2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.13"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION);
72 static const u32 default_msg
73 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
76 static int debug = -1; /* defaults above */
77 module_param(debug, int, 0);
78 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
91 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
94 MODULE_DEVICE_TABLE(pci, skge_id_table);
96 static int skge_up(struct net_device *dev);
97 static int skge_down(struct net_device *dev);
98 static void skge_phy_reset(struct skge_port *skge);
99 static void skge_tx_clean(struct net_device *dev);
100 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
101 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
102 static void genesis_get_stats(struct skge_port *skge, u64 *data);
103 static void yukon_get_stats(struct skge_port *skge, u64 *data);
104 static void yukon_init(struct skge_hw *hw, int port);
105 static void genesis_mac_init(struct skge_hw *hw, int port);
106 static void genesis_link_up(struct skge_port *skge);
108 /* Avoid conditionals by using array */
109 static const int txqaddr[] = { Q_XA1, Q_XA2 };
110 static const int rxqaddr[] = { Q_R1, Q_R2 };
111 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
112 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
113 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
114 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
116 static int skge_get_regs_len(struct net_device *dev)
122 * Returns copy of whole control register region
123 * Note: skip RAM address register because accessing it will
126 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
129 const struct skge_port *skge = netdev_priv(dev);
130 const void __iomem *io = skge->hw->regs;
133 memset(p, 0, regs->len);
134 memcpy_fromio(p, io, B3_RAM_ADDR);
136 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
137 regs->len - B3_RI_WTO_R1);
140 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
141 static u32 wol_supported(const struct skge_hw *hw)
143 if (hw->chip_id == CHIP_ID_GENESIS)
146 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
149 return WAKE_MAGIC | WAKE_PHY;
152 static u32 pci_wake_enabled(struct pci_dev *dev)
154 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
157 /* If device doesn't support PM Capabilities, but request is to disable
158 * wake events, it's a nop; otherwise fail */
162 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
164 value &= PCI_PM_CAP_PME_MASK;
165 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
170 static void skge_wol_init(struct skge_port *skge)
172 struct skge_hw *hw = skge->hw;
173 int port = skge->port;
176 skge_write16(hw, B0_CTST, CS_RST_CLR);
177 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
180 skge_write8(hw, B0_POWER_CTRL,
181 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183 /* WA code for COMA mode -- clear PHY reset */
184 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
185 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
186 u32 reg = skge_read32(hw, B2_GP_IO);
189 skge_write32(hw, B2_GP_IO, reg);
192 skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
195 GPC_ANEG_1 | GPC_RST_SET);
197 skge_write32(hw, SK_REG(port, GPHY_CTRL),
199 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
200 GPC_ANEG_1 | GPC_RST_CLR);
202 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204 /* Force to 10/100 skge_reset will re-enable on resume */
205 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
206 PHY_AN_100FULL | PHY_AN_100HALF |
207 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
209 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
210 gm_phy_write(hw, port, PHY_MARV_CTRL,
211 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
212 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
215 /* Set GMAC to no flow control and auto update for speed/duplex */
216 gma_write16(hw, port, GM_GP_CTRL,
217 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
218 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220 /* Set WOL address */
221 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
222 skge->netdev->dev_addr, ETH_ALEN);
224 /* Turn on appropriate WOL control bits */
225 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227 if (skge->wol & WAKE_PHY)
228 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232 if (skge->wol & WAKE_MAGIC)
233 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
237 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
238 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
241 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
244 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 struct skge_port *skge = netdev_priv(dev);
248 wol->supported = wol_supported(skge->hw);
249 wol->wolopts = skge->wol;
252 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 struct skge_port *skge = netdev_priv(dev);
255 struct skge_hw *hw = skge->hw;
257 if (wol->wolopts & ~wol_supported(hw))
260 skge->wol = wol->wolopts;
264 /* Determine supported/advertised modes based on hardware.
265 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
267 static u32 skge_supported_modes(const struct skge_hw *hw)
272 supported = SUPPORTED_10baseT_Half
273 | SUPPORTED_10baseT_Full
274 | SUPPORTED_100baseT_Half
275 | SUPPORTED_100baseT_Full
276 | SUPPORTED_1000baseT_Half
277 | SUPPORTED_1000baseT_Full
278 | SUPPORTED_Autoneg| SUPPORTED_TP;
280 if (hw->chip_id == CHIP_ID_GENESIS)
281 supported &= ~(SUPPORTED_10baseT_Half
282 | SUPPORTED_10baseT_Full
283 | SUPPORTED_100baseT_Half
284 | SUPPORTED_100baseT_Full);
286 else if (hw->chip_id == CHIP_ID_YUKON)
287 supported &= ~SUPPORTED_1000baseT_Half;
289 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
290 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
295 static int skge_get_settings(struct net_device *dev,
296 struct ethtool_cmd *ecmd)
298 struct skge_port *skge = netdev_priv(dev);
299 struct skge_hw *hw = skge->hw;
301 ecmd->transceiver = XCVR_INTERNAL;
302 ecmd->supported = skge_supported_modes(hw);
305 ecmd->port = PORT_TP;
306 ecmd->phy_address = hw->phy_addr;
308 ecmd->port = PORT_FIBRE;
310 ecmd->advertising = skge->advertising;
311 ecmd->autoneg = skge->autoneg;
312 ecmd->speed = skge->speed;
313 ecmd->duplex = skge->duplex;
317 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
319 struct skge_port *skge = netdev_priv(dev);
320 const struct skge_hw *hw = skge->hw;
321 u32 supported = skge_supported_modes(hw);
324 if (ecmd->autoneg == AUTONEG_ENABLE) {
325 ecmd->advertising = supported;
331 switch (ecmd->speed) {
333 if (ecmd->duplex == DUPLEX_FULL)
334 setting = SUPPORTED_1000baseT_Full;
335 else if (ecmd->duplex == DUPLEX_HALF)
336 setting = SUPPORTED_1000baseT_Half;
341 if (ecmd->duplex == DUPLEX_FULL)
342 setting = SUPPORTED_100baseT_Full;
343 else if (ecmd->duplex == DUPLEX_HALF)
344 setting = SUPPORTED_100baseT_Half;
350 if (ecmd->duplex == DUPLEX_FULL)
351 setting = SUPPORTED_10baseT_Full;
352 else if (ecmd->duplex == DUPLEX_HALF)
353 setting = SUPPORTED_10baseT_Half;
361 if ((setting & supported) == 0)
364 skge->speed = ecmd->speed;
365 skge->duplex = ecmd->duplex;
368 skge->autoneg = ecmd->autoneg;
369 skge->advertising = ecmd->advertising;
371 if (netif_running(dev)) {
383 static void skge_get_drvinfo(struct net_device *dev,
384 struct ethtool_drvinfo *info)
386 struct skge_port *skge = netdev_priv(dev);
388 strcpy(info->driver, DRV_NAME);
389 strcpy(info->version, DRV_VERSION);
390 strcpy(info->fw_version, "N/A");
391 strcpy(info->bus_info, pci_name(skge->hw->pdev));
394 static const struct skge_stat {
395 char name[ETH_GSTRING_LEN];
399 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
400 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
402 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
403 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
404 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
405 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
406 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
407 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
408 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
409 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
411 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
412 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
413 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
414 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
415 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
416 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
418 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
419 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
420 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
421 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
422 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
425 static int skge_get_sset_count(struct net_device *dev, int sset)
429 return ARRAY_SIZE(skge_stats);
435 static void skge_get_ethtool_stats(struct net_device *dev,
436 struct ethtool_stats *stats, u64 *data)
438 struct skge_port *skge = netdev_priv(dev);
440 if (skge->hw->chip_id == CHIP_ID_GENESIS)
441 genesis_get_stats(skge, data);
443 yukon_get_stats(skge, data);
446 /* Use hardware MIB variables for critical path statistics and
447 * transmit feedback not reported at interrupt.
448 * Other errors are accounted for in interrupt handler.
450 static struct net_device_stats *skge_get_stats(struct net_device *dev)
452 struct skge_port *skge = netdev_priv(dev);
453 u64 data[ARRAY_SIZE(skge_stats)];
455 if (skge->hw->chip_id == CHIP_ID_GENESIS)
456 genesis_get_stats(skge, data);
458 yukon_get_stats(skge, data);
460 dev->stats.tx_bytes = data[0];
461 dev->stats.rx_bytes = data[1];
462 dev->stats.tx_packets = data[2] + data[4] + data[6];
463 dev->stats.rx_packets = data[3] + data[5] + data[7];
464 dev->stats.multicast = data[3] + data[5];
465 dev->stats.collisions = data[10];
466 dev->stats.tx_aborted_errors = data[12];
471 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
477 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
478 memcpy(data + i * ETH_GSTRING_LEN,
479 skge_stats[i].name, ETH_GSTRING_LEN);
484 static void skge_get_ring_param(struct net_device *dev,
485 struct ethtool_ringparam *p)
487 struct skge_port *skge = netdev_priv(dev);
489 p->rx_max_pending = MAX_RX_RING_SIZE;
490 p->tx_max_pending = MAX_TX_RING_SIZE;
491 p->rx_mini_max_pending = 0;
492 p->rx_jumbo_max_pending = 0;
494 p->rx_pending = skge->rx_ring.count;
495 p->tx_pending = skge->tx_ring.count;
496 p->rx_mini_pending = 0;
497 p->rx_jumbo_pending = 0;
500 static int skge_set_ring_param(struct net_device *dev,
501 struct ethtool_ringparam *p)
503 struct skge_port *skge = netdev_priv(dev);
506 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
507 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
510 skge->rx_ring.count = p->rx_pending;
511 skge->tx_ring.count = p->tx_pending;
513 if (netif_running(dev)) {
523 static u32 skge_get_msglevel(struct net_device *netdev)
525 struct skge_port *skge = netdev_priv(netdev);
526 return skge->msg_enable;
529 static void skge_set_msglevel(struct net_device *netdev, u32 value)
531 struct skge_port *skge = netdev_priv(netdev);
532 skge->msg_enable = value;
535 static int skge_nway_reset(struct net_device *dev)
537 struct skge_port *skge = netdev_priv(dev);
539 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
542 skge_phy_reset(skge);
546 static int skge_set_sg(struct net_device *dev, u32 data)
548 struct skge_port *skge = netdev_priv(dev);
549 struct skge_hw *hw = skge->hw;
551 if (hw->chip_id == CHIP_ID_GENESIS && data)
553 return ethtool_op_set_sg(dev, data);
556 static int skge_set_tx_csum(struct net_device *dev, u32 data)
558 struct skge_port *skge = netdev_priv(dev);
559 struct skge_hw *hw = skge->hw;
561 if (hw->chip_id == CHIP_ID_GENESIS && data)
564 return ethtool_op_set_tx_csum(dev, data);
567 static u32 skge_get_rx_csum(struct net_device *dev)
569 struct skge_port *skge = netdev_priv(dev);
571 return skge->rx_csum;
574 /* Only Yukon supports checksum offload. */
575 static int skge_set_rx_csum(struct net_device *dev, u32 data)
577 struct skge_port *skge = netdev_priv(dev);
579 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
582 skge->rx_csum = data;
586 static void skge_get_pauseparam(struct net_device *dev,
587 struct ethtool_pauseparam *ecmd)
589 struct skge_port *skge = netdev_priv(dev);
591 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
592 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
593 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
595 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
598 static int skge_set_pauseparam(struct net_device *dev,
599 struct ethtool_pauseparam *ecmd)
601 struct skge_port *skge = netdev_priv(dev);
602 struct ethtool_pauseparam old;
605 skge_get_pauseparam(dev, &old);
607 if (ecmd->autoneg != old.autoneg)
608 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
610 if (ecmd->rx_pause && ecmd->tx_pause)
611 skge->flow_control = FLOW_MODE_SYMMETRIC;
612 else if (ecmd->rx_pause && !ecmd->tx_pause)
613 skge->flow_control = FLOW_MODE_SYM_OR_REM;
614 else if (!ecmd->rx_pause && ecmd->tx_pause)
615 skge->flow_control = FLOW_MODE_LOC_SEND;
617 skge->flow_control = FLOW_MODE_NONE;
620 if (netif_running(dev)) {
632 /* Chip internal frequency for clock calculations */
633 static inline u32 hwkhz(const struct skge_hw *hw)
635 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
638 /* Chip HZ to microseconds */
639 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
641 return (ticks * 1000) / hwkhz(hw);
644 /* Microseconds to chip HZ */
645 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
647 return hwkhz(hw) * usec / 1000;
650 static int skge_get_coalesce(struct net_device *dev,
651 struct ethtool_coalesce *ecmd)
653 struct skge_port *skge = netdev_priv(dev);
654 struct skge_hw *hw = skge->hw;
655 int port = skge->port;
657 ecmd->rx_coalesce_usecs = 0;
658 ecmd->tx_coalesce_usecs = 0;
660 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
661 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
662 u32 msk = skge_read32(hw, B2_IRQM_MSK);
664 if (msk & rxirqmask[port])
665 ecmd->rx_coalesce_usecs = delay;
666 if (msk & txirqmask[port])
667 ecmd->tx_coalesce_usecs = delay;
673 /* Note: interrupt timer is per board, but can turn on/off per port */
674 static int skge_set_coalesce(struct net_device *dev,
675 struct ethtool_coalesce *ecmd)
677 struct skge_port *skge = netdev_priv(dev);
678 struct skge_hw *hw = skge->hw;
679 int port = skge->port;
680 u32 msk = skge_read32(hw, B2_IRQM_MSK);
683 if (ecmd->rx_coalesce_usecs == 0)
684 msk &= ~rxirqmask[port];
685 else if (ecmd->rx_coalesce_usecs < 25 ||
686 ecmd->rx_coalesce_usecs > 33333)
689 msk |= rxirqmask[port];
690 delay = ecmd->rx_coalesce_usecs;
693 if (ecmd->tx_coalesce_usecs == 0)
694 msk &= ~txirqmask[port];
695 else if (ecmd->tx_coalesce_usecs < 25 ||
696 ecmd->tx_coalesce_usecs > 33333)
699 msk |= txirqmask[port];
700 delay = min(delay, ecmd->rx_coalesce_usecs);
703 skge_write32(hw, B2_IRQM_MSK, msk);
705 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
707 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
708 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
713 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
714 static void skge_led(struct skge_port *skge, enum led_mode mode)
716 struct skge_hw *hw = skge->hw;
717 int port = skge->port;
719 spin_lock_bh(&hw->phy_lock);
720 if (hw->chip_id == CHIP_ID_GENESIS) {
723 if (hw->phy_type == SK_PHY_BCOM)
724 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
726 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
727 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
729 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
730 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
731 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
735 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
736 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
738 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
739 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
744 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
745 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
746 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
748 if (hw->phy_type == SK_PHY_BCOM)
749 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
751 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
752 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
753 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
760 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
761 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
762 PHY_M_LED_MO_DUP(MO_LED_OFF) |
763 PHY_M_LED_MO_10(MO_LED_OFF) |
764 PHY_M_LED_MO_100(MO_LED_OFF) |
765 PHY_M_LED_MO_1000(MO_LED_OFF) |
766 PHY_M_LED_MO_RX(MO_LED_OFF));
769 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
770 PHY_M_LED_PULS_DUR(PULS_170MS) |
771 PHY_M_LED_BLINK_RT(BLINK_84MS) |
775 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
776 PHY_M_LED_MO_RX(MO_LED_OFF) |
777 (skge->speed == SPEED_100 ?
778 PHY_M_LED_MO_100(MO_LED_ON) : 0));
781 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
782 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
783 PHY_M_LED_MO_DUP(MO_LED_ON) |
784 PHY_M_LED_MO_10(MO_LED_ON) |
785 PHY_M_LED_MO_100(MO_LED_ON) |
786 PHY_M_LED_MO_1000(MO_LED_ON) |
787 PHY_M_LED_MO_RX(MO_LED_ON));
790 spin_unlock_bh(&hw->phy_lock);
793 /* blink LED's for finding board */
794 static int skge_phys_id(struct net_device *dev, u32 data)
796 struct skge_port *skge = netdev_priv(dev);
798 enum led_mode mode = LED_MODE_TST;
800 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
801 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
806 skge_led(skge, mode);
807 mode ^= LED_MODE_TST;
809 if (msleep_interruptible(BLINK_MS))
814 /* back to regular LED state */
815 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
820 static int skge_get_eeprom_len(struct net_device *dev)
822 struct skge_port *skge = netdev_priv(dev);
825 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2);
826 return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
829 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
833 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
836 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
837 } while (!(offset & PCI_VPD_ADDR_F));
839 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
843 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
845 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
846 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
847 offset | PCI_VPD_ADDR_F);
850 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
851 } while (offset & PCI_VPD_ADDR_F);
854 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
857 struct skge_port *skge = netdev_priv(dev);
858 struct pci_dev *pdev = skge->hw->pdev;
859 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
860 int length = eeprom->len;
861 u16 offset = eeprom->offset;
866 eeprom->magic = SKGE_EEPROM_MAGIC;
869 u32 val = skge_vpd_read(pdev, cap, offset);
870 int n = min_t(int, length, sizeof(val));
872 memcpy(data, &val, n);
880 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
883 struct skge_port *skge = netdev_priv(dev);
884 struct pci_dev *pdev = skge->hw->pdev;
885 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
886 int length = eeprom->len;
887 u16 offset = eeprom->offset;
892 if (eeprom->magic != SKGE_EEPROM_MAGIC)
897 int n = min_t(int, length, sizeof(val));
900 val = skge_vpd_read(pdev, cap, offset);
901 memcpy(&val, data, n);
903 skge_vpd_write(pdev, cap, offset, val);
912 static const struct ethtool_ops skge_ethtool_ops = {
913 .get_settings = skge_get_settings,
914 .set_settings = skge_set_settings,
915 .get_drvinfo = skge_get_drvinfo,
916 .get_regs_len = skge_get_regs_len,
917 .get_regs = skge_get_regs,
918 .get_wol = skge_get_wol,
919 .set_wol = skge_set_wol,
920 .get_msglevel = skge_get_msglevel,
921 .set_msglevel = skge_set_msglevel,
922 .nway_reset = skge_nway_reset,
923 .get_link = ethtool_op_get_link,
924 .get_eeprom_len = skge_get_eeprom_len,
925 .get_eeprom = skge_get_eeprom,
926 .set_eeprom = skge_set_eeprom,
927 .get_ringparam = skge_get_ring_param,
928 .set_ringparam = skge_set_ring_param,
929 .get_pauseparam = skge_get_pauseparam,
930 .set_pauseparam = skge_set_pauseparam,
931 .get_coalesce = skge_get_coalesce,
932 .set_coalesce = skge_set_coalesce,
933 .set_sg = skge_set_sg,
934 .set_tx_csum = skge_set_tx_csum,
935 .get_rx_csum = skge_get_rx_csum,
936 .set_rx_csum = skge_set_rx_csum,
937 .get_strings = skge_get_strings,
938 .phys_id = skge_phys_id,
939 .get_sset_count = skge_get_sset_count,
940 .get_ethtool_stats = skge_get_ethtool_stats,
944 * Allocate ring elements and chain them together
945 * One-to-one association of board descriptors with ring elements
947 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
949 struct skge_tx_desc *d;
950 struct skge_element *e;
953 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
957 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
959 if (i == ring->count - 1) {
960 e->next = ring->start;
961 d->next_offset = base;
964 d->next_offset = base + (i+1) * sizeof(*d);
967 ring->to_use = ring->to_clean = ring->start;
972 /* Allocate and setup a new buffer for receiving */
973 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
974 struct sk_buff *skb, unsigned int bufsize)
976 struct skge_rx_desc *rd = e->desc;
979 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
983 rd->dma_hi = map >> 32;
985 rd->csum1_start = ETH_HLEN;
986 rd->csum2_start = ETH_HLEN;
992 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
993 pci_unmap_addr_set(e, mapaddr, map);
994 pci_unmap_len_set(e, maplen, bufsize);
997 /* Resume receiving using existing skb,
998 * Note: DMA address is not changed by chip.
999 * MTU not changed while receiver active.
1001 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
1003 struct skge_rx_desc *rd = e->desc;
1006 rd->csum2_start = ETH_HLEN;
1010 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
1014 /* Free all buffers in receive ring, assumes receiver stopped */
1015 static void skge_rx_clean(struct skge_port *skge)
1017 struct skge_hw *hw = skge->hw;
1018 struct skge_ring *ring = &skge->rx_ring;
1019 struct skge_element *e;
1023 struct skge_rx_desc *rd = e->desc;
1026 pci_unmap_single(hw->pdev,
1027 pci_unmap_addr(e, mapaddr),
1028 pci_unmap_len(e, maplen),
1029 PCI_DMA_FROMDEVICE);
1030 dev_kfree_skb(e->skb);
1033 } while ((e = e->next) != ring->start);
1037 /* Allocate buffers for receive ring
1038 * For receive: to_clean is next received frame.
1040 static int skge_rx_fill(struct net_device *dev)
1042 struct skge_port *skge = netdev_priv(dev);
1043 struct skge_ring *ring = &skge->rx_ring;
1044 struct skge_element *e;
1048 struct sk_buff *skb;
1050 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1055 skb_reserve(skb, NET_IP_ALIGN);
1056 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1057 } while ( (e = e->next) != ring->start);
1059 ring->to_clean = ring->start;
1063 static const char *skge_pause(enum pause_status status)
1066 case FLOW_STAT_NONE:
1068 case FLOW_STAT_REM_SEND:
1070 case FLOW_STAT_LOC_SEND:
1072 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1075 return "indeterminated";
1080 static void skge_link_up(struct skge_port *skge)
1082 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1083 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1085 netif_carrier_on(skge->netdev);
1086 netif_wake_queue(skge->netdev);
1088 if (netif_msg_link(skge)) {
1089 printk(KERN_INFO PFX
1090 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1091 skge->netdev->name, skge->speed,
1092 skge->duplex == DUPLEX_FULL ? "full" : "half",
1093 skge_pause(skge->flow_status));
1097 static void skge_link_down(struct skge_port *skge)
1099 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1100 netif_carrier_off(skge->netdev);
1101 netif_stop_queue(skge->netdev);
1103 if (netif_msg_link(skge))
1104 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
1108 static void xm_link_down(struct skge_hw *hw, int port)
1110 struct net_device *dev = hw->dev[port];
1111 struct skge_port *skge = netdev_priv(dev);
1113 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1115 if (netif_carrier_ok(dev))
1116 skge_link_down(skge);
1119 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1123 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1124 *val = xm_read16(hw, port, XM_PHY_DATA);
1126 if (hw->phy_type == SK_PHY_XMAC)
1129 for (i = 0; i < PHY_RETRIES; i++) {
1130 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1137 *val = xm_read16(hw, port, XM_PHY_DATA);
1142 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1145 if (__xm_phy_read(hw, port, reg, &v))
1146 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1147 hw->dev[port]->name);
1151 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1155 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1156 for (i = 0; i < PHY_RETRIES; i++) {
1157 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1164 xm_write16(hw, port, XM_PHY_DATA, val);
1165 for (i = 0; i < PHY_RETRIES; i++) {
1166 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1173 static void genesis_init(struct skge_hw *hw)
1175 /* set blink source counter */
1176 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1177 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1179 /* configure mac arbiter */
1180 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1182 /* configure mac arbiter timeout values */
1183 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1184 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1185 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1186 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1188 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1189 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1190 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1191 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1193 /* configure packet arbiter timeout */
1194 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1195 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1196 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1197 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1198 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1201 static void genesis_reset(struct skge_hw *hw, int port)
1203 const u8 zero[8] = { 0 };
1206 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1208 /* reset the statistics module */
1209 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1210 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1211 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1212 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1213 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1215 /* disable Broadcom PHY IRQ */
1216 if (hw->phy_type == SK_PHY_BCOM)
1217 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1219 xm_outhash(hw, port, XM_HSM, zero);
1221 /* Flush TX and RX fifo */
1222 reg = xm_read32(hw, port, XM_MODE);
1223 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1224 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1228 /* Convert mode to MII values */
1229 static const u16 phy_pause_map[] = {
1230 [FLOW_MODE_NONE] = 0,
1231 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1232 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1233 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1236 /* special defines for FIBER (88E1011S only) */
1237 static const u16 fiber_pause_map[] = {
1238 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1239 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1240 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1241 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1245 /* Check status of Broadcom phy link */
1246 static void bcom_check_link(struct skge_hw *hw, int port)
1248 struct net_device *dev = hw->dev[port];
1249 struct skge_port *skge = netdev_priv(dev);
1252 /* read twice because of latch */
1253 xm_phy_read(hw, port, PHY_BCOM_STAT);
1254 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1256 if ((status & PHY_ST_LSYNC) == 0) {
1257 xm_link_down(hw, port);
1261 if (skge->autoneg == AUTONEG_ENABLE) {
1264 if (!(status & PHY_ST_AN_OVER))
1267 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1268 if (lpa & PHY_B_AN_RF) {
1269 printk(KERN_NOTICE PFX "%s: remote fault\n",
1274 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1276 /* Check Duplex mismatch */
1277 switch (aux & PHY_B_AS_AN_RES_MSK) {
1278 case PHY_B_RES_1000FD:
1279 skge->duplex = DUPLEX_FULL;
1281 case PHY_B_RES_1000HD:
1282 skge->duplex = DUPLEX_HALF;
1285 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1290 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1291 switch (aux & PHY_B_AS_PAUSE_MSK) {
1292 case PHY_B_AS_PAUSE_MSK:
1293 skge->flow_status = FLOW_STAT_SYMMETRIC;
1296 skge->flow_status = FLOW_STAT_REM_SEND;
1299 skge->flow_status = FLOW_STAT_LOC_SEND;
1302 skge->flow_status = FLOW_STAT_NONE;
1304 skge->speed = SPEED_1000;
1307 if (!netif_carrier_ok(dev))
1308 genesis_link_up(skge);
1311 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1312 * Phy on for 100 or 10Mbit operation
1314 static void bcom_phy_init(struct skge_port *skge)
1316 struct skge_hw *hw = skge->hw;
1317 int port = skge->port;
1319 u16 id1, r, ext, ctl;
1321 /* magic workaround patterns for Broadcom */
1322 static const struct {
1326 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1327 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1328 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1329 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1331 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1332 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1335 /* read Id from external PHY (all have the same address) */
1336 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1338 /* Optimize MDIO transfer by suppressing preamble. */
1339 r = xm_read16(hw, port, XM_MMU_CMD);
1341 xm_write16(hw, port, XM_MMU_CMD,r);
1344 case PHY_BCOM_ID1_C0:
1346 * Workaround BCOM Errata for the C0 type.
1347 * Write magic patterns to reserved registers.
1349 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1350 xm_phy_write(hw, port,
1351 C0hack[i].reg, C0hack[i].val);
1354 case PHY_BCOM_ID1_A1:
1356 * Workaround BCOM Errata for the A1 type.
1357 * Write magic patterns to reserved registers.
1359 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1360 xm_phy_write(hw, port,
1361 A1hack[i].reg, A1hack[i].val);
1366 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1367 * Disable Power Management after reset.
1369 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1370 r |= PHY_B_AC_DIS_PM;
1371 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1374 xm_read16(hw, port, XM_ISRC);
1376 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1377 ctl = PHY_CT_SP1000; /* always 1000mbit */
1379 if (skge->autoneg == AUTONEG_ENABLE) {
1381 * Workaround BCOM Errata #1 for the C5 type.
1382 * 1000Base-T Link Acquisition Failure in Slave Mode
1383 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1385 u16 adv = PHY_B_1000C_RD;
1386 if (skge->advertising & ADVERTISED_1000baseT_Half)
1387 adv |= PHY_B_1000C_AHD;
1388 if (skge->advertising & ADVERTISED_1000baseT_Full)
1389 adv |= PHY_B_1000C_AFD;
1390 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1392 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1394 if (skge->duplex == DUPLEX_FULL)
1395 ctl |= PHY_CT_DUP_MD;
1396 /* Force to slave */
1397 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1400 /* Set autonegotiation pause parameters */
1401 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1402 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1404 /* Handle Jumbo frames */
1405 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1406 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1407 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1409 ext |= PHY_B_PEC_HIGH_LA;
1413 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1414 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1416 /* Use link status change interrupt */
1417 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1420 static void xm_phy_init(struct skge_port *skge)
1422 struct skge_hw *hw = skge->hw;
1423 int port = skge->port;
1426 if (skge->autoneg == AUTONEG_ENABLE) {
1427 if (skge->advertising & ADVERTISED_1000baseT_Half)
1428 ctrl |= PHY_X_AN_HD;
1429 if (skge->advertising & ADVERTISED_1000baseT_Full)
1430 ctrl |= PHY_X_AN_FD;
1432 ctrl |= fiber_pause_map[skge->flow_control];
1434 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1436 /* Restart Auto-negotiation */
1437 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1439 /* Set DuplexMode in Config register */
1440 if (skge->duplex == DUPLEX_FULL)
1441 ctrl |= PHY_CT_DUP_MD;
1443 * Do NOT enable Auto-negotiation here. This would hold
1444 * the link down because no IDLEs are transmitted
1448 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1450 /* Poll PHY for status changes */
1451 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1454 static int xm_check_link(struct net_device *dev)
1456 struct skge_port *skge = netdev_priv(dev);
1457 struct skge_hw *hw = skge->hw;
1458 int port = skge->port;
1461 /* read twice because of latch */
1462 xm_phy_read(hw, port, PHY_XMAC_STAT);
1463 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1465 if ((status & PHY_ST_LSYNC) == 0) {
1466 xm_link_down(hw, port);
1470 if (skge->autoneg == AUTONEG_ENABLE) {
1473 if (!(status & PHY_ST_AN_OVER))
1476 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1477 if (lpa & PHY_B_AN_RF) {
1478 printk(KERN_NOTICE PFX "%s: remote fault\n",
1483 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1485 /* Check Duplex mismatch */
1486 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1488 skge->duplex = DUPLEX_FULL;
1491 skge->duplex = DUPLEX_HALF;
1494 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1499 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1500 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1501 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1502 (lpa & PHY_X_P_SYM_MD))
1503 skge->flow_status = FLOW_STAT_SYMMETRIC;
1504 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1505 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1506 /* Enable PAUSE receive, disable PAUSE transmit */
1507 skge->flow_status = FLOW_STAT_REM_SEND;
1508 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1509 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1510 /* Disable PAUSE receive, enable PAUSE transmit */
1511 skge->flow_status = FLOW_STAT_LOC_SEND;
1513 skge->flow_status = FLOW_STAT_NONE;
1515 skge->speed = SPEED_1000;
1518 if (!netif_carrier_ok(dev))
1519 genesis_link_up(skge);
1523 /* Poll to check for link coming up.
1525 * Since internal PHY is wired to a level triggered pin, can't
1526 * get an interrupt when carrier is detected, need to poll for
1529 static void xm_link_timer(unsigned long arg)
1531 struct skge_port *skge = (struct skge_port *) arg;
1532 struct net_device *dev = skge->netdev;
1533 struct skge_hw *hw = skge->hw;
1534 int port = skge->port;
1536 unsigned long flags;
1538 if (!netif_running(dev))
1541 spin_lock_irqsave(&hw->phy_lock, flags);
1544 * Verify that the link by checking GPIO register three times.
1545 * This pin has the signal from the link_sync pin connected to it.
1547 for (i = 0; i < 3; i++) {
1548 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1552 /* Re-enable interrupt to detect link down */
1553 if (xm_check_link(dev)) {
1554 u16 msk = xm_read16(hw, port, XM_IMSK);
1555 msk &= ~XM_IS_INP_ASS;
1556 xm_write16(hw, port, XM_IMSK, msk);
1557 xm_read16(hw, port, XM_ISRC);
1560 mod_timer(&skge->link_timer,
1561 round_jiffies(jiffies + LINK_HZ));
1563 spin_unlock_irqrestore(&hw->phy_lock, flags);
1566 static void genesis_mac_init(struct skge_hw *hw, int port)
1568 struct net_device *dev = hw->dev[port];
1569 struct skge_port *skge = netdev_priv(dev);
1570 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1573 const u8 zero[6] = { 0 };
1575 for (i = 0; i < 10; i++) {
1576 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1578 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1583 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1586 /* Unreset the XMAC. */
1587 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1590 * Perform additional initialization for external PHYs,
1591 * namely for the 1000baseTX cards that use the XMAC's
1594 if (hw->phy_type != SK_PHY_XMAC) {
1595 /* Take external Phy out of reset */
1596 r = skge_read32(hw, B2_GP_IO);
1598 r |= GP_DIR_0|GP_IO_0;
1600 r |= GP_DIR_2|GP_IO_2;
1602 skge_write32(hw, B2_GP_IO, r);
1604 /* Enable GMII interface */
1605 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1609 switch(hw->phy_type) {
1614 bcom_phy_init(skge);
1615 bcom_check_link(hw, port);
1618 /* Set Station Address */
1619 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1621 /* We don't use match addresses so clear */
1622 for (i = 1; i < 16; i++)
1623 xm_outaddr(hw, port, XM_EXM(i), zero);
1625 /* Clear MIB counters */
1626 xm_write16(hw, port, XM_STAT_CMD,
1627 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1628 /* Clear two times according to Errata #3 */
1629 xm_write16(hw, port, XM_STAT_CMD,
1630 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1632 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1633 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1635 /* We don't need the FCS appended to the packet. */
1636 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1638 r |= XM_RX_BIG_PK_OK;
1640 if (skge->duplex == DUPLEX_HALF) {
1642 * If in manual half duplex mode the other side might be in
1643 * full duplex mode, so ignore if a carrier extension is not seen
1644 * on frames received
1646 r |= XM_RX_DIS_CEXT;
1648 xm_write16(hw, port, XM_RX_CMD, r);
1650 /* We want short frames padded to 60 bytes. */
1651 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1653 /* Increase threshold for jumbo frames on dual port */
1654 if (hw->ports > 1 && jumbo)
1655 xm_write16(hw, port, XM_TX_THR, 1020);
1657 xm_write16(hw, port, XM_TX_THR, 512);
1660 * Enable the reception of all error frames. This is is
1661 * a necessary evil due to the design of the XMAC. The
1662 * XMAC's receive FIFO is only 8K in size, however jumbo
1663 * frames can be up to 9000 bytes in length. When bad
1664 * frame filtering is enabled, the XMAC's RX FIFO operates
1665 * in 'store and forward' mode. For this to work, the
1666 * entire frame has to fit into the FIFO, but that means
1667 * that jumbo frames larger than 8192 bytes will be
1668 * truncated. Disabling all bad frame filtering causes
1669 * the RX FIFO to operate in streaming mode, in which
1670 * case the XMAC will start transferring frames out of the
1671 * RX FIFO as soon as the FIFO threshold is reached.
1673 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1677 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1678 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1679 * and 'Octets Rx OK Hi Cnt Ov'.
1681 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1684 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1685 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1686 * and 'Octets Tx OK Hi Cnt Ov'.
1688 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1690 /* Configure MAC arbiter */
1691 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1693 /* configure timeout values */
1694 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1695 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1696 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1697 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1699 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1700 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1701 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1702 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1704 /* Configure Rx MAC FIFO */
1705 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1706 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1707 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1709 /* Configure Tx MAC FIFO */
1710 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1711 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1712 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1715 /* Enable frame flushing if jumbo frames used */
1716 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1718 /* enable timeout timers if normal frames */
1719 skge_write16(hw, B3_PA_CTRL,
1720 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1724 static void genesis_stop(struct skge_port *skge)
1726 struct skge_hw *hw = skge->hw;
1727 int port = skge->port;
1728 unsigned retries = 1000;
1731 /* Disable Tx and Rx */
1732 cmd = xm_read16(hw, port, XM_MMU_CMD);
1733 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1734 xm_write16(hw, port, XM_MMU_CMD, cmd);
1736 genesis_reset(hw, port);
1738 /* Clear Tx packet arbiter timeout IRQ */
1739 skge_write16(hw, B3_PA_CTRL,
1740 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1743 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1745 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1746 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1748 } while (--retries > 0);
1750 /* For external PHYs there must be special handling */
1751 if (hw->phy_type != SK_PHY_XMAC) {
1752 u32 reg = skge_read32(hw, B2_GP_IO);
1760 skge_write32(hw, B2_GP_IO, reg);
1761 skge_read32(hw, B2_GP_IO);
1764 xm_write16(hw, port, XM_MMU_CMD,
1765 xm_read16(hw, port, XM_MMU_CMD)
1766 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1768 xm_read16(hw, port, XM_MMU_CMD);
1772 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1774 struct skge_hw *hw = skge->hw;
1775 int port = skge->port;
1777 unsigned long timeout = jiffies + HZ;
1779 xm_write16(hw, port,
1780 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1782 /* wait for update to complete */
1783 while (xm_read16(hw, port, XM_STAT_CMD)
1784 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1785 if (time_after(jiffies, timeout))
1790 /* special case for 64 bit octet counter */
1791 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1792 | xm_read32(hw, port, XM_TXO_OK_LO);
1793 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1794 | xm_read32(hw, port, XM_RXO_OK_LO);
1796 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1797 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1800 static void genesis_mac_intr(struct skge_hw *hw, int port)
1802 struct net_device *dev = hw->dev[port];
1803 struct skge_port *skge = netdev_priv(dev);
1804 u16 status = xm_read16(hw, port, XM_ISRC);
1806 if (netif_msg_intr(skge))
1807 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1810 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1811 xm_link_down(hw, port);
1812 mod_timer(&skge->link_timer, jiffies + 1);
1815 if (status & XM_IS_TXF_UR) {
1816 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1817 ++dev->stats.tx_fifo_errors;
1821 static void genesis_link_up(struct skge_port *skge)
1823 struct skge_hw *hw = skge->hw;
1824 int port = skge->port;
1828 cmd = xm_read16(hw, port, XM_MMU_CMD);
1831 * enabling pause frame reception is required for 1000BT
1832 * because the XMAC is not reset if the link is going down
1834 if (skge->flow_status == FLOW_STAT_NONE ||
1835 skge->flow_status == FLOW_STAT_LOC_SEND)
1836 /* Disable Pause Frame Reception */
1837 cmd |= XM_MMU_IGN_PF;
1839 /* Enable Pause Frame Reception */
1840 cmd &= ~XM_MMU_IGN_PF;
1842 xm_write16(hw, port, XM_MMU_CMD, cmd);
1844 mode = xm_read32(hw, port, XM_MODE);
1845 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1846 skge->flow_status == FLOW_STAT_LOC_SEND) {
1848 * Configure Pause Frame Generation
1849 * Use internal and external Pause Frame Generation.
1850 * Sending pause frames is edge triggered.
1851 * Send a Pause frame with the maximum pause time if
1852 * internal oder external FIFO full condition occurs.
1853 * Send a zero pause time frame to re-start transmission.
1855 /* XM_PAUSE_DA = '010000C28001' (default) */
1856 /* XM_MAC_PTIME = 0xffff (maximum) */
1857 /* remember this value is defined in big endian (!) */
1858 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1860 mode |= XM_PAUSE_MODE;
1861 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1864 * disable pause frame generation is required for 1000BT
1865 * because the XMAC is not reset if the link is going down
1867 /* Disable Pause Mode in Mode Register */
1868 mode &= ~XM_PAUSE_MODE;
1870 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1873 xm_write32(hw, port, XM_MODE, mode);
1875 /* Turn on detection of Tx underrun */
1876 msk = xm_read16(hw, port, XM_IMSK);
1877 msk &= ~XM_IS_TXF_UR;
1878 xm_write16(hw, port, XM_IMSK, msk);
1880 xm_read16(hw, port, XM_ISRC);
1882 /* get MMU Command Reg. */
1883 cmd = xm_read16(hw, port, XM_MMU_CMD);
1884 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1885 cmd |= XM_MMU_GMII_FD;
1888 * Workaround BCOM Errata (#10523) for all BCom Phys
1889 * Enable Power Management after link up
1891 if (hw->phy_type == SK_PHY_BCOM) {
1892 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1893 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1894 & ~PHY_B_AC_DIS_PM);
1895 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1899 xm_write16(hw, port, XM_MMU_CMD,
1900 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1905 static inline void bcom_phy_intr(struct skge_port *skge)
1907 struct skge_hw *hw = skge->hw;
1908 int port = skge->port;
1911 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1912 if (netif_msg_intr(skge))
1913 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1914 skge->netdev->name, isrc);
1916 if (isrc & PHY_B_IS_PSE)
1917 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1918 hw->dev[port]->name);
1920 /* Workaround BCom Errata:
1921 * enable and disable loopback mode if "NO HCD" occurs.
1923 if (isrc & PHY_B_IS_NO_HDCL) {
1924 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1925 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1926 ctrl | PHY_CT_LOOP);
1927 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1928 ctrl & ~PHY_CT_LOOP);
1931 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1932 bcom_check_link(hw, port);
1936 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1940 gma_write16(hw, port, GM_SMI_DATA, val);
1941 gma_write16(hw, port, GM_SMI_CTRL,
1942 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1943 for (i = 0; i < PHY_RETRIES; i++) {
1946 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1950 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1951 hw->dev[port]->name);
1955 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1959 gma_write16(hw, port, GM_SMI_CTRL,
1960 GM_SMI_CT_PHY_AD(hw->phy_addr)
1961 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1963 for (i = 0; i < PHY_RETRIES; i++) {
1965 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1971 *val = gma_read16(hw, port, GM_SMI_DATA);
1975 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1978 if (__gm_phy_read(hw, port, reg, &v))
1979 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1980 hw->dev[port]->name);
1984 /* Marvell Phy Initialization */
1985 static void yukon_init(struct skge_hw *hw, int port)
1987 struct skge_port *skge = netdev_priv(hw->dev[port]);
1988 u16 ctrl, ct1000, adv;
1990 if (skge->autoneg == AUTONEG_ENABLE) {
1991 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1993 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1994 PHY_M_EC_MAC_S_MSK);
1995 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1997 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1999 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
2002 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2003 if (skge->autoneg == AUTONEG_DISABLE)
2004 ctrl &= ~PHY_CT_ANE;
2006 ctrl |= PHY_CT_RESET;
2007 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2013 if (skge->autoneg == AUTONEG_ENABLE) {
2015 if (skge->advertising & ADVERTISED_1000baseT_Full)
2016 ct1000 |= PHY_M_1000C_AFD;
2017 if (skge->advertising & ADVERTISED_1000baseT_Half)
2018 ct1000 |= PHY_M_1000C_AHD;
2019 if (skge->advertising & ADVERTISED_100baseT_Full)
2020 adv |= PHY_M_AN_100_FD;
2021 if (skge->advertising & ADVERTISED_100baseT_Half)
2022 adv |= PHY_M_AN_100_HD;
2023 if (skge->advertising & ADVERTISED_10baseT_Full)
2024 adv |= PHY_M_AN_10_FD;
2025 if (skge->advertising & ADVERTISED_10baseT_Half)
2026 adv |= PHY_M_AN_10_HD;
2028 /* Set Flow-control capabilities */
2029 adv |= phy_pause_map[skge->flow_control];
2031 if (skge->advertising & ADVERTISED_1000baseT_Full)
2032 adv |= PHY_M_AN_1000X_AFD;
2033 if (skge->advertising & ADVERTISED_1000baseT_Half)
2034 adv |= PHY_M_AN_1000X_AHD;
2036 adv |= fiber_pause_map[skge->flow_control];
2039 /* Restart Auto-negotiation */
2040 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2042 /* forced speed/duplex settings */
2043 ct1000 = PHY_M_1000C_MSE;
2045 if (skge->duplex == DUPLEX_FULL)
2046 ctrl |= PHY_CT_DUP_MD;
2048 switch (skge->speed) {
2050 ctrl |= PHY_CT_SP1000;
2053 ctrl |= PHY_CT_SP100;
2057 ctrl |= PHY_CT_RESET;
2060 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2062 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2063 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2065 /* Enable phy interrupt on autonegotiation complete (or link up) */
2066 if (skge->autoneg == AUTONEG_ENABLE)
2067 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2069 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2072 static void yukon_reset(struct skge_hw *hw, int port)
2074 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2075 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2076 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2077 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2078 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2080 gma_write16(hw, port, GM_RX_CTRL,
2081 gma_read16(hw, port, GM_RX_CTRL)
2082 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2085 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2086 static int is_yukon_lite_a0(struct skge_hw *hw)
2091 if (hw->chip_id != CHIP_ID_YUKON)
2094 reg = skge_read32(hw, B2_FAR);
2095 skge_write8(hw, B2_FAR + 3, 0xff);
2096 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2097 skge_write32(hw, B2_FAR, reg);
2101 static void yukon_mac_init(struct skge_hw *hw, int port)
2103 struct skge_port *skge = netdev_priv(hw->dev[port]);
2106 const u8 *addr = hw->dev[port]->dev_addr;
2108 /* WA code for COMA mode -- set PHY reset */
2109 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2110 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2111 reg = skge_read32(hw, B2_GP_IO);
2112 reg |= GP_DIR_9 | GP_IO_9;
2113 skge_write32(hw, B2_GP_IO, reg);
2117 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2118 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2120 /* WA code for COMA mode -- clear PHY reset */
2121 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2122 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2123 reg = skge_read32(hw, B2_GP_IO);
2126 skge_write32(hw, B2_GP_IO, reg);
2129 /* Set hardware config mode */
2130 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2131 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2132 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2134 /* Clear GMC reset */
2135 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2136 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2137 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2139 if (skge->autoneg == AUTONEG_DISABLE) {
2140 reg = GM_GPCR_AU_ALL_DIS;
2141 gma_write16(hw, port, GM_GP_CTRL,
2142 gma_read16(hw, port, GM_GP_CTRL) | reg);
2144 switch (skge->speed) {
2146 reg &= ~GM_GPCR_SPEED_100;
2147 reg |= GM_GPCR_SPEED_1000;
2150 reg &= ~GM_GPCR_SPEED_1000;
2151 reg |= GM_GPCR_SPEED_100;
2154 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2158 if (skge->duplex == DUPLEX_FULL)
2159 reg |= GM_GPCR_DUP_FULL;
2161 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2163 switch (skge->flow_control) {
2164 case FLOW_MODE_NONE:
2165 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2166 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2168 case FLOW_MODE_LOC_SEND:
2169 /* disable Rx flow-control */
2170 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2172 case FLOW_MODE_SYMMETRIC:
2173 case FLOW_MODE_SYM_OR_REM:
2174 /* enable Tx & Rx flow-control */
2178 gma_write16(hw, port, GM_GP_CTRL, reg);
2179 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2181 yukon_init(hw, port);
2184 reg = gma_read16(hw, port, GM_PHY_ADDR);
2185 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2187 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2188 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2189 gma_write16(hw, port, GM_PHY_ADDR, reg);
2191 /* transmit control */
2192 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2194 /* receive control reg: unicast + multicast + no FCS */
2195 gma_write16(hw, port, GM_RX_CTRL,
2196 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2198 /* transmit flow control */
2199 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2201 /* transmit parameter */
2202 gma_write16(hw, port, GM_TX_PARAM,
2203 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2204 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2205 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2207 /* configure the Serial Mode Register */
2208 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2210 | IPG_DATA_VAL(IPG_DATA_DEF);
2212 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2213 reg |= GM_SMOD_JUMBO_ENA;
2215 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2217 /* physical address: used for pause frames */
2218 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2219 /* virtual address for data */
2220 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2222 /* enable interrupt mask for counter overflows */
2223 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2224 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2225 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2227 /* Initialize Mac Fifo */
2229 /* Configure Rx MAC FIFO */
2230 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2231 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2233 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2234 if (is_yukon_lite_a0(hw))
2235 reg &= ~GMF_RX_F_FL_ON;
2237 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2238 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2240 * because Pause Packet Truncation in GMAC is not working
2241 * we have to increase the Flush Threshold to 64 bytes
2242 * in order to flush pause packets in Rx FIFO on Yukon-1
2244 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2246 /* Configure Tx MAC FIFO */
2247 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2248 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2251 /* Go into power down mode */
2252 static void yukon_suspend(struct skge_hw *hw, int port)
2256 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2257 ctrl |= PHY_M_PC_POL_R_DIS;
2258 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2260 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2261 ctrl |= PHY_CT_RESET;
2262 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2264 /* switch IEEE compatible power down mode on */
2265 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2266 ctrl |= PHY_CT_PDOWN;
2267 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2270 static void yukon_stop(struct skge_port *skge)
2272 struct skge_hw *hw = skge->hw;
2273 int port = skge->port;
2275 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2276 yukon_reset(hw, port);
2278 gma_write16(hw, port, GM_GP_CTRL,
2279 gma_read16(hw, port, GM_GP_CTRL)
2280 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2281 gma_read16(hw, port, GM_GP_CTRL);
2283 yukon_suspend(hw, port);
2285 /* set GPHY Control reset */
2286 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2287 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2290 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2292 struct skge_hw *hw = skge->hw;
2293 int port = skge->port;
2296 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2297 | gma_read32(hw, port, GM_TXO_OK_LO);
2298 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2299 | gma_read32(hw, port, GM_RXO_OK_LO);
2301 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2302 data[i] = gma_read32(hw, port,
2303 skge_stats[i].gma_offset);
2306 static void yukon_mac_intr(struct skge_hw *hw, int port)
2308 struct net_device *dev = hw->dev[port];
2309 struct skge_port *skge = netdev_priv(dev);
2310 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2312 if (netif_msg_intr(skge))
2313 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2316 if (status & GM_IS_RX_FF_OR) {
2317 ++dev->stats.rx_fifo_errors;
2318 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2321 if (status & GM_IS_TX_FF_UR) {
2322 ++dev->stats.tx_fifo_errors;
2323 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2328 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2330 switch (aux & PHY_M_PS_SPEED_MSK) {
2331 case PHY_M_PS_SPEED_1000:
2333 case PHY_M_PS_SPEED_100:
2340 static void yukon_link_up(struct skge_port *skge)
2342 struct skge_hw *hw = skge->hw;
2343 int port = skge->port;
2346 /* Enable Transmit FIFO Underrun */
2347 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2349 reg = gma_read16(hw, port, GM_GP_CTRL);
2350 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2351 reg |= GM_GPCR_DUP_FULL;
2354 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2355 gma_write16(hw, port, GM_GP_CTRL, reg);
2357 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2361 static void yukon_link_down(struct skge_port *skge)
2363 struct skge_hw *hw = skge->hw;
2364 int port = skge->port;
2367 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2368 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2369 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2371 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2372 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2373 ctrl |= PHY_M_AN_ASP;
2374 /* restore Asymmetric Pause bit */
2375 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2378 skge_link_down(skge);
2380 yukon_init(hw, port);
2383 static void yukon_phy_intr(struct skge_port *skge)
2385 struct skge_hw *hw = skge->hw;
2386 int port = skge->port;
2387 const char *reason = NULL;
2388 u16 istatus, phystat;
2390 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2391 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2393 if (netif_msg_intr(skge))
2394 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2395 skge->netdev->name, istatus, phystat);
2397 if (istatus & PHY_M_IS_AN_COMPL) {
2398 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2400 reason = "remote fault";
2404 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2405 reason = "master/slave fault";
2409 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2410 reason = "speed/duplex";
2414 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2415 ? DUPLEX_FULL : DUPLEX_HALF;
2416 skge->speed = yukon_speed(hw, phystat);
2418 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2419 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2420 case PHY_M_PS_PAUSE_MSK:
2421 skge->flow_status = FLOW_STAT_SYMMETRIC;
2423 case PHY_M_PS_RX_P_EN:
2424 skge->flow_status = FLOW_STAT_REM_SEND;
2426 case PHY_M_PS_TX_P_EN:
2427 skge->flow_status = FLOW_STAT_LOC_SEND;
2430 skge->flow_status = FLOW_STAT_NONE;
2433 if (skge->flow_status == FLOW_STAT_NONE ||
2434 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2435 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2437 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2438 yukon_link_up(skge);
2442 if (istatus & PHY_M_IS_LSP_CHANGE)
2443 skge->speed = yukon_speed(hw, phystat);
2445 if (istatus & PHY_M_IS_DUP_CHANGE)
2446 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2447 if (istatus & PHY_M_IS_LST_CHANGE) {
2448 if (phystat & PHY_M_PS_LINK_UP)
2449 yukon_link_up(skge);
2451 yukon_link_down(skge);
2455 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2456 skge->netdev->name, reason);
2458 /* XXX restart autonegotiation? */
2461 static void skge_phy_reset(struct skge_port *skge)
2463 struct skge_hw *hw = skge->hw;
2464 int port = skge->port;
2465 struct net_device *dev = hw->dev[port];
2467 netif_stop_queue(skge->netdev);
2468 netif_carrier_off(skge->netdev);
2470 spin_lock_bh(&hw->phy_lock);
2471 if (hw->chip_id == CHIP_ID_GENESIS) {
2472 genesis_reset(hw, port);
2473 genesis_mac_init(hw, port);
2475 yukon_reset(hw, port);
2476 yukon_init(hw, port);
2478 spin_unlock_bh(&hw->phy_lock);
2480 dev->set_multicast_list(dev);
2483 /* Basic MII support */
2484 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2486 struct mii_ioctl_data *data = if_mii(ifr);
2487 struct skge_port *skge = netdev_priv(dev);
2488 struct skge_hw *hw = skge->hw;
2489 int err = -EOPNOTSUPP;
2491 if (!netif_running(dev))
2492 return -ENODEV; /* Phy still in reset */
2496 data->phy_id = hw->phy_addr;
2501 spin_lock_bh(&hw->phy_lock);
2502 if (hw->chip_id == CHIP_ID_GENESIS)
2503 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2505 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2506 spin_unlock_bh(&hw->phy_lock);
2507 data->val_out = val;
2512 if (!capable(CAP_NET_ADMIN))
2515 spin_lock_bh(&hw->phy_lock);
2516 if (hw->chip_id == CHIP_ID_GENESIS)
2517 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2520 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2522 spin_unlock_bh(&hw->phy_lock);
2528 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2534 end = start + len - 1;
2536 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2537 skge_write32(hw, RB_ADDR(q, RB_START), start);
2538 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2539 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2540 skge_write32(hw, RB_ADDR(q, RB_END), end);
2542 if (q == Q_R1 || q == Q_R2) {
2543 /* Set thresholds on receive queue's */
2544 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2546 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2549 /* Enable store & forward on Tx queue's because
2550 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2552 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2555 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2558 /* Setup Bus Memory Interface */
2559 static void skge_qset(struct skge_port *skge, u16 q,
2560 const struct skge_element *e)
2562 struct skge_hw *hw = skge->hw;
2563 u32 watermark = 0x600;
2564 u64 base = skge->dma + (e->desc - skge->mem);
2566 /* optimization to reduce window on 32bit/33mhz */
2567 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2570 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2571 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2572 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2573 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2576 static int skge_up(struct net_device *dev)
2578 struct skge_port *skge = netdev_priv(dev);
2579 struct skge_hw *hw = skge->hw;
2580 int port = skge->port;
2581 u32 chunk, ram_addr;
2582 size_t rx_size, tx_size;
2585 if (!is_valid_ether_addr(dev->dev_addr))
2588 if (netif_msg_ifup(skge))
2589 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2591 if (dev->mtu > RX_BUF_SIZE)
2592 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2594 skge->rx_buf_size = RX_BUF_SIZE;
2597 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2598 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2599 skge->mem_size = tx_size + rx_size;
2600 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2604 BUG_ON(skge->dma & 7);
2606 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2607 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2612 memset(skge->mem, 0, skge->mem_size);
2614 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2618 err = skge_rx_fill(dev);
2622 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2623 skge->dma + rx_size);
2627 /* Initialize MAC */
2628 spin_lock_bh(&hw->phy_lock);
2629 if (hw->chip_id == CHIP_ID_GENESIS)
2630 genesis_mac_init(hw, port);
2632 yukon_mac_init(hw, port);
2633 spin_unlock_bh(&hw->phy_lock);
2635 /* Configure RAMbuffers - equally between ports and tx/rx */
2636 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2637 ram_addr = hw->ram_offset + 2 * chunk * port;
2639 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2640 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2642 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2643 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2644 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2646 /* Start receiver BMU */
2648 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2649 skge_led(skge, LED_MODE_ON);
2651 spin_lock_irq(&hw->hw_lock);
2652 hw->intr_mask |= portmask[port];
2653 skge_write32(hw, B0_IMSK, hw->intr_mask);
2654 spin_unlock_irq(&hw->hw_lock);
2656 napi_enable(&skge->napi);
2660 skge_rx_clean(skge);
2661 kfree(skge->rx_ring.start);
2663 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2670 static void skge_rx_stop(struct skge_hw *hw, int port)
2672 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2673 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2674 RB_RST_SET|RB_DIS_OP_MD);
2675 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2678 static int skge_down(struct net_device *dev)
2680 struct skge_port *skge = netdev_priv(dev);
2681 struct skge_hw *hw = skge->hw;
2682 int port = skge->port;
2684 if (skge->mem == NULL)
2687 if (netif_msg_ifdown(skge))
2688 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2690 netif_stop_queue(dev);
2692 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2693 del_timer_sync(&skge->link_timer);
2695 napi_disable(&skge->napi);
2696 netif_carrier_off(dev);
2698 spin_lock_irq(&hw->hw_lock);
2699 hw->intr_mask &= ~portmask[port];
2700 skge_write32(hw, B0_IMSK, hw->intr_mask);
2701 spin_unlock_irq(&hw->hw_lock);
2703 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2704 if (hw->chip_id == CHIP_ID_GENESIS)
2709 /* Stop transmitter */
2710 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2711 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2712 RB_RST_SET|RB_DIS_OP_MD);
2715 /* Disable Force Sync bit and Enable Alloc bit */
2716 skge_write8(hw, SK_REG(port, TXA_CTRL),
2717 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2719 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2720 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2721 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2723 /* Reset PCI FIFO */
2724 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2725 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2727 /* Reset the RAM Buffer async Tx queue */
2728 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2730 skge_rx_stop(hw, port);
2732 if (hw->chip_id == CHIP_ID_GENESIS) {
2733 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2734 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2736 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2737 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2740 skge_led(skge, LED_MODE_OFF);
2742 netif_tx_lock_bh(dev);
2744 netif_tx_unlock_bh(dev);
2746 skge_rx_clean(skge);
2748 kfree(skge->rx_ring.start);
2749 kfree(skge->tx_ring.start);
2750 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2755 static inline int skge_avail(const struct skge_ring *ring)
2758 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2759 + (ring->to_clean - ring->to_use) - 1;
2762 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2764 struct skge_port *skge = netdev_priv(dev);
2765 struct skge_hw *hw = skge->hw;
2766 struct skge_element *e;
2767 struct skge_tx_desc *td;
2772 if (skb_padto(skb, ETH_ZLEN))
2773 return NETDEV_TX_OK;
2775 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2776 return NETDEV_TX_BUSY;
2778 e = skge->tx_ring.to_use;
2780 BUG_ON(td->control & BMU_OWN);
2782 len = skb_headlen(skb);
2783 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2784 pci_unmap_addr_set(e, mapaddr, map);
2785 pci_unmap_len_set(e, maplen, len);
2788 td->dma_hi = map >> 32;
2790 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2791 const int offset = skb_transport_offset(skb);
2793 /* This seems backwards, but it is what the sk98lin
2794 * does. Looks like hardware is wrong?
2796 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2797 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2798 control = BMU_TCP_CHECK;
2800 control = BMU_UDP_CHECK;
2803 td->csum_start = offset;
2804 td->csum_write = offset + skb->csum_offset;
2806 control = BMU_CHECK;
2808 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2809 control |= BMU_EOF| BMU_IRQ_EOF;
2811 struct skge_tx_desc *tf = td;
2813 control |= BMU_STFWD;
2814 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2815 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2817 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2818 frag->size, PCI_DMA_TODEVICE);
2823 BUG_ON(tf->control & BMU_OWN);
2826 tf->dma_hi = (u64) map >> 32;
2827 pci_unmap_addr_set(e, mapaddr, map);
2828 pci_unmap_len_set(e, maplen, frag->size);
2830 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2832 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2834 /* Make sure all the descriptors written */
2836 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2839 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2841 if (unlikely(netif_msg_tx_queued(skge)))
2842 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2843 dev->name, e - skge->tx_ring.start, skb->len);
2845 skge->tx_ring.to_use = e->next;
2848 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2849 pr_debug("%s: transmit queue full\n", dev->name);
2850 netif_stop_queue(dev);
2853 dev->trans_start = jiffies;
2855 return NETDEV_TX_OK;
2859 /* Free resources associated with this reing element */
2860 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2863 struct pci_dev *pdev = skge->hw->pdev;
2865 /* skb header vs. fragment */
2866 if (control & BMU_STF)
2867 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2868 pci_unmap_len(e, maplen),
2871 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2872 pci_unmap_len(e, maplen),
2875 if (control & BMU_EOF) {
2876 if (unlikely(netif_msg_tx_done(skge)))
2877 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2878 skge->netdev->name, e - skge->tx_ring.start);
2880 dev_kfree_skb(e->skb);
2884 /* Free all buffers in transmit ring */
2885 static void skge_tx_clean(struct net_device *dev)
2887 struct skge_port *skge = netdev_priv(dev);
2888 struct skge_element *e;
2890 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2891 struct skge_tx_desc *td = e->desc;
2892 skge_tx_free(skge, e, td->control);
2896 skge->tx_ring.to_clean = e;
2897 netif_wake_queue(dev);
2900 static void skge_tx_timeout(struct net_device *dev)
2902 struct skge_port *skge = netdev_priv(dev);
2904 if (netif_msg_timer(skge))
2905 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2907 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2911 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2915 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2918 if (!netif_running(dev)) {
2934 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2936 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2940 crc = ether_crc_le(ETH_ALEN, addr);
2942 filter[bit/8] |= 1 << (bit%8);
2945 static void genesis_set_multicast(struct net_device *dev)
2947 struct skge_port *skge = netdev_priv(dev);
2948 struct skge_hw *hw = skge->hw;
2949 int port = skge->port;
2950 int i, count = dev->mc_count;
2951 struct dev_mc_list *list = dev->mc_list;
2955 mode = xm_read32(hw, port, XM_MODE);
2956 mode |= XM_MD_ENA_HASH;
2957 if (dev->flags & IFF_PROMISC)
2958 mode |= XM_MD_ENA_PROM;
2960 mode &= ~XM_MD_ENA_PROM;
2962 if (dev->flags & IFF_ALLMULTI)
2963 memset(filter, 0xff, sizeof(filter));
2965 memset(filter, 0, sizeof(filter));
2967 if (skge->flow_status == FLOW_STAT_REM_SEND
2968 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2969 genesis_add_filter(filter, pause_mc_addr);
2971 for (i = 0; list && i < count; i++, list = list->next)
2972 genesis_add_filter(filter, list->dmi_addr);
2975 xm_write32(hw, port, XM_MODE, mode);
2976 xm_outhash(hw, port, XM_HSM, filter);
2979 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2981 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2982 filter[bit/8] |= 1 << (bit%8);
2985 static void yukon_set_multicast(struct net_device *dev)
2987 struct skge_port *skge = netdev_priv(dev);
2988 struct skge_hw *hw = skge->hw;
2989 int port = skge->port;
2990 struct dev_mc_list *list = dev->mc_list;
2991 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2992 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2996 memset(filter, 0, sizeof(filter));
2998 reg = gma_read16(hw, port, GM_RX_CTRL);
2999 reg |= GM_RXCR_UCF_ENA;
3001 if (dev->flags & IFF_PROMISC) /* promiscuous */
3002 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
3003 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
3004 memset(filter, 0xff, sizeof(filter));
3005 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
3006 reg &= ~GM_RXCR_MCF_ENA;
3009 reg |= GM_RXCR_MCF_ENA;
3012 yukon_add_filter(filter, pause_mc_addr);
3014 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
3015 yukon_add_filter(filter, list->dmi_addr);
3019 gma_write16(hw, port, GM_MC_ADDR_H1,
3020 (u16)filter[0] | ((u16)filter[1] << 8));
3021 gma_write16(hw, port, GM_MC_ADDR_H2,
3022 (u16)filter[2] | ((u16)filter[3] << 8));
3023 gma_write16(hw, port, GM_MC_ADDR_H3,
3024 (u16)filter[4] | ((u16)filter[5] << 8));
3025 gma_write16(hw, port, GM_MC_ADDR_H4,
3026 (u16)filter[6] | ((u16)filter[7] << 8));
3028 gma_write16(hw, port, GM_RX_CTRL, reg);
3031 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3033 if (hw->chip_id == CHIP_ID_GENESIS)
3034 return status >> XMR_FS_LEN_SHIFT;
3036 return status >> GMR_FS_LEN_SHIFT;
3039 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3041 if (hw->chip_id == CHIP_ID_GENESIS)
3042 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3044 return (status & GMR_FS_ANY_ERR) ||
3045 (status & GMR_FS_RX_OK) == 0;
3049 /* Get receive buffer from descriptor.
3050 * Handles copy of small buffers and reallocation failures
3052 static struct sk_buff *skge_rx_get(struct net_device *dev,
3053 struct skge_element *e,
3054 u32 control, u32 status, u16 csum)
3056 struct skge_port *skge = netdev_priv(dev);
3057 struct sk_buff *skb;
3058 u16 len = control & BMU_BBC;
3060 if (unlikely(netif_msg_rx_status(skge)))
3061 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
3062 dev->name, e - skge->rx_ring.start,
3065 if (len > skge->rx_buf_size)
3068 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3071 if (bad_phy_status(skge->hw, status))
3074 if (phy_length(skge->hw, status) != len)
3077 if (len < RX_COPY_THRESHOLD) {
3078 skb = netdev_alloc_skb(dev, len + 2);
3082 skb_reserve(skb, 2);
3083 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3084 pci_unmap_addr(e, mapaddr),
3085 len, PCI_DMA_FROMDEVICE);
3086 skb_copy_from_linear_data(e->skb, skb->data, len);
3087 pci_dma_sync_single_for_device(skge->hw->pdev,
3088 pci_unmap_addr(e, mapaddr),
3089 len, PCI_DMA_FROMDEVICE);
3090 skge_rx_reuse(e, skge->rx_buf_size);
3092 struct sk_buff *nskb;
3093 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3097 skb_reserve(nskb, NET_IP_ALIGN);
3098 pci_unmap_single(skge->hw->pdev,
3099 pci_unmap_addr(e, mapaddr),
3100 pci_unmap_len(e, maplen),
3101 PCI_DMA_FROMDEVICE);
3103 prefetch(skb->data);
3104 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3108 if (skge->rx_csum) {
3110 skb->ip_summed = CHECKSUM_COMPLETE;
3113 skb->protocol = eth_type_trans(skb, dev);
3118 if (netif_msg_rx_err(skge))
3119 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3120 dev->name, e - skge->rx_ring.start,
3123 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3124 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3125 dev->stats.rx_length_errors++;
3126 if (status & XMR_FS_FRA_ERR)
3127 dev->stats.rx_frame_errors++;
3128 if (status & XMR_FS_FCS_ERR)
3129 dev->stats.rx_crc_errors++;
3131 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3132 dev->stats.rx_length_errors++;
3133 if (status & GMR_FS_FRAGMENT)
3134 dev->stats.rx_frame_errors++;
3135 if (status & GMR_FS_CRC_ERR)
3136 dev->stats.rx_crc_errors++;
3140 skge_rx_reuse(e, skge->rx_buf_size);
3144 /* Free all buffers in Tx ring which are no longer owned by device */
3145 static void skge_tx_done(struct net_device *dev)
3147 struct skge_port *skge = netdev_priv(dev);
3148 struct skge_ring *ring = &skge->tx_ring;
3149 struct skge_element *e;
3151 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3153 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3154 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3156 if (control & BMU_OWN)
3159 skge_tx_free(skge, e, control);
3161 skge->tx_ring.to_clean = e;
3163 /* Can run lockless until we need to synchronize to restart queue. */
3166 if (unlikely(netif_queue_stopped(dev) &&
3167 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3169 if (unlikely(netif_queue_stopped(dev) &&
3170 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3171 netif_wake_queue(dev);
3174 netif_tx_unlock(dev);
3178 static int skge_poll(struct napi_struct *napi, int to_do)
3180 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3181 struct net_device *dev = skge->netdev;
3182 struct skge_hw *hw = skge->hw;
3183 struct skge_ring *ring = &skge->rx_ring;
3184 struct skge_element *e;
3189 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3191 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3192 struct skge_rx_desc *rd = e->desc;
3193 struct sk_buff *skb;
3197 control = rd->control;
3198 if (control & BMU_OWN)
3201 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3203 dev->last_rx = jiffies;
3204 netif_receive_skb(skb);
3211 /* restart receiver */
3213 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3215 if (work_done < to_do) {
3216 unsigned long flags;
3218 spin_lock_irqsave(&hw->hw_lock, flags);
3219 __netif_rx_complete(dev, napi);
3220 hw->intr_mask |= napimask[skge->port];
3221 skge_write32(hw, B0_IMSK, hw->intr_mask);
3222 skge_read32(hw, B0_IMSK);
3223 spin_unlock_irqrestore(&hw->hw_lock, flags);
3229 /* Parity errors seem to happen when Genesis is connected to a switch
3230 * with no other ports present. Heartbeat error??
3232 static void skge_mac_parity(struct skge_hw *hw, int port)
3234 struct net_device *dev = hw->dev[port];
3236 ++dev->stats.tx_heartbeat_errors;
3238 if (hw->chip_id == CHIP_ID_GENESIS)
3239 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3242 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3243 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3244 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3245 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3248 static void skge_mac_intr(struct skge_hw *hw, int port)
3250 if (hw->chip_id == CHIP_ID_GENESIS)
3251 genesis_mac_intr(hw, port);
3253 yukon_mac_intr(hw, port);
3256 /* Handle device specific framing and timeout interrupts */
3257 static void skge_error_irq(struct skge_hw *hw)
3259 struct pci_dev *pdev = hw->pdev;
3260 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3262 if (hw->chip_id == CHIP_ID_GENESIS) {
3263 /* clear xmac errors */
3264 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3265 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3266 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3267 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3269 /* Timestamp (unused) overflow */
3270 if (hwstatus & IS_IRQ_TIST_OV)
3271 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3274 if (hwstatus & IS_RAM_RD_PAR) {
3275 dev_err(&pdev->dev, "Ram read data parity error\n");
3276 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3279 if (hwstatus & IS_RAM_WR_PAR) {
3280 dev_err(&pdev->dev, "Ram write data parity error\n");
3281 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3284 if (hwstatus & IS_M1_PAR_ERR)
3285 skge_mac_parity(hw, 0);
3287 if (hwstatus & IS_M2_PAR_ERR)
3288 skge_mac_parity(hw, 1);
3290 if (hwstatus & IS_R1_PAR_ERR) {
3291 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3293 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3296 if (hwstatus & IS_R2_PAR_ERR) {
3297 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3299 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3302 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3303 u16 pci_status, pci_cmd;
3305 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3306 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3308 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3309 pci_cmd, pci_status);
3311 /* Write the error bits back to clear them. */
3312 pci_status &= PCI_STATUS_ERROR_BITS;
3313 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3314 pci_write_config_word(pdev, PCI_COMMAND,
3315 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3316 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3317 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3319 /* if error still set then just ignore it */
3320 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3321 if (hwstatus & IS_IRQ_STAT) {
3322 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3323 hw->intr_mask &= ~IS_HW_ERR;
3329 * Interrupt from PHY are handled in tasklet (softirq)
3330 * because accessing phy registers requires spin wait which might
3331 * cause excess interrupt latency.
3333 static void skge_extirq(unsigned long arg)
3335 struct skge_hw *hw = (struct skge_hw *) arg;
3338 for (port = 0; port < hw->ports; port++) {
3339 struct net_device *dev = hw->dev[port];
3341 if (netif_running(dev)) {
3342 struct skge_port *skge = netdev_priv(dev);
3344 spin_lock(&hw->phy_lock);
3345 if (hw->chip_id != CHIP_ID_GENESIS)
3346 yukon_phy_intr(skge);
3347 else if (hw->phy_type == SK_PHY_BCOM)
3348 bcom_phy_intr(skge);
3349 spin_unlock(&hw->phy_lock);
3353 spin_lock_irq(&hw->hw_lock);
3354 hw->intr_mask |= IS_EXT_REG;
3355 skge_write32(hw, B0_IMSK, hw->intr_mask);
3356 skge_read32(hw, B0_IMSK);
3357 spin_unlock_irq(&hw->hw_lock);
3360 static irqreturn_t skge_intr(int irq, void *dev_id)
3362 struct skge_hw *hw = dev_id;
3366 spin_lock(&hw->hw_lock);
3367 /* Reading this register masks IRQ */
3368 status = skge_read32(hw, B0_SP_ISRC);
3369 if (status == 0 || status == ~0)
3373 status &= hw->intr_mask;
3374 if (status & IS_EXT_REG) {
3375 hw->intr_mask &= ~IS_EXT_REG;
3376 tasklet_schedule(&hw->phy_task);
3379 if (status & (IS_XA1_F|IS_R1_F)) {
3380 struct skge_port *skge = netdev_priv(hw->dev[0]);
3381 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3382 netif_rx_schedule(hw->dev[0], &skge->napi);
3385 if (status & IS_PA_TO_TX1)
3386 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3388 if (status & IS_PA_TO_RX1) {
3389 ++hw->dev[0]->stats.rx_over_errors;
3390 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3394 if (status & IS_MAC1)
3395 skge_mac_intr(hw, 0);
3398 struct skge_port *skge = netdev_priv(hw->dev[1]);
3400 if (status & (IS_XA2_F|IS_R2_F)) {
3401 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3402 netif_rx_schedule(hw->dev[1], &skge->napi);
3405 if (status & IS_PA_TO_RX2) {
3406 ++hw->dev[1]->stats.rx_over_errors;
3407 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3410 if (status & IS_PA_TO_TX2)
3411 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3413 if (status & IS_MAC2)
3414 skge_mac_intr(hw, 1);
3417 if (status & IS_HW_ERR)
3420 skge_write32(hw, B0_IMSK, hw->intr_mask);
3421 skge_read32(hw, B0_IMSK);
3423 spin_unlock(&hw->hw_lock);
3425 return IRQ_RETVAL(handled);
3428 #ifdef CONFIG_NET_POLL_CONTROLLER
3429 static void skge_netpoll(struct net_device *dev)
3431 struct skge_port *skge = netdev_priv(dev);
3433 disable_irq(dev->irq);
3434 skge_intr(dev->irq, skge->hw);
3435 enable_irq(dev->irq);
3439 static int skge_set_mac_address(struct net_device *dev, void *p)
3441 struct skge_port *skge = netdev_priv(dev);
3442 struct skge_hw *hw = skge->hw;
3443 unsigned port = skge->port;
3444 const struct sockaddr *addr = p;
3447 if (!is_valid_ether_addr(addr->sa_data))
3448 return -EADDRNOTAVAIL;
3450 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3452 if (!netif_running(dev)) {
3453 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3454 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3457 spin_lock_bh(&hw->phy_lock);
3458 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3459 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3461 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3462 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3464 if (hw->chip_id == CHIP_ID_GENESIS)
3465 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3467 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3468 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3471 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3472 spin_unlock_bh(&hw->phy_lock);
3478 static const struct {
3482 { CHIP_ID_GENESIS, "Genesis" },
3483 { CHIP_ID_YUKON, "Yukon" },
3484 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3485 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3488 static const char *skge_board_name(const struct skge_hw *hw)
3491 static char buf[16];
3493 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3494 if (skge_chips[i].id == hw->chip_id)
3495 return skge_chips[i].name;
3497 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3503 * Setup the board data structure, but don't bring up
3506 static int skge_reset(struct skge_hw *hw)
3509 u16 ctst, pci_status;
3510 u8 t8, mac_cfg, pmd_type;
3513 ctst = skge_read16(hw, B0_CTST);
3516 skge_write8(hw, B0_CTST, CS_RST_SET);
3517 skge_write8(hw, B0_CTST, CS_RST_CLR);
3519 /* clear PCI errors, if any */
3520 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3521 skge_write8(hw, B2_TST_CTRL2, 0);
3523 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3524 pci_write_config_word(hw->pdev, PCI_STATUS,
3525 pci_status | PCI_STATUS_ERROR_BITS);
3526 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3527 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3529 /* restore CLK_RUN bits (for Yukon-Lite) */
3530 skge_write16(hw, B0_CTST,
3531 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3533 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3534 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3535 pmd_type = skge_read8(hw, B2_PMD_TYP);
3536 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3538 switch (hw->chip_id) {
3539 case CHIP_ID_GENESIS:
3540 switch (hw->phy_type) {
3542 hw->phy_addr = PHY_ADDR_XMAC;
3545 hw->phy_addr = PHY_ADDR_BCOM;
3548 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3555 case CHIP_ID_YUKON_LITE:
3556 case CHIP_ID_YUKON_LP:
3557 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3560 hw->phy_addr = PHY_ADDR_MARV;
3564 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3569 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3570 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3571 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3573 /* read the adapters RAM size */
3574 t8 = skge_read8(hw, B2_E_0);
3575 if (hw->chip_id == CHIP_ID_GENESIS) {
3577 /* special case: 4 x 64k x 36, offset = 0x80000 */
3578 hw->ram_size = 0x100000;
3579 hw->ram_offset = 0x80000;
3581 hw->ram_size = t8 * 512;
3584 hw->ram_size = 0x20000;
3586 hw->ram_size = t8 * 4096;
3588 hw->intr_mask = IS_HW_ERR;
3590 /* Use PHY IRQ for all but fiber based Genesis board */
3591 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3592 hw->intr_mask |= IS_EXT_REG;
3594 if (hw->chip_id == CHIP_ID_GENESIS)
3597 /* switch power to VCC (WA for VAUX problem) */
3598 skge_write8(hw, B0_POWER_CTRL,
3599 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3601 /* avoid boards with stuck Hardware error bits */
3602 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3603 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3604 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3605 hw->intr_mask &= ~IS_HW_ERR;
3608 /* Clear PHY COMA */
3609 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3610 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3611 reg &= ~PCI_PHY_COMA;
3612 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3613 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3616 for (i = 0; i < hw->ports; i++) {
3617 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3618 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3622 /* turn off hardware timer (unused) */
3623 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3624 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3625 skge_write8(hw, B0_LED, LED_STAT_ON);
3627 /* enable the Tx Arbiters */
3628 for (i = 0; i < hw->ports; i++)
3629 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3631 /* Initialize ram interface */
3632 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3634 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3635 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3636 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3637 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3638 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3639 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3640 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3641 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3642 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3643 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3644 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3645 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3647 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3649 /* Set interrupt moderation for Transmit only
3650 * Receive interrupts avoided by NAPI
3652 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3653 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3654 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3656 skge_write32(hw, B0_IMSK, hw->intr_mask);
3658 for (i = 0; i < hw->ports; i++) {
3659 if (hw->chip_id == CHIP_ID_GENESIS)
3660 genesis_reset(hw, i);
3669 #ifdef CONFIG_SKGE_DEBUG
3671 static struct dentry *skge_debug;
3673 static int skge_debug_show(struct seq_file *seq, void *v)
3675 struct net_device *dev = seq->private;
3676 const struct skge_port *skge = netdev_priv(dev);
3677 const struct skge_hw *hw = skge->hw;
3678 const struct skge_element *e;
3680 if (!netif_running(dev))
3683 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3684 skge_read32(hw, B0_IMSK));
3686 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3687 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3688 const struct skge_tx_desc *t = e->desc;
3689 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3690 t->control, t->dma_hi, t->dma_lo, t->status,
3691 t->csum_offs, t->csum_write, t->csum_start);
3694 seq_printf(seq, "\nRx Ring: \n");
3695 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3696 const struct skge_rx_desc *r = e->desc;
3698 if (r->control & BMU_OWN)
3701 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3702 r->control, r->dma_hi, r->dma_lo, r->status,
3703 r->timestamp, r->csum1, r->csum1_start);
3709 static int skge_debug_open(struct inode *inode, struct file *file)
3711 return single_open(file, skge_debug_show, inode->i_private);
3714 static const struct file_operations skge_debug_fops = {
3715 .owner = THIS_MODULE,
3716 .open = skge_debug_open,
3718 .llseek = seq_lseek,
3719 .release = single_release,
3723 * Use network device events to create/remove/rename
3724 * debugfs file entries
3726 static int skge_device_event(struct notifier_block *unused,
3727 unsigned long event, void *ptr)
3729 struct net_device *dev = ptr;
3730 struct skge_port *skge;
3733 if (dev->open != &skge_up || !skge_debug)
3736 skge = netdev_priv(dev);
3738 case NETDEV_CHANGENAME:
3739 if (skge->debugfs) {
3740 d = debugfs_rename(skge_debug, skge->debugfs,
3741 skge_debug, dev->name);
3745 pr_info(PFX "%s: rename failed\n", dev->name);
3746 debugfs_remove(skge->debugfs);
3751 case NETDEV_GOING_DOWN:
3752 if (skge->debugfs) {
3753 debugfs_remove(skge->debugfs);
3754 skge->debugfs = NULL;
3759 d = debugfs_create_file(dev->name, S_IRUGO,
3762 if (!d || IS_ERR(d))
3763 pr_info(PFX "%s: debugfs create failed\n",
3774 static struct notifier_block skge_notifier = {
3775 .notifier_call = skge_device_event,
3779 static __init void skge_debug_init(void)
3783 ent = debugfs_create_dir("skge", NULL);
3784 if (!ent || IS_ERR(ent)) {
3785 pr_info(PFX "debugfs create directory failed\n");
3790 register_netdevice_notifier(&skge_notifier);
3793 static __exit void skge_debug_cleanup(void)
3796 unregister_netdevice_notifier(&skge_notifier);
3797 debugfs_remove(skge_debug);
3803 #define skge_debug_init()
3804 #define skge_debug_cleanup()
3807 /* Initialize network device */
3808 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3811 struct skge_port *skge;
3812 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3815 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3819 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3820 dev->open = skge_up;
3821 dev->stop = skge_down;
3822 dev->do_ioctl = skge_ioctl;
3823 dev->hard_start_xmit = skge_xmit_frame;
3824 dev->get_stats = skge_get_stats;
3825 if (hw->chip_id == CHIP_ID_GENESIS)
3826 dev->set_multicast_list = genesis_set_multicast;
3828 dev->set_multicast_list = yukon_set_multicast;
3830 dev->set_mac_address = skge_set_mac_address;
3831 dev->change_mtu = skge_change_mtu;
3832 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3833 dev->tx_timeout = skge_tx_timeout;
3834 dev->watchdog_timeo = TX_WATCHDOG;
3835 #ifdef CONFIG_NET_POLL_CONTROLLER
3836 dev->poll_controller = skge_netpoll;
3838 dev->irq = hw->pdev->irq;
3841 dev->features |= NETIF_F_HIGHDMA;
3843 skge = netdev_priv(dev);
3844 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3847 skge->msg_enable = netif_msg_init(debug, default_msg);
3849 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3850 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3852 /* Auto speed and flow control */
3853 skge->autoneg = AUTONEG_ENABLE;
3854 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3857 skge->advertising = skge_supported_modes(hw);
3859 if (pci_wake_enabled(hw->pdev))
3860 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3862 hw->dev[port] = dev;
3866 /* Only used for Genesis XMAC */
3867 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3869 if (hw->chip_id != CHIP_ID_GENESIS) {
3870 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3874 /* read the mac address */
3875 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3876 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3878 /* device is off until link detection */
3879 netif_carrier_off(dev);
3880 netif_stop_queue(dev);
3885 static void __devinit skge_show_addr(struct net_device *dev)
3887 const struct skge_port *skge = netdev_priv(dev);
3888 DECLARE_MAC_BUF(mac);
3890 if (netif_msg_probe(skge))
3891 printk(KERN_INFO PFX "%s: addr %s\n",
3892 dev->name, print_mac(mac, dev->dev_addr));
3895 static int __devinit skge_probe(struct pci_dev *pdev,
3896 const struct pci_device_id *ent)
3898 struct net_device *dev, *dev1;
3900 int err, using_dac = 0;
3902 err = pci_enable_device(pdev);
3904 dev_err(&pdev->dev, "cannot enable PCI device\n");
3908 err = pci_request_regions(pdev, DRV_NAME);
3910 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3911 goto err_out_disable_pdev;
3914 pci_set_master(pdev);
3916 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3918 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3919 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3921 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3925 dev_err(&pdev->dev, "no usable DMA configuration\n");
3926 goto err_out_free_regions;
3930 /* byte swap descriptors in hardware */
3934 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3935 reg |= PCI_REV_DESC;
3936 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3941 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3943 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3944 goto err_out_free_regions;
3948 spin_lock_init(&hw->hw_lock);
3949 spin_lock_init(&hw->phy_lock);
3950 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3952 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3954 dev_err(&pdev->dev, "cannot map device registers\n");
3955 goto err_out_free_hw;
3958 err = skge_reset(hw);
3960 goto err_out_iounmap;
3962 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3963 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3964 skge_board_name(hw), hw->chip_rev);
3966 dev = skge_devinit(hw, 0, using_dac);
3968 goto err_out_led_off;
3970 /* Some motherboards are broken and has zero in ROM. */
3971 if (!is_valid_ether_addr(dev->dev_addr))
3972 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3974 err = register_netdev(dev);
3976 dev_err(&pdev->dev, "cannot register net device\n");
3977 goto err_out_free_netdev;
3980 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3982 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3983 dev->name, pdev->irq);
3984 goto err_out_unregister;
3986 skge_show_addr(dev);
3988 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3989 if (register_netdev(dev1) == 0)
3990 skge_show_addr(dev1);
3992 /* Failure to register second port need not be fatal */
3993 dev_warn(&pdev->dev, "register of second port failed\n");
3998 pci_set_drvdata(pdev, hw);
4003 unregister_netdev(dev);
4004 err_out_free_netdev:
4007 skge_write16(hw, B0_LED, LED_STAT_OFF);
4012 err_out_free_regions:
4013 pci_release_regions(pdev);
4014 err_out_disable_pdev:
4015 pci_disable_device(pdev);
4016 pci_set_drvdata(pdev, NULL);
4021 static void __devexit skge_remove(struct pci_dev *pdev)
4023 struct skge_hw *hw = pci_get_drvdata(pdev);
4024 struct net_device *dev0, *dev1;
4029 flush_scheduled_work();
4031 if ((dev1 = hw->dev[1]))
4032 unregister_netdev(dev1);
4034 unregister_netdev(dev0);
4036 tasklet_disable(&hw->phy_task);
4038 spin_lock_irq(&hw->hw_lock);
4040 skge_write32(hw, B0_IMSK, 0);
4041 skge_read32(hw, B0_IMSK);
4042 spin_unlock_irq(&hw->hw_lock);
4044 skge_write16(hw, B0_LED, LED_STAT_OFF);
4045 skge_write8(hw, B0_CTST, CS_RST_SET);
4047 free_irq(pdev->irq, hw);
4048 pci_release_regions(pdev);
4049 pci_disable_device(pdev);
4056 pci_set_drvdata(pdev, NULL);
4060 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
4062 struct skge_hw *hw = pci_get_drvdata(pdev);
4063 int i, err, wol = 0;
4068 err = pci_save_state(pdev);
4072 for (i = 0; i < hw->ports; i++) {
4073 struct net_device *dev = hw->dev[i];
4074 struct skge_port *skge = netdev_priv(dev);
4076 if (netif_running(dev))
4079 skge_wol_init(skge);
4084 skge_write32(hw, B0_IMSK, 0);
4085 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
4086 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4091 static int skge_resume(struct pci_dev *pdev)
4093 struct skge_hw *hw = pci_get_drvdata(pdev);
4099 err = pci_set_power_state(pdev, PCI_D0);
4103 err = pci_restore_state(pdev);
4107 pci_enable_wake(pdev, PCI_D0, 0);
4109 err = skge_reset(hw);
4113 for (i = 0; i < hw->ports; i++) {
4114 struct net_device *dev = hw->dev[i];
4116 if (netif_running(dev)) {
4120 printk(KERN_ERR PFX "%s: could not up: %d\n",
4132 static void skge_shutdown(struct pci_dev *pdev)
4134 struct skge_hw *hw = pci_get_drvdata(pdev);
4140 for (i = 0; i < hw->ports; i++) {
4141 struct net_device *dev = hw->dev[i];
4142 struct skge_port *skge = netdev_priv(dev);
4145 skge_wol_init(skge);
4149 pci_enable_wake(pdev, PCI_D3hot, wol);
4150 pci_enable_wake(pdev, PCI_D3cold, wol);
4152 pci_disable_device(pdev);
4153 pci_set_power_state(pdev, PCI_D3hot);
4157 static struct pci_driver skge_driver = {
4159 .id_table = skge_id_table,
4160 .probe = skge_probe,
4161 .remove = __devexit_p(skge_remove),
4163 .suspend = skge_suspend,
4164 .resume = skge_resume,
4166 .shutdown = skge_shutdown,
4169 static int __init skge_init_module(void)
4172 return pci_register_driver(&skge_driver);
4175 static void __exit skge_cleanup_module(void)
4177 pci_unregister_driver(&skge_driver);
4178 skge_debug_cleanup();
4181 module_init(skge_init_module);
4182 module_exit(skge_cleanup_module);