multicast addresses must be enabled/disabled. This also gets
4404  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4405  *  determine, if multicast address must be enabled or if promiscuous mode
4406  *  is to be disabled etc.
4407  *  Return value:
4408  *  void.
4409  */
4410
4411 static void s2io_set_multicast(struct net_device *dev)
4412 {
4413         int i, j, prev_cnt;
4414         struct dev_mc_list *mclist;
4415         nic_t *sp = dev->priv;
4416         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4417         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4418             0xfeffffffffffULL;
4419         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4420         void __iomem *add;
4421
4422         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4423                 /*  Enable all Multicast addresses */
4424                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4425                        &bar0->rmac_addr_data0_mem);
4426                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4427                        &bar0->rmac_addr_data1_mem);
4428                 val64 = RMAC_ADDR_CMD_MEM_WE |
4429                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4430                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4431                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4432                 /* Wait till command completes */
4433                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4434                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4435
4436                 sp->m_cast_flg = 1;
4437                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4438         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4439                 /*  Disable all Multicast addresses */
4440                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4441                        &bar0->rmac_addr_data0_mem);
4442                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4443                        &bar0->rmac_addr_data1_mem);
4444                 val64 = RMAC_ADDR_CMD_MEM_WE |
4445                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4446                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4447                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4448                 /* Wait till command completes */
4449                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4450                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4451
4452                 sp->m_cast_flg = 0;
4453                 sp->all_multi_pos = 0;
4454         }
4455
4456         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4457                 /*  Put the NIC into promiscuous mode */
4458                 add = &bar0->mac_cfg;
4459                 val64 = readq(&bar0->mac_cfg);
4460                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4461
4462                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4463                 writel((u32) val64, add);
4464                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4465                 writel((u32) (val64 >> 32), (add + 4));
4466
4467                 val64 = readq(&bar0->mac_cfg);
4468                 sp->promisc_flg = 1;
4469                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4470                           dev->name);
4471         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4472                 /*  Remove the NIC from promiscuous mode */
4473                 add = &bar0->mac_cfg;
4474                 val64 = readq(&bar0->mac_cfg);
4475                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4476
4477                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4478                 writel((u32) val64, add);
4479                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4480                 writel((u32) (val64 >> 32), (add + 4));
4481
4482                 val64 = readq(&bar0->mac_cfg);
4483                 sp->promisc_flg = 0;
4484                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4485                           dev->name);
4486         }
4487
4488         /*  Update individual M_CAST address list */
4489         if ((!sp->m_cast_flg) && dev->mc_count) {
4490                 if (dev->mc_count >
4491                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4492                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4493                                   dev->name);
4494                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4495                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4496                         return;
4497                 }
4498
4499                 prev_cnt = sp->mc_addr_count;
4500                 sp->mc_addr_count = dev->mc_count;
4501
4502                 /* Clear out the previous list of Mc in the H/W. */
4503                 for (i = 0; i < prev_cnt; i++) {
4504                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4505                                &bar0->rmac_addr_data0_mem);
4506                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4507                                 &bar0->rmac_addr_data1_mem);
4508                         val64 = RMAC_ADDR_CMD_MEM_WE |
4509                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4510                             RMAC_ADDR_CMD_MEM_OFFSET
4511                             (MAC_MC_ADDR_START_OFFSET + i);
4512                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4513
4514                         /* Wait for command completes */
4515                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4516                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4517                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4518                                           dev->name);
4519                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4520                                 return;
4521                         }
4522                 }
4523
4524                 /* Create the new Rx filter list and update the same in H/W. */
4525                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4526                      i++, mclist = mclist->next) {
4527                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4528                                ETH_ALEN);
4529                         mac_addr = 0;
4530                         for (j = 0; j < ETH_ALEN; j++) {
4531                                 mac_addr |= mclist->dmi_addr[j];
4532                                 mac_addr <<= 8;
4533                         }
4534                         mac_addr >>= 8;
4535                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4536                                &bar0->rmac_addr_data0_mem);
4537                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4538                                 &bar0->rmac_addr_data1_mem);
4539                         val64 = RMAC_ADDR_CMD_MEM_WE |
4540                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4541                             RMAC_ADDR_CMD_MEM_OFFSET
4542                             (i + MAC_MC_ADDR_START_OFFSET);
4543                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4544
4545                         /* Wait for command completes */
4546                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4547                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4548                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4549                                           dev->name);
4550                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4551                                 return;
4552                         }
4553                 }
4554         }
4555 }
4556
4557 /**
4558  *  s2io_set_mac_addr - Programs the Xframe mac address
4559  *  @dev : pointer to the device structure.
4560  *  @addr: a uchar pointer to the new mac address which is to be set.
4561  *  Description : This procedure will program the Xframe to receive
4562  *  frames with new Mac Address
4563  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4564  *  as defined in errno.h file on failure.
4565  */
4566
4567 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4568 {
4569         nic_t *sp = dev->priv;
4570         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4571         register u64 val64, mac_addr = 0;
4572         int i;
4573
4574         /*
4575          * Set the new MAC address as the new unicast filter and reflect this
4576          * change on the device address registered with the OS. It will be
4577          * at offset 0.
4578          */
4579         for (i = 0; i < ETH_ALEN; i++) {
4580                 mac_addr <<= 8;
4581                 mac_addr |= addr[i];
4582         }
4583
4584         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4585                &bar0->rmac_addr_data0_mem);
4586
4587         val64 =
4588             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4589             RMAC_ADDR_CMD_MEM_OFFSET(0);
4590         writeq(val64, &bar0->rmac_addr_cmd_mem);
4591         /* Wait till command completes */
4592         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4593                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4594                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4595                 return FAILURE;
4596         }
4597
4598         return SUCCESS;
4599 }
4600
4601 /**
4602  * s2io_ethtool_sset - Sets different link parameters.
4603  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4604  * @info: pointer to the structure with parameters given by ethtool to set
4605  * link information.
4606  * Description:
4607  * The function sets different link parameters provided by the user onto
4608  * the NIC.
4609  * Return value:
4610  * 0 on success.
4611 */
4612
4613 static int s2io_ethtool_sset(struct net_device *dev,
4614                              struct ethtool_cmd *info)
4615 {
4616         nic_t *sp = dev->priv;
4617         if ((info->autoneg == AUTONEG_ENABLE) ||
4618             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4619                 return -EINVAL;
4620         else {
4621                 s2io_close(sp->dev);
4622                 s2io_open(sp->dev);
4623         }
4624
4625         return 0;
4626 }
4627
4628 /**
4629  * s2io_ethtol_gset - Return link specific information.
4630  * @sp : private member of the device structure, pointer to the
4631  *      s2io_nic structure.
4632  * @info : pointer to the structure with parameters given by ethtool
4633  * to return link information.
4634  * Description:
4635  * Returns link specific information like speed, duplex etc.. to ethtool.
4636  * Return value :
4637  * return 0 on success.
4638  */
4639
4640 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4641 {
4642         nic_t *sp = dev->priv;
4643         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4644         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4645         info->port = PORT_FIBRE;
4646         /* info->transceiver?? TODO */
4647
4648         if (netif_carrier_ok(sp->dev)) {
4649                 info->speed = 10000;
4650                 info->duplex = DUPLEX_FULL;
4651         } else {
4652                 info->speed = -1;
4653                 info->duplex = -1;
4654         }
4655
4656         info->autoneg = AUTONEG_DISABLE;
4657         return 0;
4658 }
4659
4660 /**
4661  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4662  * @sp : private member of the device structure, which is a pointer to the
4663  * s2io_nic structure.
4664  * @info : pointer to the structure with parameters given by ethtool to
4665  * return driver information.
4666  * Description:
4667  * Returns driver specefic information like name, version etc.. to ethtool.
4668  * Return value:
4669  *  void
4670  */
4671
4672 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4673                                   struct ethtool_drvinfo *info)
4674 {
4675         nic_t *sp = dev->priv;
4676
4677         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4678         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4679         strncpy(info->fw_version, "", sizeof(info->fw_version));
4680         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4681         info->regdump_len = XENA_REG_SPACE;
4682         info->eedump_len = XENA_EEPROM_SPACE;
4683         info->testinfo_len = S2IO_TEST_LEN;
4684         info->n_stats = S2IO_STAT_LEN;
4685 }
4686
4687 /**
4688  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4689  *  @sp: private member of the device structure, which is a pointer to the
4690  *  s2io_nic structure.
4691  *  @regs : pointer to the structure with parameters given by ethtool for
4692  *  dumping the registers.
4693  *  @reg_space: The input argumnet into which all the registers are dumped.
4694  *  Description:
4695  *  Dumps the entire register space of xFrame NIC into the user given
4696  *  buffer area.
4697  * Return value :
4698  * void .
4699 */
4700
4701 static void s2io_ethtool_gregs(struct net_device *dev,
4702                                struct ethtool_regs *regs, void *space)
4703 {
4704         int i;
4705         u64 reg;
4706         u8 *reg_space = (u8 *) space;
4707         nic_t *sp = dev->priv;
4708
4709         regs->len = XENA_REG_SPACE;
4710         regs->version = sp->pdev->subsystem_device;
4711
4712         for (i = 0; i < regs->len; i += 8) {
4713                 reg = readq(sp->bar0 + i);
4714                 memcpy((reg_space + i), &reg, 8);
4715         }
4716 }
4717
4718 /**
4719  *  s2io_phy_id  - timer function that alternates adapter LED.
4720  *  @data : address of the private member of the device structure, which
4721  *  is a pointer to the s2io_nic structure, provided as an u32.
4722  * Description: This is actually the timer function that alternates the
4723  * adapter LED bit of the adapter control bit to set/reset every time on
4724  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4725  *  once every second.
4726 */
4727 static void s2io_phy_id(unsigned long data)
4728 {
4729         nic_t *sp = (nic_t *) data;
4730         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4731         u64 val64 = 0;
4732         u16 subid;
4733
4734         subid = sp->pdev->subsystem_device;
4735         if ((sp->device_type == XFRAME_II_DEVICE) ||
4736                    ((subid & 0xFF) >= 0x07)) {
4737                 val64 = readq(&bar0->gpio_control);
4738                 val64 ^= GPIO_CTRL_GPIO_0;
4739                 writeq(val64, &bar0->gpio_control);
4740         } else {
4741                 val64 = readq(&bar0->adapter_control);
4742                 val64 ^= ADAPTER_LED_ON;
4743                 writeq(val64, &bar0->adapter_control);
4744         }
4745
4746         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4747 }
4748
4749 /**
4750  * s2io_ethtool_idnic - To physically identify the nic on the system.
4751  * @sp : private member of the device structure, which is a pointer to the
4752  * s2io_nic structure.
4753  * @id : pointer to the structure with identification parameters given by
4754  * ethtool.
4755  * Description: Used to physically identify the NIC on the system.
4756  * The Link LED will blink for a time specified by the user for
4757  * identification.
4758  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4759  * identification is possible only if it's link is up.
4760  * Return value:
4761  * int , returns 0 on success
4762  */
4763
4764 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4765 {
4766         u64 val64 = 0, last_gpio_ctrl_val;
4767         nic_t *sp = dev->priv;
4768         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4769         u16 subid;
4770
4771         subid = sp->pdev->subsystem_device;
4772         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4773         if ((sp->device_type == XFRAME_I_DEVICE) &&
4774                 ((subid & 0xFF) < 0x07)) {
4775                 val64 = readq(&bar0->adapter_control);
4776                 if (!(val64 & ADAPTER_CNTL_EN)) {
4777                         printk(KERN_ERR
4778                                "Adapter Link down, cannot blink LED\n");
4779                         return -EFAULT;
4780                 }
4781         }
4782         if (sp->id_timer.function == NULL) {
4783                 init_timer(&sp->id_timer);
4784                 sp->id_timer.function = s2io_phy_id;
4785                 sp->id_timer.data = (unsigned long) sp;
4786         }
4787         mod_timer(&sp->id_timer, jiffies);
4788         if (data)
4789                 msleep_interruptible(data * HZ);
4790         else
4791                 msleep_interruptible(MAX_FLICKER_TIME);
4792         del_timer_sync(&sp->id_timer);
4793
4794         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4795                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4796                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4797         }
4798
4799         return 0;
4800 }
4801
4802 /**
4803  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4804  * @sp : private member of the device structure, which is a pointer to the
4805  *      s2io_nic structure.
4806  * @ep : pointer to the structure with pause parameters given by ethtool.
4807  * Description:
4808  * Returns the Pause frame generation and reception capability of the NIC.
4809  * Return value:
4810  *  void
4811  */
4812 static void s2io_ethtool_getpause_data(struct net_device *dev,
4813                                        struct ethtool_pauseparam *ep)
4814 {
4815         u64 val64;
4816         nic_t *sp = dev->priv;
4817         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4818
4819         val64 = readq(&bar0->rmac_pause_cfg);
4820         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4821                 ep->tx_pause = TRUE;
4822         if (val64 & RMAC_PAUSE_RX_ENABLE)
4823                 ep->rx_pause = TRUE;
4824         ep->autoneg = FALSE;
4825 }
4826
4827 /**
4828  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4829  * @sp : private member of the device structure, which is a pointer to the
4830  *      s2io_nic structure.
4831  * @ep : pointer to the structure with pause parameters given by ethtool.
4832  * Description:
4833  * It can be used to set or reset Pause frame generation or reception
4834  * support of the NIC.
4835  * Return value:
4836  * int, returns 0 on Success
4837  */
4838
4839 static int s2io_ethtool_setpause_data(struct net_device *dev,
4840                                struct ethtool_pauseparam *ep)
4841 {
4842         u64 val64;
4843         nic_t *sp = dev->priv;
4844         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4845
4846         val64 = readq(&bar0->rmac_pause_cfg);
4847         if (ep->tx_pause)
4848                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4849         else
4850                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4851         if (ep->rx_pause)
4852                 val64 |= RMAC_PAUSE_RX_ENABLE;
4853         else
4854                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4855         writeq(val64, &bar0->rmac_pause_cfg);
4856         return 0;
4857 }
4858
4859 /**
4860  * read_eeprom - reads 4 bytes of data from user given offset.
4861  * @sp : private member of the device structure, which is a pointer to the
4862  *      s2io_nic structure.
4863  * @off : offset at which the data must be written
4864  * @data : Its an output parameter where the data read at the given
4865  *      offset is stored.
4866  * Description:
4867  * Will read 4 bytes of data from the user given offset and return the
4868  * read data.
4869  * NOTE: Will allow to read only part of the EEPROM visible through the
4870  *   I2C bus.
4871  * Return value:
4872  *  -1 on failure and 0 on success.
4873  */
4874
4875 #define S2IO_DEV_ID             5
4876 static int read_eeprom(nic_t * sp, int off, u64 * data)
4877 {
4878         int ret = -1;
4879         u32 exit_cnt = 0;
4880         u64 val64;
4881         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4882
4883         if (sp->device_type == XFRAME_I_DEVICE) {
4884                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4885                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4886                     I2C_CONTROL_CNTL_START;
4887                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4888
4889                 while (exit_cnt < 5) {
4890                         val64 = readq(&bar0->i2c_control);
4891                         if (I2C_CONTROL_CNTL_END(val64)) {
4892                                 *data = I2C_CONTROL_GET_DATA(val64);
4893                                 ret = 0;
4894                                 break;
4895                         }
4896                         msleep(50);
4897                         exit_cnt++;
4898                 }
4899         }
4900
4901         if (sp->device_type == XFRAME_II_DEVICE) {
4902                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4903                         SPI_CONTROL_BYTECNT(0x3) | 
4904                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4905                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4906                 val64 |= SPI_CONTROL_REQ;
4907                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4908                 while (exit_cnt < 5) {
4909                         val64 = readq(&bar0->spi_control);
4910                         if (val64 & SPI_CONTROL_NACK) {
4911                                 ret = 1;
4912                                 break;
4913                         } else if (val64 & SPI_CONTROL_DONE) {
4914                                 *data = readq(&bar0->spi_data);
4915                                 *data &= 0xffffff;
4916                                 ret = 0;
4917                                 break;
4918                         }
4919                         msleep(50);
4920                         exit_cnt++;
4921                 }
4922         }
4923         return ret;
4924 }
4925
4926 /**
4927  *  write_eeprom - actually writes the relevant part of the data value.
4928  *  @sp : private member of the device structure, which is a pointer to the
4929  *       s2io_nic structure.
4930  *  @off : offset at which the data must be written
4931  *  @data : The data that is to be written
4932  *  @cnt : Number of bytes of the data that are actually to be written into
4933  *  the Eeprom. (max of 3)
4934  * Description:
4935  *  Actually writes the relevant part of the data value into the Eeprom
4936  *  through the I2C bus.
4937  * Return value:
4938  *  0 on success, -1 on failure.
4939  */
4940
4941 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4942 {
4943         int exit_cnt = 0, ret = -1;
4944         u64 val64;
4945         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4946
4947         if (sp->device_type == XFRAME_I_DEVICE) {
4948                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4949                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4950                     I2C_CONTROL_CNTL_START;
4951                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4952
4953                 while (exit_cnt < 5) {
4954                         val64 = readq(&bar0->i2c_control);
4955                         if (I2C_CONTROL_CNTL_END(val64)) {
4956                                 if (!(val64 & I2C_CONTROL_NACK))
4957                                         ret = 0;
4958                                 break;
4959                         }
4960                         msleep(50);
4961                         exit_cnt++;
4962                 }
4963         }
4964
4965         if (sp->device_type == XFRAME_II_DEVICE) {
4966                 int write_cnt = (cnt == 8) ? 0 : cnt;
4967                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4968
4969                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4970                         SPI_CONTROL_BYTECNT(write_cnt) | 
4971                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4972                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4973                 val64 |= SPI_CONTROL_REQ;
4974                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4975                 while (exit_cnt < 5) {
4976                         val64 = readq(&bar0->spi_control);
4977                         if (val64 & SPI_CONTROL_NACK) {
4978                                 ret = 1;
4979                                 break;
4980                         } else if (val64 & SPI_CONTROL_DONE) {
4981                                 ret = 0;
4982                                 break;
4983                         }
4984                         msleep(50);
4985                         exit_cnt++;
4986                 }
4987         }
4988         return ret;
4989 }
4990 static void s2io_vpd_read(nic_t *nic)
4991 {
4992         u8 vpd_data[256],data;
4993         int i=0, cnt, fail = 0;
4994         int vpd_addr = 0x80;
4995
4996         if (nic->device_type == XFRAME_II_DEVICE) {
4997                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4998                 vpd_addr = 0x80;
4999         }
5000         else {
5001                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5002                 vpd_addr = 0x50;
5003         }
5004
5005         for (i = 0; i < 256; i +=4 ) {
5006                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5007                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5008                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5009                 for (cnt = 0; cnt <5; cnt++) {
5010                         msleep(2);
5011                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5012                         if (data == 0x80)
5013                                 break;
5014                 }
5015                 if (cnt >= 5) {
5016                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5017                         fail = 1;
5018                         break;
5019                 }
5020                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5021                                       (u32 *)&vpd_data[i]);
5022         }
5023         if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5024                 memset(nic->product_name, 0, vpd_data[1]);
5025                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5026         }
5027 }
5028
5029 /**
5030  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5031  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5032  *  @eeprom : pointer to the user level structure provided by ethtool,
5033  *  containing all relevant information.
5034  *  @data_buf : user defined value to be written into Eeprom.
5035  *  Description: Reads the values stored in the Eeprom at given offset
5036  *  for a given length. Stores these values int the input argument data
5037  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5038  *  Return value:
5039  *  int  0 on success
5040  */
5041
5042 static int s2io_ethtool_geeprom(struct net_device *dev,
5043                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5044 {
5045         u32 i, valid;
5046         u64 data;
5047         nic_t *sp = dev->priv;
5048
5049         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5050
5051         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5052                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5053
5054         for (i = 0; i < eeprom->len; i += 4) {
5055                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5056                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5057                         return -EFAULT;
5058                 }
5059                 valid = INV(data);
5060                 memcpy((data_buf + i), &valid, 4);
5061         }
5062         return 0;
5063 }
5064
5065 /**
5066  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5067  *  @sp : private member of the device structure, which is a pointer to the
5068  *  s2io_nic structure.
5069  *  @eeprom : pointer to the user level structure provided by ethtool,
5070  *  containing all relevant information.
5071  *  @data_buf ; user defined value to be written into Eeprom.
5072  *  Description:
5073  *  Tries to write the user provided value in the Eeprom, at the offset
5074  *  given by the user.
5075  *  Return value:
5076  *  0 on success, -EFAULT on failure.
5077  */
5078
5079 static int s2io_ethtool_seeprom(struct net_device *dev,
5080                                 struct ethtool_eeprom *eeprom,
5081                                 u8 * data_buf)
5082 {
5083         int len = eeprom->len, cnt = 0;
5084         u64 valid = 0, data;
5085         nic_t *sp = dev->priv;
5086
5087         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5088                 DBG_PRINT(ERR_DBG,
5089                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5090                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5091                           eeprom->magic);
5092                 return -EFAULT;
5093         }
5094
5095         while (len) {
5096                 data = (u32) data_buf[cnt] & 0x000000FF;
5097                 if (data) {
5098                         valid = (u32) (data << 24);
5099                 } else
5100                         valid = data;
5101
5102                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5103                         DBG_PRINT(ERR_DBG,
5104                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5105                         DBG_PRINT(ERR_DBG,
5106                                   "write into the specified offset\n");
5107                         return -EFAULT;
5108                 }
5109                 cnt++;
5110                 len--;
5111         }
5112
5113         return 0;
5114 }
5115
5116 /**
5117  * s2io_register_test - reads and writes into all clock domains.
5118  * @sp : private member of the device structure, which is a pointer to the
5119  * s2io_nic structure.
5120  * @data : variable that returns the result of each of the test conducted b
5121  * by the driver.
5122  * Description:
5123  * Read and write into all clock domains. The NIC has 3 clock domains,
5124  * see that registers in all the three regions are accessible.
5125  * Return value:
5126  * 0 on success.
5127  */
5128
5129 static int s2io_register_test(nic_t * sp, uint64_t * data)
5130 {
5131         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5132         u64 val64 = 0, exp_val;
5133         int fail = 0;
5134
5135         val64 = readq(&bar0->pif_rd_swapper_fb);
5136         if (val64 != 0x123456789abcdefULL) {
5137                 fail = 1;
5138                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5139         }
5140
5141         val64 = readq(&bar0->rmac_pause_cfg);
5142         if (val64 != 0xc000ffff00000000ULL) {
5143                 fail = 1;
5144                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5145         }
5146
5147         val64 = readq(&bar0->rx_queue_cfg);
5148         if (sp->device_type == XFRAME_II_DEVICE)
5149                 exp_val = 0x0404040404040404ULL;
5150         else
5151                 exp_val = 0x0808080808080808ULL;
5152         if (val64 != exp_val) {
5153                 fail = 1;
5154                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5155         }
5156
5157         val64 = readq(&bar0->xgxs_efifo_cfg);
5158         if (val64 != 0x000000001923141EULL) {
5159                 fail = 1;
5160                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5161         }
5162
5163         val64 = 0x5A5A5A5A5A5A5A5AULL;
5164         writeq(val64, &bar0->xmsi_data);
5165         val64 = readq(&bar0->xmsi_data);
5166         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5167                 fail = 1;
5168                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5169         }
5170
5171         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5172         writeq(val64, &bar0->xmsi_data);
5173         val64 = readq(&bar0->xmsi_data);
5174         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5175                 fail = 1;
5176                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5177         }
5178
5179         *data = fail;
5180         return fail;
5181 }
5182
5183 /**
5184  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5185  * @sp : private member of the device structure, which is a pointer to the
5186  * s2io_nic structure.
5187  * @data:variable that returns the result of each of the test conducted by
5188  * the driver.
5189  * Description:
5190  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5191  * register.
5192  * Return value:
5193  * 0 on success.
5194  */
5195
5196 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5197 {
5198         int fail = 0;
5199         u64 ret_data, org_4F0, org_7F0;
5200         u8 saved_4F0 = 0, saved_7F0 = 0;
5201         struct net_device *dev = sp->dev;
5202
5203         /* Test Write Error at offset 0 */
5204         /* Note that SPI interface allows write access to all areas
5205          * of EEPROM. Hence doing all negative testing only for Xframe I.
5206          */
5207         if (sp->device_type == XFRAME_I_DEVICE)
5208                 if (!write_eeprom(sp, 0, 0, 3))
5209                         fail = 1;
5210
5211         /* Save current values at offsets 0x4F0 and 0x7F0 */
5212         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5213                 saved_4F0 = 1;
5214         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5215                 saved_7F0 = 1;
5216
5217         /* Test Write at offset 4f0 */
5218         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5219                 fail = 1;
5220         if (read_eeprom(sp, 0x4F0, &ret_data))
5221                 fail = 1;
5222
5223         if (ret_data != 0x012345) {
5224                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5225                         "Data written %llx Data read %llx\n",
5226                         dev->name, (unsigned long long)0x12345,
5227                         (unsigned long long)ret_data);
5228                 fail = 1;
5229         }
5230
5231         /* Reset the EEPROM data go FFFF */
5232         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5233
5234         /* Test Write Request Error at offset 0x7c */
5235         if (sp->device_type == XFRAME_I_DEVICE)
5236                 if (!write_eeprom(sp, 0x07C, 0, 3))
5237                         fail = 1;
5238
5239         /* Test Write Request at offset 0x7f0 */
5240         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5241                 fail = 1;
5242         if (read_eeprom(sp, 0x7F0, &ret_data))
5243                 fail = 1;
5244
5245         if (ret_data != 0x012345) {
5246                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5247                         "Data written %llx Data read %llx\n",
5248                         dev->name, (unsigned long long)0x12345,
5249                         (unsigned long long)ret_data);
5250                 fail = 1;
5251         }
5252
5253         /* Reset the EEPROM data go FFFF */
5254         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5255
5256         if (sp->device_type == XFRAME_I_DEVICE) {
5257                 /* Test Write Error at offset 0x80 */
5258                 if (!write_eeprom(sp, 0x080, 0, 3))
5259                         fail = 1;
5260
5261                 /* Test Write Error at offset 0xfc */
5262                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5263                         fail = 1;
5264
5265                 /* Test Write Error at offset 0x100 */
5266                 if (!write_eeprom(sp, 0x100, 0, 3))
5267                         fail = 1;
5268
5269                 /* Test Write Error at offset 4ec */
5270                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5271                         fail = 1;
5272         }
5273
5274         /* Restore values at offsets 0x4F0 and 0x7F0 */
5275         if (saved_4F0)
5276                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5277         if (saved_7F0)
5278                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5279
5280         *data = fail;
5281         return fail;
5282 }
5283
5284 /**
5285  * s2io_bist_test - invokes the MemBist test of the card .
5286  * @sp : private member of the device structure, which is a pointer to the
5287  * s2io_nic structure.
5288  * @data:variable that returns the result of each of the test conducted by
5289  * the driver.
5290  * Description:
5291  * This invokes the MemBist test of the card. We give around
5292  * 2 secs time for the Test to complete. If it's still not complete
5293  * within this peiod, we consider that the test failed.
5294  * Return value:
5295  * 0 on success and -1 on failure.
5296  */
5297
5298 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5299 {
5300         u8 bist = 0;
5301         int cnt = 0, ret = -1;
5302
5303         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5304         bist |= PCI_BIST_START;
5305         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5306
5307         while (cnt < 20) {
5308                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5309                 if (!(bist & PCI_BIST_START)) {
5310                         *data = (bist & PCI_BIST_CODE_MASK);
5311                         ret = 0;
5312                         break;
5313                 }
5314                 msleep(100);
5315                 cnt++;
5316         }
5317
5318         return ret;
5319 }
5320
5321 /**
5322  * s2io-link_test - verifies the link state of the nic
5323  * @sp ; private member of the device structure, which is a pointer to the
5324  * s2io_nic structure.
5325  * @data: variable that returns the result of each of the test conducted by
5326  * the driver.
5327  * Description:
5328  * The function verifies the link state of the NIC and updates the input
5329  * argument 'data' appropriately.
5330  * Return value:
5331  * 0 on success.
5332  */
5333
5334 static int s2io_link_test(nic_t * sp, uint64_t * data)
5335 {
5336         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5337         u64 val64;
5338
5339         val64 = readq(&bar0->adapter_status);
5340         if(!(LINK_IS_UP(val64)))
5341                 *data = 1;
5342         else
5343                 *data = 0;
5344
5345         return 0;
5346 }
5347
5348 /**
5349  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5350  * @sp - private member of the device structure, which is a pointer to the
5351  * s2io_nic structure.
5352  * @data - variable that returns the result of each of the test
5353  * conducted by the driver.
5354  * Description:
5355  *  This is one of the offline test that tests the read and write
5356  *  access to the RldRam chip on the NIC.
5357  * Return value:
5358  *  0 on success.
5359  */
5360
5361 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5362 {
5363         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5364         u64 val64;
5365         int cnt, iteration = 0, test_fail = 0;
5366
5367         val64 = readq(&bar0->adapter_control);
5368         val64 &= ~ADAPTER_ECC_EN;
5369         writeq(val64, &bar0->adapter_control);
5370
5371         val64 = readq(&bar0->mc_rldram_test_ctrl);
5372         val64 |= MC_RLDRAM_TEST_MODE;
5373         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5374
5375         val64 = readq(&bar0->mc_rldram_mrs);
5376         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5377         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5378
5379         val64 |= MC_RLDRAM_MRS_ENABLE;
5380         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5381
5382         while (iteration < 2) {
5383                 val64 = 0x55555555aaaa0000ULL;
5384                 if (iteration == 1) {
5385                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5386                 }
5387                 writeq(val64, &bar0->mc_rldram_test_d0);
5388
5389                 val64 = 0xaaaa5a5555550000ULL;
5390                 if (iteration == 1) {
5391                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5392                 }
5393                 writeq(val64, &bar0->mc_rldram_test_d1);
5394
5395                 val64 = 0x55aaaaaaaa5a0000ULL;
5396                 if (iteration == 1) {
5397                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5398                 }
5399                 writeq(val64, &bar0->mc_rldram_test_d2);
5400
5401                 val64 = (u64) (0x0000003ffffe0100ULL);
5402                 writeq(val64, &bar0->mc_rldram_test_add);
5403
5404                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5405                         MC_RLDRAM_TEST_GO;
5406                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5407
5408                 for (cnt = 0; cnt < 5; cnt++) {
5409                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5410                         if (val64 & MC_RLDRAM_TEST_DONE)
5411                                 break;
5412                         msleep(200);
5413                 }
5414
5415                 if (cnt == 5)
5416                         break;
5417
5418                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5419                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5420
5421                 for (cnt = 0; cnt < 5; cnt++) {
5422                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5423                         if (val64 & MC_RLDRAM_TEST_DONE)
5424                                 break;
5425                         msleep(500);
5426                 }
5427
5428                 if (cnt == 5)
5429                         break;
5430
5431                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5432                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5433                         test_fail = 1;
5434
5435                 iteration++;
5436         }
5437
5438         *data = test_fail;
5439
5440         /* Bring the adapter out of test mode */
5441         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5442
5443         return test_fail;
5444 }
5445
5446 /**
5447  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5448  *  @sp : private member of the device structure, which is a pointer to the
5449  *  s2io_nic structure.
5450  *  @ethtest : pointer to a ethtool command specific structure that will be
5451  *  returned to the user.
5452  *  @data : variable that returns the result of each of the test
5453  * conducted by the driver.
5454  * Description:
5455  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5456  *  the health of the card.
5457  * Return value:
5458  *  void
5459  */
5460
5461 static void s2io_ethtool_test(struct net_device *dev,
5462                               struct ethtool_test *ethtest,
5463                               uint64_t * data)
5464 {
5465         nic_t *sp = dev->priv;
5466         int orig_state = netif_running(sp->dev);
5467
5468         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5469                 /* Offline Tests. */
5470                 if (orig_state)
5471                         s2io_close(sp->dev);
5472
5473                 if (s2io_register_test(sp, &data[0]))
5474                         ethtest->flags |= ETH_TEST_FL_FAILED;
5475
5476                 s2io_reset(sp);
5477
5478                 if (s2io_rldram_test(sp, &data[3]))
5479                         ethtest->flags |= ETH_TEST_FL_FAILED;
5480
5481                 s2io_reset(sp);
5482
5483                 if (s2io_eeprom_test(sp, &data[1]))
5484                         ethtest->flags |= ETH_TEST_FL_FAILED;
5485
5486                 if (s2io_bist_test(sp, &data[4]))
5487                         ethtest->flags |= ETH_TEST_FL_FAILED;
5488
5489                 if (orig_state)
5490                         s2io_open(sp->dev);
5491
5492                 data[2] = 0;
5493         } else {
5494                 /* Online Tests. */
5495                 if (!orig_state) {
5496                         DBG_PRINT(ERR_DBG,
5497                                   "%s: is not up, cannot run test\n",
5498                                   dev->name);
5499                         data[0] = -1;
5500                         data[1] = -1;
5501                         data[2] = -1;
5502                         data[3] = -1;
5503                         data[4] = -1;
5504                 }
5505
5506                 if (s2io_link_test(sp, &data[2]))
5507                         ethtest->flags |= ETH_TEST_FL_FAILED;
5508
5509                 data[0] = 0;
5510                 data[1] = 0;
5511                 data[3] = 0;
5512                 data[4] = 0;
5513         }
5514 }
5515
5516 static void s2io_get_ethtool_stats(struct net_device *dev,
5517                                    struct ethtool_stats *estats,
5518                                    u64 * tmp_stats)
5519 {
5520         int i = 0;
5521         nic_t *sp = dev->priv;
5522         StatInfo_t *stat_info = sp->mac_control.stats_info;
5523
5524         s2io_updt_stats(sp);
5525         tmp_stats[i++] =
5526                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5527                 le32_to_cpu(stat_info->tmac_frms);
5528         tmp_stats[i++] =
5529                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5530                 le32_to_cpu(stat_info->tmac_data_octets);
5531         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5532         tmp_stats[i++] =
5533                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5534                 le32_to_cpu(stat_info->tmac_mcst_frms);
5535         tmp_stats[i++] =
5536                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5537                 le32_to_cpu(stat_info->tmac_bcst_frms);
5538         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5539         tmp_stats[i++] =
5540                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5541                 le32_to_cpu(stat_info->tmac_ttl_octets);
5542         tmp_stats[i++] =
5543                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5544                 le32_to_cpu(stat_info->tmac_ucst_frms);
5545         tmp_stats[i++] =
5546                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5547                 le32_to_cpu(stat_info->tmac_nucst_frms);
5548         tmp_stats[i++] =
5549                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5550                 le32_to_cpu(stat_info->tmac_any_err_frms);
5551         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5552         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5553         tmp_stats[i++] =
5554                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5555                 le32_to_cpu(stat_info->tmac_vld_ip);
5556         tmp_stats[i++] =
5557                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5558                 le32_to_cpu(stat_info->tmac_drop_ip);
5559         tmp_stats[i++] =
5560                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5561                 le32_to_cpu(stat_info->tmac_icmp);
5562         tmp_stats[i++] =
5563                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5564                 le32_to_cpu(stat_info->tmac_rst_tcp);
5565         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5566         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5567                 le32_to_cpu(stat_info->tmac_udp);
5568         tmp_stats[i++] =
5569                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5570                 le32_to_cpu(stat_info->rmac_vld_frms);
5571         tmp_stats[i++] =
5572                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5573                 le32_to_cpu(stat_info->rmac_data_octets);
5574         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5575         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5576         tmp_stats[i++] =
5577                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5578                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5579         tmp_stats[i++] =
5580                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5581                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5582         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5583         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5584         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5585         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5586         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5587         tmp_stats[i++] =
5588                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5589                 le32_to_cpu(stat_info->rmac_ttl_octets);
5590         tmp_stats[i++] =
5591                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5592                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5593         tmp_stats[i++] =
5594                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5595                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5596         tmp_stats[i++] =
5597                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5598                 le32_to_cpu(stat_info->rmac_discarded_frms);
5599         tmp_stats[i++] =
5600                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5601                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5602         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5603         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5604         tmp_stats[i++] =
5605                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5606                 le32_to_cpu(stat_info->rmac_usized_frms);
5607         tmp_stats[i++] =
5608                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5609                 le32_to_cpu(stat_info->rmac_osized_frms);
5610         tmp_stats[i++] =
5611                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5612                 le32_to_cpu(stat_info->rmac_frag_frms);
5613         tmp_stats[i++] =
5614                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5615                 le32_to_cpu(stat_info->rmac_jabber_frms);
5616         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5617         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5618         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5619         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5620         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5621         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5622         tmp_stats[i++] =
5623                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5624                 le32_to_cpu(stat_info->rmac_ip);
5625         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5626         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5627         tmp_stats[i++] =
5628                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5629                 le32_to_cpu(stat_info->rmac_drop_ip);
5630         tmp_stats[i++] =
5631                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5632                 le32_to_cpu(stat_info->rmac_icmp);
5633         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5634         tmp_stats[i++] =
5635                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5636                 le32_to_cpu(stat_info->rmac_udp);
5637         tmp_stats[i++] =
5638                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5639                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5640         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5641         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5642         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5643         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5644         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5645         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5646         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5647         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5648         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5649         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5650         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5651         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5652         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5653         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5654         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5655         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5656         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5657         tmp_stats[i++] =
5658                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5659                 le32_to_cpu(stat_info->rmac_pause_cnt);
5660         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5661         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5662         tmp_stats[i++] =
5663                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5664                 le32_to_cpu(stat_info->rmac_accepted_ip);
5665         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5666         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5667         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5668         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5669         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5670         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5671         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5672         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5673         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5674         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5675         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5676         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5677         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5678         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5679         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5680         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5681         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5682         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5683         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5684         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5685         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5686         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5687         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5688         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5689         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5690         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5691         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5692         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5693         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5694         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5695         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5696         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5697         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5698         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5699         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5700         tmp_stats[i++] = 0;
5701         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5702         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5703         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5704         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5705         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5706         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5707         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5708         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5709         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5710         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5711         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5712         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5713         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5714         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5715         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5716         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5717         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5718         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5719         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5720         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5721         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5722         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5723         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5724         if (stat_info->sw_stat.num_aggregations) {
5725                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5726                 int count = 0;
5727                 /* 
5728                  * Since 64-bit divide does not work on all platforms,
5729                  * do repeated subtraction.
5730                  */
5731                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5732                         tmp -= stat_info->sw_stat.num_aggregations;
5733                         count++;
5734                 }
5735                 tmp_stats[i++] = count;
5736         }
5737         else
5738                 tmp_stats[i++] = 0;
5739 }
5740
5741 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5742 {
5743         return (XENA_REG_SPACE);
5744 }
5745
5746
5747 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5748 {
5749         nic_t *sp = dev->priv;
5750
5751         return (sp->rx_csum);
5752 }
5753
5754 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5755 {
5756         nic_t *sp = dev->priv;
5757
5758         if (data)
5759                 sp->rx_csum = 1;
5760         else
5761                 sp->rx_csum = 0;
5762
5763         return 0;
5764 }
5765
5766 static int s2io_get_eeprom_len(struct net_device *dev)
5767 {
5768         return (XENA_EEPROM_SPACE);
5769 }
5770
5771 static int s2io_ethtool_self_test_count(struct net_device *dev)
5772 {
5773         return (S2IO_TEST_LEN);
5774 }
5775
5776 static void s2io_ethtool_get_strings(struct net_device *dev,
5777                                      u32 stringset, u8 * data)
5778 {
5779         switch (stringset) {
5780         case ETH_SS_TEST:
5781                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5782                 break;
5783         case ETH_SS_STATS:
5784                 memcpy(data, &ethtool_stats_keys,
5785                        sizeof(ethtool_stats_keys));
5786         }
5787 }
5788 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5789 {
5790         return (S2IO_STAT_LEN);
5791 }
5792
5793 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5794 {
5795         if (data)
5796                 dev->features |= NETIF_F_IP_CSUM;
5797         else
5798                 dev->features &= ~NETIF_F_IP_CSUM;
5799
5800         return 0;
5801 }
5802
5803
5804 static struct ethtool_ops netdev_ethtool_ops = {
5805         .get_settings = s2io_ethtool_gset,
5806         .set_settings = s2io_ethtool_sset,
5807         .get_drvinfo = s2io_ethtool_gdrvinfo,
5808         .get_regs_len = s2io_ethtool_get_regs_len,
5809         .get_regs = s2io_ethtool_gregs,
5810         .get_link = ethtool_op_get_link,
5811         .get_eeprom_len = s2io_get_eeprom_len,
5812         .get_eeprom = s2io_ethtool_geeprom,
5813         .set_eeprom = s2io_ethtool_seeprom,
5814         .get_pauseparam = s2io_ethtool_getpause_data,
5815         .set_pauseparam = s2io_ethtool_setpause_data,
5816         .get_rx_csum = s2io_ethtool_get_rx_csum,
5817         .set_rx_csum = s2io_ethtool_set_rx_csum,
5818         .get_tx_csum = ethtool_op_get_tx_csum,
5819         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5820         .get_sg = ethtool_op_get_sg,
5821         .set_sg = ethtool_op_set_sg,
5822 #ifdef NETIF_F_TSO
5823         .get_tso = ethtool_op_get_tso,
5824         .set_tso = ethtool_op_set_tso,
5825 #endif
5826         .get_ufo = ethtool_op_get_ufo,
5827         .set_ufo = ethtool_op_set_ufo,
5828         .self_test_count = s2io_ethtool_self_test_count,
5829         .self_test = s2io_ethtool_test,
5830         .get_strings = s2io_ethtool_get_strings,
5831         .phys_id = s2io_ethtool_idnic,
5832         .get_stats_count = s2io_ethtool_get_stats_count,
5833         .get_ethtool_stats = s2io_get_ethtool_stats
5834 };
5835
5836 /**
5837  *  s2io_ioctl - Entry point for the Ioctl
5838  *  @dev :  Device pointer.
5839  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5840  *  a proprietary structure used to pass information to the driver.
5841  *  @cmd :  This is used to distinguish between the different commands that
5842  *  can be passed to the IOCTL functions.
5843  *  Description:
5844  *  Currently there are no special functionality supported in IOCTL, hence
5845  *  function always return EOPNOTSUPPORTED
5846  */
5847
5848 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5849 {
5850         return -EOPNOTSUPP;
5851 }
5852
5853 /**
5854  *  s2io_change_mtu - entry point to change MTU size for the device.
5855  *   @dev : device pointer.
5856  *   @new_mtu : the new MTU size for the device.
5857  *   Description: A driver entry point to change MTU size for the device.
5858  *   Before changing the MTU the device must be stopped.
5859  *  Return value:
5860  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5861  *   file on failure.
5862  */
5863
5864 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5865 {
5866         nic_t *sp = dev->priv;
5867
5868         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5869                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5870                           dev->name);
5871                 return -EPERM;
5872         }
5873
5874         dev->mtu = new_mtu;
5875         if (netif_running(dev)) {
5876                 s2io_card_down(sp, 0);
5877                 netif_stop_queue(dev);
5878                 if (s2io_card_up(sp)) {
5879                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5880                                   __FUNCTION__);
5881                 }
5882                 if (netif_queue_stopped(dev))
5883                         netif_wake_queue(dev);
5884         } else { /* Device is down */
5885                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5886                 u64 val64 = new_mtu;
5887
5888                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5889         }
5890
5891         return 0;
5892 }
5893
5894 /**
5895  *  s2io_tasklet - Bottom half of the ISR.
5896  *  @dev_adr : address of the device structure in dma_addr_t format.
5897  *  Description:
5898  *  This is the tasklet or the bottom half of the ISR. This is
5899  *  an extension of the ISR which is scheduled by the scheduler to be run
5900  *  when the load on the CPU is low. All low priority tasks of the ISR can
5901  *  be pushed into the tasklet. For now the tasklet is used only to
5902  *  replenish the Rx buffers in the Rx buffer descriptors.
5903  *  Return value:
5904  *  void.
5905  */
5906
5907 static void s2io_tasklet(unsigned long dev_addr)
5908 {
5909         struct net_device *dev = (struct net_device *) dev_addr;
5910         nic_t *sp = dev->priv;
5911         int i, ret;
5912         mac_info_t *mac_control;
5913         struct config_param *config;
5914
5915         mac_control = &sp->mac_control;
5916         config = &sp->config;
5917
5918         if (!TASKLET_IN_USE) {
5919                 for (i = 0; i < config->rx_ring_num; i++) {
5920                         ret = fill_rx_buffers(sp, i);
5921                         if (ret == -ENOMEM) {
5922                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5923                                           dev->name);
5924                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5925                                 break;
5926                         } else if (ret == -EFILL) {
5927                                 DBG_PRINT(ERR_DBG,
5928                                           "%s: Rx Ring %d is full\n",
5929                                           dev->name, i);
5930                                 break;
5931                         }
5932                 }
5933                 clear_bit(0, (&sp->tasklet_status));
5934         }
5935 }
5936
5937 /**
5938  * s2io_set_link - Set the LInk status
5939  * @data: long pointer to device private structue
5940  * Description: Sets the link status for the adapter
5941  */
5942
5943 static void s2io_set_link(unsigned long data)
5944 {
5945         nic_t *nic = (nic_t *) data;
5946         struct net_device *dev = nic->dev;
5947         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5948         register u64 val64;
5949         u16 subid;
5950
5951         if (test_and_set_bit(0, &(nic->link_state))) {
5952                 /* The card is being reset, no point doing anything */
5953                 return;
5954         }
5955
5956         subid = nic->pdev->subsystem_device;
5957         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5958                 /*
5959                  * Allow a small delay for the NICs self initiated
5960                  * cleanup to complete.
5961                  */
5962                 msleep(100);
5963         }
5964
5965         val64 = readq(&bar0->adapter_status);
5966         if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5967                 if (LINK_IS_UP(val64)) {
5968                         val64 = readq(&bar0->adapter_control);
5969                         val64 |= ADAPTER_CNTL_EN;
5970                         writeq(val64, &bar0->adapter_control);
5971                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5972                                                              subid)) {
5973                                 val64 = readq(&bar0->gpio_control);
5974                                 val64 |= GPIO_CTRL_GPIO_0;
5975                                 writeq(val64, &bar0->gpio_control);
5976                                 val64 = readq(&bar0->gpio_control);
5977                         } else {
5978                                 val64 |= ADAPTER_LED_ON;
5979                                 writeq(val64, &bar0->adapter_control);
5980                         }
5981                         if (s2io_link_fault_indication(nic) ==
5982                                                 MAC_RMAC_ERR_TIMER) {
5983                                 val64 = readq(&bar0->adapter_status);
5984                                 if (!LINK_IS_UP(val64)) {
5985                                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5986                                         DBG_PRINT(ERR_DBG, " Link down");
5987                                         DBG_PRINT(ERR_DBG, "after ");
5988                                         DBG_PRINT(ERR_DBG, "enabling ");
5989                                         DBG_PRINT(ERR_DBG, "device \n");
5990                                 }
5991                         }
5992                         if (nic->device_enabled_once == FALSE) {
5993                                 nic->device_enabled_once = TRUE;
5994                         }
5995                         s2io_link(nic, LINK_UP);
5996                 } else {
5997                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5998                                                               subid)) {
5999                                 val64 = readq(&bar0->gpio_control);
6000                                 val64 &= ~GPIO_CTRL_GPIO_0;
6001                                 writeq(val64, &bar0->gpio_control);
6002                                 val64 = readq(&bar0->gpio_control);
6003                         }
6004                         s2io_link(nic, LINK_DOWN);
6005                 }
6006         } else {                /* NIC is not Quiescent. */
6007                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6008                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6009                 netif_stop_queue(dev);
6010         }
6011         clear_bit(0, &(nic->link_state));
6012 }
6013
6014 static void s2io_card_down(nic_t * sp, int flag)
6015 {
6016         int cnt = 0;
6017         XENA_dev_config_t __iomem *bar0 = sp->bar0;
6018         unsigned long flags;
6019         register u64 val64 = 0;
6020         struct net_device *dev = sp->dev;
6021
6022         del_timer_sync(&sp->alarm_timer);
6023         /* If s2io_set_link task is executing, wait till it completes. */
6024         while (test_and_set_bit(0, &(sp->link_state))) {
6025                 msleep(50);
6026         }
6027         atomic_set(&sp->card_state, CARD_DOWN);
6028
6029         /* disable Tx and Rx traffic on the NIC */
6030         stop_nic(sp);
6031         if (flag) {
6032                 if (sp->intr_type == MSI_X) {
6033                         int i;
6034                         u16 msi_control;
6035
6036                         for (i=1; (sp->s2io_entries[i].in_use ==
6037                                 MSIX_REGISTERED_SUCCESS); i++) {
6038                                 int vector = sp->entries[i].vector;
6039                                 void *arg = sp->s2io_entries[i].arg;
6040
6041                                 free_irq(vector, arg);
6042                         }
6043                         pci_read_config_word(sp->pdev, 0x42, &msi_control);
6044                         msi_control &= 0xFFFE; /* Disable MSI */
6045                         pci_write_config_word(sp->pdev, 0x42, msi_control);
6046                         pci_disable_msix(sp->pdev);
6047                 } else {
6048                         free_irq(sp->pdev->irq, dev);
6049                         if (sp->intr_type == MSI)
6050                                 pci_disable_msi(sp->pdev);
6051                 }
6052         }
6053         /* Waiting till all Interrupt handlers are complete */
6054         cnt = 0;
6055         do {
6056                 msleep(10);
6057                 if (!atomic_read(&sp->isr_cnt))
6058                         break;
6059                 cnt++;
6060         } while(cnt < 5);
6061
6062         /* Kill tasklet. */
6063         tasklet_kill(&sp->task);
6064
6065         /* Check if the device is Quiescent and then Reset the NIC */
6066         do {
6067                 val64 = readq(&bar0->adapter_status);
6068                 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6069                         break;
6070                 }
6071
6072                 msleep(50);
6073                 cnt++;
6074                 if (cnt == 10) {
6075                         DBG_PRINT(ERR_DBG,
6076                                   "s2io_close:Device not Quiescent ");
6077                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6078                                   (unsigned long long) val64);
6079                         break;
6080                 }
6081         } while (1);
6082         s2io_reset(sp);
6083
6084         spin_lock_irqsave(&sp->tx_lock, flags);
6085         /* Free all Tx buffers */
6086         free_tx_buffers(sp);
6087         spin_unlock_irqrestore(&sp->tx_lock, flags);
6088
6089         /* Free all Rx buffers */
6090         spin_lock_irqsave(&sp->rx_lock, flags);
6091         free_rx_buffers(sp);
6092         spin_unlock_irqrestore(&sp->rx_lock, flags);
6093
6094         clear_bit(0, &(sp->link_state));
6095 }
6096
6097 static int s2io_card_up(nic_t * sp)
6098 {
6099         int i, ret = 0;
6100         mac_info_t *mac_control;
6101         struct config_param *config;
6102         struct net_device *dev = (struct net_device *) sp->dev;
6103
6104         /* Initialize the H/W I/O registers */
6105         if (init_nic(sp) != 0) {
6106                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6107                           dev->name);
6108                 return -ENODEV;
6109         }
6110
6111         if (sp->intr_type == MSI)
6112                 ret = s2io_enable_msi(sp);
6113         else if (sp->intr_type == MSI_X)
6114                 ret = s2io_enable_msi_x(sp);
6115         if (ret) {
6116                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6117                 sp->intr_type = INTA;
6118         }
6119
6120         /*
6121          * Initializing the Rx buffers. For now we are considering only 1
6122          * Rx ring and initializing buffers into 30 Rx blocks
6123          */
6124         mac_control = &sp->mac_control;
6125         config = &sp->config;
6126
6127         for (i = 0; i < config->rx_ring_num; i++) {
6128                 if ((ret = fill_rx_buffers(sp, i))) {
6129                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6130                                   dev->name);
6131                         s2io_reset(sp);
6132                         free_rx_buffers(sp);
6133                         return -ENOMEM;
6134                 }
6135                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6136                           atomic_read(&sp->rx_bufs_left[i]));
6137         }
6138
6139         /* Setting its receive mode */
6140         s2io_set_multicast(dev);
6141
6142         if (sp->lro) {
6143                 /* Initialize max aggregatable pkts based on MTU */
6144                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6145                 /* Check if we can use(if specified) user provided value */
6146                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6147                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6148         }
6149
6150         /* Enable tasklet for the device */
6151         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6152
6153         /* Enable Rx Traffic and interrupts on the NIC */
6154         if (start_nic(sp)) {
6155                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6156                 tasklet_kill(&sp->task);
6157                 s2io_reset(sp);
6158                 free_irq(dev->irq, dev);
6159                 free_rx_buffers(sp);
6160                 return -ENODEV;
6161         }
6162
6163         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6164
6165         atomic_set(&sp->card_state, CARD_UP);
6166         return 0;
6167 }
6168
6169 /**
6170  * s2io_restart_nic - Resets the NIC.
6171  * @data : long pointer to the device private structure
6172  * Description:
6173  * This function is scheduled to be run by the s2io_tx_watchdog
6174  * function after 0.5 secs to reset the NIC. The idea is to reduce
6175  * the run time of the watch dog routine which is run holding a
6176  * spin lock.
6177  */
6178
6179 static void s2io_restart_nic(unsigned long data)
6180 {
6181         struct net_device *dev = (struct net_device *) data;
6182         nic_t *sp = dev->priv;
6183
6184         s2io_card_down(sp, 0);
6185         if (s2io_card_up(sp)) {
6186                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6187                           dev->name);
6188         }
6189         netif_wake_queue(dev);
6190         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6191                   dev->name);
6192
6193 }
6194
6195 /**
6196  *  s2io_tx_watchdog - Watchdog for transmit side.
6197  *  @dev : Pointer to net device structure
6198  *  Description:
6199  *  This function is triggered if the Tx Queue is stopped
6200  *  for a pre-defined amount of time when the Interface is still up.
6201  *  If the Interface is jammed in such a situation, the hardware is
6202  *  reset (by s2io_close) and restarted again (by s2io_open) to
6203  *  overcome any problem that might have been caused in the hardware.
6204  *  Return value:
6205  *  void
6206  */
6207
6208 static void s2io_tx_watchdog(struct net_device *dev)
6209 {
6210         nic_t *sp = dev->priv;
6211
6212         if (netif_carrier_ok(dev)) {
6213                 schedule_work(&sp->rst_timer_task);
6214                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6215         }
6216 }
6217
6218 /**
6219  *   rx_osm_handler - To perform some OS related operations on SKB.
6220  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6221  *   @skb : the socket buffer pointer.
6222  *   @len : length of the packet
6223  *   @cksum : FCS checksum of the frame.
6224  *   @ring_no : the ring from which this RxD was extracted.
6225  *   Description:
6226  *   This function is called by the Tx interrupt serivce routine to perform
6227  *   some OS related operations on the SKB before passing it to the upper
6228  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6229  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6230  *   to the upper layer. If the checksum is wrong, it increments the Rx
6231  *   packet error count, frees the SKB and returns error.
6232  *   Return value:
6233  *   SUCCESS on success and -1 on failure.
6234  */
6235 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6236 {
6237         nic_t *sp = ring_data->nic;
6238         struct net_device *dev = (struct net_device *) sp->dev;
6239         struct sk_buff *skb = (struct sk_buff *)
6240                 ((unsigned long) rxdp->Host_Control);
6241         int ring_no = ring_data->ring_no;
6242         u16 l3_csum, l4_csum;
6243         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6244         lro_t *lro;
6245
6246         skb->dev = dev;
6247
6248         if (err) {
6249                 /* Check for parity error */
6250                 if (err & 0x1) {
6251                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6252                 }
6253
6254                 /*
6255                 * Drop the packet if bad transfer code. Exception being
6256                 * 0x5, which could be due to unsupported IPv6 extension header.
6257                 * In this case, we let stack handle the packet.
6258                 * Note that in this case, since checksum will be incorrect,
6259                 * stack will validate the same.
6260                 */
6261                 if (err && ((err >> 48) != 0x5)) {
6262                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6263                                 dev->name, err);
6264                         sp->stats.rx_crc_errors++;
6265                         dev_kfree_skb(skb);
6266                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6267                         rxdp->Host_Control = 0;
6268                         return 0;
6269                 }
6270         }
6271
6272         /* Updating statistics */
6273         rxdp->Host_Control = 0;
6274         sp->rx_pkt_count++;
6275         sp->stats.rx_packets++;
6276         if (sp->rxd_mode == RXD_MODE_1) {
6277                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6278
6279                 sp->stats.rx_bytes += len;
6280                 skb_put(skb, len);
6281
6282         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6283                 int get_block = ring_data->rx_curr_get_info.block_index;
6284                 int get_off = ring_data->rx_curr_get_info.offset;
6285                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6286                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6287                 unsigned char *buff = skb_push(skb, buf0_len);
6288
6289                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6290                 sp->stats.rx_bytes += buf0_len + buf2_len;
6291                 memcpy(buff, ba->ba_0, buf0_len);
6292
6293                 if (sp->rxd_mode == RXD_MODE_3A) {
6294                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6295
6296                         skb_put(skb, buf1_len);
6297                         skb->len += buf2_len;
6298                         skb->data_len += buf2_len;
6299                         skb->truesize += buf2_len;
6300                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6301                         sp->stats.rx_bytes += buf1_len;
6302
6303                 } else
6304                         skb_put(skb, buf2_len);
6305         }
6306
6307         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6308             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6309             (sp->rx_csum)) {
6310                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6311                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6312                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6313                         /*
6314                          * NIC verifies if the Checksum of the received
6315                          * frame is Ok or not and accordingly returns
6316                          * a flag in the RxD.
6317                          */
6318                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6319                         if (sp->lro) {
6320                                 u32 tcp_len;
6321                                 u8 *tcp;
6322                                 int ret = 0;
6323
6324                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6325                                                 &tcp_len, &lro, rxdp, sp);
6326                                 switch (ret) {
6327                                         case 3: /* Begin anew */
6328                                                 lro->parent = skb;
6329                                                 goto aggregate;
6330                                         case 1: /* Aggregate */
6331                                         {
6332                                                 lro_append_pkt(sp, lro,
6333                                                         skb, tcp_len);
6334                                                 goto aggregate;
6335                                         }
6336                                         case 4: /* Flush session */
6337                                         {
6338                                                 lro_append_pkt(sp, lro,
6339                                                         skb, tcp_len);
6340                                                 queue_rx_frame(lro->parent);
6341                                                 clear_lro_session(lro);
6342                                                 sp->mac_control.stats_info->
6343                                                     sw_stat.flush_max_pkts++;
6344                                                 goto aggregate;
6345                                         }
6346                                         case 2: /* Flush both */
6347                                                 lro->parent->data_len =
6348                                                         lro->frags_len;
6349                                                 sp->mac_control.stats_info->
6350                                                      sw_stat.sending_both++;
6351                                                 queue_rx_frame(lro->parent);
6352                                                 clear_lro_session(lro);
6353                                                 goto send_up;
6354                                         case 0: /* sessions exceeded */
6355                                         case -1: /* non-TCP or not
6356                                                   * L2 aggregatable
6357                                                   */
6358                                         case 5: /*
6359                                                  * First pkt in session not
6360                                                  * L3/L4 aggregatable
6361                                                  */
6362                                                 break;
6363                                         default:
6364                                                 DBG_PRINT(ERR_DBG,
6365                                                         "%s: Samadhana!!\n",
6366                                                          __FUNCTION__);
6367                                                 BUG();
6368                                 }
6369                         }
6370                 } else {
6371                         /*
6372                          * Packet with erroneous checksum, let the
6373                          * upper layers deal with it.
6374                          */
6375                         skb->ip_summed = CHECKSUM_NONE;
6376                 }
6377         } else {
6378                 skb->ip_summed = CHECKSUM_NONE;
6379         }
6380
6381         if (!sp->lro) {
6382                 skb->protocol = eth_type_trans(skb, dev);
6383 #ifdef CONFIG_S2IO_NAPI
6384                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6385                         /* Queueing the vlan frame to the upper layer */
6386                         vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6387                                 RXD_GET_VLAN_TAG(rxdp->Control_2));
6388                 } else {
6389                         netif_receive_skb(skb);
6390                 }
6391 #else
6392                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6393                         /* Queueing the vlan frame to the upper layer */
6394                         vlan_hwaccel_rx(skb, sp->vlgrp,
6395                                 RXD_GET_VLAN_TAG(rxdp->Control_2));
6396                 } else {
6397                         netif_rx(skb);
6398                 }
6399 #endif
6400         } else {
6401 send_up:
6402                 queue_rx_frame(skb);
6403         }               
6404         dev->last_rx = jiffies;
6405 aggregate:
6406         atomic_dec(&sp->rx_bufs_left[ring_no]);
6407         return SUCCESS;
6408 }
6409
6410 /**
6411  *  s2io_link - stops/starts the Tx queue.
6412  *  @sp : private member of the device structure, which is a pointer to the
6413  *  s2io_nic structure.
6414  *  @link : inidicates whether link is UP/DOWN.
6415  *  Description:
6416  *  This function stops/starts the Tx queue depending on whether the link
6417  *  status of the NIC is is down or up. This is called by the Alarm
6418  *  interrupt handler whenever a link change interrupt comes up.
6419  *  Return value:
6420  *  void.
6421  */
6422
6423 static void s2io_link(nic_t * sp, int link)
6424 {
6425         struct net_device *dev = (struct net_device *) sp->dev;
6426
6427         if (link != sp->last_link_state) {
6428                 if (link == LINK_DOWN) {
6429                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6430                         netif_carrier_off(dev);
6431                 } else {
6432                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6433                         netif_carrier_on(dev);
6434                 }
6435         }
6436         sp->last_link_state = link;
6437 }
6438
6439 /**
6440  *  get_xena_rev_id - to identify revision ID of xena.
6441  *  @pdev : PCI Dev structure
6442  *  Description:
6443  *  Function to identify the Revision ID of xena.
6444  *  Return value:
6445  *  returns the revision ID of the device.
6446  */
6447
6448 static int get_xena_rev_id(struct pci_dev *pdev)
6449 {
6450         u8 id = 0;
6451         int ret;
6452         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6453         return id;
6454 }
6455
6456 /**
6457  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6458  *  @sp : private member of the device structure, which is a pointer to the
6459  *  s2io_nic structure.
6460  *  Description:
6461  *  This function initializes a few of the PCI and PCI-X configuration registers
6462  *  with recommended values.
6463  *  Return value:
6464  *  void
6465  */
6466
6467 static void s2io_init_pci(nic_t * sp)
6468 {
6469         u16 pci_cmd = 0, pcix_cmd = 0;
6470
6471         /* Enable Data Parity Error Recovery in PCI-X command register. */
6472         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6473                              &(pcix_cmd));
6474         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6475                               (pcix_cmd | 1));
6476         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6477                              &(pcix_cmd));
6478
6479         /* Set the PErr Response bit in PCI command register. */
6480         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6481         pci_write_config_word(sp->pdev, PCI_COMMAND,
6482                               (pci_cmd | PCI_COMMAND_PARITY));
6483         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6484 }
6485
6486 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6487 MODULE_LICENSE("GPL");
6488 MODULE_VERSION(DRV_VERSION);
6489
6490 module_param(tx_fifo_num, int, 0);
6491 module_param(rx_ring_num, int, 0);
6492 module_param(rx_ring_mode, int, 0);
6493 module_param_array(tx_fifo_len, uint, NULL, 0);
6494 module_param_array(rx_ring_sz, uint, NULL, 0);
6495 module_param_array(rts_frm_len, uint, NULL, 0);
6496 module_param(use_continuous_tx_intrs, int, 1);
6497 module_param(rmac_pause_time, int, 0);
6498 module_param(mc_pause_threshold_q0q3, int, 0);
6499 module_param(mc_pause_threshold_q4q7, int, 0);
6500 module_param(shared_splits, int, 0);
6501 module_param(tmac_util_period, int, 0);
6502 module_param(rmac_util_period, int, 0);
6503 module_param(bimodal, bool, 0);
6504 module_param(l3l4hdr_size, int , 0);
6505 #ifndef CONFIG_S2IO_NAPI
6506 module_param(indicate_max_pkts, int, 0);
6507 #endif
6508 module_param(rxsync_frequency, int, 0);
6509 module_param(intr_type, int, 0);
6510 module_param(lro, int, 0);
6511 module_param(lro_max_pkts, int, 0);
6512
6513 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6514 {
6515         if ( tx_fifo_num > 8) {
6516                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6517                          "supported\n");
6518                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6519                 tx_fifo_num = 8;
6520         }
6521         if ( rx_ring_num > 8) {
6522                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6523                          "supported\n");
6524                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6525                 rx_ring_num = 8;
6526         }
6527 #ifdef CONFIG_S2IO_NAPI
6528         if (*dev_intr_type != INTA) {
6529                 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6530                           "MSI/MSI-X is enabled. Defaulting to INTA\n");
6531                 *dev_intr_type = INTA;
6532         }
6533 #endif
6534 #ifndef CONFIG_PCI_MSI
6535         if (*dev_intr_type != INTA) {
6536                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6537                           "MSI/MSI-X. Defaulting to INTA\n");
6538                 *dev_intr_type = INTA;
6539         }
6540 #else
6541         if (*dev_intr_type > MSI_X) {
6542                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6543                           "Defaulting to INTA\n");
6544                 *dev_intr_type = INTA;
6545         }
6546 #endif
6547         if ((*dev_intr_type == MSI_X) &&
6548                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6549                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6550                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. " 
6551                                         "Defaulting to INTA\n");
6552                 *dev_intr_type = INTA;
6553         }
6554         if (rx_ring_mode > 3) {
6555                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6556                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6557                 rx_ring_mode = 3;
6558         }
6559         return SUCCESS;
6560 }
6561
6562 /**
6563  *  s2io_init_nic - Initialization of the adapter .
6564  *  @pdev : structure containing the PCI related information of the device.
6565  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6566  *  Description:
6567  *  The function initializes an adapter identified by the pci_dec structure.
6568  *  All OS related initialization including memory and device structure and
6569  *  initlaization of the device private variable is done. Also the swapper
6570  *  control register is initialized to enable read and write into the I/O
6571  *  registers of the device.
6572  *  Return value:
6573  *  returns 0 on success and negative on failure.
6574  */
6575
6576 static int __devinit
6577 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6578 {
6579         nic_t *sp;
6580         struct net_device *dev;
6581         int i, j, ret;
6582         int dma_flag = FALSE;
6583         u32 mac_up, mac_down;
6584         u64 val64 = 0, tmp64 = 0;
6585         XENA_dev_config_t __iomem *bar0 = NULL;
6586         u16 subid;
6587         mac_info_t *mac_control;
6588         struct config_param *config;
6589         int mode;
6590         u8 dev_intr_type = intr_type;
6591
6592         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6593                 return ret;
6594
6595         if ((ret = pci_enable_device(pdev))) {
6596                 DBG_PRINT(ERR_DBG,
6597                           "s2io_init_nic: pci_enable_device failed\n");
6598                 return ret;
6599         }
6600
6601         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6602                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6603                 dma_flag = TRUE;
6604                 if (pci_set_consistent_dma_mask
6605                     (pdev, DMA_64BIT_MASK)) {
6606                         DBG_PRINT(ERR_DBG,
6607                                   "Unable to obtain 64bit DMA for \
6608                                         consistent allocations\n");
6609                         pci_disable_device(pdev);
6610                         return -ENOMEM;
6611                 }
6612         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6613                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6614         } else {
6615                 pci_disable_device(pdev);
6616                 return -ENOMEM;
6617         }
6618         if (dev_intr_type != MSI_X) {
6619                 if (pci_request_regions(pdev, s2io_driver_name)) {
6620                         DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6621                             pci_disable_device(pdev);
6622                         return -ENODEV;
6623                 }
6624         }
6625         else {
6626                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6627                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6628                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6629                         pci_disable_device(pdev);
6630                         return -ENODEV;
6631                 }
6632                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6633                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6634                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6635                         release_mem_region(pci_resource_start(pdev, 0),
6636                                    pci_resource_len(pdev, 0));
6637                         pci_disable_device(pdev);
6638                         return -ENODEV;
6639                 }
6640         }
6641
6642         dev = alloc_etherdev(sizeof(nic_t));
6643         if (dev == NULL) {
6644                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6645                 pci_disable_device(pdev);
6646                 pci_release_regions(pdev);
6647                 return -ENODEV;
6648         }
6649
6650         pci_set_master(pdev);
6651         pci_set_drvdata(pdev, dev);
6652         SET_MODULE_OWNER(dev);
6653         SET_NETDEV_DEV(dev, &pdev->dev);
6654
6655         /*  Private member variable initialized to s2io NIC structure */
6656         sp = dev->priv;
6657         memset(sp, 0, sizeof(nic_t));
6658         sp->dev = dev;
6659         sp->pdev = pdev;
6660         sp->high_dma_flag = dma_flag;
6661         sp->device_enabled_once = FALSE;
6662         if (rx_ring_mode == 1)
6663                 sp->rxd_mode = RXD_MODE_1;
6664         if (rx_ring_mode == 2)
6665                 sp->rxd_mode = RXD_MODE_3B;
6666         if (rx_ring_mode == 3)
6667                 sp->rxd_mode = RXD_MODE_3A;
6668
6669         sp->intr_type = dev_intr_type;
6670
6671         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6672                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6673                 sp->device_type = XFRAME_II_DEVICE;
6674         else
6675                 sp->device_type = XFRAME_I_DEVICE;
6676
6677         sp->lro = lro;
6678                 
6679         /* Initialize some PCI/PCI-X fields of the NIC. */
6680         s2io_init_pci(sp);
6681
6682         /*
6683          * Setting the device configuration parameters.
6684          * Most of these parameters can be specified by the user during
6685          * module insertion as they are module loadable parameters. If
6686          * these parameters are not not specified during load time, they
6687          * are initialized with default values.
6688          */
6689         mac_control = &sp->mac_control;
6690         config = &sp->config;
6691
6692         /* Tx side parameters. */
6693         config->tx_fifo_num = tx_fifo_num;
6694         for (i = 0; i < MAX_TX_FIFOS; i++) {
6695                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6696                 config->tx_cfg[i].fifo_priority = i;
6697         }
6698
6699         /* mapping the QoS priority to the configured fifos */
6700         for (i = 0; i < MAX_TX_FIFOS; i++)
6701                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6702
6703         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6704         for (i = 0; i < config->tx_fifo_num; i++) {
6705                 config->tx_cfg[i].f_no_snoop =
6706                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6707                 if (config->tx_cfg[i].fifo_len < 65) {
6708                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6709                         break;
6710                 }
6711         }
6712         /* + 2 because one Txd for skb->data and one Txd for UFO */
6713         config->max_txds = MAX_SKB_FRAGS + 2;
6714
6715         /* Rx side parameters. */
6716         config->rx_ring_num = rx_ring_num;
6717         for (i = 0; i < MAX_RX_RINGS; i++) {
6718                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6719                     (rxd_count[sp->rxd_mode] + 1);
6720                 config->rx_cfg[i].ring_priority = i;
6721         }
6722
6723         for (i = 0; i < rx_ring_num; i++) {
6724                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6725                 config->rx_cfg[i].f_no_snoop =
6726                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6727         }
6728
6729         /*  Setting Mac Control parameters */
6730         mac_control->rmac_pause_time = rmac_pause_time;
6731         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6732         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6733
6734
6735         /* Initialize Ring buffer parameters. */
6736         for (i = 0; i < config->rx_ring_num; i++)
6737                 atomic_set(&sp->rx_bufs_left[i], 0);
6738
6739         /* Initialize the number of ISRs currently running */
6740         atomic_set(&sp->isr_cnt, 0);
6741
6742         /*  initialize the shared memory used by the NIC and the host */
6743         if (init_shared_mem(sp)) {
6744                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6745                           __FUNCTION__);
6746                 ret = -ENOMEM;
6747                 goto mem_alloc_failed;
6748         }
6749
6750         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6751                                      pci_resource_len(pdev, 0));
6752         if (!sp->bar0) {
6753                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6754                           dev->name);
6755                 ret = -ENOMEM;
6756                 goto bar0_remap_failed;
6757         }
6758
6759         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6760                                      pci_resource_len(pdev, 2));
6761         if (!sp->bar1) {
6762                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6763                           dev->name);
6764                 ret = -ENOMEM;
6765                 goto bar1_remap_failed;
6766         }
6767
6768         dev->irq = pdev->irq;
6769         dev->base_addr = (unsigned long) sp->bar0;
6770
6771         /* Initializing the BAR1 address as the start of the FIFO pointer. */
6772         for (j = 0; j < MAX_TX_FIFOS; j++) {
6773                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6774                     (sp->bar1 + (j * 0x00020000));
6775         }
6776
6777         /*  Driver entry points */
6778         dev->open = &s2io_open;
6779         dev->stop = &s2io_close;
6780         dev->hard_start_xmit = &s2io_xmit;
6781         dev->get_stats = &s2io_get_stats;
6782         dev->set_multicast_list = &s2io_set_multicast;
6783         dev->do_ioctl = &s2io_ioctl;
6784         dev->change_mtu = &s2io_change_mtu;
6785         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6786         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6787         dev->vlan_rx_register = s2io_vlan_rx_register;
6788         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6789
6790         /*
6791          * will use eth_mac_addr() for  dev->set_mac_address
6792          * mac address will be set every time dev->open() is called
6793          */
6794 #if defined(CONFIG_S2IO_NAPI)
6795         dev->poll = s2io_poll;
6796         dev->weight = 32;
6797 #endif
6798
6799         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6800         if (sp->high_dma_flag == TRUE)
6801                 dev->features |= NETIF_F_HIGHDMA;
6802 #ifdef NETIF_F_TSO
6803         dev->features |= NETIF_F_TSO;
6804 #endif
6805         if (sp->device_type & XFRAME_II_DEVICE) {
6806                 dev->features |= NETIF_F_UFO;
6807                 dev->features |= NETIF_F_HW_CSUM;
6808         }
6809
6810         dev->tx_timeout = &s2io_tx_watchdog;
6811         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6812         INIT_WORK(&sp->rst_timer_task,
6813                   (void (*)(void *)) s2io_restart_nic, dev);
6814         INIT_WORK(&sp->set_link_task,
6815                   (void (*)(void *)) s2io_set_link, sp);
6816
6817         pci_save_state(sp->pdev);
6818
6819         /* Setting swapper control on the NIC, for proper reset operation */
6820         if (s2io_set_swapper(sp)) {
6821                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6822                           dev->name);
6823                 ret = -EAGAIN;
6824                 goto set_swap_failed;
6825         }
6826
6827         /* Verify if the Herc works on the slot its placed into */
6828         if (sp->device_type & XFRAME_II_DEVICE) {
6829                 mode = s2io_verify_pci_mode(sp);
6830                 if (mode < 0) {
6831                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6832                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6833                         ret = -EBADSLT;
6834                         goto set_swap_failed;
6835                 }
6836         }
6837
6838         /* Not needed for Herc */
6839         if (sp->device_type & XFRAME_I_DEVICE) {
6840                 /*
6841                  * Fix for all "FFs" MAC address problems observed on
6842                  * Alpha platforms
6843                  */
6844                 fix_mac_address(sp);
6845                 s2io_reset(sp);
6846         }
6847
6848         /*
6849          * MAC address initialization.
6850          * For now only one mac address will be read and used.
6851          */
6852         bar0 = sp->bar0;
6853         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6854             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6855         writeq(val64, &bar0->rmac_addr_cmd_mem);
6856         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6857                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
6858         tmp64 = readq(&bar0->rmac_addr_data0_mem);
6859         mac_down = (u32) tmp64;
6860         mac_up = (u32) (tmp64 >> 32);
6861
6862         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6863
6864         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6865         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6866         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6867         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6868         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6869         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6870
6871         /*  Set the factory defined MAC address initially   */
6872         dev->addr_len = ETH_ALEN;
6873         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6874
6875         /*
6876          * Initialize the tasklet status and link state flags
6877          * and the card state parameter
6878          */
6879         atomic_set(&(sp->card_state), 0);
6880         sp->tasklet_status = 0;
6881         sp->link_state = 0;
6882
6883         /* Initialize spinlocks */
6884         spin_lock_init(&sp->tx_lock);
6885 #ifndef CONFIG_S2IO_NAPI
6886         spin_lock_init(&sp->put_lock);
6887 #endif
6888         spin_lock_init(&sp->rx_lock);
6889
6890         /*
6891          * SXE-002: Configure link and activity LED to init state
6892          * on driver load.
6893          */
6894         subid = sp->pdev->subsystem_device;
6895         if ((subid & 0xFF) >= 0x07) {
6896                 val64 = readq(&bar0->gpio_control);
6897                 val64 |= 0x0000800000000000ULL;
6898                 writeq(val64, &bar0->gpio_control);
6899                 val64 = 0x0411040400000000ULL;
6900                 writeq(val64, (void __iomem *) bar0 + 0x2700);
6901                 val64 = readq(&bar0->gpio_control);
6902         }
6903
6904         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
6905
6906         if (register_netdev(dev)) {
6907                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6908                 ret = -ENODEV;
6909                 goto register_failed;
6910         }
6911         s2io_vpd_read(sp);
6912         DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
6913         DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
6914                                 get_xena_rev_id(sp->pdev),
6915                                 s2io_driver_version);
6916         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
6917         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
6918                           "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
6919                           sp->def_mac_addr[0].mac_addr[0],
6920                           sp->def_mac_addr[0].mac_addr[1],
6921                           sp->def_mac_addr[0].mac_addr[2],
6922                           sp->def_mac_addr[0].mac_addr[3],
6923                           sp->def_mac_addr[0].mac_addr[4],
6924                           sp->def_mac_addr[0].mac_addr[5]);
6925         if (sp->device_type & XFRAME_II_DEVICE) {
6926                 mode = s2io_print_pci_mode(sp);
6927                 if (mode < 0) {
6928                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6929                         ret = -EBADSLT;
6930                         unregister_netdev(dev);
6931                         goto set_swap_failed;
6932                 }
6933         }
6934         switch(sp->rxd_mode) {
6935                 case RXD_MODE_1:
6936                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
6937                                                 dev->name);
6938                     break;
6939                 case RXD_MODE_3B:
6940                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
6941                                                 dev->name);
6942                     break;
6943                 case RXD_MODE_3A:
6944                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
6945                                                 dev->name);
6946                     break;
6947         }
6948 #ifdef CONFIG_S2IO_NAPI
6949         DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
6950 #endif
6951         switch(sp->intr_type) {
6952                 case INTA:
6953                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
6954                     break;
6955                 case MSI:
6956                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
6957                     break;
6958                 case MSI_X:
6959                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
6960                     break;
6961         }
6962         if (sp->lro)
6963                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
6964                           dev->name);
6965
6966         /* Initialize device name */
6967         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
6968
6969         /* Initialize bimodal Interrupts */
6970         sp->config.bimodal = bimodal;
6971         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6972                 sp->config.bimodal = 0;
6973                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6974                         dev->name);
6975         }
6976
6977         /*
6978          * Make Link state as off at this point, when the Link change
6979          * interrupt comes the state will be automatically changed to
6980          * the right state.
6981          */
6982         netif_carrier_off(dev);
6983
6984         return 0;
6985
6986       register_failed:
6987       set_swap_failed:
6988         iounmap(sp->bar1);
6989       bar1_remap_failed:
6990         iounmap(sp->bar0);
6991       bar0_remap_failed:
6992       mem_alloc_failed:
6993         free_shared_mem(sp);
6994         pci_disable_device(pdev);
6995         if (dev_intr_type != MSI_X)
6996                 pci_release_regions(pdev);
6997         else {
6998                 release_mem_region(pci_resource_start(pdev, 0),
6999                         pci_resource_len(pdev, 0));
7000                 release_mem_region(pci_resource_start(pdev, 2),
7001                         pci_resource_len(pdev, 2));
7002         }
7003         pci_set_drvdata(pdev, NULL);
7004         free_netdev(dev);
7005
7006         return ret;
7007 }
7008
7009 /**
7010  * s2io_rem_nic - Free the PCI device
7011  * @pdev: structure containing the PCI related information of the device.
7012  * Description: This function is called by the Pci subsystem to release a
7013  * PCI device and free up all resource held up by the device. This could
7014  * be in response to a Hot plug event or when the driver is to be removed
7015  * from memory.
7016  */
7017
7018 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7019 {
7020         struct net_device *dev =
7021             (struct net_device *) pci_get_drvdata(pdev);
7022         nic_t *sp;
7023
7024         if (dev == NULL) {
7025                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7026                 return;
7027         }
7028
7029         sp = dev->priv;
7030         unregister_netdev(dev);
7031
7032         free_shared_mem(sp);
7033         iounmap(sp->bar0);
7034         iounmap(sp->bar1);
7035         pci_disable_device(pdev);
7036         if (sp->intr_type != MSI_X)
7037                 pci_release_regions(pdev);
7038         else {
7039                 release_mem_region(pci_resource_start(pdev, 0),
7040                         pci_resource_len(pdev, 0));
7041                 release_mem_region(pci_resource_start(pdev, 2),
7042                         pci_resource_len(pdev, 2));
7043         }
7044         pci_set_drvdata(pdev, NULL);
7045         free_netdev(dev);
7046 }
7047
7048 /**
7049  * s2io_starter - Entry point for the driver
7050  * Description: This function is the entry point for the driver. It verifies
7051  * the module loadable parameters and initializes PCI configuration space.
7052  */
7053
7054 int __init s2io_starter(void)
7055 {
7056         return pci_module_init(&s2io_driver);
7057 }
7058
7059 /**
7060  * s2io_closer - Cleanup routine for the driver
7061  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7062  */
7063
7064 static void s2io_closer(void)
7065 {
7066         pci_unregister_driver(&s2io_driver);
7067         DBG_PRINT(INIT_DBG, "cleanup done\n");
7068 }
7069
7070 module_init(s2io_starter);
7071 module_exit(s2io_closer);
7072
7073 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, 
7074                 struct tcphdr **tcp, RxD_t *rxdp)
7075 {
7076         int ip_off;
7077         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7078
7079         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7080                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7081                           __FUNCTION__);
7082                 return -1;
7083         }
7084
7085         /* TODO:
7086          * By default the VLAN field in the MAC is stripped by the card, if this
7087          * feature is turned off in rx_pa_cfg register, then the ip_off field
7088          * has to be shifted by a further 2 bytes
7089          */
7090         switch (l2_type) {
7091                 case 0: /* DIX type */
7092                 case 4: /* DIX type with VLAN */
7093                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7094                         break;
7095                 /* LLC, SNAP etc are considered non-mergeable */
7096                 default:
7097                         return -1;
7098         }
7099
7100         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7101         ip_len = (u8)((*ip)->ihl);
7102         ip_len <<= 2;
7103         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7104
7105         return 0;
7106 }
7107
7108 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7109                                   struct tcphdr *tcp)
7110 {
7111         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7112         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7113            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7114                 return -1;
7115         return 0;
7116 }
7117
7118 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7119 {
7120         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7121 }
7122
7123 static void initiate_new_session(lro_t *lro, u8 *l2h,
7124                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7125 {
7126         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7127         lro->l2h = l2h;
7128         lro->iph = ip;
7129         lro->tcph = tcp;
7130         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7131         lro->tcp_ack = ntohl(tcp->ack_seq);
7132         lro->sg_num = 1;
7133         lro->total_len = ntohs(ip->tot_len);
7134         lro->frags_len = 0;
7135         /* 
7136          * check if we saw TCP timestamp. Other consistency checks have
7137          * already been done.
7138          */
7139         if (tcp->doff == 8) {
7140                 u32 *ptr;
7141                 ptr = (u32 *)(tcp+1);
7142                 lro->saw_ts = 1;
7143                 lro->cur_tsval = *(ptr+1);
7144                 lro->cur_tsecr = *(ptr+2);
7145         }
7146         lro->in_use = 1;
7147 }
7148
7149 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7150 {
7151         struct iphdr *ip = lro->iph;
7152         struct tcphdr *tcp = lro->tcph;
7153         u16 nchk;
7154         StatInfo_t *statinfo = sp->mac_control.stats_info;
7155         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7156
7157         /* Update L3 header */
7158         ip->tot_len = htons(lro->total_len);
7159         ip->check = 0;
7160         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7161         ip->check = nchk;
7162
7163         /* Update L4 header */
7164         tcp->ack_seq = lro->tcp_ack;
7165         tcp->window = lro->window;
7166
7167         /* Update tsecr field if this session has timestamps enabled */
7168         if (lro->saw_ts) {
7169                 u32 *ptr = (u32 *)(tcp + 1);
7170                 *(ptr+2) = lro->cur_tsecr;
7171         }
7172
7173         /* Update counters required for calculation of
7174          * average no. of packets aggregated.
7175          */
7176         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7177         statinfo->sw_stat.num_aggregations++;
7178 }
7179
7180 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7181                 struct tcphdr *tcp, u32 l4_pyld)
7182 {
7183         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7184         lro->total_len += l4_pyld;
7185         lro->frags_len += l4_pyld;
7186         lro->tcp_next_seq += l4_pyld;
7187         lro->sg_num++;
7188
7189         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7190         lro->tcp_ack = tcp->ack_seq;
7191         lro->window = tcp->window;
7192         
7193         if (lro->saw_ts) {
7194                 u32 *ptr;
7195                 /* Update tsecr and tsval from this packet */
7196                 ptr = (u32 *) (tcp + 1);
7197                 lro->cur_tsval = *(ptr + 1); 
7198                 lro->cur_tsecr = *(ptr + 2);
7199         }
7200 }
7201
7202 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7203                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7204 {
7205         u8 *ptr;
7206
7207         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7208
7209         if (!tcp_pyld_len) {
7210                 /* Runt frame or a pure ack */
7211                 return -1;
7212         }
7213
7214         if (ip->ihl != 5) /* IP has options */
7215                 return -1;
7216
7217         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7218                                                                 !tcp->ack) {
7219                 /*
7220                  * Currently recognize only the ack control word and
7221                  * any other control field being set would result in
7222                  * flushing the LRO session
7223                  */
7224                 return -1;
7225         }
7226
7227         /* 
7228          * Allow only one TCP timestamp option. Don't aggregate if
7229          * any other options are detected.
7230          */
7231         if (tcp->doff != 5 && tcp->doff != 8)
7232                 return -1;
7233
7234         if (tcp->doff == 8) {
7235                 ptr = (u8 *)(tcp + 1);  
7236                 while (*ptr == TCPOPT_NOP)
7237                         ptr++;
7238                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7239                         return -1;
7240
7241                 /* Ensure timestamp value increases monotonically */
7242                 if (l_lro)
7243                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7244                                 return -1;
7245
7246                 /* timestamp echo reply should be non-zero */
7247                 if (*((u32 *)(ptr+6)) == 0) 
7248                         return -1;
7249         }
7250
7251         return 0;
7252 }
7253
7254 static int
7255 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7256                       RxD_t *rxdp, nic_t *sp)
7257 {
7258         struct iphdr *ip;
7259         struct tcphdr *tcph;
7260         int ret = 0, i;
7261
7262         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7263                                          rxdp))) {
7264                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7265                           ip->saddr, ip->daddr);
7266         } else {
7267                 return ret;
7268         }
7269
7270         tcph = (struct tcphdr *)*tcp;
7271         *tcp_len = get_l4_pyld_length(ip, tcph);
7272         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7273                 lro_t *l_lro = &sp->lro0_n[i];
7274                 if (l_lro->in_use) {
7275                         if (check_for_socket_match(l_lro, ip, tcph))
7276                                 continue;
7277                         /* Sock pair matched */
7278                         *lro = l_lro;
7279
7280                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7281                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7282                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7283                                           (*lro)->tcp_next_seq,
7284                                           ntohl(tcph->seq));
7285
7286                                 sp->mac_control.stats_info->
7287                                    sw_stat.outof_sequence_pkts++;
7288                                 ret = 2;
7289                                 break;
7290                         }
7291
7292                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7293                                 ret = 1; /* Aggregate */
7294                         else
7295                                 ret = 2; /* Flush both */
7296                         break;
7297                 }
7298         }
7299
7300         if (ret == 0) {
7301                 /* Before searching for available LRO objects,
7302                  * check if the pkt is L3/L4 aggregatable. If not
7303                  * don't create new LRO session. Just send this
7304                  * packet up.
7305                  */
7306                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7307                         return 5;
7308                 }
7309
7310                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7311                         lro_t *l_lro = &sp->lro0_n[i];
7312                         if (!(l_lro->in_use)) {
7313                                 *lro = l_lro;
7314                                 ret = 3; /* Begin anew */
7315                                 break;
7316                         }
7317                 }
7318         }
7319
7320         if (ret == 0) { /* sessions exceeded */
7321                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7322                           __FUNCTION__);
7323                 *lro = NULL;
7324                 return ret;
7325         }
7326
7327         switch (ret) {
7328                 case 3:
7329                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7330                         break;
7331                 case 2:
7332                         update_L3L4_header(sp, *lro);
7333                         break;
7334                 case 1:
7335                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7336                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7337                                 update_L3L4_header(sp, *lro);
7338                                 ret = 4; /* Flush the LRO */
7339                         }
7340                         break;
7341                 default:
7342                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7343                                 __FUNCTION__);
7344                         break;
7345         }
7346
7347         return ret;
7348 }
7349
7350 static void clear_lro_session(lro_t *lro)
7351 {
7352         static u16 lro_struct_size = sizeof(lro_t);
7353
7354         memset(lro, 0, lro_struct_size);
7355 }
7356
7357 static void queue_rx_frame(struct sk_buff *skb)
7358 {
7359         struct net_device *dev = skb->dev;
7360
7361         skb->protocol = eth_type_trans(skb, dev);
7362 #ifdef CONFIG_S2IO_NAPI
7363         netif_receive_skb(skb);
7364 #else
7365         netif_rx(skb);
7366 #endif
7367 }
7368
7369 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7370                            u32 tcp_len)
7371 {
7372         struct sk_buff *tmp, *first = lro->parent;
7373
7374         first->len += tcp_len;
7375         first->data_len = lro->frags_len;
7376         skb_pull(skb, (skb->len - tcp_len));
7377         if ((tmp = skb_shinfo(first)->frag_list)) {
7378                 while (tmp->next)
7379                         tmp = tmp->next;
7380                 tmp->next = skb;
7381         }
7382         else
7383                 skb_shinfo(first)->frag_list = skb;
7384         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7385         return;
7386 }