]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ath9k/main.c
e98f2d79af6841e7cdfcb90ec910ee95a6341898
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 /* We use the hw_value as an index into our private channel structure */
32
33 #define CHAN2G(_freq, _idx)  { \
34         .center_freq = (_freq), \
35         .hw_value = (_idx), \
36         .max_power = 30, \
37 }
38
39 #define CHAN5G(_freq, _idx) { \
40         .band = IEEE80211_BAND_5GHZ, \
41         .center_freq = (_freq), \
42         .hw_value = (_idx), \
43         .max_power = 30, \
44 }
45
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47  * on 5 MHz steps, we support the channels which we know
48  * we have calibration data for all cards though to make
49  * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51         CHAN2G(2412, 0), /* Channel 1 */
52         CHAN2G(2417, 1), /* Channel 2 */
53         CHAN2G(2422, 2), /* Channel 3 */
54         CHAN2G(2427, 3), /* Channel 4 */
55         CHAN2G(2432, 4), /* Channel 5 */
56         CHAN2G(2437, 5), /* Channel 6 */
57         CHAN2G(2442, 6), /* Channel 7 */
58         CHAN2G(2447, 7), /* Channel 8 */
59         CHAN2G(2452, 8), /* Channel 9 */
60         CHAN2G(2457, 9), /* Channel 10 */
61         CHAN2G(2462, 10), /* Channel 11 */
62         CHAN2G(2467, 11), /* Channel 12 */
63         CHAN2G(2472, 12), /* Channel 13 */
64         CHAN2G(2484, 13), /* Channel 14 */
65 };
66
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68  * on 5 MHz steps, we support the channels which we know
69  * we have calibration data for all cards though to make
70  * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72         /* _We_ call this UNII 1 */
73         CHAN5G(5180, 14), /* Channel 36 */
74         CHAN5G(5200, 15), /* Channel 40 */
75         CHAN5G(5220, 16), /* Channel 44 */
76         CHAN5G(5240, 17), /* Channel 48 */
77         /* _We_ call this UNII 2 */
78         CHAN5G(5260, 18), /* Channel 52 */
79         CHAN5G(5280, 19), /* Channel 56 */
80         CHAN5G(5300, 20), /* Channel 60 */
81         CHAN5G(5320, 21), /* Channel 64 */
82         /* _We_ call this "Middle band" */
83         CHAN5G(5500, 22), /* Channel 100 */
84         CHAN5G(5520, 23), /* Channel 104 */
85         CHAN5G(5540, 24), /* Channel 108 */
86         CHAN5G(5560, 25), /* Channel 112 */
87         CHAN5G(5580, 26), /* Channel 116 */
88         CHAN5G(5600, 27), /* Channel 120 */
89         CHAN5G(5620, 28), /* Channel 124 */
90         CHAN5G(5640, 29), /* Channel 128 */
91         CHAN5G(5660, 30), /* Channel 132 */
92         CHAN5G(5680, 31), /* Channel 136 */
93         CHAN5G(5700, 32), /* Channel 140 */
94         /* _We_ call this UNII 3 */
95         CHAN5G(5745, 33), /* Channel 149 */
96         CHAN5G(5765, 34), /* Channel 153 */
97         CHAN5G(5785, 35), /* Channel 157 */
98         CHAN5G(5805, 36), /* Channel 161 */
99         CHAN5G(5825, 37), /* Channel 165 */
100 };
101
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103                                 struct ieee80211_conf *conf)
104 {
105         switch (conf->channel->band) {
106         case IEEE80211_BAND_2GHZ:
107                 if (conf_is_ht20(conf))
108                         sc->cur_rate_table =
109                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110                 else if (conf_is_ht40_minus(conf))
111                         sc->cur_rate_table =
112                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113                 else if (conf_is_ht40_plus(conf))
114                         sc->cur_rate_table =
115                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116                 else
117                         sc->cur_rate_table =
118                           sc->hw_rate_table[ATH9K_MODE_11G];
119                 break;
120         case IEEE80211_BAND_5GHZ:
121                 if (conf_is_ht20(conf))
122                         sc->cur_rate_table =
123                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124                 else if (conf_is_ht40_minus(conf))
125                         sc->cur_rate_table =
126                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127                 else if (conf_is_ht40_plus(conf))
128                         sc->cur_rate_table =
129                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130                 else
131                         sc->cur_rate_table =
132                           sc->hw_rate_table[ATH9K_MODE_11A];
133                 break;
134         default:
135                 BUG_ON(1);
136                 break;
137         }
138 }
139
140 static void ath_update_txpow(struct ath_softc *sc)
141 {
142         struct ath_hal *ah = sc->sc_ah;
143         u32 txpow;
144
145         if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
146                 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
147                 /* read back in case value is clamped */
148                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149                 sc->sc_curtxpow = txpow;
150         }
151 }
152
153 static u8 parse_mpdudensity(u8 mpdudensity)
154 {
155         /*
156          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157          *   0 for no restriction
158          *   1 for 1/4 us
159          *   2 for 1/2 us
160          *   3 for 1 us
161          *   4 for 2 us
162          *   5 for 4 us
163          *   6 for 8 us
164          *   7 for 16 us
165          */
166         switch (mpdudensity) {
167         case 0:
168                 return 0;
169         case 1:
170         case 2:
171         case 3:
172                 /* Our lower layer calculations limit our precision to
173                    1 microsecond */
174                 return 1;
175         case 4:
176                 return 2;
177         case 5:
178                 return 4;
179         case 6:
180                 return 8;
181         case 7:
182                 return 16;
183         default:
184                 return 0;
185         }
186 }
187
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
189 {
190         struct ath_rate_table *rate_table = NULL;
191         struct ieee80211_supported_band *sband;
192         struct ieee80211_rate *rate;
193         int i, maxrates;
194
195         switch (band) {
196         case IEEE80211_BAND_2GHZ:
197                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198                 break;
199         case IEEE80211_BAND_5GHZ:
200                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201                 break;
202         default:
203                 break;
204         }
205
206         if (rate_table == NULL)
207                 return;
208
209         sband = &sc->sbands[band];
210         rate = sc->rates[band];
211
212         if (rate_table->rate_cnt > ATH_RATE_MAX)
213                 maxrates = ATH_RATE_MAX;
214         else
215                 maxrates = rate_table->rate_cnt;
216
217         for (i = 0; i < maxrates; i++) {
218                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219                 rate[i].hw_value = rate_table->info[i].ratecode;
220                 if (rate_table->info[i].short_preamble) {
221                         rate[i].hw_value_short = rate_table->info[i].ratecode |
222                                 rate_table->info[i].short_preamble;
223                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
224                 }
225                 sband->n_bitrates++;
226
227                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228                         rate[i].bitrate / 10, rate[i].hw_value);
229         }
230 }
231
232 /*
233  * Set/change channels.  If the channel is really being changed, it's done
234  * by reseting the chip.  To accomplish this we must first cleanup any pending
235  * DMA, then restart stuff.
236 */
237 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
238 {
239         struct ath_hal *ah = sc->sc_ah;
240         bool fastcc = true, stopped;
241         struct ieee80211_hw *hw = sc->hw;
242         struct ieee80211_channel *channel = hw->conf.channel;
243         int r;
244
245         if (sc->sc_flags & SC_OP_INVALID)
246                 return -EIO;
247
248         ath9k_ps_wakeup(sc);
249
250         /*
251          * This is only performed if the channel settings have
252          * actually changed.
253          *
254          * To switch channels clear any pending DMA operations;
255          * wait long enough for the RX fifo to drain, reset the
256          * hardware at the new frequency, and then re-enable
257          * the relevant bits of the h/w.
258          */
259         ath9k_hw_set_interrupts(ah, 0);
260         ath_drain_all_txq(sc, false);
261         stopped = ath_stoprecv(sc);
262
263         /* XXX: do not flush receive queue here. We don't want
264          * to flush data frames already in queue because of
265          * changing channel. */
266
267         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
268                 fastcc = false;
269
270         DPRINTF(sc, ATH_DBG_CONFIG,
271                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
272                 sc->sc_ah->ah_curchan->channel,
273                 channel->center_freq, sc->tx_chan_width);
274
275         spin_lock_bh(&sc->sc_resetlock);
276
277         r = ath9k_hw_reset(ah, hchan, fastcc);
278         if (r) {
279                 DPRINTF(sc, ATH_DBG_FATAL,
280                         "Unable to reset channel (%u Mhz) "
281                         "reset status %u\n",
282                         channel->center_freq, r);
283                 spin_unlock_bh(&sc->sc_resetlock);
284                 return r;
285         }
286         spin_unlock_bh(&sc->sc_resetlock);
287
288         sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
289         sc->sc_flags &= ~SC_OP_FULL_RESET;
290
291         if (ath_startrecv(sc) != 0) {
292                 DPRINTF(sc, ATH_DBG_FATAL,
293                         "Unable to restart recv logic\n");
294                 return -EIO;
295         }
296
297         ath_cache_conf_rate(sc, &hw->conf);
298         ath_update_txpow(sc);
299         ath9k_hw_set_interrupts(ah, sc->sc_imask);
300         ath9k_ps_restore(sc);
301         return 0;
302 }
303
304 /*
305  *  This routine performs the periodic noise floor calibration function
306  *  that is used to adjust and optimize the chip performance.  This
307  *  takes environmental changes (location, temperature) into account.
308  *  When the task is complete, it reschedules itself depending on the
309  *  appropriate interval that was calculated.
310  */
311 static void ath_ani_calibrate(unsigned long data)
312 {
313         struct ath_softc *sc;
314         struct ath_hal *ah;
315         bool longcal = false;
316         bool shortcal = false;
317         bool aniflag = false;
318         unsigned int timestamp = jiffies_to_msecs(jiffies);
319         u32 cal_interval;
320
321         sc = (struct ath_softc *)data;
322         ah = sc->sc_ah;
323
324         /*
325         * don't calibrate when we're scanning.
326         * we are most likely not on our home channel.
327         */
328         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
329                 return;
330
331         /* Long calibration runs independently of short calibration. */
332         if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
333                 longcal = true;
334                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
335                 sc->sc_ani.sc_longcal_timer = timestamp;
336         }
337
338         /* Short calibration applies only while sc_caldone is false */
339         if (!sc->sc_ani.sc_caldone) {
340                 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
341                     ATH_SHORT_CALINTERVAL) {
342                         shortcal = true;
343                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
344                         sc->sc_ani.sc_shortcal_timer = timestamp;
345                         sc->sc_ani.sc_resetcal_timer = timestamp;
346                 }
347         } else {
348                 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
349                     ATH_RESTART_CALINTERVAL) {
350                         sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
351                         if (sc->sc_ani.sc_caldone)
352                                 sc->sc_ani.sc_resetcal_timer = timestamp;
353                 }
354         }
355
356         /* Verify whether we must check ANI */
357         if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
358            ATH_ANI_POLLINTERVAL) {
359                 aniflag = true;
360                 sc->sc_ani.sc_checkani_timer = timestamp;
361         }
362
363         /* Skip all processing if there's nothing to do. */
364         if (longcal || shortcal || aniflag) {
365                 /* Call ANI routine if necessary */
366                 if (aniflag)
367                         ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
368                                              ah->ah_curchan);
369
370                 /* Perform calibration if necessary */
371                 if (longcal || shortcal) {
372                         bool iscaldone = false;
373
374                         if (ath9k_hw_calibrate(ah, ah->ah_curchan,
375                                                sc->sc_rx_chainmask, longcal,
376                                                &iscaldone)) {
377                                 if (longcal)
378                                         sc->sc_ani.sc_noise_floor =
379                                                 ath9k_hw_getchan_noise(ah,
380                                                                ah->ah_curchan);
381
382                                 DPRINTF(sc, ATH_DBG_ANI,
383                                         "calibrate chan %u/%x nf: %d\n",
384                                         ah->ah_curchan->channel,
385                                         ah->ah_curchan->channelFlags,
386                                         sc->sc_ani.sc_noise_floor);
387                         } else {
388                                 DPRINTF(sc, ATH_DBG_ANY,
389                                         "calibrate chan %u/%x failed\n",
390                                         ah->ah_curchan->channel,
391                                         ah->ah_curchan->channelFlags);
392                         }
393                         sc->sc_ani.sc_caldone = iscaldone;
394                 }
395         }
396
397         /*
398         * Set timer interval based on previous results.
399         * The interval must be the shortest necessary to satisfy ANI,
400         * short calibration and long calibration.
401         */
402         cal_interval = ATH_LONG_CALINTERVAL;
403         if (sc->sc_ah->ah_config.enable_ani)
404                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
405         if (!sc->sc_ani.sc_caldone)
406                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
407
408         mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
409 }
410
411 /*
412  * Update tx/rx chainmask. For legacy association,
413  * hard code chainmask to 1x1, for 11n association, use
414  * the chainmask configuration, for bt coexistence, use
415  * the chainmask configuration even in legacy mode.
416  */
417 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
418 {
419         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
420         if (is_ht ||
421             (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
422                 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
423                 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
424         } else {
425                 sc->sc_tx_chainmask = 1;
426                 sc->sc_rx_chainmask = 1;
427         }
428
429         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
430                 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
431 }
432
433 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
434 {
435         struct ath_node *an;
436
437         an = (struct ath_node *)sta->drv_priv;
438
439         if (sc->sc_flags & SC_OP_TXAGGR)
440                 ath_tx_node_init(sc, an);
441
442         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
443                              sta->ht_cap.ampdu_factor);
444         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
445 }
446
447 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
448 {
449         struct ath_node *an = (struct ath_node *)sta->drv_priv;
450
451         if (sc->sc_flags & SC_OP_TXAGGR)
452                 ath_tx_node_cleanup(sc, an);
453 }
454
455 static void ath9k_tasklet(unsigned long data)
456 {
457         struct ath_softc *sc = (struct ath_softc *)data;
458         u32 status = sc->sc_intrstatus;
459
460         if (status & ATH9K_INT_FATAL) {
461                 /* need a chip reset */
462                 ath_reset(sc, false);
463                 return;
464         } else {
465
466                 if (status &
467                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
468                         spin_lock_bh(&sc->rx.rxflushlock);
469                         ath_rx_tasklet(sc, 0);
470                         spin_unlock_bh(&sc->rx.rxflushlock);
471                 }
472                 /* XXX: optimize this */
473                 if (status & ATH9K_INT_TX)
474                         ath_tx_tasklet(sc);
475         }
476
477         /* re-enable hardware interrupt */
478         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
479 }
480
481 irqreturn_t ath_isr(int irq, void *dev)
482 {
483         struct ath_softc *sc = dev;
484         struct ath_hal *ah = sc->sc_ah;
485         enum ath9k_int status;
486         bool sched = false;
487
488         do {
489                 if (sc->sc_flags & SC_OP_INVALID) {
490                         /*
491                          * The hardware is not ready/present, don't
492                          * touch anything. Note this can happen early
493                          * on if the IRQ is shared.
494                          */
495                         return IRQ_NONE;
496                 }
497                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
498                         return IRQ_NONE;
499                 }
500
501                 /*
502                  * Figure out the reason(s) for the interrupt.  Note
503                  * that the hal returns a pseudo-ISR that may include
504                  * bits we haven't explicitly enabled so we mask the
505                  * value to insure we only process bits we requested.
506                  */
507                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
508
509                 status &= sc->sc_imask; /* discard unasked-for bits */
510
511                 /*
512                  * If there are no status bits set, then this interrupt was not
513                  * for me (should have been caught above).
514                  */
515                 if (!status)
516                         return IRQ_NONE;
517
518                 sc->sc_intrstatus = status;
519
520                 if (status & ATH9K_INT_FATAL) {
521                         /* need a chip reset */
522                         sched = true;
523                 } else if (status & ATH9K_INT_RXORN) {
524                         /* need a chip reset */
525                         sched = true;
526                 } else {
527                         if (status & ATH9K_INT_SWBA) {
528                                 /* schedule a tasklet for beacon handling */
529                                 tasklet_schedule(&sc->bcon_tasklet);
530                         }
531                         if (status & ATH9K_INT_RXEOL) {
532                                 /*
533                                  * NB: the hardware should re-read the link when
534                                  *     RXE bit is written, but it doesn't work
535                                  *     at least on older hardware revs.
536                                  */
537                                 sched = true;
538                         }
539
540                         if (status & ATH9K_INT_TXURN)
541                                 /* bump tx trigger level */
542                                 ath9k_hw_updatetxtriglevel(ah, true);
543                         /* XXX: optimize this */
544                         if (status & ATH9K_INT_RX)
545                                 sched = true;
546                         if (status & ATH9K_INT_TX)
547                                 sched = true;
548                         if (status & ATH9K_INT_BMISS)
549                                 sched = true;
550                         /* carrier sense timeout */
551                         if (status & ATH9K_INT_CST)
552                                 sched = true;
553                         if (status & ATH9K_INT_MIB) {
554                                 /*
555                                  * Disable interrupts until we service the MIB
556                                  * interrupt; otherwise it will continue to
557                                  * fire.
558                                  */
559                                 ath9k_hw_set_interrupts(ah, 0);
560                                 /*
561                                  * Let the hal handle the event. We assume
562                                  * it will clear whatever condition caused
563                                  * the interrupt.
564                                  */
565                                 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
566                                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
567                         }
568                         if (status & ATH9K_INT_TIM_TIMER) {
569                                 if (!(ah->ah_caps.hw_caps &
570                                       ATH9K_HW_CAP_AUTOSLEEP)) {
571                                         /* Clear RxAbort bit so that we can
572                                          * receive frames */
573                                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
574                                         ath9k_hw_setrxabort(ah, 0);
575                                         sched = true;
576                                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
577                                 }
578                         }
579                 }
580         } while (0);
581
582         ath_debug_stat_interrupt(sc, status);
583
584         if (sched) {
585                 /* turn off every interrupt except SWBA */
586                 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
587                 tasklet_schedule(&sc->intr_tq);
588         }
589
590         return IRQ_HANDLED;
591 }
592
593 static u32 ath_get_extchanmode(struct ath_softc *sc,
594                                struct ieee80211_channel *chan,
595                                enum nl80211_channel_type channel_type)
596 {
597         u32 chanmode = 0;
598
599         switch (chan->band) {
600         case IEEE80211_BAND_2GHZ:
601                 switch(channel_type) {
602                 case NL80211_CHAN_NO_HT:
603                 case NL80211_CHAN_HT20:
604                         chanmode = CHANNEL_G_HT20;
605                         break;
606                 case NL80211_CHAN_HT40PLUS:
607                         chanmode = CHANNEL_G_HT40PLUS;
608                         break;
609                 case NL80211_CHAN_HT40MINUS:
610                         chanmode = CHANNEL_G_HT40MINUS;
611                         break;
612                 }
613                 break;
614         case IEEE80211_BAND_5GHZ:
615                 switch(channel_type) {
616                 case NL80211_CHAN_NO_HT:
617                 case NL80211_CHAN_HT20:
618                         chanmode = CHANNEL_A_HT20;
619                         break;
620                 case NL80211_CHAN_HT40PLUS:
621                         chanmode = CHANNEL_A_HT40PLUS;
622                         break;
623                 case NL80211_CHAN_HT40MINUS:
624                         chanmode = CHANNEL_A_HT40MINUS;
625                         break;
626                 }
627                 break;
628         default:
629                 break;
630         }
631
632         return chanmode;
633 }
634
635 static int ath_keyset(struct ath_softc *sc, u16 keyix,
636                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
637 {
638         bool status;
639
640         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
641                 keyix, hk, mac, false);
642
643         return status != false;
644 }
645
646 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
647                            struct ath9k_keyval *hk,
648                            const u8 *addr)
649 {
650         const u8 *key_rxmic;
651         const u8 *key_txmic;
652
653         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
654         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
655
656         if (addr == NULL) {
657                 /* Group key installation */
658                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
659                 return ath_keyset(sc, keyix, hk, addr);
660         }
661         if (!sc->sc_splitmic) {
662                 /*
663                  * data key goes at first index,
664                  * the hal handles the MIC keys at index+64.
665                  */
666                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
668                 return ath_keyset(sc, keyix, hk, addr);
669         }
670         /*
671          * TX key goes at first index, RX key at +32.
672          * The hal handles the MIC keys at index+64.
673          */
674         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
675         if (!ath_keyset(sc, keyix, hk, NULL)) {
676                 /* Txmic entry failed. No need to proceed further */
677                 DPRINTF(sc, ATH_DBG_KEYCACHE,
678                         "Setting TX MIC Key Failed\n");
679                 return 0;
680         }
681
682         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683         /* XXX delete tx key on failure? */
684         return ath_keyset(sc, keyix + 32, hk, addr);
685 }
686
687 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
688 {
689         int i;
690
691         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
692                 if (test_bit(i, sc->sc_keymap) ||
693                     test_bit(i + 64, sc->sc_keymap))
694                         continue; /* At least one part of TKIP key allocated */
695                 if (sc->sc_splitmic &&
696                     (test_bit(i + 32, sc->sc_keymap) ||
697                      test_bit(i + 64 + 32, sc->sc_keymap)))
698                         continue; /* At least one part of TKIP key allocated */
699
700                 /* Found a free slot for a TKIP key */
701                 return i;
702         }
703         return -1;
704 }
705
706 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
707 {
708         int i;
709
710         /* First, try to find slots that would not be available for TKIP. */
711         if (sc->sc_splitmic) {
712                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
713                         if (!test_bit(i, sc->sc_keymap) &&
714                             (test_bit(i + 32, sc->sc_keymap) ||
715                              test_bit(i + 64, sc->sc_keymap) ||
716                              test_bit(i + 64 + 32, sc->sc_keymap)))
717                                 return i;
718                         if (!test_bit(i + 32, sc->sc_keymap) &&
719                             (test_bit(i, sc->sc_keymap) ||
720                              test_bit(i + 64, sc->sc_keymap) ||
721                              test_bit(i + 64 + 32, sc->sc_keymap)))
722                                 return i + 32;
723                         if (!test_bit(i + 64, sc->sc_keymap) &&
724                             (test_bit(i , sc->sc_keymap) ||
725                              test_bit(i + 32, sc->sc_keymap) ||
726                              test_bit(i + 64 + 32, sc->sc_keymap)))
727                                 return i + 64;
728                         if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
729                             (test_bit(i, sc->sc_keymap) ||
730                              test_bit(i + 32, sc->sc_keymap) ||
731                              test_bit(i + 64, sc->sc_keymap)))
732                                 return i + 64 + 32;
733                 }
734         } else {
735                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
736                         if (!test_bit(i, sc->sc_keymap) &&
737                             test_bit(i + 64, sc->sc_keymap))
738                                 return i;
739                         if (test_bit(i, sc->sc_keymap) &&
740                             !test_bit(i + 64, sc->sc_keymap))
741                                 return i + 64;
742                 }
743         }
744
745         /* No partially used TKIP slots, pick any available slot */
746         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
747                 /* Do not allow slots that could be needed for TKIP group keys
748                  * to be used. This limitation could be removed if we know that
749                  * TKIP will not be used. */
750                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
751                         continue;
752                 if (sc->sc_splitmic) {
753                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
754                                 continue;
755                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
756                                 continue;
757                 }
758
759                 if (!test_bit(i, sc->sc_keymap))
760                         return i; /* Found a free slot for a key */
761         }
762
763         /* No free slot found */
764         return -1;
765 }
766
767 static int ath_key_config(struct ath_softc *sc,
768                           struct ieee80211_sta *sta,
769                           struct ieee80211_key_conf *key)
770 {
771         struct ath9k_keyval hk;
772         const u8 *mac = NULL;
773         int ret = 0;
774         int idx;
775
776         memset(&hk, 0, sizeof(hk));
777
778         switch (key->alg) {
779         case ALG_WEP:
780                 hk.kv_type = ATH9K_CIPHER_WEP;
781                 break;
782         case ALG_TKIP:
783                 hk.kv_type = ATH9K_CIPHER_TKIP;
784                 break;
785         case ALG_CCMP:
786                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
787                 break;
788         default:
789                 return -EOPNOTSUPP;
790         }
791
792         hk.kv_len = key->keylen;
793         memcpy(hk.kv_val, key->key, key->keylen);
794
795         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
796                 /* For now, use the default keys for broadcast keys. This may
797                  * need to change with virtual interfaces. */
798                 idx = key->keyidx;
799         } else if (key->keyidx) {
800                 struct ieee80211_vif *vif;
801
802                 if (WARN_ON(!sta))
803                         return -EOPNOTSUPP;
804                 mac = sta->addr;
805
806                 vif = sc->sc_vaps[0];
807                 if (vif->type != NL80211_IFTYPE_AP) {
808                         /* Only keyidx 0 should be used with unicast key, but
809                          * allow this for client mode for now. */
810                         idx = key->keyidx;
811                 } else
812                         return -EIO;
813         } else {
814                 if (WARN_ON(!sta))
815                         return -EOPNOTSUPP;
816                 mac = sta->addr;
817
818                 if (key->alg == ALG_TKIP)
819                         idx = ath_reserve_key_cache_slot_tkip(sc);
820                 else
821                         idx = ath_reserve_key_cache_slot(sc);
822                 if (idx < 0)
823                         return -ENOSPC; /* no free key cache entries */
824         }
825
826         if (key->alg == ALG_TKIP)
827                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
828         else
829                 ret = ath_keyset(sc, idx, &hk, mac);
830
831         if (!ret)
832                 return -EIO;
833
834         set_bit(idx, sc->sc_keymap);
835         if (key->alg == ALG_TKIP) {
836                 set_bit(idx + 64, sc->sc_keymap);
837                 if (sc->sc_splitmic) {
838                         set_bit(idx + 32, sc->sc_keymap);
839                         set_bit(idx + 64 + 32, sc->sc_keymap);
840                 }
841         }
842
843         return idx;
844 }
845
846 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
847 {
848         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
849         if (key->hw_key_idx < IEEE80211_WEP_NKID)
850                 return;
851
852         clear_bit(key->hw_key_idx, sc->sc_keymap);
853         if (key->alg != ALG_TKIP)
854                 return;
855
856         clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
857         if (sc->sc_splitmic) {
858                 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
859                 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
860         }
861 }
862
863 static void setup_ht_cap(struct ath_softc *sc,
864                          struct ieee80211_sta_ht_cap *ht_info)
865 {
866 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
867 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
868
869         ht_info->ht_supported = true;
870         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
871                        IEEE80211_HT_CAP_SM_PS |
872                        IEEE80211_HT_CAP_SGI_40 |
873                        IEEE80211_HT_CAP_DSSSCCK40;
874
875         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
876         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
877
878         /* set up supported mcs set */
879         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
880
881         switch(sc->sc_rx_chainmask) {
882         case 1:
883                 ht_info->mcs.rx_mask[0] = 0xff;
884                 break;
885         case 3:
886         case 5:
887         case 7:
888         default:
889                 ht_info->mcs.rx_mask[0] = 0xff;
890                 ht_info->mcs.rx_mask[1] = 0xff;
891                 break;
892         }
893
894         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
895 }
896
897 static void ath9k_bss_assoc_info(struct ath_softc *sc,
898                                  struct ieee80211_vif *vif,
899                                  struct ieee80211_bss_conf *bss_conf)
900 {
901         struct ath_vap *avp = (void *)vif->drv_priv;
902
903         if (bss_conf->assoc) {
904                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
905                         bss_conf->aid, sc->sc_curbssid);
906
907                 /* New association, store aid */
908                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
909                         sc->sc_curaid = bss_conf->aid;
910                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
911                                                sc->sc_curaid);
912                 }
913
914                 /* Configure the beacon */
915                 ath_beacon_config(sc, 0);
916                 sc->sc_flags |= SC_OP_BEACONS;
917
918                 /* Reset rssi stats */
919                 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
920                 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
921                 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
922                 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
923
924                 /* Start ANI */
925                 mod_timer(&sc->sc_ani.timer,
926                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
927
928         } else {
929                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
930                 sc->sc_curaid = 0;
931         }
932 }
933
934 /********************************/
935 /*       LED functions          */
936 /********************************/
937
938 static void ath_led_blink_work(struct work_struct *work)
939 {
940         struct ath_softc *sc = container_of(work, struct ath_softc,
941                                             ath_led_blink_work.work);
942
943         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
944                 return;
945         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
946                           (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
947
948         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
949                            (sc->sc_flags & SC_OP_LED_ON) ?
950                            msecs_to_jiffies(sc->led_off_duration) :
951                            msecs_to_jiffies(sc->led_on_duration));
952
953         sc->led_on_duration =
954                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
955         sc->led_off_duration =
956                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
957         sc->led_on_cnt = sc->led_off_cnt = 0;
958         if (sc->sc_flags & SC_OP_LED_ON)
959                 sc->sc_flags &= ~SC_OP_LED_ON;
960         else
961                 sc->sc_flags |= SC_OP_LED_ON;
962 }
963
964 static void ath_led_brightness(struct led_classdev *led_cdev,
965                                enum led_brightness brightness)
966 {
967         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
968         struct ath_softc *sc = led->sc;
969
970         switch (brightness) {
971         case LED_OFF:
972                 if (led->led_type == ATH_LED_ASSOC ||
973                     led->led_type == ATH_LED_RADIO) {
974                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
975                                 (led->led_type == ATH_LED_RADIO));
976                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
977                         if (led->led_type == ATH_LED_RADIO)
978                                 sc->sc_flags &= ~SC_OP_LED_ON;
979                 } else {
980                         sc->led_off_cnt++;
981                 }
982                 break;
983         case LED_FULL:
984                 if (led->led_type == ATH_LED_ASSOC) {
985                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
986                         queue_delayed_work(sc->hw->workqueue,
987                                            &sc->ath_led_blink_work, 0);
988                 } else if (led->led_type == ATH_LED_RADIO) {
989                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
990                         sc->sc_flags |= SC_OP_LED_ON;
991                 } else {
992                         sc->led_on_cnt++;
993                 }
994                 break;
995         default:
996                 break;
997         }
998 }
999
1000 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1001                             char *trigger)
1002 {
1003         int ret;
1004
1005         led->sc = sc;
1006         led->led_cdev.name = led->name;
1007         led->led_cdev.default_trigger = trigger;
1008         led->led_cdev.brightness_set = ath_led_brightness;
1009
1010         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1011         if (ret)
1012                 DPRINTF(sc, ATH_DBG_FATAL,
1013                         "Failed to register led:%s", led->name);
1014         else
1015                 led->registered = 1;
1016         return ret;
1017 }
1018
1019 static void ath_unregister_led(struct ath_led *led)
1020 {
1021         if (led->registered) {
1022                 led_classdev_unregister(&led->led_cdev);
1023                 led->registered = 0;
1024         }
1025 }
1026
1027 static void ath_deinit_leds(struct ath_softc *sc)
1028 {
1029         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1030         ath_unregister_led(&sc->assoc_led);
1031         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1032         ath_unregister_led(&sc->tx_led);
1033         ath_unregister_led(&sc->rx_led);
1034         ath_unregister_led(&sc->radio_led);
1035         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1036 }
1037
1038 static void ath_init_leds(struct ath_softc *sc)
1039 {
1040         char *trigger;
1041         int ret;
1042
1043         /* Configure gpio 1 for output */
1044         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1045                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1046         /* LED off, active low */
1047         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1048
1049         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1050
1051         trigger = ieee80211_get_radio_led_name(sc->hw);
1052         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1053                 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1054         ret = ath_register_led(sc, &sc->radio_led, trigger);
1055         sc->radio_led.led_type = ATH_LED_RADIO;
1056         if (ret)
1057                 goto fail;
1058
1059         trigger = ieee80211_get_assoc_led_name(sc->hw);
1060         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1061                 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1062         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1063         sc->assoc_led.led_type = ATH_LED_ASSOC;
1064         if (ret)
1065                 goto fail;
1066
1067         trigger = ieee80211_get_tx_led_name(sc->hw);
1068         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1069                 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1070         ret = ath_register_led(sc, &sc->tx_led, trigger);
1071         sc->tx_led.led_type = ATH_LED_TX;
1072         if (ret)
1073                 goto fail;
1074
1075         trigger = ieee80211_get_rx_led_name(sc->hw);
1076         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1077                 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1078         ret = ath_register_led(sc, &sc->rx_led, trigger);
1079         sc->rx_led.led_type = ATH_LED_RX;
1080         if (ret)
1081                 goto fail;
1082
1083         return;
1084
1085 fail:
1086         ath_deinit_leds(sc);
1087 }
1088
1089 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1090
1091 /*******************/
1092 /*      Rfkill     */
1093 /*******************/
1094
1095 static void ath_radio_enable(struct ath_softc *sc)
1096 {
1097         struct ath_hal *ah = sc->sc_ah;
1098         struct ieee80211_channel *channel = sc->hw->conf.channel;
1099         int r;
1100
1101         ath9k_ps_wakeup(sc);
1102         spin_lock_bh(&sc->sc_resetlock);
1103
1104         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1105
1106         if (r) {
1107                 DPRINTF(sc, ATH_DBG_FATAL,
1108                         "Unable to reset channel %u (%uMhz) ",
1109                         "reset status %u\n",
1110                         channel->center_freq, r);
1111         }
1112         spin_unlock_bh(&sc->sc_resetlock);
1113
1114         ath_update_txpow(sc);
1115         if (ath_startrecv(sc) != 0) {
1116                 DPRINTF(sc, ATH_DBG_FATAL,
1117                         "Unable to restart recv logic\n");
1118                 return;
1119         }
1120
1121         if (sc->sc_flags & SC_OP_BEACONS)
1122                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1123
1124         /* Re-Enable  interrupts */
1125         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1126
1127         /* Enable LED */
1128         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1129                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1130         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1131
1132         ieee80211_wake_queues(sc->hw);
1133         ath9k_ps_restore(sc);
1134 }
1135
1136 static void ath_radio_disable(struct ath_softc *sc)
1137 {
1138         struct ath_hal *ah = sc->sc_ah;
1139         struct ieee80211_channel *channel = sc->hw->conf.channel;
1140         int r;
1141
1142         ath9k_ps_wakeup(sc);
1143         ieee80211_stop_queues(sc->hw);
1144
1145         /* Disable LED */
1146         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1147         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1148
1149         /* Disable interrupts */
1150         ath9k_hw_set_interrupts(ah, 0);
1151
1152         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1153         ath_stoprecv(sc);               /* turn off frame recv */
1154         ath_flushrecv(sc);              /* flush recv queue */
1155
1156         spin_lock_bh(&sc->sc_resetlock);
1157         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1158         if (r) {
1159                 DPRINTF(sc, ATH_DBG_FATAL,
1160                         "Unable to reset channel %u (%uMhz) "
1161                         "reset status %u\n",
1162                         channel->center_freq, r);
1163         }
1164         spin_unlock_bh(&sc->sc_resetlock);
1165
1166         ath9k_hw_phy_disable(ah);
1167         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1168         ath9k_ps_restore(sc);
1169 }
1170
1171 static bool ath_is_rfkill_set(struct ath_softc *sc)
1172 {
1173         struct ath_hal *ah = sc->sc_ah;
1174
1175         return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1176                                   ah->ah_rfkill_polarity;
1177 }
1178
1179 /* h/w rfkill poll function */
1180 static void ath_rfkill_poll(struct work_struct *work)
1181 {
1182         struct ath_softc *sc = container_of(work, struct ath_softc,
1183                                             rf_kill.rfkill_poll.work);
1184         bool radio_on;
1185
1186         if (sc->sc_flags & SC_OP_INVALID)
1187                 return;
1188
1189         radio_on = !ath_is_rfkill_set(sc);
1190
1191         /*
1192          * enable/disable radio only when there is a
1193          * state change in RF switch
1194          */
1195         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1196                 enum rfkill_state state;
1197
1198                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1199                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1200                                 : RFKILL_STATE_HARD_BLOCKED;
1201                 } else if (radio_on) {
1202                         ath_radio_enable(sc);
1203                         state = RFKILL_STATE_UNBLOCKED;
1204                 } else {
1205                         ath_radio_disable(sc);
1206                         state = RFKILL_STATE_HARD_BLOCKED;
1207                 }
1208
1209                 if (state == RFKILL_STATE_HARD_BLOCKED)
1210                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1211                 else
1212                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1213
1214                 rfkill_force_state(sc->rf_kill.rfkill, state);
1215         }
1216
1217         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1218                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1219 }
1220
1221 /* s/w rfkill handler */
1222 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1223 {
1224         struct ath_softc *sc = data;
1225
1226         switch (state) {
1227         case RFKILL_STATE_SOFT_BLOCKED:
1228                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1229                     SC_OP_RFKILL_SW_BLOCKED)))
1230                         ath_radio_disable(sc);
1231                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1232                 return 0;
1233         case RFKILL_STATE_UNBLOCKED:
1234                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1235                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1236                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1237                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1238                                         "radio as it is disabled by h/w\n");
1239                                 return -EPERM;
1240                         }
1241                         ath_radio_enable(sc);
1242                 }
1243                 return 0;
1244         default:
1245                 return -EINVAL;
1246         }
1247 }
1248
1249 /* Init s/w rfkill */
1250 static int ath_init_sw_rfkill(struct ath_softc *sc)
1251 {
1252         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1253                                              RFKILL_TYPE_WLAN);
1254         if (!sc->rf_kill.rfkill) {
1255                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1256                 return -ENOMEM;
1257         }
1258
1259         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1260                 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1261         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1262         sc->rf_kill.rfkill->data = sc;
1263         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1264         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1265         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1266
1267         return 0;
1268 }
1269
1270 /* Deinitialize rfkill */
1271 static void ath_deinit_rfkill(struct ath_softc *sc)
1272 {
1273         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1274                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1275
1276         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1277                 rfkill_unregister(sc->rf_kill.rfkill);
1278                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1279                 sc->rf_kill.rfkill = NULL;
1280         }
1281 }
1282
1283 static int ath_start_rfkill_poll(struct ath_softc *sc)
1284 {
1285         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1286                 queue_delayed_work(sc->hw->workqueue,
1287                                    &sc->rf_kill.rfkill_poll, 0);
1288
1289         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1290                 if (rfkill_register(sc->rf_kill.rfkill)) {
1291                         DPRINTF(sc, ATH_DBG_FATAL,
1292                                 "Unable to register rfkill\n");
1293                         rfkill_free(sc->rf_kill.rfkill);
1294
1295                         /* Deinitialize the device */
1296                         ath_cleanup(sc);
1297                         return -EIO;
1298                 } else {
1299                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1300                 }
1301         }
1302
1303         return 0;
1304 }
1305 #endif /* CONFIG_RFKILL */
1306
1307 void ath_cleanup(struct ath_softc *sc)
1308 {
1309         ath_detach(sc);
1310         free_irq(sc->irq, sc);
1311         ath_bus_cleanup(sc);
1312         ieee80211_free_hw(sc->hw);
1313 }
1314
1315 void ath_detach(struct ath_softc *sc)
1316 {
1317         struct ieee80211_hw *hw = sc->hw;
1318         int i = 0;
1319
1320         ath9k_ps_wakeup(sc);
1321
1322         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1323
1324 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1325         ath_deinit_rfkill(sc);
1326 #endif
1327         ath_deinit_leds(sc);
1328
1329         ieee80211_unregister_hw(hw);
1330         ath_rx_cleanup(sc);
1331         ath_tx_cleanup(sc);
1332
1333         tasklet_kill(&sc->intr_tq);
1334         tasklet_kill(&sc->bcon_tasklet);
1335
1336         if (!(sc->sc_flags & SC_OP_INVALID))
1337                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1338
1339         /* cleanup tx queues */
1340         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1341                 if (ATH_TXQ_SETUP(sc, i))
1342                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1343
1344         ath9k_hw_detach(sc->sc_ah);
1345         ath9k_exit_debug(sc);
1346         ath9k_ps_restore(sc);
1347 }
1348
1349 static int ath_init(u16 devid, struct ath_softc *sc)
1350 {
1351         struct ath_hal *ah = NULL;
1352         int status;
1353         int error = 0, i;
1354         int csz = 0;
1355
1356         /* XXX: hardware will not be ready until ath_open() being called */
1357         sc->sc_flags |= SC_OP_INVALID;
1358
1359         if (ath9k_init_debug(sc) < 0)
1360                 printk(KERN_ERR "Unable to create debugfs files\n");
1361
1362         spin_lock_init(&sc->sc_resetlock);
1363         mutex_init(&sc->mutex);
1364         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1365         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1366                      (unsigned long)sc);
1367
1368         /*
1369          * Cache line size is used to size and align various
1370          * structures used to communicate with the hardware.
1371          */
1372         ath_read_cachesize(sc, &csz);
1373         /* XXX assert csz is non-zero */
1374         sc->sc_cachelsz = csz << 2;     /* convert to bytes */
1375
1376         ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1377         if (ah == NULL) {
1378                 DPRINTF(sc, ATH_DBG_FATAL,
1379                         "Unable to attach hardware; HAL status %d\n", status);
1380                 error = -ENXIO;
1381                 goto bad;
1382         }
1383         sc->sc_ah = ah;
1384
1385         /* Get the hardware key cache size. */
1386         sc->sc_keymax = ah->ah_caps.keycache_size;
1387         if (sc->sc_keymax > ATH_KEYMAX) {
1388                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1389                         "Warning, using only %u entries in %u key cache\n",
1390                         ATH_KEYMAX, sc->sc_keymax);
1391                 sc->sc_keymax = ATH_KEYMAX;
1392         }
1393
1394         /*
1395          * Reset the key cache since some parts do not
1396          * reset the contents on initial power up.
1397          */
1398         for (i = 0; i < sc->sc_keymax; i++)
1399                 ath9k_hw_keyreset(ah, (u16) i);
1400
1401         if (ath9k_regd_init(sc->sc_ah))
1402                 goto bad;
1403
1404         /* default to MONITOR mode */
1405         sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1406
1407         /* Setup rate tables */
1408
1409         ath_rate_attach(sc);
1410         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1411         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1412
1413         /*
1414          * Allocate hardware transmit queues: one queue for
1415          * beacon frames and one data queue for each QoS
1416          * priority.  Note that the hal handles reseting
1417          * these queues at the needed time.
1418          */
1419         sc->beacon.beaconq = ath_beaconq_setup(ah);
1420         if (sc->beacon.beaconq == -1) {
1421                 DPRINTF(sc, ATH_DBG_FATAL,
1422                         "Unable to setup a beacon xmit queue\n");
1423                 error = -EIO;
1424                 goto bad2;
1425         }
1426         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1427         if (sc->beacon.cabq == NULL) {
1428                 DPRINTF(sc, ATH_DBG_FATAL,
1429                         "Unable to setup CAB xmit queue\n");
1430                 error = -EIO;
1431                 goto bad2;
1432         }
1433
1434         sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1435         ath_cabq_update(sc);
1436
1437         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1438                 sc->tx.hwq_map[i] = -1;
1439
1440         /* Setup data queues */
1441         /* NB: ensure BK queue is the lowest priority h/w queue */
1442         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1443                 DPRINTF(sc, ATH_DBG_FATAL,
1444                         "Unable to setup xmit queue for BK traffic\n");
1445                 error = -EIO;
1446                 goto bad2;
1447         }
1448
1449         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1450                 DPRINTF(sc, ATH_DBG_FATAL,
1451                         "Unable to setup xmit queue for BE traffic\n");
1452                 error = -EIO;
1453                 goto bad2;
1454         }
1455         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1456                 DPRINTF(sc, ATH_DBG_FATAL,
1457                         "Unable to setup xmit queue for VI traffic\n");
1458                 error = -EIO;
1459                 goto bad2;
1460         }
1461         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1462                 DPRINTF(sc, ATH_DBG_FATAL,
1463                         "Unable to setup xmit queue for VO traffic\n");
1464                 error = -EIO;
1465                 goto bad2;
1466         }
1467
1468         /* Initializes the noise floor to a reasonable default value.
1469          * Later on this will be updated during ANI processing. */
1470
1471         sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1472         setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1473
1474         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1475                                    ATH9K_CIPHER_TKIP, NULL)) {
1476                 /*
1477                  * Whether we should enable h/w TKIP MIC.
1478                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1479                  * report WMM capable, so it's always safe to turn on
1480                  * TKIP MIC in this case.
1481                  */
1482                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1483                                        0, 1, NULL);
1484         }
1485
1486         /*
1487          * Check whether the separate key cache entries
1488          * are required to handle both tx+rx MIC keys.
1489          * With split mic keys the number of stations is limited
1490          * to 27 otherwise 59.
1491          */
1492         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1493                                    ATH9K_CIPHER_TKIP, NULL)
1494             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1495                                       ATH9K_CIPHER_MIC, NULL)
1496             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1497                                       0, NULL))
1498                 sc->sc_splitmic = 1;
1499
1500         /* turn on mcast key search if possible */
1501         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1502                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1503                                              1, NULL);
1504
1505         sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1506         sc->sc_config.txpowlimit_override = 0;
1507
1508         /* 11n Capabilities */
1509         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1510                 sc->sc_flags |= SC_OP_TXAGGR;
1511                 sc->sc_flags |= SC_OP_RXAGGR;
1512         }
1513
1514         sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1515         sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1516
1517         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1518         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1519
1520         ath9k_hw_getmac(ah, sc->sc_myaddr);
1521         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1522                 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1523                 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1524                 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1525         }
1526
1527         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1528
1529         /* initialize beacon slots */
1530         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1531                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1532
1533         /* save MISC configurations */
1534         sc->sc_config.swBeaconProcess = 1;
1535
1536         /* setup channels and rates */
1537
1538         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1539         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1540                 sc->rates[IEEE80211_BAND_2GHZ];
1541         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1542         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1543                 ARRAY_SIZE(ath9k_2ghz_chantable);
1544
1545         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1546                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1547                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1548                         sc->rates[IEEE80211_BAND_5GHZ];
1549                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1550                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1551                         ARRAY_SIZE(ath9k_5ghz_chantable);
1552         }
1553
1554         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1555                 ath9k_hw_btcoex_enable(sc->sc_ah);
1556
1557         return 0;
1558 bad2:
1559         /* cleanup tx queues */
1560         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1561                 if (ATH_TXQ_SETUP(sc, i))
1562                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1563 bad:
1564         if (ah)
1565                 ath9k_hw_detach(ah);
1566
1567         return error;
1568 }
1569
1570 int ath_attach(u16 devid, struct ath_softc *sc)
1571 {
1572         struct ieee80211_hw *hw = sc->hw;
1573         int error = 0;
1574
1575         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1576
1577         error = ath_init(devid, sc);
1578         if (error != 0)
1579                 return error;
1580
1581         /* get mac address from hardware and set in mac80211 */
1582
1583         SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1584
1585         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1586                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1587                 IEEE80211_HW_SIGNAL_DBM |
1588                 IEEE80211_HW_AMPDU_AGGREGATION |
1589                 IEEE80211_HW_SUPPORTS_PS |
1590                 IEEE80211_HW_PS_NULLFUNC_STACK;
1591
1592         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah))
1593                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1594
1595         hw->wiphy->interface_modes =
1596                 BIT(NL80211_IFTYPE_AP) |
1597                 BIT(NL80211_IFTYPE_STATION) |
1598                 BIT(NL80211_IFTYPE_ADHOC);
1599
1600         hw->wiphy->reg_notifier = ath9k_reg_notifier;
1601         hw->wiphy->strict_regulatory = true;
1602
1603         hw->queues = 4;
1604         hw->max_rates = 4;
1605         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1606         hw->sta_data_size = sizeof(struct ath_node);
1607         hw->vif_data_size = sizeof(struct ath_vap);
1608
1609         hw->rate_control_algorithm = "ath9k_rate_control";
1610
1611         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1612                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1613                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1614                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1615         }
1616
1617         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1618         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1619                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1620                         &sc->sbands[IEEE80211_BAND_5GHZ];
1621
1622         /* initialize tx/rx engine */
1623         error = ath_tx_init(sc, ATH_TXBUF);
1624         if (error != 0)
1625                 goto detach;
1626
1627         error = ath_rx_init(sc, ATH_RXBUF);
1628         if (error != 0)
1629                 goto detach;
1630
1631 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1632         /* Initialze h/w Rfkill */
1633         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1634                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1635
1636         /* Initialize s/w rfkill */
1637         if (ath_init_sw_rfkill(sc))
1638                 goto detach;
1639 #endif
1640
1641         if (ath9k_is_world_regd(sc->sc_ah)) {
1642                 /* Anything applied here (prior to wiphy registratoin) gets
1643                  * saved on the wiphy orig_* parameters */
1644                 const struct ieee80211_regdomain *regd =
1645                         ath9k_world_regdomain(sc->sc_ah);
1646                 hw->wiphy->custom_regulatory = true;
1647                 hw->wiphy->strict_regulatory = false;
1648                 wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
1649                 ath9k_reg_apply_radar_flags(hw->wiphy);
1650                 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1651         } else {
1652                 /* This gets applied in the case of the absense of CRDA,
1653                  * its our own custom world regulatory domain, similar to
1654                  * cfg80211's but we enable passive scanning */
1655                 const struct ieee80211_regdomain *regd =
1656                         ath9k_default_world_regdomain();
1657                 wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
1658                 ath9k_reg_apply_radar_flags(hw->wiphy);
1659                 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1660         }
1661
1662         error = ieee80211_register_hw(hw);
1663
1664         if (!ath9k_is_world_regd(sc->sc_ah))
1665                 regulatory_hint(hw->wiphy, sc->sc_ah->alpha2);
1666
1667         /* Initialize LED control */
1668         ath_init_leds(sc);
1669
1670
1671         return 0;
1672 detach:
1673         ath_detach(sc);
1674         return error;
1675 }
1676
1677 int ath_reset(struct ath_softc *sc, bool retry_tx)
1678 {
1679         struct ath_hal *ah = sc->sc_ah;
1680         struct ieee80211_hw *hw = sc->hw;
1681         int r;
1682
1683         ath9k_hw_set_interrupts(ah, 0);
1684         ath_drain_all_txq(sc, retry_tx);
1685         ath_stoprecv(sc);
1686         ath_flushrecv(sc);
1687
1688         spin_lock_bh(&sc->sc_resetlock);
1689         r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1690         if (r)
1691                 DPRINTF(sc, ATH_DBG_FATAL,
1692                         "Unable to reset hardware; reset status %u\n", r);
1693         spin_unlock_bh(&sc->sc_resetlock);
1694
1695         if (ath_startrecv(sc) != 0)
1696                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1697
1698         /*
1699          * We may be doing a reset in response to a request
1700          * that changes the channel so update any state that
1701          * might change as a result.
1702          */
1703         ath_cache_conf_rate(sc, &hw->conf);
1704
1705         ath_update_txpow(sc);
1706
1707         if (sc->sc_flags & SC_OP_BEACONS)
1708                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1709
1710         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1711
1712         if (retry_tx) {
1713                 int i;
1714                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1715                         if (ATH_TXQ_SETUP(sc, i)) {
1716                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1717                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1718                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1719                         }
1720                 }
1721         }
1722
1723         return r;
1724 }
1725
1726 /*
1727  *  This function will allocate both the DMA descriptor structure, and the
1728  *  buffers it contains.  These are used to contain the descriptors used
1729  *  by the system.
1730 */
1731 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1732                       struct list_head *head, const char *name,
1733                       int nbuf, int ndesc)
1734 {
1735 #define DS2PHYS(_dd, _ds)                                               \
1736         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1737 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1738 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1739
1740         struct ath_desc *ds;
1741         struct ath_buf *bf;
1742         int i, bsize, error;
1743
1744         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1745                 name, nbuf, ndesc);
1746
1747         /* ath_desc must be a multiple of DWORDs */
1748         if ((sizeof(struct ath_desc) % 4) != 0) {
1749                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1750                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1751                 error = -ENOMEM;
1752                 goto fail;
1753         }
1754
1755         dd->dd_name = name;
1756         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1757
1758         /*
1759          * Need additional DMA memory because we can't use
1760          * descriptors that cross the 4K page boundary. Assume
1761          * one skipped descriptor per 4K page.
1762          */
1763         if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1764                 u32 ndesc_skipped =
1765                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1766                 u32 dma_len;
1767
1768                 while (ndesc_skipped) {
1769                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1770                         dd->dd_desc_len += dma_len;
1771
1772                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1773                 };
1774         }
1775
1776         /* allocate descriptors */
1777         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1778                                          &dd->dd_desc_paddr, GFP_ATOMIC);
1779         if (dd->dd_desc == NULL) {
1780                 error = -ENOMEM;
1781                 goto fail;
1782         }
1783         ds = dd->dd_desc;
1784         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1785                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1786                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1787
1788         /* allocate buffers */
1789         bsize = sizeof(struct ath_buf) * nbuf;
1790         bf = kmalloc(bsize, GFP_KERNEL);
1791         if (bf == NULL) {
1792                 error = -ENOMEM;
1793                 goto fail2;
1794         }
1795         memset(bf, 0, bsize);
1796         dd->dd_bufptr = bf;
1797
1798         INIT_LIST_HEAD(head);
1799         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1800                 bf->bf_desc = ds;
1801                 bf->bf_daddr = DS2PHYS(dd, ds);
1802
1803                 if (!(sc->sc_ah->ah_caps.hw_caps &
1804                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1805                         /*
1806                          * Skip descriptor addresses which can cause 4KB
1807                          * boundary crossing (addr + length) with a 32 dword
1808                          * descriptor fetch.
1809                          */
1810                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1811                                 ASSERT((caddr_t) bf->bf_desc <
1812                                        ((caddr_t) dd->dd_desc +
1813                                         dd->dd_desc_len));
1814
1815                                 ds += ndesc;
1816                                 bf->bf_desc = ds;
1817                                 bf->bf_daddr = DS2PHYS(dd, ds);
1818                         }
1819                 }
1820                 list_add_tail(&bf->list, head);
1821         }
1822         return 0;
1823 fail2:
1824         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1825                           dd->dd_desc_paddr);
1826 fail:
1827         memset(dd, 0, sizeof(*dd));
1828         return error;
1829 #undef ATH_DESC_4KB_BOUND_CHECK
1830 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1831 #undef DS2PHYS
1832 }
1833
1834 void ath_descdma_cleanup(struct ath_softc *sc,
1835                          struct ath_descdma *dd,
1836                          struct list_head *head)
1837 {
1838         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1839                           dd->dd_desc_paddr);
1840
1841         INIT_LIST_HEAD(head);
1842         kfree(dd->dd_bufptr);
1843         memset(dd, 0, sizeof(*dd));
1844 }
1845
1846 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1847 {
1848         int qnum;
1849
1850         switch (queue) {
1851         case 0:
1852                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1853                 break;
1854         case 1:
1855                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1856                 break;
1857         case 2:
1858                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1859                 break;
1860         case 3:
1861                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1862                 break;
1863         default:
1864                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1865                 break;
1866         }
1867
1868         return qnum;
1869 }
1870
1871 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1872 {
1873         int qnum;
1874
1875         switch (queue) {
1876         case ATH9K_WME_AC_VO:
1877                 qnum = 0;
1878                 break;
1879         case ATH9K_WME_AC_VI:
1880                 qnum = 1;
1881                 break;
1882         case ATH9K_WME_AC_BE:
1883                 qnum = 2;
1884                 break;
1885         case ATH9K_WME_AC_BK:
1886                 qnum = 3;
1887                 break;
1888         default:
1889                 qnum = -1;
1890                 break;
1891         }
1892
1893         return qnum;
1894 }
1895
1896 /* XXX: Remove me once we don't depend on ath9k_channel for all
1897  * this redundant data */
1898 static void ath9k_update_ichannel(struct ath_softc *sc,
1899                           struct ath9k_channel *ichan)
1900 {
1901         struct ieee80211_hw *hw = sc->hw;
1902         struct ieee80211_channel *chan = hw->conf.channel;
1903         struct ieee80211_conf *conf = &hw->conf;
1904
1905         ichan->channel = chan->center_freq;
1906         ichan->chan = chan;
1907
1908         if (chan->band == IEEE80211_BAND_2GHZ) {
1909                 ichan->chanmode = CHANNEL_G;
1910                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1911         } else {
1912                 ichan->chanmode = CHANNEL_A;
1913                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1914         }
1915
1916         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1917
1918         if (conf_is_ht(conf)) {
1919                 if (conf_is_ht40(conf))
1920                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1921
1922                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1923                                             conf->channel_type);
1924         }
1925 }
1926
1927 /**********************/
1928 /* mac80211 callbacks */
1929 /**********************/
1930
1931 static int ath9k_start(struct ieee80211_hw *hw)
1932 {
1933         struct ath_softc *sc = hw->priv;
1934         struct ieee80211_channel *curchan = hw->conf.channel;
1935         struct ath9k_channel *init_channel;
1936         int r, pos;
1937
1938         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1939                 "initial channel: %d MHz\n", curchan->center_freq);
1940
1941         /* setup initial channel */
1942
1943         pos = curchan->hw_value;
1944
1945         init_channel = &sc->sc_ah->ah_channels[pos];
1946         ath9k_update_ichannel(sc, init_channel);
1947
1948         /* Reset SERDES registers */
1949         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1950
1951         /*
1952          * The basic interface to setting the hardware in a good
1953          * state is ``reset''.  On return the hardware is known to
1954          * be powered up and with interrupts disabled.  This must
1955          * be followed by initialization of the appropriate bits
1956          * and then setup of the interrupt mask.
1957          */
1958         spin_lock_bh(&sc->sc_resetlock);
1959         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1960         if (r) {
1961                 DPRINTF(sc, ATH_DBG_FATAL,
1962                         "Unable to reset hardware; reset status %u "
1963                         "(freq %u MHz)\n", r,
1964                         curchan->center_freq);
1965                 spin_unlock_bh(&sc->sc_resetlock);
1966                 return r;
1967         }
1968         spin_unlock_bh(&sc->sc_resetlock);
1969
1970         /*
1971          * This is needed only to setup initial state
1972          * but it's best done after a reset.
1973          */
1974         ath_update_txpow(sc);
1975
1976         /*
1977          * Setup the hardware after reset:
1978          * The receive engine is set going.
1979          * Frame transmit is handled entirely
1980          * in the frame output path; there's nothing to do
1981          * here except setup the interrupt mask.
1982          */
1983         if (ath_startrecv(sc) != 0) {
1984                 DPRINTF(sc, ATH_DBG_FATAL,
1985                         "Unable to start recv logic\n");
1986                 return -EIO;
1987         }
1988
1989         /* Setup our intr mask. */
1990         sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1991                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1992                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1993
1994         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1995                 sc->sc_imask |= ATH9K_INT_GTT;
1996
1997         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1998                 sc->sc_imask |= ATH9K_INT_CST;
1999
2000         ath_cache_conf_rate(sc, &hw->conf);
2001
2002         sc->sc_flags &= ~SC_OP_INVALID;
2003
2004         /* Disable BMISS interrupt when we're not associated */
2005         sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2006         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
2007
2008         ieee80211_wake_queues(sc->hw);
2009
2010 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2011         r = ath_start_rfkill_poll(sc);
2012 #endif
2013         return r;
2014 }
2015
2016 static int ath9k_tx(struct ieee80211_hw *hw,
2017                     struct sk_buff *skb)
2018 {
2019         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2020         struct ath_softc *sc = hw->priv;
2021         struct ath_tx_control txctl;
2022         int hdrlen, padsize;
2023
2024         memset(&txctl, 0, sizeof(struct ath_tx_control));
2025
2026         /*
2027          * As a temporary workaround, assign seq# here; this will likely need
2028          * to be cleaned up to work better with Beacon transmission and virtual
2029          * BSSes.
2030          */
2031         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2032                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2033                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2034                         sc->tx.seq_no += 0x10;
2035                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2036                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2037         }
2038
2039         /* Add the padding after the header if this is not already done */
2040         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2041         if (hdrlen & 3) {
2042                 padsize = hdrlen % 4;
2043                 if (skb_headroom(skb) < padsize)
2044                         return -1;
2045                 skb_push(skb, padsize);
2046                 memmove(skb->data, skb->data + padsize, hdrlen);
2047         }
2048
2049         /* Check if a tx queue is available */
2050
2051         txctl.txq = ath_test_get_txq(sc, skb);
2052         if (!txctl.txq)
2053                 goto exit;
2054
2055         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2056
2057         if (ath_tx_start(sc, skb, &txctl) != 0) {
2058                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2059                 goto exit;
2060         }
2061
2062         return 0;
2063 exit:
2064         dev_kfree_skb_any(skb);
2065         return 0;
2066 }
2067
2068 static void ath9k_stop(struct ieee80211_hw *hw)
2069 {
2070         struct ath_softc *sc = hw->priv;
2071
2072         if (sc->sc_flags & SC_OP_INVALID) {
2073                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2074                 return;
2075         }
2076
2077         DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2078
2079         ieee80211_stop_queues(sc->hw);
2080
2081         /* make sure h/w will not generate any interrupt
2082          * before setting the invalid flag. */
2083         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2084
2085         if (!(sc->sc_flags & SC_OP_INVALID)) {
2086                 ath_drain_all_txq(sc, false);
2087                 ath_stoprecv(sc);
2088                 ath9k_hw_phy_disable(sc->sc_ah);
2089         } else
2090                 sc->rx.rxlink = NULL;
2091
2092 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2093         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2094                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2095 #endif
2096         /* disable HAL and put h/w to sleep */
2097         ath9k_hw_disable(sc->sc_ah);
2098         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2099
2100         sc->sc_flags |= SC_OP_INVALID;
2101
2102         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2103 }
2104
2105 static int ath9k_add_interface(struct ieee80211_hw *hw,
2106                                struct ieee80211_if_init_conf *conf)
2107 {
2108         struct ath_softc *sc = hw->priv;
2109         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2110         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2111
2112         /* Support only vap for now */
2113
2114         if (sc->sc_nvaps)
2115                 return -ENOBUFS;
2116
2117         switch (conf->type) {
2118         case NL80211_IFTYPE_STATION:
2119                 ic_opmode = NL80211_IFTYPE_STATION;
2120                 break;
2121         case NL80211_IFTYPE_ADHOC:
2122                 ic_opmode = NL80211_IFTYPE_ADHOC;
2123                 break;
2124         case NL80211_IFTYPE_AP:
2125                 ic_opmode = NL80211_IFTYPE_AP;
2126                 break;
2127         default:
2128                 DPRINTF(sc, ATH_DBG_FATAL,
2129                         "Interface type %d not yet supported\n", conf->type);
2130                 return -EOPNOTSUPP;
2131         }
2132
2133         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2134
2135         /* Set the VAP opmode */
2136         avp->av_opmode = ic_opmode;
2137         avp->av_bslot = -1;
2138
2139         if (ic_opmode == NL80211_IFTYPE_AP)
2140                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2141
2142         sc->sc_vaps[0] = conf->vif;
2143         sc->sc_nvaps++;
2144
2145         /* Set the device opmode */
2146         sc->sc_ah->ah_opmode = ic_opmode;
2147
2148         /*
2149          * Enable MIB interrupts when there are hardware phy counters.
2150          * Note we only do this (at the moment) for station mode.
2151          */
2152         if (ath9k_hw_phycounters(sc->sc_ah) &&
2153             ((conf->type == NL80211_IFTYPE_STATION) ||
2154              (conf->type == NL80211_IFTYPE_ADHOC)))
2155                 sc->sc_imask |= ATH9K_INT_MIB;
2156         /*
2157          * Some hardware processes the TIM IE and fires an
2158          * interrupt when the TIM bit is set.  For hardware
2159          * that does, if not overridden by configuration,
2160          * enable the TIM interrupt when operating as station.
2161          */
2162         if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2163             (conf->type == NL80211_IFTYPE_STATION) &&
2164             !sc->sc_config.swBeaconProcess)
2165                 sc->sc_imask |= ATH9K_INT_TIM;
2166
2167         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
2168
2169         if (conf->type == NL80211_IFTYPE_AP) {
2170                 /* TODO: is this a suitable place to start ANI for AP mode? */
2171                 /* Start ANI */
2172                 mod_timer(&sc->sc_ani.timer,
2173                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2174         }
2175
2176         return 0;
2177 }
2178
2179 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2180                                    struct ieee80211_if_init_conf *conf)
2181 {
2182         struct ath_softc *sc = hw->priv;
2183         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2184
2185         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2186
2187         /* Stop ANI */
2188         del_timer_sync(&sc->sc_ani.timer);
2189
2190         /* Reclaim beacon resources */
2191         if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2192             sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2193                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2194                 ath_beacon_return(sc, avp);
2195         }
2196
2197         sc->sc_flags &= ~SC_OP_BEACONS;
2198
2199         sc->sc_vaps[0] = NULL;
2200         sc->sc_nvaps--;
2201 }
2202
2203 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2204 {
2205         struct ath_softc *sc = hw->priv;
2206         struct ieee80211_conf *conf = &hw->conf;
2207
2208         mutex_lock(&sc->mutex);
2209         if (changed & IEEE80211_CONF_CHANGE_PS) {
2210                 if (conf->flags & IEEE80211_CONF_PS) {
2211                         if ((sc->sc_imask & ATH9K_INT_TIM_TIMER) == 0) {
2212                                 sc->sc_imask |= ATH9K_INT_TIM_TIMER;
2213                                 ath9k_hw_set_interrupts(sc->sc_ah,
2214                                                 sc->sc_imask);
2215                         }
2216                         ath9k_hw_setrxabort(sc->sc_ah, 1);
2217                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2218                 } else {
2219                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2220                         ath9k_hw_setrxabort(sc->sc_ah, 0);
2221                         sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2222                         if (sc->sc_imask & ATH9K_INT_TIM_TIMER) {
2223                                 sc->sc_imask &= ~ATH9K_INT_TIM_TIMER;
2224                                 ath9k_hw_set_interrupts(sc->sc_ah,
2225                                                 sc->sc_imask);
2226                         }
2227                 }
2228         }
2229
2230         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2231                 struct ieee80211_channel *curchan = hw->conf.channel;
2232                 int pos = curchan->hw_value;
2233
2234                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2235                         curchan->center_freq);
2236
2237                 /* XXX: remove me eventualy */
2238                 ath9k_update_ichannel(sc, &sc->sc_ah->ah_channels[pos]);
2239
2240                 ath_update_chainmask(sc, conf_is_ht(conf));
2241
2242                 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2243                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2244                         mutex_unlock(&sc->mutex);
2245                         return -EINVAL;
2246                 }
2247         }
2248
2249         if (changed & IEEE80211_CONF_CHANGE_POWER)
2250                 sc->sc_config.txpowlimit = 2 * conf->power_level;
2251
2252         mutex_unlock(&sc->mutex);
2253         return 0;
2254 }
2255
2256 static int ath9k_config_interface(struct ieee80211_hw *hw,
2257                                   struct ieee80211_vif *vif,
2258                                   struct ieee80211_if_conf *conf)
2259 {
2260         struct ath_softc *sc = hw->priv;
2261         struct ath_hal *ah = sc->sc_ah;
2262         struct ath_vap *avp = (void *)vif->drv_priv;
2263         u32 rfilt = 0;
2264         int error, i;
2265
2266         /* TODO: Need to decide which hw opmode to use for multi-interface
2267          * cases */
2268         if (vif->type == NL80211_IFTYPE_AP &&
2269             ah->ah_opmode != NL80211_IFTYPE_AP) {
2270                 ah->ah_opmode = NL80211_IFTYPE_STATION;
2271                 ath9k_hw_setopmode(ah);
2272                 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2273                 /* Request full reset to get hw opmode changed properly */
2274                 sc->sc_flags |= SC_OP_FULL_RESET;
2275         }
2276
2277         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2278             !is_zero_ether_addr(conf->bssid)) {
2279                 switch (vif->type) {
2280                 case NL80211_IFTYPE_STATION:
2281                 case NL80211_IFTYPE_ADHOC:
2282                         /* Set BSSID */
2283                         memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2284                         sc->sc_curaid = 0;
2285                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2286                                                sc->sc_curaid);
2287
2288                         /* Set aggregation protection mode parameters */
2289                         sc->sc_config.ath_aggr_prot = 0;
2290
2291                         DPRINTF(sc, ATH_DBG_CONFIG,
2292                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2293                                 rfilt, sc->sc_curbssid, sc->sc_curaid);
2294
2295                         /* need to reconfigure the beacon */
2296                         sc->sc_flags &= ~SC_OP_BEACONS ;
2297
2298                         break;
2299                 default:
2300                         break;
2301                 }
2302         }
2303
2304         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2305             (vif->type == NL80211_IFTYPE_AP)) {
2306                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2307                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2308                      conf->enable_beacon)) {
2309                         /*
2310                          * Allocate and setup the beacon frame.
2311                          *
2312                          * Stop any previous beacon DMA.  This may be
2313                          * necessary, for example, when an ibss merge
2314                          * causes reconfiguration; we may be called
2315                          * with beacon transmission active.
2316                          */
2317                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2318
2319                         error = ath_beacon_alloc(sc, 0);
2320                         if (error != 0)
2321                                 return error;
2322
2323                         ath_beacon_sync(sc, 0);
2324                 }
2325         }
2326
2327         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2328         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2329                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2330                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2331                                 ath9k_hw_keysetmac(sc->sc_ah,
2332                                                    (u16)i,
2333                                                    sc->sc_curbssid);
2334         }
2335
2336         /* Only legacy IBSS for now */
2337         if (vif->type == NL80211_IFTYPE_ADHOC)
2338                 ath_update_chainmask(sc, 0);
2339
2340         return 0;
2341 }
2342
2343 #define SUPPORTED_FILTERS                       \
2344         (FIF_PROMISC_IN_BSS |                   \
2345         FIF_ALLMULTI |                          \
2346         FIF_CONTROL |                           \
2347         FIF_OTHER_BSS |                         \
2348         FIF_BCN_PRBRESP_PROMISC |               \
2349         FIF_FCSFAIL)
2350
2351 /* FIXME: sc->sc_full_reset ? */
2352 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2353                                    unsigned int changed_flags,
2354                                    unsigned int *total_flags,
2355                                    int mc_count,
2356                                    struct dev_mc_list *mclist)
2357 {
2358         struct ath_softc *sc = hw->priv;
2359         u32 rfilt;
2360
2361         changed_flags &= SUPPORTED_FILTERS;
2362         *total_flags &= SUPPORTED_FILTERS;
2363
2364         sc->rx.rxfilter = *total_flags;
2365         rfilt = ath_calcrxfilter(sc);
2366         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2367
2368         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2369                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2370                         ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2371         }
2372
2373         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2374 }
2375
2376 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2377                              struct ieee80211_vif *vif,
2378                              enum sta_notify_cmd cmd,
2379                              struct ieee80211_sta *sta)
2380 {
2381         struct ath_softc *sc = hw->priv;
2382
2383         switch (cmd) {
2384         case STA_NOTIFY_ADD:
2385                 ath_node_attach(sc, sta);
2386                 break;
2387         case STA_NOTIFY_REMOVE:
2388                 ath_node_detach(sc, sta);
2389                 break;
2390         default:
2391                 break;
2392         }
2393 }
2394
2395 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2396                          u16 queue,
2397                          const struct ieee80211_tx_queue_params *params)
2398 {
2399         struct ath_softc *sc = hw->priv;
2400         struct ath9k_tx_queue_info qi;
2401         int ret = 0, qnum;
2402
2403         if (queue >= WME_NUM_AC)
2404                 return 0;
2405
2406         qi.tqi_aifs = params->aifs;
2407         qi.tqi_cwmin = params->cw_min;
2408         qi.tqi_cwmax = params->cw_max;
2409         qi.tqi_burstTime = params->txop;
2410         qnum = ath_get_hal_qnum(queue, sc);
2411
2412         DPRINTF(sc, ATH_DBG_CONFIG,
2413                 "Configure tx [queue/halq] [%d/%d],  "
2414                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2415                 queue, qnum, params->aifs, params->cw_min,
2416                 params->cw_max, params->txop);
2417
2418         ret = ath_txq_update(sc, qnum, &qi);
2419         if (ret)
2420                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2421
2422         return ret;
2423 }
2424
2425 static int ath9k_set_key(struct ieee80211_hw *hw,
2426                          enum set_key_cmd cmd,
2427                          struct ieee80211_vif *vif,
2428                          struct ieee80211_sta *sta,
2429                          struct ieee80211_key_conf *key)
2430 {
2431         struct ath_softc *sc = hw->priv;
2432         int ret = 0;
2433
2434         ath9k_ps_wakeup(sc);
2435         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2436
2437         switch (cmd) {
2438         case SET_KEY:
2439                 ret = ath_key_config(sc, sta, key);
2440                 if (ret >= 0) {
2441                         key->hw_key_idx = ret;
2442                         /* push IV and Michael MIC generation to stack */
2443                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2444                         if (key->alg == ALG_TKIP)
2445                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2446                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2447                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2448                         ret = 0;
2449                 }
2450                 break;
2451         case DISABLE_KEY:
2452                 ath_key_delete(sc, key);
2453                 break;
2454         default:
2455                 ret = -EINVAL;
2456         }
2457
2458         ath9k_ps_restore(sc);
2459         return ret;
2460 }
2461
2462 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2463                                    struct ieee80211_vif *vif,
2464                                    struct ieee80211_bss_conf *bss_conf,
2465                                    u32 changed)
2466 {
2467         struct ath_softc *sc = hw->priv;
2468
2469         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2470                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2471                         bss_conf->use_short_preamble);
2472                 if (bss_conf->use_short_preamble)
2473                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2474                 else
2475                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2476         }
2477
2478         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2479                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2480                         bss_conf->use_cts_prot);
2481                 if (bss_conf->use_cts_prot &&
2482                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2483                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2484                 else
2485                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2486         }
2487
2488         if (changed & BSS_CHANGED_ASSOC) {
2489                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2490                         bss_conf->assoc);
2491                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2492         }
2493 }
2494
2495 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2496 {
2497         u64 tsf;
2498         struct ath_softc *sc = hw->priv;
2499         struct ath_hal *ah = sc->sc_ah;
2500
2501         tsf = ath9k_hw_gettsf64(ah);
2502
2503         return tsf;
2504 }
2505
2506 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2507 {
2508         struct ath_softc *sc = hw->priv;
2509         struct ath_hal *ah = sc->sc_ah;
2510
2511         ath9k_hw_settsf64(ah, tsf);
2512 }
2513
2514 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2515 {
2516         struct ath_softc *sc = hw->priv;
2517         struct ath_hal *ah = sc->sc_ah;
2518
2519         ath9k_hw_reset_tsf(ah);
2520 }
2521
2522 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2523                        enum ieee80211_ampdu_mlme_action action,
2524                        struct ieee80211_sta *sta,
2525                        u16 tid, u16 *ssn)
2526 {
2527         struct ath_softc *sc = hw->priv;
2528         int ret = 0;
2529
2530         switch (action) {
2531         case IEEE80211_AMPDU_RX_START:
2532                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2533                         ret = -ENOTSUPP;
2534                 break;
2535         case IEEE80211_AMPDU_RX_STOP:
2536                 break;
2537         case IEEE80211_AMPDU_TX_START:
2538                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2539                 if (ret < 0)
2540                         DPRINTF(sc, ATH_DBG_FATAL,
2541                                 "Unable to start TX aggregation\n");
2542                 else
2543                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2544                 break;
2545         case IEEE80211_AMPDU_TX_STOP:
2546                 ret = ath_tx_aggr_stop(sc, sta, tid);
2547                 if (ret < 0)
2548                         DPRINTF(sc, ATH_DBG_FATAL,
2549                                 "Unable to stop TX aggregation\n");
2550
2551                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2552                 break;
2553         case IEEE80211_AMPDU_TX_RESUME:
2554                 ath_tx_aggr_resume(sc, sta, tid);
2555                 break;
2556         default:
2557                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2558         }
2559
2560         return ret;
2561 }
2562
2563 struct ieee80211_ops ath9k_ops = {
2564         .tx                 = ath9k_tx,
2565         .start              = ath9k_start,
2566         .stop               = ath9k_stop,
2567         .add_interface      = ath9k_add_interface,
2568         .remove_interface   = ath9k_remove_interface,
2569         .config             = ath9k_config,
2570         .config_interface   = ath9k_config_interface,
2571         .configure_filter   = ath9k_configure_filter,
2572         .sta_notify         = ath9k_sta_notify,
2573         .conf_tx            = ath9k_conf_tx,
2574         .bss_info_changed   = ath9k_bss_info_changed,
2575         .set_key            = ath9k_set_key,
2576         .get_tsf            = ath9k_get_tsf,
2577         .set_tsf            = ath9k_set_tsf,
2578         .reset_tsf          = ath9k_reset_tsf,
2579         .ampdu_action       = ath9k_ampdu_action,
2580 };
2581
2582 static struct {
2583         u32 version;
2584         const char * name;
2585 } ath_mac_bb_names[] = {
2586         { AR_SREV_VERSION_5416_PCI,     "5416" },
2587         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2588         { AR_SREV_VERSION_9100,         "9100" },
2589         { AR_SREV_VERSION_9160,         "9160" },
2590         { AR_SREV_VERSION_9280,         "9280" },
2591         { AR_SREV_VERSION_9285,         "9285" }
2592 };
2593
2594 static struct {
2595         u16 version;
2596         const char * name;
2597 } ath_rf_names[] = {
2598         { 0,                            "5133" },
2599         { AR_RAD5133_SREV_MAJOR,        "5133" },
2600         { AR_RAD5122_SREV_MAJOR,        "5122" },
2601         { AR_RAD2133_SREV_MAJOR,        "2133" },
2602         { AR_RAD2122_SREV_MAJOR,        "2122" }
2603 };
2604
2605 /*
2606  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2607  */
2608 const char *
2609 ath_mac_bb_name(u32 mac_bb_version)
2610 {
2611         int i;
2612
2613         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2614                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2615                         return ath_mac_bb_names[i].name;
2616                 }
2617         }
2618
2619         return "????";
2620 }
2621
2622 /*
2623  * Return the RF name. "????" is returned if the RF is unknown.
2624  */
2625 const char *
2626 ath_rf_name(u16 rf_version)
2627 {
2628         int i;
2629
2630         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2631                 if (ath_rf_names[i].version == rf_version) {
2632                         return ath_rf_names[i].name;
2633                 }
2634         }
2635
2636         return "????";
2637 }
2638
2639 static int __init ath9k_init(void)
2640 {
2641         int error;
2642
2643         /* Register rate control algorithm */
2644         error = ath_rate_control_register();
2645         if (error != 0) {
2646                 printk(KERN_ERR
2647                         "ath9k: Unable to register rate control "
2648                         "algorithm: %d\n",
2649                         error);
2650                 goto err_out;
2651         }
2652
2653         error = ath_pci_init();
2654         if (error < 0) {
2655                 printk(KERN_ERR
2656                         "ath9k: No PCI devices found, driver not installed.\n");
2657                 error = -ENODEV;
2658                 goto err_rate_unregister;
2659         }
2660
2661         error = ath_ahb_init();
2662         if (error < 0) {
2663                 error = -ENODEV;
2664                 goto err_pci_exit;
2665         }
2666
2667         return 0;
2668
2669  err_pci_exit:
2670         ath_pci_exit();
2671
2672  err_rate_unregister:
2673         ath_rate_control_unregister();
2674  err_out:
2675         return error;
2676 }
2677 module_init(ath9k_init);
2678
2679 static void __exit ath9k_exit(void)
2680 {
2681         ath_ahb_exit();
2682         ath_pci_exit();
2683         ath_rate_control_unregister();
2684         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2685 }
2686 module_exit(ath9k_exit);