]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ipw2200.c
introduce WEXT scan capabilities
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318  _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326  _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335         return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348         return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361         return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370                                        struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373                      d);
374         _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382                                 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385         _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
399         u32 dif_len = reg - aligned_addr;
400
401         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
410         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420         u32 word;
421         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424         return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430         u32 value;
431
432         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437         return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /*    for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443                                int num)
444 {
445         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
446         u32 dif_len = addr - aligned_addr;
447         u32 i;
448
449         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451         if (num <= 0) {
452                 return;
453         }
454
455         /* Read the first dword (or portion) byte by byte */
456         if (unlikely(dif_len)) {
457                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458                 /* Start reading at aligned_addr + dif_len */
459                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461                 aligned_addr += 4;
462         }
463
464         /* Read all of the middle dwords as dwords, with auto-increment */
465         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469         /* Read the last dword (or portion) byte by byte */
470         if (unlikely(num)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 for (i = 0; num > 0; i++, num--)
473                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474         }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /*    for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480                                 int num)
481 {
482         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
483         u32 dif_len = addr - aligned_addr;
484         u32 i;
485
486         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488         if (num <= 0) {
489                 return;
490         }
491
492         /* Write the first dword (or portion) byte by byte */
493         if (unlikely(dif_len)) {
494                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495                 /* Start writing at aligned_addr + dif_len */
496                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498                 aligned_addr += 4;
499         }
500
501         /* Write all of the middle dwords as dwords, with auto-increment */
502         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506         /* Write the last dword (or portion) byte by byte */
507         if (unlikely(num)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 for (i = 0; num > 0; i++, num--, buf++)
510                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511         }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /*    for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517                              int num)
518 {
519         memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536         if (priv->status & STATUS_INT_ENABLED)
537                 return;
538         priv->status |= STATUS_INT_ENABLED;
539         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544         if (!(priv->status & STATUS_INT_ENABLED))
545                 return;
546         priv->status &= ~STATUS_INT_ENABLED;
547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&priv->irq_lock, flags);
555         __ipw_enable_interrupts(priv);
556         spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561         unsigned long flags;
562
563         spin_lock_irqsave(&priv->irq_lock, flags);
564         __ipw_disable_interrupts(priv);
565         spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570         switch (val) {
571         case IPW_FW_ERROR_OK:
572                 return "ERROR_OK";
573         case IPW_FW_ERROR_FAIL:
574                 return "ERROR_FAIL";
575         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576                 return "MEMORY_UNDERFLOW";
577         case IPW_FW_ERROR_MEMORY_OVERFLOW:
578                 return "MEMORY_OVERFLOW";
579         case IPW_FW_ERROR_BAD_PARAM:
580                 return "BAD_PARAM";
581         case IPW_FW_ERROR_BAD_CHECKSUM:
582                 return "BAD_CHECKSUM";
583         case IPW_FW_ERROR_NMI_INTERRUPT:
584                 return "NMI_INTERRUPT";
585         case IPW_FW_ERROR_BAD_DATABASE:
586                 return "BAD_DATABASE";
587         case IPW_FW_ERROR_ALLOC_FAIL:
588                 return "ALLOC_FAIL";
589         case IPW_FW_ERROR_DMA_UNDERRUN:
590                 return "DMA_UNDERRUN";
591         case IPW_FW_ERROR_DMA_STATUS:
592                 return "DMA_STATUS";
593         case IPW_FW_ERROR_DINO_ERROR:
594                 return "DINO_ERROR";
595         case IPW_FW_ERROR_EEPROM_ERROR:
596                 return "EEPROM_ERROR";
597         case IPW_FW_ERROR_SYSASSERT:
598                 return "SYSASSERT";
599         case IPW_FW_ERROR_FATAL_ERROR:
600                 return "FATAL_ERROR";
601         default:
602                 return "UNKNOWN_ERROR";
603         }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607                                struct ipw_fw_error *error)
608 {
609         u32 i;
610
611         if (!error) {
612                 IPW_ERROR("Error allocating and capturing error log.  "
613                           "Nothing to dump.\n");
614                 return;
615         }
616
617         IPW_ERROR("Start IPW Error Log Dump:\n");
618         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619                   error->status, error->config);
620
621         for (i = 0; i < error->elem_len; i++)
622                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
623                           ipw_error_desc(error->elem[i].desc),
624                           error->elem[i].time,
625                           error->elem[i].blink1,
626                           error->elem[i].blink2,
627                           error->elem[i].link1,
628                           error->elem[i].link2, error->elem[i].data);
629         for (i = 0; i < error->log_len; i++)
630                 IPW_ERROR("%i\t0x%08x\t%i\n",
631                           error->log[i].time,
632                           error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637         return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642         u32 addr, field_info, field_len, field_count, total_len;
643
644         IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646         if (!priv || !val || !len) {
647                 IPW_DEBUG_ORD("Invalid argument\n");
648                 return -EINVAL;
649         }
650
651         /* verify device ordinal tables have been initialized */
652         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654                 return -EINVAL;
655         }
656
657         switch (IPW_ORD_TABLE_ID_MASK & ord) {
658         case IPW_ORD_TABLE_0_MASK:
659                 /*
660                  * TABLE 0: Direct access to a table of 32 bit values
661                  *
662                  * This is a very simple table with the data directly
663                  * read from the table
664                  */
665
666                 /* remove the table id from the ordinal */
667                 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669                 /* boundary check */
670                 if (ord > priv->table0_len) {
671                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
672                                       "max (%i)\n", ord, priv->table0_len);
673                         return -EINVAL;
674                 }
675
676                 /* verify we have enough room to store the value */
677                 if (*len < sizeof(u32)) {
678                         IPW_DEBUG_ORD("ordinal buffer length too small, "
679                                       "need %zd\n", sizeof(u32));
680                         return -EINVAL;
681                 }
682
683                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684                               ord, priv->table0_addr + (ord << 2));
685
686                 *len = sizeof(u32);
687                 ord <<= 2;
688                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689                 break;
690
691         case IPW_ORD_TABLE_1_MASK:
692                 /*
693                  * TABLE 1: Indirect access to a table of 32 bit values
694                  *
695                  * This is a fairly large table of u32 values each
696                  * representing starting addr for the data (which is
697                  * also a u32)
698                  */
699
700                 /* remove the table id from the ordinal */
701                 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703                 /* boundary check */
704                 if (ord > priv->table1_len) {
705                         IPW_DEBUG_ORD("ordinal value too long\n");
706                         return -EINVAL;
707                 }
708
709                 /* verify we have enough room to store the value */
710                 if (*len < sizeof(u32)) {
711                         IPW_DEBUG_ORD("ordinal buffer length too small, "
712                                       "need %zd\n", sizeof(u32));
713                         return -EINVAL;
714                 }
715
716                 *((u32 *) val) =
717                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718                 *len = sizeof(u32);
719                 break;
720
721         case IPW_ORD_TABLE_2_MASK:
722                 /*
723                  * TABLE 2: Indirect access to a table of variable sized values
724                  *
725                  * This table consist of six values, each containing
726                  *     - dword containing the starting offset of the data
727                  *     - dword containing the lengh in the first 16bits
728                  *       and the count in the second 16bits
729                  */
730
731                 /* remove the table id from the ordinal */
732                 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734                 /* boundary check */
735                 if (ord > priv->table2_len) {
736                         IPW_DEBUG_ORD("ordinal value too long\n");
737                         return -EINVAL;
738                 }
739
740                 /* get the address of statistic */
741                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743                 /* get the second DW of statistics ;
744                  * two 16-bit words - first is length, second is count */
745                 field_info =
746                     ipw_read_reg32(priv,
747                                    priv->table2_addr + (ord << 3) +
748                                    sizeof(u32));
749
750                 /* get each entry length */
751                 field_len = *((u16 *) & field_info);
752
753                 /* get number of entries */
754                 field_count = *(((u16 *) & field_info) + 1);
755
756                 /* abort if not enought memory */
757                 total_len = field_len * field_count;
758                 if (total_len > *len) {
759                         *len = total_len;
760                         return -EINVAL;
761                 }
762
763                 *len = total_len;
764                 if (!total_len)
765                         return 0;
766
767                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768                               "field_info = 0x%08x\n",
769                               addr, total_len, field_info);
770                 ipw_read_indirect(priv, addr, val, total_len);
771                 break;
772
773         default:
774                 IPW_DEBUG_ORD("Invalid ordinal!\n");
775                 return -EINVAL;
776
777         }
778
779         return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785         priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788                       priv->table0_addr, priv->table0_len);
789
790         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794                       priv->table1_addr, priv->table1_len);
795
796         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798         priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801                       priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807         reg &= ~IPW_START_STANDBY;
808         if (reg & IPW_GATE_ODMA)
809                 reg &= ~IPW_GATE_ODMA;
810         if (reg & IPW_GATE_IDMA)
811                 reg &= ~IPW_GATE_IDMA;
812         if (reg & IPW_GATE_ADMA)
813                 reg &= ~IPW_GATE_ADMA;
814         return reg;
815 }
816
817 /*
818  * LED behavior:
819  * - On radio ON, turn on any LEDs that require to be on during start
820  * - On initialization, start unassociated blink
821  * - On association, disable unassociated blink
822  * - On disassociation, start unassociated blink
823  * - On radio OFF, turn off any LEDs started during radio on
824  *
825  */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832         unsigned long flags;
833         u32 led;
834
835         /* If configured to not use LEDs, or nic_type is 1,
836          * then we don't toggle a LINK led */
837         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838                 return;
839
840         spin_lock_irqsave(&priv->lock, flags);
841
842         if (!(priv->status & STATUS_RF_KILL_MASK) &&
843             !(priv->status & STATUS_LED_LINK_ON)) {
844                 IPW_DEBUG_LED("Link LED On\n");
845                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846                 led |= priv->led_association_on;
847
848                 led = ipw_register_toggle(led);
849
850                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853                 priv->status |= STATUS_LED_LINK_ON;
854
855                 /* If we aren't associated, schedule turning the LED off */
856                 if (!(priv->status & STATUS_ASSOCIATED))
857                         queue_delayed_work(priv->workqueue,
858                                            &priv->led_link_off,
859                                            LD_TIME_LINK_ON);
860         }
861
862         spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867         struct ipw_priv *priv =
868                 container_of(work, struct ipw_priv, led_link_on.work);
869         mutex_lock(&priv->mutex);
870         ipw_led_link_on(priv);
871         mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876         unsigned long flags;
877         u32 led;
878
879         /* If configured not to use LEDs, or nic type is 1,
880          * then we don't goggle the LINK led. */
881         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882                 return;
883
884         spin_lock_irqsave(&priv->lock, flags);
885
886         if (priv->status & STATUS_LED_LINK_ON) {
887                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888                 led &= priv->led_association_off;
889                 led = ipw_register_toggle(led);
890
891                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894                 IPW_DEBUG_LED("Link LED Off\n");
895
896                 priv->status &= ~STATUS_LED_LINK_ON;
897
898                 /* If we aren't associated and the radio is on, schedule
899                  * turning the LED on (blink while unassociated) */
900                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901                     !(priv->status & STATUS_ASSOCIATED))
902                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
903                                            LD_TIME_LINK_OFF);
904
905         }
906
907         spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912         struct ipw_priv *priv =
913                 container_of(work, struct ipw_priv, led_link_off.work);
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(priv);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992         struct ipw_priv *priv =
993                 container_of(work, struct ipw_priv, led_act_off.work);
994         mutex_lock(&priv->mutex);
995         ipw_led_activity_off(priv);
996         mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001         unsigned long flags;
1002         u32 led;
1003
1004         /* Only nic type 1 supports mode LEDs */
1005         if (priv->config & CFG_NO_LED ||
1006             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007                 return;
1008
1009         spin_lock_irqsave(&priv->lock, flags);
1010
1011         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012         if (priv->assoc_network->mode == IEEE_A) {
1013                 led |= priv->led_ofdm_on;
1014                 led &= priv->led_association_off;
1015                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016         } else if (priv->assoc_network->mode == IEEE_G) {
1017                 led |= priv->led_ofdm_on;
1018                 led |= priv->led_association_on;
1019                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020         } else {
1021                 led &= priv->led_ofdm_off;
1022                 led |= priv->led_association_on;
1023                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024         }
1025
1026         led = ipw_register_toggle(led);
1027
1028         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031         spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036         unsigned long flags;
1037         u32 led;
1038
1039         /* Only nic type 1 supports mode LEDs */
1040         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041                 return;
1042
1043         spin_lock_irqsave(&priv->lock, flags);
1044
1045         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046         led &= priv->led_ofdm_off;
1047         led &= priv->led_association_off;
1048
1049         led = ipw_register_toggle(led);
1050
1051         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054         spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059         ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064         ipw_led_activity_off(priv);
1065         ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070         /* Set the Link Led on for all nic types */
1071         ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076         ipw_led_activity_off(priv);
1077         ipw_led_link_off(priv);
1078
1079         if (priv->status & STATUS_RF_KILL_MASK)
1080                 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087         /* Set the default PINs for the link and activity leds */
1088         priv->led_activity_on = IPW_ACTIVITY_LED;
1089         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091         priv->led_association_on = IPW_ASSOCIATED_LED;
1092         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094         /* Set the default PINs for the OFDM leds */
1095         priv->led_ofdm_on = IPW_OFDM_LED;
1096         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098         switch (priv->nic_type) {
1099         case EEPROM_NIC_TYPE_1:
1100                 /* In this NIC type, the LEDs are reversed.... */
1101                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103                 priv->led_association_on = IPW_ACTIVITY_LED;
1104                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106                 if (!(priv->config & CFG_NO_LED))
1107                         ipw_led_band_on(priv);
1108
1109                 /* And we don't blink link LEDs for this nic, so
1110                  * just return here */
1111                 return;
1112
1113         case EEPROM_NIC_TYPE_3:
1114         case EEPROM_NIC_TYPE_2:
1115         case EEPROM_NIC_TYPE_4:
1116         case EEPROM_NIC_TYPE_0:
1117                 break;
1118
1119         default:
1120                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121                                priv->nic_type);
1122                 priv->nic_type = EEPROM_NIC_TYPE_0;
1123                 break;
1124         }
1125
1126         if (!(priv->config & CFG_NO_LED)) {
1127                 if (priv->status & STATUS_ASSOCIATED)
1128                         ipw_led_link_on(priv);
1129                 else
1130                         ipw_led_link_off(priv);
1131         }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136         ipw_led_activity_off(priv);
1137         ipw_led_link_off(priv);
1138         ipw_led_band_off(priv);
1139         cancel_delayed_work(&priv->led_link_on);
1140         cancel_delayed_work(&priv->led_link_off);
1141         cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145  * The following adds a new attribute to the sysfs representation
1146  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147  * used for controling the debug level.
1148  *
1149  * See the level definitions in ipw for details.
1150  */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157                                  size_t count)
1158 {
1159         char *p = (char *)buf;
1160         u32 val;
1161
1162         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163                 p++;
1164                 if (p[0] == 'x' || p[0] == 'X')
1165                         p++;
1166                 val = simple_strtoul(p, &p, 16);
1167         } else
1168                 val = simple_strtoul(p, &p, 10);
1169         if (p == buf)
1170                 printk(KERN_INFO DRV_NAME
1171                        ": %s is not in hex or decimal form.\n", buf);
1172         else
1173                 ipw_debug_level = val;
1174
1175         return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179                    show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183         /* length = 1st dword in log */
1184         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188                                   u32 log_len, struct ipw_event *log)
1189 {
1190         u32 base;
1191
1192         if (log_len) {
1193                 base = ipw_read32(priv, IPW_EVENT_LOG);
1194                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195                                   (u8 *) log, sizeof(*log) * log_len);
1196         }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201         struct ipw_fw_error *error;
1202         u32 log_len = ipw_get_event_log_len(priv);
1203         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204         u32 elem_len = ipw_read_reg32(priv, base);
1205
1206         error = kmalloc(sizeof(*error) +
1207                         sizeof(*error->elem) * elem_len +
1208                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1209         if (!error) {
1210                 IPW_ERROR("Memory allocation for firmware error log "
1211                           "failed.\n");
1212                 return NULL;
1213         }
1214         error->jiffies = jiffies;
1215         error->status = priv->status;
1216         error->config = priv->config;
1217         error->elem_len = elem_len;
1218         error->log_len = log_len;
1219         error->elem = (struct ipw_error_elem *)error->payload;
1220         error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222         ipw_capture_event_log(priv, log_len, error->log);
1223
1224         if (elem_len)
1225                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226                                   sizeof(*error->elem) * elem_len);
1227
1228         return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232                               struct device_attribute *attr, char *buf)
1233 {
1234         struct ipw_priv *priv = dev_get_drvdata(d);
1235         u32 log_len = ipw_get_event_log_len(priv);
1236         u32 log_size;
1237         struct ipw_event *log;
1238         u32 len = 0, i;
1239
1240         /* not using min() because of its strict type checking */
1241         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242                         sizeof(*log) * log_len : PAGE_SIZE;
1243         log = kzalloc(log_size, GFP_KERNEL);
1244         if (!log) {
1245                 IPW_ERROR("Unable to allocate memory for log\n");
1246                 return 0;
1247         }
1248         log_len = log_size / sizeof(*log);
1249         ipw_capture_event_log(priv, log_len, log);
1250
1251         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252         for (i = 0; i < log_len; i++)
1253                 len += snprintf(buf + len, PAGE_SIZE - len,
1254                                 "\n%08X%08X%08X",
1255                                 log[i].time, log[i].event, log[i].data);
1256         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257         kfree(log);
1258         return len;
1259 }
1260
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263 static ssize_t show_error(struct device *d,
1264                           struct device_attribute *attr, char *buf)
1265 {
1266         struct ipw_priv *priv = dev_get_drvdata(d);
1267         u32 len = 0, i;
1268         if (!priv->error)
1269                 return 0;
1270         len += snprintf(buf + len, PAGE_SIZE - len,
1271                         "%08lX%08X%08X%08X",
1272                         priv->error->jiffies,
1273                         priv->error->status,
1274                         priv->error->config, priv->error->elem_len);
1275         for (i = 0; i < priv->error->elem_len; i++)
1276                 len += snprintf(buf + len, PAGE_SIZE - len,
1277                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1278                                 priv->error->elem[i].time,
1279                                 priv->error->elem[i].desc,
1280                                 priv->error->elem[i].blink1,
1281                                 priv->error->elem[i].blink2,
1282                                 priv->error->elem[i].link1,
1283                                 priv->error->elem[i].link2,
1284                                 priv->error->elem[i].data);
1285
1286         len += snprintf(buf + len, PAGE_SIZE - len,
1287                         "\n%08X", priv->error->log_len);
1288         for (i = 0; i < priv->error->log_len; i++)
1289                 len += snprintf(buf + len, PAGE_SIZE - len,
1290                                 "\n%08X%08X%08X",
1291                                 priv->error->log[i].time,
1292                                 priv->error->log[i].event,
1293                                 priv->error->log[i].data);
1294         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295         return len;
1296 }
1297
1298 static ssize_t clear_error(struct device *d,
1299                            struct device_attribute *attr,
1300                            const char *buf, size_t count)
1301 {
1302         struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304         kfree(priv->error);
1305         priv->error = NULL;
1306         return count;
1307 }
1308
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311 static ssize_t show_cmd_log(struct device *d,
1312                             struct device_attribute *attr, char *buf)
1313 {
1314         struct ipw_priv *priv = dev_get_drvdata(d);
1315         u32 len = 0, i;
1316         if (!priv->cmdlog)
1317                 return 0;
1318         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320              i = (i + 1) % priv->cmdlog_len) {
1321                 len +=
1322                     snprintf(buf + len, PAGE_SIZE - len,
1323                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325                              priv->cmdlog[i].cmd.len);
1326                 len +=
1327                     snprintk_buf(buf + len, PAGE_SIZE - len,
1328                                  (u8 *) priv->cmdlog[i].cmd.param,
1329                                  priv->cmdlog[i].cmd.len);
1330                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331         }
1332         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333         return len;
1334 }
1335
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342                          struct device_attribute *attr,
1343                          const char *buf, size_t count)
1344 {
1345         struct ipw_priv *priv = dev_get_drvdata(d);
1346         int rc = 0;
1347
1348         if (count < 1)
1349                 return -EINVAL;
1350
1351         switch (buf[0]) {
1352         case '0':
1353                 if (!rtap_iface)
1354                         return count;
1355
1356                 if (netif_running(priv->prom_net_dev)) {
1357                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1358                         return count;
1359                 }
1360
1361                 ipw_prom_free(priv);
1362                 rtap_iface = 0;
1363                 break;
1364
1365         case '1':
1366                 if (rtap_iface)
1367                         return count;
1368
1369                 rc = ipw_prom_alloc(priv);
1370                 if (!rc)
1371                         rtap_iface = 1;
1372                 break;
1373
1374         default:
1375                 return -EINVAL;
1376         }
1377
1378         if (rc) {
1379                 IPW_ERROR("Failed to register promiscuous network "
1380                           "device (error %d).\n", rc);
1381         }
1382
1383         return count;
1384 }
1385
1386 static ssize_t show_rtap_iface(struct device *d,
1387                         struct device_attribute *attr,
1388                         char *buf)
1389 {
1390         struct ipw_priv *priv = dev_get_drvdata(d);
1391         if (rtap_iface)
1392                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393         else {
1394                 buf[0] = '-';
1395                 buf[1] = '1';
1396                 buf[2] = '\0';
1397                 return 3;
1398         }
1399 }
1400
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402                    store_rtap_iface);
1403
1404 static ssize_t store_rtap_filter(struct device *d,
1405                          struct device_attribute *attr,
1406                          const char *buf, size_t count)
1407 {
1408         struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410         if (!priv->prom_priv) {
1411                 IPW_ERROR("Attempting to set filter without "
1412                           "rtap_iface enabled.\n");
1413                 return -EPERM;
1414         }
1415
1416         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419                        BIT_ARG16(priv->prom_priv->filter));
1420
1421         return count;
1422 }
1423
1424 static ssize_t show_rtap_filter(struct device *d,
1425                         struct device_attribute *attr,
1426                         char *buf)
1427 {
1428         struct ipw_priv *priv = dev_get_drvdata(d);
1429         return sprintf(buf, "0x%04X",
1430                        priv->prom_priv ? priv->prom_priv->filter : 0);
1431 }
1432
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434                    store_rtap_filter);
1435 #endif
1436
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438                              char *buf)
1439 {
1440         struct ipw_priv *priv = dev_get_drvdata(d);
1441         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442 }
1443
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445                               const char *buf, size_t count)
1446 {
1447         struct ipw_priv *priv = dev_get_drvdata(d);
1448         struct net_device *dev = priv->net_dev;
1449         char buffer[] = "00000000";
1450         unsigned long len =
1451             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452         unsigned long val;
1453         char *p = buffer;
1454
1455         IPW_DEBUG_INFO("enter\n");
1456
1457         strncpy(buffer, buf, len);
1458         buffer[len] = 0;
1459
1460         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461                 p++;
1462                 if (p[0] == 'x' || p[0] == 'X')
1463                         p++;
1464                 val = simple_strtoul(p, &p, 16);
1465         } else
1466                 val = simple_strtoul(p, &p, 10);
1467         if (p == buffer) {
1468                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469         } else {
1470                 priv->ieee->scan_age = val;
1471                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472         }
1473
1474         IPW_DEBUG_INFO("exit\n");
1475         return len;
1476 }
1477
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481                         char *buf)
1482 {
1483         struct ipw_priv *priv = dev_get_drvdata(d);
1484         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488                          const char *buf, size_t count)
1489 {
1490         struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492         IPW_DEBUG_INFO("enter\n");
1493
1494         if (count == 0)
1495                 return 0;
1496
1497         if (*buf == 0) {
1498                 IPW_DEBUG_LED("Disabling LED control.\n");
1499                 priv->config |= CFG_NO_LED;
1500                 ipw_led_shutdown(priv);
1501         } else {
1502                 IPW_DEBUG_LED("Enabling LED control.\n");
1503                 priv->config &= ~CFG_NO_LED;
1504                 ipw_led_init(priv);
1505         }
1506
1507         IPW_DEBUG_INFO("exit\n");
1508         return count;
1509 }
1510
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513 static ssize_t show_status(struct device *d,
1514                            struct device_attribute *attr, char *buf)
1515 {
1516         struct ipw_priv *p = d->driver_data;
1517         return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523                         char *buf)
1524 {
1525         struct ipw_priv *p = d->driver_data;
1526         return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531 static ssize_t show_nic_type(struct device *d,
1532                              struct device_attribute *attr, char *buf)
1533 {
1534         struct ipw_priv *priv = d->driver_data;
1535         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540 static ssize_t show_ucode_version(struct device *d,
1541                                   struct device_attribute *attr, char *buf)
1542 {
1543         u32 len = sizeof(u32), tmp = 0;
1544         struct ipw_priv *p = d->driver_data;
1545
1546         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547                 return 0;
1548
1549         return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555                         char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = d->driver_data;
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568 /*
1569  * Add a device attribute to view/control the delay between eeprom
1570  * operations.
1571  */
1572 static ssize_t show_eeprom_delay(struct device *d,
1573                                  struct device_attribute *attr, char *buf)
1574 {
1575         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576         return sprintf(buf, "%i\n", n);
1577 }
1578 static ssize_t store_eeprom_delay(struct device *d,
1579                                   struct device_attribute *attr,
1580                                   const char *buf, size_t count)
1581 {
1582         struct ipw_priv *p = d->driver_data;
1583         sscanf(buf, "%i", &p->eeprom_delay);
1584         return strnlen(buf, count);
1585 }
1586
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588                    show_eeprom_delay, store_eeprom_delay);
1589
1590 static ssize_t show_command_event_reg(struct device *d,
1591                                       struct device_attribute *attr, char *buf)
1592 {
1593         u32 reg = 0;
1594         struct ipw_priv *p = d->driver_data;
1595
1596         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597         return sprintf(buf, "0x%08x\n", reg);
1598 }
1599 static ssize_t store_command_event_reg(struct device *d,
1600                                        struct device_attribute *attr,
1601                                        const char *buf, size_t count)
1602 {
1603         u32 reg;
1604         struct ipw_priv *p = d->driver_data;
1605
1606         sscanf(buf, "%x", &reg);
1607         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608         return strnlen(buf, count);
1609 }
1610
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612                    show_command_event_reg, store_command_event_reg);
1613
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615                                  struct device_attribute *attr, char *buf)
1616 {
1617         u32 reg = 0;
1618         struct ipw_priv *p = d->driver_data;
1619
1620         reg = ipw_read_reg32(p, 0x301100);
1621         return sprintf(buf, "0x%08x\n", reg);
1622 }
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624                                   struct device_attribute *attr,
1625                                   const char *buf, size_t count)
1626 {
1627         u32 reg;
1628         struct ipw_priv *p = d->driver_data;
1629
1630         sscanf(buf, "%x", &reg);
1631         ipw_write_reg32(p, 0x301100, reg);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636                    show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638 static ssize_t show_indirect_dword(struct device *d,
1639                                    struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *priv = d->driver_data;
1643
1644         if (priv->status & STATUS_INDIRECT_DWORD)
1645                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646         else
1647                 reg = 0;
1648
1649         return sprintf(buf, "0x%08x\n", reg);
1650 }
1651 static ssize_t store_indirect_dword(struct device *d,
1652                                     struct device_attribute *attr,
1653                                     const char *buf, size_t count)
1654 {
1655         struct ipw_priv *priv = d->driver_data;
1656
1657         sscanf(buf, "%x", &priv->indirect_dword);
1658         priv->status |= STATUS_INDIRECT_DWORD;
1659         return strnlen(buf, count);
1660 }
1661
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663                    show_indirect_dword, store_indirect_dword);
1664
1665 static ssize_t show_indirect_byte(struct device *d,
1666                                   struct device_attribute *attr, char *buf)
1667 {
1668         u8 reg = 0;
1669         struct ipw_priv *priv = d->driver_data;
1670
1671         if (priv->status & STATUS_INDIRECT_BYTE)
1672                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673         else
1674                 reg = 0;
1675
1676         return sprintf(buf, "0x%02x\n", reg);
1677 }
1678 static ssize_t store_indirect_byte(struct device *d,
1679                                    struct device_attribute *attr,
1680                                    const char *buf, size_t count)
1681 {
1682         struct ipw_priv *priv = d->driver_data;
1683
1684         sscanf(buf, "%x", &priv->indirect_byte);
1685         priv->status |= STATUS_INDIRECT_BYTE;
1686         return strnlen(buf, count);
1687 }
1688
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690                    show_indirect_byte, store_indirect_byte);
1691
1692 static ssize_t show_direct_dword(struct device *d,
1693                                  struct device_attribute *attr, char *buf)
1694 {
1695         u32 reg = 0;
1696         struct ipw_priv *priv = d->driver_data;
1697
1698         if (priv->status & STATUS_DIRECT_DWORD)
1699                 reg = ipw_read32(priv, priv->direct_dword);
1700         else
1701                 reg = 0;
1702
1703         return sprintf(buf, "0x%08x\n", reg);
1704 }
1705 static ssize_t store_direct_dword(struct device *d,
1706                                   struct device_attribute *attr,
1707                                   const char *buf, size_t count)
1708 {
1709         struct ipw_priv *priv = d->driver_data;
1710
1711         sscanf(buf, "%x", &priv->direct_dword);
1712         priv->status |= STATUS_DIRECT_DWORD;
1713         return strnlen(buf, count);
1714 }
1715
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717                    show_direct_dword, store_direct_dword);
1718
1719 static int rf_kill_active(struct ipw_priv *priv)
1720 {
1721         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722                 priv->status |= STATUS_RF_KILL_HW;
1723         else
1724                 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727 }
1728
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730                             char *buf)
1731 {
1732         /* 0 - RF kill not enabled
1733            1 - SW based RF kill active (sysfs)
1734            2 - HW based RF kill active
1735            3 - Both HW and SW baed RF kill active */
1736         struct ipw_priv *priv = d->driver_data;
1737         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738             (rf_kill_active(priv) ? 0x2 : 0x0);
1739         return sprintf(buf, "%i\n", val);
1740 }
1741
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743 {
1744         if ((disable_radio ? 1 : 0) ==
1745             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746                 return 0;
1747
1748         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1749                           disable_radio ? "OFF" : "ON");
1750
1751         if (disable_radio) {
1752                 priv->status |= STATUS_RF_KILL_SW;
1753
1754                 if (priv->workqueue) {
1755                         cancel_delayed_work(&priv->request_scan);
1756                         cancel_delayed_work(&priv->scan_event);
1757                 }
1758                 queue_work(priv->workqueue, &priv->down);
1759         } else {
1760                 priv->status &= ~STATUS_RF_KILL_SW;
1761                 if (rf_kill_active(priv)) {
1762                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763                                           "disabled by HW switch\n");
1764                         /* Make sure the RF_KILL check timer is running */
1765                         cancel_delayed_work(&priv->rf_kill);
1766                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767                                            round_jiffies_relative(2 * HZ));
1768                 } else
1769                         queue_work(priv->workqueue, &priv->up);
1770         }
1771
1772         return 1;
1773 }
1774
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776                              const char *buf, size_t count)
1777 {
1778         struct ipw_priv *priv = d->driver_data;
1779
1780         ipw_radio_kill_sw(priv, buf[0] == '1');
1781
1782         return count;
1783 }
1784
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1786
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1788                                char *buf)
1789 {
1790         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791         int pos = 0, len = 0;
1792         if (priv->config & CFG_SPEED_SCAN) {
1793                 while (priv->speed_scan[pos] != 0)
1794                         len += sprintf(&buf[len], "%d ",
1795                                        priv->speed_scan[pos++]);
1796                 return len + sprintf(&buf[len], "\n");
1797         }
1798
1799         return sprintf(buf, "0\n");
1800 }
1801
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803                                 const char *buf, size_t count)
1804 {
1805         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806         int channel, pos = 0;
1807         const char *p = buf;
1808
1809         /* list of space separated channels to scan, optionally ending with 0 */
1810         while ((channel = simple_strtol(p, NULL, 0))) {
1811                 if (pos == MAX_SPEED_SCAN - 1) {
1812                         priv->speed_scan[pos] = 0;
1813                         break;
1814                 }
1815
1816                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817                         priv->speed_scan[pos++] = channel;
1818                 else
1819                         IPW_WARNING("Skipping invalid channel request: %d\n",
1820                                     channel);
1821                 p = strchr(p, ' ');
1822                 if (!p)
1823                         break;
1824                 while (*p == ' ' || *p == '\t')
1825                         p++;
1826         }
1827
1828         if (pos == 0)
1829                 priv->config &= ~CFG_SPEED_SCAN;
1830         else {
1831                 priv->speed_scan_pos = 0;
1832                 priv->config |= CFG_SPEED_SCAN;
1833         }
1834
1835         return count;
1836 }
1837
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1839                    store_speed_scan);
1840
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1842                               char *buf)
1843 {
1844         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1846 }
1847
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849                                const char *buf, size_t count)
1850 {
1851         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1852         if (buf[0] == '1')
1853                 priv->config |= CFG_NET_STATS;
1854         else
1855                 priv->config &= ~CFG_NET_STATS;
1856
1857         return count;
1858 }
1859
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861                    show_net_stats, store_net_stats);
1862
1863 static ssize_t show_channels(struct device *d,
1864                              struct device_attribute *attr,
1865                              char *buf)
1866 {
1867         struct ipw_priv *priv = dev_get_drvdata(d);
1868         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1869         int len = 0, i;
1870
1871         len = sprintf(&buf[len],
1872                       "Displaying %d channels in 2.4Ghz band "
1873                       "(802.11bg):\n", geo->bg_channels);
1874
1875         for (i = 0; i < geo->bg_channels; i++) {
1876                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1877                                geo->bg[i].channel,
1878                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879                                " (radar spectrum)" : "",
1880                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1882                                ? "" : ", IBSS",
1883                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884                                "passive only" : "active/passive",
1885                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1886                                "B" : "B/G");
1887         }
1888
1889         len += sprintf(&buf[len],
1890                        "Displaying %d channels in 5.2Ghz band "
1891                        "(802.11a):\n", geo->a_channels);
1892         for (i = 0; i < geo->a_channels; i++) {
1893                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1894                                geo->a[i].channel,
1895                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896                                " (radar spectrum)" : "",
1897                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1899                                ? "" : ", IBSS",
1900                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901                                "passive only" : "active/passive");
1902         }
1903
1904         return len;
1905 }
1906
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1908
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1910 {
1911         union iwreq_data wrqu;
1912         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913         if (priv->status & STATUS_ASSOCIATED)
1914                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1915         else
1916                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1918 }
1919
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1921 {
1922         u32 inta, inta_mask, handled = 0;
1923         unsigned long flags;
1924         int rc = 0;
1925
1926         spin_lock_irqsave(&priv->irq_lock, flags);
1927
1928         inta = ipw_read32(priv, IPW_INTA_RW);
1929         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1931
1932         /* Add any cached INTA values that need to be handled */
1933         inta |= priv->isr_inta;
1934
1935         spin_unlock_irqrestore(&priv->irq_lock, flags);
1936
1937         spin_lock_irqsave(&priv->lock, flags);
1938
1939         /* handle all the justifications for the interrupt */
1940         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1941                 ipw_rx(priv);
1942                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1943         }
1944
1945         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946                 IPW_DEBUG_HC("Command completed.\n");
1947                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948                 priv->status &= ~STATUS_HCMD_ACTIVE;
1949                 wake_up_interruptible(&priv->wait_command_queue);
1950                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1951         }
1952
1953         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1957         }
1958
1959         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1963         }
1964
1965         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1969         }
1970
1971         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1975         }
1976
1977         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978                 IPW_WARNING("STATUS_CHANGE\n");
1979                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1980         }
1981
1982         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1985         }
1986
1987         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988                 IPW_WARNING("HOST_CMD_DONE\n");
1989                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1990         }
1991
1992         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1995         }
1996
1997         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998                 IPW_WARNING("PHY_OFF_DONE\n");
1999                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2000         }
2001
2002         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004                 priv->status |= STATUS_RF_KILL_HW;
2005                 wake_up_interruptible(&priv->wait_command_queue);
2006                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007                 cancel_delayed_work(&priv->request_scan);
2008                 cancel_delayed_work(&priv->scan_event);
2009                 schedule_work(&priv->link_down);
2010                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2012         }
2013
2014         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2016                 if (priv->error) {
2017                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019                                 struct ipw_fw_error *error =
2020                                     ipw_alloc_error_log(priv);
2021                                 ipw_dump_error_log(priv, error);
2022                                 kfree(error);
2023                         }
2024                 } else {
2025                         priv->error = ipw_alloc_error_log(priv);
2026                         if (priv->error)
2027                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2028                         else
2029                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2030                                              "log.\n");
2031                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032                                 ipw_dump_error_log(priv, priv->error);
2033                 }
2034
2035                 /* XXX: If hardware encryption is for WPA/WPA2,
2036                  * we have to notify the supplicant. */
2037                 if (priv->ieee->sec.encrypt) {
2038                         priv->status &= ~STATUS_ASSOCIATED;
2039                         notify_wx_assoc_event(priv);
2040                 }
2041
2042                 /* Keep the restart process from trying to send host
2043                  * commands by clearing the INIT status bit */
2044                 priv->status &= ~STATUS_INIT;
2045
2046                 /* Cancel currently queued command. */
2047                 priv->status &= ~STATUS_HCMD_ACTIVE;
2048                 wake_up_interruptible(&priv->wait_command_queue);
2049
2050                 queue_work(priv->workqueue, &priv->adapter_restart);
2051                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2052         }
2053
2054         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055                 IPW_ERROR("Parity error\n");
2056                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2057         }
2058
2059         if (handled != inta) {
2060                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2061         }
2062
2063         spin_unlock_irqrestore(&priv->lock, flags);
2064
2065         /* enable all interrupts */
2066         ipw_enable_interrupts(priv);
2067 }
2068
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2071 {
2072         switch (cmd) {
2073                 IPW_CMD(HOST_COMPLETE);
2074                 IPW_CMD(POWER_DOWN);
2075                 IPW_CMD(SYSTEM_CONFIG);
2076                 IPW_CMD(MULTICAST_ADDRESS);
2077                 IPW_CMD(SSID);
2078                 IPW_CMD(ADAPTER_ADDRESS);
2079                 IPW_CMD(PORT_TYPE);
2080                 IPW_CMD(RTS_THRESHOLD);
2081                 IPW_CMD(FRAG_THRESHOLD);
2082                 IPW_CMD(POWER_MODE);
2083                 IPW_CMD(WEP_KEY);
2084                 IPW_CMD(TGI_TX_KEY);
2085                 IPW_CMD(SCAN_REQUEST);
2086                 IPW_CMD(SCAN_REQUEST_EXT);
2087                 IPW_CMD(ASSOCIATE);
2088                 IPW_CMD(SUPPORTED_RATES);
2089                 IPW_CMD(SCAN_ABORT);
2090                 IPW_CMD(TX_FLUSH);
2091                 IPW_CMD(QOS_PARAMETERS);
2092                 IPW_CMD(DINO_CONFIG);
2093                 IPW_CMD(RSN_CAPABILITIES);
2094                 IPW_CMD(RX_KEY);
2095                 IPW_CMD(CARD_DISABLE);
2096                 IPW_CMD(SEED_NUMBER);
2097                 IPW_CMD(TX_POWER);
2098                 IPW_CMD(COUNTRY_INFO);
2099                 IPW_CMD(AIRONET_INFO);
2100                 IPW_CMD(AP_TX_POWER);
2101                 IPW_CMD(CCKM_INFO);
2102                 IPW_CMD(CCX_VER_INFO);
2103                 IPW_CMD(SET_CALIBRATION);
2104                 IPW_CMD(SENSITIVITY_CALIB);
2105                 IPW_CMD(RETRY_LIMIT);
2106                 IPW_CMD(IPW_PRE_POWER_DOWN);
2107                 IPW_CMD(VAP_BEACON_TEMPLATE);
2108                 IPW_CMD(VAP_DTIM_PERIOD);
2109                 IPW_CMD(EXT_SUPPORTED_RATES);
2110                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111                 IPW_CMD(VAP_QUIET_INTERVALS);
2112                 IPW_CMD(VAP_CHANNEL_SWITCH);
2113                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115                 IPW_CMD(VAP_CF_PARAM_SET);
2116                 IPW_CMD(VAP_SET_BEACONING_STATE);
2117                 IPW_CMD(MEASUREMENT);
2118                 IPW_CMD(POWER_CAPABILITY);
2119                 IPW_CMD(SUPPORTED_CHANNELS);
2120                 IPW_CMD(TPC_REPORT);
2121                 IPW_CMD(WME_INFO);
2122                 IPW_CMD(PRODUCTION_COMMAND);
2123         default:
2124                 return "UNKNOWN";
2125         }
2126 }
2127
2128 #define HOST_COMPLETE_TIMEOUT HZ
2129
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2131 {
2132         int rc = 0;
2133         unsigned long flags;
2134
2135         spin_lock_irqsave(&priv->lock, flags);
2136         if (priv->status & STATUS_HCMD_ACTIVE) {
2137                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138                           get_cmd_string(cmd->cmd));
2139                 spin_unlock_irqrestore(&priv->lock, flags);
2140                 return -EAGAIN;
2141         }
2142
2143         priv->status |= STATUS_HCMD_ACTIVE;
2144
2145         if (priv->cmdlog) {
2146                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2150                        cmd->len);
2151                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2152         }
2153
2154         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2156                      priv->status);
2157
2158 #ifndef DEBUG_CMD_WEP_KEY
2159         if (cmd->cmd == IPW_CMD_WEP_KEY)
2160                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2161         else
2162 #endif
2163                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2164
2165         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2166         if (rc) {
2167                 priv->status &= ~STATUS_HCMD_ACTIVE;
2168                 IPW_ERROR("Failed to send %s: Reason %d\n",
2169                           get_cmd_string(cmd->cmd), rc);
2170                 spin_unlock_irqrestore(&priv->lock, flags);
2171                 goto exit;
2172         }
2173         spin_unlock_irqrestore(&priv->lock, flags);
2174
2175         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2176                                               !(priv->
2177                                                 status & STATUS_HCMD_ACTIVE),
2178                                               HOST_COMPLETE_TIMEOUT);
2179         if (rc == 0) {
2180                 spin_lock_irqsave(&priv->lock, flags);
2181                 if (priv->status & STATUS_HCMD_ACTIVE) {
2182                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2183                                   get_cmd_string(cmd->cmd));
2184                         priv->status &= ~STATUS_HCMD_ACTIVE;
2185                         spin_unlock_irqrestore(&priv->lock, flags);
2186                         rc = -EIO;
2187                         goto exit;
2188                 }
2189                 spin_unlock_irqrestore(&priv->lock, flags);
2190         } else
2191                 rc = 0;
2192
2193         if (priv->status & STATUS_RF_KILL_HW) {
2194                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195                           get_cmd_string(cmd->cmd));
2196                 rc = -EIO;
2197                 goto exit;
2198         }
2199
2200       exit:
2201         if (priv->cmdlog) {
2202                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203                 priv->cmdlog_pos %= priv->cmdlog_len;
2204         }
2205         return rc;
2206 }
2207
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2209 {
2210         struct host_cmd cmd = {
2211                 .cmd = command,
2212         };
2213
2214         return __ipw_send_cmd(priv, &cmd);
2215 }
2216
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2218                             void *data)
2219 {
2220         struct host_cmd cmd = {
2221                 .cmd = command,
2222                 .len = len,
2223                 .param = data,
2224         };
2225
2226         return __ipw_send_cmd(priv, &cmd);
2227 }
2228
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2230 {
2231         if (!priv) {
2232                 IPW_ERROR("Invalid args\n");
2233                 return -1;
2234         }
2235
2236         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2237 }
2238
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2240 {
2241         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242                                 sizeof(priv->sys_config),
2243                                 &priv->sys_config);
2244 }
2245
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2247 {
2248         if (!priv || !ssid) {
2249                 IPW_ERROR("Invalid args\n");
2250                 return -1;
2251         }
2252
2253         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2254                                 ssid);
2255 }
2256
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2258 {
2259         if (!priv || !mac) {
2260                 IPW_ERROR("Invalid args\n");
2261                 return -1;
2262         }
2263
2264         IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265                        priv->net_dev->name, print_mac(mac, mac));
2266
2267         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2268 }
2269
2270 /*
2271  * NOTE: This must be executed from our workqueue as it results in udelay
2272  * being called which may corrupt the keyboard if executed on default
2273  * workqueue
2274  */
2275 static void ipw_adapter_restart(void *adapter)
2276 {
2277         struct ipw_priv *priv = adapter;
2278
2279         if (priv->status & STATUS_RF_KILL_MASK)
2280                 return;
2281
2282         ipw_down(priv);
2283
2284         if (priv->assoc_network &&
2285             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286                 ipw_remove_current_network(priv);
2287
2288         if (ipw_up(priv)) {
2289                 IPW_ERROR("Failed to up device\n");
2290                 return;
2291         }
2292 }
2293
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2295 {
2296         struct ipw_priv *priv =
2297                 container_of(work, struct ipw_priv, adapter_restart);
2298         mutex_lock(&priv->mutex);
2299         ipw_adapter_restart(priv);
2300         mutex_unlock(&priv->mutex);
2301 }
2302
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2304
2305 static void ipw_scan_check(void *data)
2306 {
2307         struct ipw_priv *priv = data;
2308         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310                                "adapter after (%dms).\n",
2311                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312                 queue_work(priv->workqueue, &priv->adapter_restart);
2313         }
2314 }
2315
2316 static void ipw_bg_scan_check(struct work_struct *work)
2317 {
2318         struct ipw_priv *priv =
2319                 container_of(work, struct ipw_priv, scan_check.work);
2320         mutex_lock(&priv->mutex);
2321         ipw_scan_check(priv);
2322         mutex_unlock(&priv->mutex);
2323 }
2324
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326                                      struct ipw_scan_request_ext *request)
2327 {
2328         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329                                 sizeof(*request), request);
2330 }
2331
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2333 {
2334         if (!priv) {
2335                 IPW_ERROR("Invalid args\n");
2336                 return -1;
2337         }
2338
2339         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2340 }
2341
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2343 {
2344         struct ipw_sensitivity_calib calib = {
2345                 .beacon_rssi_raw = cpu_to_le16(sens),
2346         };
2347
2348         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2349                                 &calib);
2350 }
2351
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353                               struct ipw_associate *associate)
2354 {
2355         struct ipw_associate tmp_associate;
2356
2357         if (!priv || !associate) {
2358                 IPW_ERROR("Invalid args\n");
2359                 return -1;
2360         }
2361
2362         memcpy(&tmp_associate, associate, sizeof(*associate));
2363         tmp_associate.policy_support =
2364             cpu_to_le16(tmp_associate.policy_support);
2365         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2366         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2367         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2368         tmp_associate.listen_interval =
2369             cpu_to_le16(tmp_associate.listen_interval);
2370         tmp_associate.beacon_interval =
2371             cpu_to_le16(tmp_associate.beacon_interval);
2372         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2373
2374         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2375                                 &tmp_associate);
2376 }
2377
2378 static int ipw_send_supported_rates(struct ipw_priv *priv,
2379                                     struct ipw_supported_rates *rates)
2380 {
2381         if (!priv || !rates) {
2382                 IPW_ERROR("Invalid args\n");
2383                 return -1;
2384         }
2385
2386         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2387                                 rates);
2388 }
2389
2390 static int ipw_set_random_seed(struct ipw_priv *priv)
2391 {
2392         u32 val;
2393
2394         if (!priv) {
2395                 IPW_ERROR("Invalid args\n");
2396                 return -1;
2397         }
2398
2399         get_random_bytes(&val, sizeof(val));
2400
2401         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2402 }
2403
2404 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2405 {
2406         if (!priv) {
2407                 IPW_ERROR("Invalid args\n");
2408                 return -1;
2409         }
2410
2411         phy_off = cpu_to_le32(phy_off);
2412         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2413                                 &phy_off);
2414 }
2415
2416 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2417 {
2418         if (!priv || !power) {
2419                 IPW_ERROR("Invalid args\n");
2420                 return -1;
2421         }
2422
2423         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2424 }
2425
2426 static int ipw_set_tx_power(struct ipw_priv *priv)
2427 {
2428         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2429         struct ipw_tx_power tx_power;
2430         s8 max_power;
2431         int i;
2432
2433         memset(&tx_power, 0, sizeof(tx_power));
2434
2435         /* configure device for 'G' band */
2436         tx_power.ieee_mode = IPW_G_MODE;
2437         tx_power.num_channels = geo->bg_channels;
2438         for (i = 0; i < geo->bg_channels; i++) {
2439                 max_power = geo->bg[i].max_power;
2440                 tx_power.channels_tx_power[i].channel_number =
2441                     geo->bg[i].channel;
2442                 tx_power.channels_tx_power[i].tx_power = max_power ?
2443                     min(max_power, priv->tx_power) : priv->tx_power;
2444         }
2445         if (ipw_send_tx_power(priv, &tx_power))
2446                 return -EIO;
2447
2448         /* configure device to also handle 'B' band */
2449         tx_power.ieee_mode = IPW_B_MODE;
2450         if (ipw_send_tx_power(priv, &tx_power))
2451                 return -EIO;
2452
2453         /* configure device to also handle 'A' band */
2454         if (priv->ieee->abg_true) {
2455                 tx_power.ieee_mode = IPW_A_MODE;
2456                 tx_power.num_channels = geo->a_channels;
2457                 for (i = 0; i < tx_power.num_channels; i++) {
2458                         max_power = geo->a[i].max_power;
2459                         tx_power.channels_tx_power[i].channel_number =
2460                             geo->a[i].channel;
2461                         tx_power.channels_tx_power[i].tx_power = max_power ?
2462                             min(max_power, priv->tx_power) : priv->tx_power;
2463                 }
2464                 if (ipw_send_tx_power(priv, &tx_power))
2465                         return -EIO;
2466         }
2467         return 0;
2468 }
2469
2470 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2471 {
2472         struct ipw_rts_threshold rts_threshold = {
2473                 .rts_threshold = cpu_to_le16(rts),
2474         };
2475
2476         if (!priv) {
2477                 IPW_ERROR("Invalid args\n");
2478                 return -1;
2479         }
2480
2481         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2482                                 sizeof(rts_threshold), &rts_threshold);
2483 }
2484
2485 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2486 {
2487         struct ipw_frag_threshold frag_threshold = {
2488                 .frag_threshold = cpu_to_le16(frag),
2489         };
2490
2491         if (!priv) {
2492                 IPW_ERROR("Invalid args\n");
2493                 return -1;
2494         }
2495
2496         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2497                                 sizeof(frag_threshold), &frag_threshold);
2498 }
2499
2500 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2501 {
2502         u32 param;
2503
2504         if (!priv) {
2505                 IPW_ERROR("Invalid args\n");
2506                 return -1;
2507         }
2508
2509         /* If on battery, set to 3, if AC set to CAM, else user
2510          * level */
2511         switch (mode) {
2512         case IPW_POWER_BATTERY:
2513                 param = IPW_POWER_INDEX_3;
2514                 break;
2515         case IPW_POWER_AC:
2516                 param = IPW_POWER_MODE_CAM;
2517                 break;
2518         default:
2519                 param = mode;
2520                 break;
2521         }
2522
2523         param = cpu_to_le32(param);
2524         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2525                                 &param);
2526 }
2527
2528 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2529 {
2530         struct ipw_retry_limit retry_limit = {
2531                 .short_retry_limit = slimit,
2532                 .long_retry_limit = llimit
2533         };
2534
2535         if (!priv) {
2536                 IPW_ERROR("Invalid args\n");
2537                 return -1;
2538         }
2539
2540         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2541                                 &retry_limit);
2542 }
2543
2544 /*
2545  * The IPW device contains a Microwire compatible EEPROM that stores
2546  * various data like the MAC address.  Usually the firmware has exclusive
2547  * access to the eeprom, but during device initialization (before the
2548  * device driver has sent the HostComplete command to the firmware) the
2549  * device driver has read access to the EEPROM by way of indirect addressing
2550  * through a couple of memory mapped registers.
2551  *
2552  * The following is a simplified implementation for pulling data out of the
2553  * the eeprom, along with some helper functions to find information in
2554  * the per device private data's copy of the eeprom.
2555  *
2556  * NOTE: To better understand how these functions work (i.e what is a chip
2557  *       select and why do have to keep driving the eeprom clock?), read
2558  *       just about any data sheet for a Microwire compatible EEPROM.
2559  */
2560
2561 /* write a 32 bit value into the indirect accessor register */
2562 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2563 {
2564         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2565
2566         /* the eeprom requires some time to complete the operation */
2567         udelay(p->eeprom_delay);
2568
2569         return;
2570 }
2571
2572 /* perform a chip select operation */
2573 static void eeprom_cs(struct ipw_priv *priv)
2574 {
2575         eeprom_write_reg(priv, 0);
2576         eeprom_write_reg(priv, EEPROM_BIT_CS);
2577         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2578         eeprom_write_reg(priv, EEPROM_BIT_CS);
2579 }
2580
2581 /* perform a chip select operation */
2582 static void eeprom_disable_cs(struct ipw_priv *priv)
2583 {
2584         eeprom_write_reg(priv, EEPROM_BIT_CS);
2585         eeprom_write_reg(priv, 0);
2586         eeprom_write_reg(priv, EEPROM_BIT_SK);
2587 }
2588
2589 /* push a single bit down to the eeprom */
2590 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2591 {
2592         int d = (bit ? EEPROM_BIT_DI : 0);
2593         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2594         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2595 }
2596
2597 /* push an opcode followed by an address down to the eeprom */
2598 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2599 {
2600         int i;
2601
2602         eeprom_cs(priv);
2603         eeprom_write_bit(priv, 1);
2604         eeprom_write_bit(priv, op & 2);
2605         eeprom_write_bit(priv, op & 1);
2606         for (i = 7; i >= 0; i--) {
2607                 eeprom_write_bit(priv, addr & (1 << i));
2608         }
2609 }
2610
2611 /* pull 16 bits off the eeprom, one bit at a time */
2612 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2613 {
2614         int i;
2615         u16 r = 0;
2616
2617         /* Send READ Opcode */
2618         eeprom_op(priv, EEPROM_CMD_READ, addr);
2619
2620         /* Send dummy bit */
2621         eeprom_write_reg(priv, EEPROM_BIT_CS);
2622
2623         /* Read the byte off the eeprom one bit at a time */
2624         for (i = 0; i < 16; i++) {
2625                 u32 data = 0;
2626                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2627                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2628                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2629                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2630         }
2631
2632         /* Send another dummy bit */
2633         eeprom_write_reg(priv, 0);
2634         eeprom_disable_cs(priv);
2635
2636         return r;
2637 }
2638
2639 /* helper function for pulling the mac address out of the private */
2640 /* data's copy of the eeprom data                                 */
2641 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2642 {
2643         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2644 }
2645
2646 /*
2647  * Either the device driver (i.e. the host) or the firmware can
2648  * load eeprom data into the designated region in SRAM.  If neither
2649  * happens then the FW will shutdown with a fatal error.
2650  *
2651  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2652  * bit needs region of shared SRAM needs to be non-zero.
2653  */
2654 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2655 {
2656         int i;
2657         u16 *eeprom = (u16 *) priv->eeprom;
2658
2659         IPW_DEBUG_TRACE(">>\n");
2660
2661         /* read entire contents of eeprom into private buffer */
2662         for (i = 0; i < 128; i++)
2663                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2664
2665         /*
2666            If the data looks correct, then copy it to our private
2667            copy.  Otherwise let the firmware know to perform the operation
2668            on its own.
2669          */
2670         if (priv->eeprom[EEPROM_VERSION] != 0) {
2671                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2672
2673                 /* write the eeprom data to sram */
2674                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2675                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2676
2677                 /* Do not load eeprom data on fatal error or suspend */
2678                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2679         } else {
2680                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2681
2682                 /* Load eeprom data on fatal error or suspend */
2683                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2684         }
2685
2686         IPW_DEBUG_TRACE("<<\n");
2687 }
2688
2689 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2690 {
2691         count >>= 2;
2692         if (!count)
2693                 return;
2694         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2695         while (count--)
2696                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2697 }
2698
2699 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2700 {
2701         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2702                         CB_NUMBER_OF_ELEMENTS_SMALL *
2703                         sizeof(struct command_block));
2704 }
2705
2706 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2707 {                               /* start dma engine but no transfers yet */
2708
2709         IPW_DEBUG_FW(">> : \n");
2710
2711         /* Start the dma */
2712         ipw_fw_dma_reset_command_blocks(priv);
2713
2714         /* Write CB base address */
2715         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2716
2717         IPW_DEBUG_FW("<< : \n");
2718         return 0;
2719 }
2720
2721 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2722 {
2723         u32 control = 0;
2724
2725         IPW_DEBUG_FW(">> :\n");
2726
2727         /* set the Stop and Abort bit */
2728         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2729         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2730         priv->sram_desc.last_cb_index = 0;
2731
2732         IPW_DEBUG_FW("<< \n");
2733 }
2734
2735 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2736                                           struct command_block *cb)
2737 {
2738         u32 address =
2739             IPW_SHARED_SRAM_DMA_CONTROL +
2740             (sizeof(struct command_block) * index);
2741         IPW_DEBUG_FW(">> :\n");
2742
2743         ipw_write_indirect(priv, address, (u8 *) cb,
2744                            (int)sizeof(struct command_block));
2745
2746         IPW_DEBUG_FW("<< :\n");
2747         return 0;
2748
2749 }
2750
2751 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2752 {
2753         u32 control = 0;
2754         u32 index = 0;
2755
2756         IPW_DEBUG_FW(">> :\n");
2757
2758         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2759                 ipw_fw_dma_write_command_block(priv, index,
2760                                                &priv->sram_desc.cb_list[index]);
2761
2762         /* Enable the DMA in the CSR register */
2763         ipw_clear_bit(priv, IPW_RESET_REG,
2764                       IPW_RESET_REG_MASTER_DISABLED |
2765                       IPW_RESET_REG_STOP_MASTER);
2766
2767         /* Set the Start bit. */
2768         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2769         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2770
2771         IPW_DEBUG_FW("<< :\n");
2772         return 0;
2773 }
2774
2775 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2776 {
2777         u32 address;
2778         u32 register_value = 0;
2779         u32 cb_fields_address = 0;
2780
2781         IPW_DEBUG_FW(">> :\n");
2782         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2783         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2784
2785         /* Read the DMA Controlor register */
2786         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2787         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2788
2789         /* Print the CB values */
2790         cb_fields_address = address;
2791         register_value = ipw_read_reg32(priv, cb_fields_address);
2792         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2793
2794         cb_fields_address += sizeof(u32);
2795         register_value = ipw_read_reg32(priv, cb_fields_address);
2796         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2797
2798         cb_fields_address += sizeof(u32);
2799         register_value = ipw_read_reg32(priv, cb_fields_address);
2800         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2801                           register_value);
2802
2803         cb_fields_address += sizeof(u32);
2804         register_value = ipw_read_reg32(priv, cb_fields_address);
2805         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2806
2807         IPW_DEBUG_FW(">> :\n");
2808 }
2809
2810 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2811 {
2812         u32 current_cb_address = 0;
2813         u32 current_cb_index = 0;
2814
2815         IPW_DEBUG_FW("<< :\n");
2816         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2817
2818         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2819             sizeof(struct command_block);
2820
2821         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2822                           current_cb_index, current_cb_address);
2823
2824         IPW_DEBUG_FW(">> :\n");
2825         return current_cb_index;
2826
2827 }
2828
2829 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2830                                         u32 src_address,
2831                                         u32 dest_address,
2832                                         u32 length,
2833                                         int interrupt_enabled, int is_last)
2834 {
2835
2836         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2837             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2838             CB_DEST_SIZE_LONG;
2839         struct command_block *cb;
2840         u32 last_cb_element = 0;
2841
2842         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2843                           src_address, dest_address, length);
2844
2845         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2846                 return -1;
2847
2848         last_cb_element = priv->sram_desc.last_cb_index;
2849         cb = &priv->sram_desc.cb_list[last_cb_element];
2850         priv->sram_desc.last_cb_index++;
2851
2852         /* Calculate the new CB control word */
2853         if (interrupt_enabled)
2854                 control |= CB_INT_ENABLED;
2855
2856         if (is_last)
2857                 control |= CB_LAST_VALID;
2858
2859         control |= length;
2860
2861         /* Calculate the CB Element's checksum value */
2862         cb->status = control ^ src_address ^ dest_address;
2863
2864         /* Copy the Source and Destination addresses */
2865         cb->dest_addr = dest_address;
2866         cb->source_addr = src_address;
2867
2868         /* Copy the Control Word last */
2869         cb->control = control;
2870
2871         return 0;
2872 }
2873
2874 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2875                                  u32 src_phys, u32 dest_address, u32 length)
2876 {
2877         u32 bytes_left = length;
2878         u32 src_offset = 0;
2879         u32 dest_offset = 0;
2880         int status = 0;
2881         IPW_DEBUG_FW(">> \n");
2882         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2883                           src_phys, dest_address, length);
2884         while (bytes_left > CB_MAX_LENGTH) {
2885                 status = ipw_fw_dma_add_command_block(priv,
2886                                                       src_phys + src_offset,
2887                                                       dest_address +
2888                                                       dest_offset,
2889                                                       CB_MAX_LENGTH, 0, 0);
2890                 if (status) {
2891                         IPW_DEBUG_FW_INFO(": Failed\n");
2892                         return -1;
2893                 } else
2894                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2895
2896                 src_offset += CB_MAX_LENGTH;
2897                 dest_offset += CB_MAX_LENGTH;
2898                 bytes_left -= CB_MAX_LENGTH;
2899         }
2900
2901         /* add the buffer tail */
2902         if (bytes_left > 0) {
2903                 status =
2904                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2905                                                  dest_address + dest_offset,
2906                                                  bytes_left, 0, 0);
2907                 if (status) {
2908                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2909                         return -1;
2910                 } else
2911                         IPW_DEBUG_FW_INFO
2912                             (": Adding new cb - the buffer tail\n");
2913         }
2914
2915         IPW_DEBUG_FW("<< \n");
2916         return 0;
2917 }
2918
2919 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2920 {
2921         u32 current_index = 0, previous_index;
2922         u32 watchdog = 0;
2923
2924         IPW_DEBUG_FW(">> : \n");
2925
2926         current_index = ipw_fw_dma_command_block_index(priv);
2927         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2928                           (int)priv->sram_desc.last_cb_index);
2929
2930         while (current_index < priv->sram_desc.last_cb_index) {
2931                 udelay(50);
2932                 previous_index = current_index;
2933                 current_index = ipw_fw_dma_command_block_index(priv);
2934
2935                 if (previous_index < current_index) {
2936                         watchdog = 0;
2937                         continue;
2938                 }
2939                 if (++watchdog > 400) {
2940                         IPW_DEBUG_FW_INFO("Timeout\n");
2941                         ipw_fw_dma_dump_command_block(priv);
2942                         ipw_fw_dma_abort(priv);
2943                         return -1;
2944                 }
2945         }
2946
2947         ipw_fw_dma_abort(priv);
2948
2949         /*Disable the DMA in the CSR register */
2950         ipw_set_bit(priv, IPW_RESET_REG,
2951                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2952
2953         IPW_DEBUG_FW("<< dmaWaitSync \n");
2954         return 0;
2955 }
2956
2957 static void ipw_remove_current_network(struct ipw_priv *priv)
2958 {
2959         struct list_head *element, *safe;
2960         struct ieee80211_network *network = NULL;
2961         unsigned long flags;
2962
2963         spin_lock_irqsave(&priv->ieee->lock, flags);
2964         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2965                 network = list_entry(element, struct ieee80211_network, list);
2966                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2967                         list_del(element);
2968                         list_add_tail(&network->list,
2969                                       &priv->ieee->network_free_list);
2970                 }
2971         }
2972         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2973 }
2974
2975 /**
2976  * Check that card is still alive.
2977  * Reads debug register from domain0.
2978  * If card is present, pre-defined value should
2979  * be found there.
2980  *
2981  * @param priv
2982  * @return 1 if card is present, 0 otherwise
2983  */
2984 static inline int ipw_alive(struct ipw_priv *priv)
2985 {
2986         return ipw_read32(priv, 0x90) == 0xd55555d5;
2987 }
2988
2989 /* timeout in msec, attempted in 10-msec quanta */
2990 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2991                                int timeout)
2992 {
2993         int i = 0;
2994
2995         do {
2996                 if ((ipw_read32(priv, addr) & mask) == mask)
2997                         return i;
2998                 mdelay(10);
2999                 i += 10;
3000         } while (i < timeout);
3001
3002         return -ETIME;
3003 }
3004
3005 /* These functions load the firmware and micro code for the operation of
3006  * the ipw hardware.  It assumes the buffer has all the bits for the
3007  * image and the caller is handling the memory allocation and clean up.
3008  */
3009
3010 static int ipw_stop_master(struct ipw_priv *priv)
3011 {
3012         int rc;
3013
3014         IPW_DEBUG_TRACE(">> \n");
3015         /* stop master. typical delay - 0 */
3016         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3017
3018         /* timeout is in msec, polled in 10-msec quanta */
3019         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3020                           IPW_RESET_REG_MASTER_DISABLED, 100);
3021         if (rc < 0) {
3022                 IPW_ERROR("wait for stop master failed after 100ms\n");
3023                 return -1;
3024         }
3025
3026         IPW_DEBUG_INFO("stop master %dms\n", rc);
3027
3028         return rc;
3029 }
3030
3031 static void ipw_arc_release(struct ipw_priv *priv)
3032 {
3033         IPW_DEBUG_TRACE(">> \n");
3034         mdelay(5);
3035
3036         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3037
3038         /* no one knows timing, for safety add some delay */
3039         mdelay(5);
3040 }
3041
3042 struct fw_chunk {
3043         u32 address;
3044         u32 length;
3045 };
3046
3047 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3048 {
3049         int rc = 0, i, addr;
3050         u8 cr = 0;
3051         u16 *image;
3052
3053         image = (u16 *) data;
3054
3055         IPW_DEBUG_TRACE(">> \n");
3056
3057         rc = ipw_stop_master(priv);
3058
3059         if (rc < 0)
3060                 return rc;
3061
3062         for (addr = IPW_SHARED_LOWER_BOUND;
3063              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3064                 ipw_write32(priv, addr, 0);
3065         }
3066
3067         /* no ucode (yet) */
3068         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3069         /* destroy DMA queues */
3070         /* reset sequence */
3071
3072         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3073         ipw_arc_release(priv);
3074         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3075         mdelay(1);
3076
3077         /* reset PHY */
3078         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3079         mdelay(1);
3080
3081         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3082         mdelay(1);
3083
3084         /* enable ucode store */
3085         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3086         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3087         mdelay(1);
3088
3089         /* write ucode */
3090         /**
3091          * @bug
3092          * Do NOT set indirect address register once and then
3093          * store data to indirect data register in the loop.
3094          * It seems very reasonable, but in this case DINO do not
3095          * accept ucode. It is essential to set address each time.
3096          */
3097         /* load new ipw uCode */
3098         for (i = 0; i < len / 2; i++)
3099                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3100                                 cpu_to_le16(image[i]));
3101
3102         /* enable DINO */
3103         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3104         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3105
3106         /* this is where the igx / win driver deveates from the VAP driver. */
3107
3108         /* wait for alive response */
3109         for (i = 0; i < 100; i++) {
3110                 /* poll for incoming data */
3111                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3112                 if (cr & DINO_RXFIFO_DATA)
3113                         break;
3114                 mdelay(1);
3115         }
3116
3117         if (cr & DINO_RXFIFO_DATA) {
3118                 /* alive_command_responce size is NOT multiple of 4 */
3119                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3120
3121                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3122                         response_buffer[i] =
3123                             le32_to_cpu(ipw_read_reg32(priv,
3124                                                        IPW_BASEBAND_RX_FIFO_READ));
3125                 memcpy(&priv->dino_alive, response_buffer,
3126                        sizeof(priv->dino_alive));
3127                 if (priv->dino_alive.alive_command == 1
3128                     && priv->dino_alive.ucode_valid == 1) {
3129                         rc = 0;
3130                         IPW_DEBUG_INFO
3131                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3132                              "of %02d/%02d/%02d %02d:%02d\n",
3133                              priv->dino_alive.software_revision,
3134                              priv->dino_alive.software_revision,
3135                              priv->dino_alive.device_identifier,
3136                              priv->dino_alive.device_identifier,
3137                              priv->dino_alive.time_stamp[0],
3138                              priv->dino_alive.time_stamp[1],
3139                              priv->dino_alive.time_stamp[2],
3140                              priv->dino_alive.time_stamp[3],
3141                              priv->dino_alive.time_stamp[4]);
3142                 } else {
3143                         IPW_DEBUG_INFO("Microcode is not alive\n");
3144                         rc = -EINVAL;
3145                 }
3146         } else {
3147                 IPW_DEBUG_INFO("No alive response from DINO\n");
3148                 rc = -ETIME;
3149         }
3150
3151         /* disable DINO, otherwise for some reason
3152            firmware have problem getting alive resp. */
3153         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3154
3155         return rc;
3156 }
3157
3158 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3159 {
3160         int rc = -1;
3161         int offset = 0;
3162         struct fw_chunk *chunk;
3163         dma_addr_t shared_phys;
3164         u8 *shared_virt;
3165
3166         IPW_DEBUG_TRACE("<< : \n");
3167         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3168
3169         if (!shared_virt)
3170                 return -ENOMEM;
3171
3172         memmove(shared_virt, data, len);
3173
3174         /* Start the Dma */
3175         rc = ipw_fw_dma_enable(priv);
3176
3177         if (priv->sram_desc.last_cb_index > 0) {
3178                 /* the DMA is already ready this would be a bug. */
3179                 BUG();
3180                 goto out;
3181         }
3182
3183         do {
3184                 chunk = (struct fw_chunk *)(data + offset);
3185                 offset += sizeof(struct fw_chunk);
3186                 /* build DMA packet and queue up for sending */
3187                 /* dma to chunk->address, the chunk->length bytes from data +
3188                  * offeset*/
3189                 /* Dma loading */
3190                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191                                            le32_to_cpu(chunk->address),
3192                                            le32_to_cpu(chunk->length));
3193                 if (rc) {
3194                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3195                         goto out;
3196                 }
3197
3198                 offset += le32_to_cpu(chunk->length);
3199         } while (offset < len);
3200
3201         /* Run the DMA and wait for the answer */
3202         rc = ipw_fw_dma_kick(priv);
3203         if (rc) {
3204                 IPW_ERROR("dmaKick Failed\n");
3205                 goto out;
3206         }
3207
3208         rc = ipw_fw_dma_wait(priv);
3209         if (rc) {
3210                 IPW_ERROR("dmaWaitSync Failed\n");
3211                 goto out;
3212         }
3213       out:
3214         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3215         return rc;
3216 }
3217
3218 /* stop nic */
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3220 {
3221         int rc = 0;
3222
3223         /* stop */
3224         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3225
3226         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227                           IPW_RESET_REG_MASTER_DISABLED, 500);
3228         if (rc < 0) {
3229                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3230                 return rc;
3231         }
3232
3233         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3234
3235         return rc;
3236 }
3237
3238 static void ipw_start_nic(struct ipw_priv *priv)
3239 {
3240         IPW_DEBUG_TRACE(">>\n");
3241
3242         /* prvHwStartNic  release ARC */
3243         ipw_clear_bit(priv, IPW_RESET_REG,
3244                       IPW_RESET_REG_MASTER_DISABLED |
3245                       IPW_RESET_REG_STOP_MASTER |
3246                       CBD_RESET_REG_PRINCETON_RESET);
3247
3248         /* enable power management */
3249         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3251
3252         IPW_DEBUG_TRACE("<<\n");
3253 }
3254
3255 static int ipw_init_nic(struct ipw_priv *priv)
3256 {
3257         int rc;
3258
3259         IPW_DEBUG_TRACE(">>\n");
3260         /* reset */
3261         /*prvHwInitNic */
3262         /* set "initialization complete" bit to move adapter to D0 state */
3263         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3264
3265         /* low-level PLL activation */
3266         ipw_write32(priv, IPW_READ_INT_REGISTER,
3267                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3268
3269         /* wait for clock stabilization */
3270         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272         if (rc < 0)
3273                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3274
3275         /* assert SW reset */
3276         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3277
3278         udelay(10);
3279
3280         /* set "initialization complete" bit to move adapter to D0 state */
3281         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3282
3283         IPW_DEBUG_TRACE(">>\n");
3284         return 0;
3285 }
3286
3287 /* Call this function from process context, it will sleep in request_firmware.
3288  * Probe is an ok place to call this from.
3289  */
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3291 {
3292         int rc = 0;
3293         unsigned long flags;
3294
3295         IPW_DEBUG_TRACE(">>\n");
3296
3297         rc = ipw_init_nic(priv);
3298
3299         spin_lock_irqsave(&priv->lock, flags);
3300         /* Clear the 'host command active' bit... */
3301         priv->status &= ~STATUS_HCMD_ACTIVE;
3302         wake_up_interruptible(&priv->wait_command_queue);
3303         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304         wake_up_interruptible(&priv->wait_state);
3305         spin_unlock_irqrestore(&priv->lock, flags);
3306
3307         IPW_DEBUG_TRACE("<<\n");
3308         return rc;
3309 }
3310
3311
3312 struct ipw_fw {
3313         __le32 ver;
3314         __le32 boot_size;
3315         __le32 ucode_size;
3316         __le32 fw_size;
3317         u8 data[0];
3318 };
3319
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321                       const struct firmware **raw, const char *name)
3322 {
3323         struct ipw_fw *fw;
3324         int rc;
3325
3326         /* ask firmware_class module to get the boot firmware off disk */
3327         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328         if (rc < 0) {
3329                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3330                 return rc;
3331         }
3332
3333         if ((*raw)->size < sizeof(*fw)) {
3334                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3335                 return -EINVAL;
3336         }
3337
3338         fw = (void *)(*raw)->data;
3339
3340         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343                           name, (*raw)->size);
3344                 return -EINVAL;
3345         }
3346
3347         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348                        name,
3349                        le32_to_cpu(fw->ver) >> 16,
3350                        le32_to_cpu(fw->ver) & 0xff,
3351                        (*raw)->size - sizeof(*fw));
3352         return 0;
3353 }
3354
3355 #define IPW_RX_BUF_SIZE (3000)
3356
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358                                       struct ipw_rx_queue *rxq)
3359 {
3360         unsigned long flags;
3361         int i;
3362
3363         spin_lock_irqsave(&rxq->lock, flags);
3364
3365         INIT_LIST_HEAD(&rxq->rx_free);
3366         INIT_LIST_HEAD(&rxq->rx_used);
3367
3368         /* Fill the rx_used queue with _all_ of the Rx buffers */
3369         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370                 /* In the reset function, these buffers may have been allocated
3371                  * to an SKB, so we need to unmap and free potential storage */
3372                 if (rxq->pool[i].skb != NULL) {
3373                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375                         dev_kfree_skb(rxq->pool[i].skb);
3376                         rxq->pool[i].skb = NULL;
3377                 }
3378                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3379         }
3380
3381         /* Set us so that we have processed and used all buffers, but have
3382          * not restocked the Rx queue with fresh buffers */
3383         rxq->read = rxq->write = 0;
3384         rxq->processed = RX_QUEUE_SIZE - 1;
3385         rxq->free_count = 0;
3386         spin_unlock_irqrestore(&rxq->lock, flags);
3387 }
3388
3389 #ifdef CONFIG_PM
3390 static int fw_loaded = 0;
3391 static const struct firmware *raw = NULL;
3392
3393 static void free_firmware(void)
3394 {
3395         if (fw_loaded) {
3396                 release_firmware(raw);
3397                 raw = NULL;
3398                 fw_loaded = 0;
3399         }
3400 }
3401 #else
3402 #define free_firmware() do {} while (0)
3403 #endif
3404
3405 static int ipw_load(struct ipw_priv *priv)
3406 {
3407 #ifndef CONFIG_PM
3408         const struct firmware *raw = NULL;
3409 #endif
3410         struct ipw_fw *fw;
3411         u8 *boot_img, *ucode_img, *fw_img;
3412         u8 *name = NULL;
3413         int rc = 0, retries = 3;
3414
3415         switch (priv->ieee->iw_mode) {
3416         case IW_MODE_ADHOC:
3417                 name = "ipw2200-ibss.fw";
3418                 break;
3419 #ifdef CONFIG_IPW2200_MONITOR
3420         case IW_MODE_MONITOR:
3421                 name = "ipw2200-sniffer.fw";
3422                 break;
3423 #endif
3424         case IW_MODE_INFRA:
3425                 name = "ipw2200-bss.fw";
3426                 break;
3427         }
3428
3429         if (!name) {
3430                 rc = -EINVAL;
3431                 goto error;
3432         }
3433
3434 #ifdef CONFIG_PM
3435         if (!fw_loaded) {
3436 #endif
3437                 rc = ipw_get_fw(priv, &raw, name);
3438                 if (rc < 0)
3439                         goto error;
3440 #ifdef CONFIG_PM
3441         }
3442 #endif
3443
3444         fw = (void *)raw->data;
3445         boot_img = &fw->data[0];
3446         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3447         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3448                            le32_to_cpu(fw->ucode_size)];
3449
3450         if (rc < 0)
3451                 goto error;
3452
3453         if (!priv->rxq)
3454                 priv->rxq = ipw_rx_queue_alloc(priv);
3455         else
3456                 ipw_rx_queue_reset(priv, priv->rxq);
3457         if (!priv->rxq) {
3458                 IPW_ERROR("Unable to initialize Rx queue\n");
3459                 goto error;
3460         }
3461
3462       retry:
3463         /* Ensure interrupts are disabled */
3464         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3465         priv->status &= ~STATUS_INT_ENABLED;
3466
3467         /* ack pending interrupts */
3468         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3469
3470         ipw_stop_nic(priv);
3471
3472         rc = ipw_reset_nic(priv);
3473         if (rc < 0) {
3474                 IPW_ERROR("Unable to reset NIC\n");
3475                 goto error;
3476         }
3477
3478         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3479                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3480
3481         /* DMA the initial boot firmware into the device */
3482         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3483         if (rc < 0) {
3484                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3485                 goto error;
3486         }
3487
3488         /* kick start the device */
3489         ipw_start_nic(priv);
3490
3491         /* wait for the device to finish its initial startup sequence */
3492         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3493                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3494         if (rc < 0) {
3495                 IPW_ERROR("device failed to boot initial fw image\n");
3496                 goto error;
3497         }
3498         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3499
3500         /* ack fw init done interrupt */
3501         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3502
3503         /* DMA the ucode into the device */
3504         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3505         if (rc < 0) {
3506                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3507                 goto error;
3508         }
3509
3510         /* stop nic */
3511         ipw_stop_nic(priv);
3512
3513         /* DMA bss firmware into the device */
3514         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3515         if (rc < 0) {
3516                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3517                 goto error;
3518         }
3519 #ifdef CONFIG_PM
3520         fw_loaded = 1;
3521 #endif
3522
3523         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3524
3525         rc = ipw_queue_reset(priv);
3526         if (rc < 0) {
3527                 IPW_ERROR("Unable to initialize queues\n");
3528                 goto error;
3529         }
3530
3531         /* Ensure interrupts are disabled */
3532         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3533         /* ack pending interrupts */
3534         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3535
3536         /* kick start the device */
3537         ipw_start_nic(priv);
3538
3539         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3540                 if (retries > 0) {
3541                         IPW_WARNING("Parity error.  Retrying init.\n");
3542                         retries--;
3543                         goto retry;
3544                 }
3545
3546                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3547                 rc = -EIO;
3548                 goto error;
3549         }
3550
3551         /* wait for the device */
3552         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3553                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3554         if (rc < 0) {
3555                 IPW_ERROR("device failed to start within 500ms\n");
3556                 goto error;
3557         }
3558         IPW_DEBUG_INFO("device response after %dms\n", rc);
3559
3560         /* ack fw init done interrupt */
3561         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3562
3563         /* read eeprom data and initialize the eeprom region of sram */
3564         priv->eeprom_delay = 1;
3565         ipw_eeprom_init_sram(priv);
3566
3567         /* enable interrupts */
3568         ipw_enable_interrupts(priv);
3569
3570         /* Ensure our queue has valid packets */
3571         ipw_rx_queue_replenish(priv);
3572
3573         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3574
3575         /* ack pending interrupts */
3576         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3577
3578 #ifndef CONFIG_PM
3579         release_firmware(raw);
3580 #endif
3581         return 0;
3582
3583       error:
3584         if (priv->rxq) {
3585                 ipw_rx_queue_free(priv, priv->rxq);
3586                 priv->rxq = NULL;
3587         }
3588         ipw_tx_queue_free(priv);
3589         if (raw)
3590                 release_firmware(raw);
3591 #ifdef CONFIG_PM
3592         fw_loaded = 0;
3593         raw = NULL;
3594 #endif
3595
3596         return rc;
3597 }
3598
3599 /**
3600  * DMA services
3601  *
3602  * Theory of operation
3603  *
3604  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3605  * 2 empty entries always kept in the buffer to protect from overflow.
3606  *
3607  * For Tx queue, there are low mark and high mark limits. If, after queuing
3608  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3609  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3610  * Tx queue resumed.
3611  *
3612  * The IPW operates with six queues, one receive queue in the device's
3613  * sram, one transmit queue for sending commands to the device firmware,
3614  * and four transmit queues for data.
3615  *
3616  * The four transmit queues allow for performing quality of service (qos)
3617  * transmissions as per the 802.11 protocol.  Currently Linux does not
3618  * provide a mechanism to the user for utilizing prioritized queues, so
3619  * we only utilize the first data transmit queue (queue1).
3620  */
3621
3622 /**
3623  * Driver allocates buffers of this size for Rx
3624  */
3625
3626 static inline int ipw_queue_space(const struct clx2_queue *q)
3627 {
3628         int s = q->last_used - q->first_empty;
3629         if (s <= 0)
3630                 s += q->n_bd;
3631         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3632         if (s < 0)
3633                 s = 0;
3634         return s;
3635 }
3636
3637 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3638 {
3639         return (++index == n_bd) ? 0 : index;
3640 }
3641
3642 /**
3643  * Initialize common DMA queue structure
3644  *
3645  * @param q                queue to init
3646  * @param count            Number of BD's to allocate. Should be power of 2
3647  * @param read_register    Address for 'read' register
3648  *                         (not offset within BAR, full address)
3649  * @param write_register   Address for 'write' register
3650  *                         (not offset within BAR, full address)
3651  * @param base_register    Address for 'base' register
3652  *                         (not offset within BAR, full address)
3653  * @param size             Address for 'size' register
3654  *                         (not offset within BAR, full address)
3655  */
3656 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3657                            int count, u32 read, u32 write, u32 base, u32 size)
3658 {
3659         q->n_bd = count;
3660
3661         q->low_mark = q->n_bd / 4;
3662         if (q->low_mark < 4)
3663                 q->low_mark = 4;
3664
3665         q->high_mark = q->n_bd / 8;
3666         if (q->high_mark < 2)
3667                 q->high_mark = 2;
3668
3669         q->first_empty = q->last_used = 0;
3670         q->reg_r = read;
3671         q->reg_w = write;
3672
3673         ipw_write32(priv, base, q->dma_addr);
3674         ipw_write32(priv, size, count);
3675         ipw_write32(priv, read, 0);
3676         ipw_write32(priv, write, 0);
3677
3678         _ipw_read32(priv, 0x90);
3679 }
3680
3681 static int ipw_queue_tx_init(struct ipw_priv *priv,
3682                              struct clx2_tx_queue *q,
3683                              int count, u32 read, u32 write, u32 base, u32 size)
3684 {
3685         struct pci_dev *dev = priv->pci_dev;
3686
3687         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3688         if (!q->txb) {
3689                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3690                 return -ENOMEM;
3691         }
3692
3693         q->bd =
3694             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3695         if (!q->bd) {
3696                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3697                           sizeof(q->bd[0]) * count);
3698                 kfree(q->txb);
3699                 q->txb = NULL;
3700                 return -ENOMEM;
3701         }
3702
3703         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3704         return 0;
3705 }
3706
3707 /**
3708  * Free one TFD, those at index [txq->q.last_used].
3709  * Do NOT advance any indexes
3710  *
3711  * @param dev
3712  * @param txq
3713  */
3714 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3715                                   struct clx2_tx_queue *txq)
3716 {
3717         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3718         struct pci_dev *dev = priv->pci_dev;
3719         int i;
3720
3721         /* classify bd */
3722         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3723                 /* nothing to cleanup after for host commands */
3724                 return;
3725
3726         /* sanity check */
3727         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3728                 IPW_ERROR("Too many chunks: %i\n",
3729                           le32_to_cpu(bd->u.data.num_chunks));
3730                 /** @todo issue fatal error, it is quite serious situation */
3731                 return;
3732         }
3733
3734         /* unmap chunks if any */
3735         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3736                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3737                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3738                                  PCI_DMA_TODEVICE);
3739                 if (txq->txb[txq->q.last_used]) {
3740                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3741                         txq->txb[txq->q.last_used] = NULL;
3742                 }
3743         }
3744 }
3745
3746 /**
3747  * Deallocate DMA queue.
3748  *
3749  * Empty queue by removing and destroying all BD's.
3750  * Free all buffers.
3751  *
3752  * @param dev
3753  * @param q
3754  */
3755 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3756 {
3757         struct clx2_queue *q = &txq->q;
3758         struct pci_dev *dev = priv->pci_dev;
3759
3760         if (q->n_bd == 0)
3761                 return;
3762
3763         /* first, empty all BD's */
3764         for (; q->first_empty != q->last_used;
3765              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3766                 ipw_queue_tx_free_tfd(priv, txq);
3767         }
3768
3769         /* free buffers belonging to queue itself */
3770         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3771                             q->dma_addr);
3772         kfree(txq->txb);
3773
3774         /* 0 fill whole structure */
3775         memset(txq, 0, sizeof(*txq));
3776 }
3777
3778 /**
3779  * Destroy all DMA queues and structures
3780  *
3781  * @param priv
3782  */
3783 static void ipw_tx_queue_free(struct ipw_priv *priv)
3784 {
3785         /* Tx CMD queue */
3786         ipw_queue_tx_free(priv, &priv->txq_cmd);
3787
3788         /* Tx queues */
3789         ipw_queue_tx_free(priv, &priv->txq[0]);
3790         ipw_queue_tx_free(priv, &priv->txq[1]);
3791         ipw_queue_tx_free(priv, &priv->txq[2]);
3792         ipw_queue_tx_free(priv, &priv->txq[3]);
3793 }
3794
3795 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3796 {
3797         /* First 3 bytes are manufacturer */
3798         bssid[0] = priv->mac_addr[0];
3799         bssid[1] = priv->mac_addr[1];
3800         bssid[2] = priv->mac_addr[2];
3801
3802         /* Last bytes are random */
3803         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3804
3805         bssid[0] &= 0xfe;       /* clear multicast bit */
3806         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3807 }
3808
3809 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3810 {
3811         struct ipw_station_entry entry;
3812         int i;
3813         DECLARE_MAC_BUF(mac);
3814
3815         for (i = 0; i < priv->num_stations; i++) {
3816                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3817                         /* Another node is active in network */
3818                         priv->missed_adhoc_beacons = 0;
3819                         if (!(priv->config & CFG_STATIC_CHANNEL))
3820                                 /* when other nodes drop out, we drop out */
3821                                 priv->config &= ~CFG_ADHOC_PERSIST;
3822
3823                         return i;
3824                 }
3825         }
3826
3827         if (i == MAX_STATIONS)
3828                 return IPW_INVALID_STATION;
3829
3830         IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3831
3832         entry.reserved = 0;
3833         entry.support_mode = 0;
3834         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3835         memcpy(priv->stations[i], bssid, ETH_ALEN);
3836         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3837                          &entry, sizeof(entry));
3838         priv->num_stations++;
3839
3840         return i;
3841 }
3842
3843 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3844 {
3845         int i;
3846
3847         for (i = 0; i < priv->num_stations; i++)
3848                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3849                         return i;
3850
3851         return IPW_INVALID_STATION;
3852 }
3853
3854 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3855 {
3856         int err;
3857         DECLARE_MAC_BUF(mac);
3858
3859         if (priv->status & STATUS_ASSOCIATING) {
3860                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861                 queue_work(priv->workqueue, &priv->disassociate);
3862                 return;
3863         }
3864
3865         if (!(priv->status & STATUS_ASSOCIATED)) {
3866                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867                 return;
3868         }
3869
3870         IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3871                         "on channel %d.\n",
3872                         print_mac(mac, priv->assoc_request.bssid),
3873                         priv->assoc_request.channel);
3874
3875         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876         priv->status |= STATUS_DISASSOCIATING;
3877
3878         if (quiet)
3879                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880         else
3881                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3882
3883         err = ipw_send_associate(priv, &priv->assoc_request);
3884         if (err) {
3885                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886                              "failed.\n");
3887                 return;
3888         }
3889
3890 }
3891
3892 static int ipw_disassociate(void *data)
3893 {
3894         struct ipw_priv *priv = data;
3895         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896                 return 0;
3897         ipw_send_disassociate(data, 0);
3898         return 1;
3899 }
3900
3901 static void ipw_bg_disassociate(struct work_struct *work)
3902 {
3903         struct ipw_priv *priv =
3904                 container_of(work, struct ipw_priv, disassociate);
3905         mutex_lock(&priv->mutex);
3906         ipw_disassociate(priv);
3907         mutex_unlock(&priv->mutex);
3908 }
3909
3910 static void ipw_system_config(struct work_struct *work)
3911 {
3912         struct ipw_priv *priv =
3913                 container_of(work, struct ipw_priv, system_config);
3914
3915 #ifdef CONFIG_IPW2200_PROMISCUOUS
3916         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917                 priv->sys_config.accept_all_data_frames = 1;
3918                 priv->sys_config.accept_non_directed_frames = 1;
3919                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920                 priv->sys_config.accept_all_mgmt_frames = 1;
3921         }
3922 #endif
3923
3924         ipw_send_system_config(priv);
3925 }
3926
3927 struct ipw_status_code {
3928         u16 status;
3929         const char *reason;
3930 };
3931
3932 static const struct ipw_status_code ipw_status_codes[] = {
3933         {0x00, "Successful"},
3934         {0x01, "Unspecified failure"},
3935         {0x0A, "Cannot support all requested capabilities in the "
3936          "Capability information field"},
3937         {0x0B, "Reassociation denied due to inability to confirm that "
3938          "association exists"},
3939         {0x0C, "Association denied due to reason outside the scope of this "
3940          "standard"},
3941         {0x0D,
3942          "Responding station does not support the specified authentication "
3943          "algorithm"},
3944         {0x0E,
3945          "Received an Authentication frame with authentication sequence "
3946          "transaction sequence number out of expected sequence"},
3947         {0x0F, "Authentication rejected because of challenge failure"},
3948         {0x10, "Authentication rejected due to timeout waiting for next "
3949          "frame in sequence"},
3950         {0x11, "Association denied because AP is unable to handle additional "
3951          "associated stations"},
3952         {0x12,
3953          "Association denied due to requesting station not supporting all "
3954          "of the datarates in the BSSBasicServiceSet Parameter"},
3955         {0x13,
3956          "Association denied due to requesting station not supporting "
3957          "short preamble operation"},
3958         {0x14,
3959          "Association denied due to requesting station not supporting "
3960          "PBCC encoding"},
3961         {0x15,
3962          "Association denied due to requesting station not supporting "
3963          "channel agility"},
3964         {0x19,
3965          "Association denied due to requesting station not supporting "
3966          "short slot operation"},
3967         {0x1A,
3968          "Association denied due to requesting station not supporting "
3969          "DSSS-OFDM operation"},
3970         {0x28, "Invalid Information Element"},
3971         {0x29, "Group Cipher is not valid"},
3972         {0x2A, "Pairwise Cipher is not valid"},
3973         {0x2B, "AKMP is not valid"},
3974         {0x2C, "Unsupported RSN IE version"},
3975         {0x2D, "Invalid RSN IE Capabilities"},
3976         {0x2E, "Cipher suite is rejected per security policy"},
3977 };
3978
3979 static const char *ipw_get_status_code(u16 status)
3980 {
3981         int i;
3982         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983                 if (ipw_status_codes[i].status == (status & 0xff))
3984                         return ipw_status_codes[i].reason;
3985         return "Unknown status value.";
3986 }
3987
3988 static void inline average_init(struct average *avg)
3989 {
3990         memset(avg, 0, sizeof(*avg));
3991 }
3992
3993 #define DEPTH_RSSI 8
3994 #define DEPTH_NOISE 16
3995 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3996 {
3997         return ((depth-1)*prev_avg +  val)/depth;
3998 }
3999
4000 static void average_add(struct average *avg, s16 val)
4001 {
4002         avg->sum -= avg->entries[avg->pos];
4003         avg->sum += val;
4004         avg->entries[avg->pos++] = val;
4005         if (unlikely(avg->pos == AVG_ENTRIES)) {
4006                 avg->init = 1;
4007                 avg->pos = 0;
4008         }
4009 }
4010
4011 static s16 average_value(struct average *avg)
4012 {
4013         if (!unlikely(avg->init)) {
4014                 if (avg->pos)
4015                         return avg->sum / avg->pos;
4016                 return 0;
4017         }
4018
4019         return avg->sum / AVG_ENTRIES;
4020 }
4021
4022 static void ipw_reset_stats(struct ipw_priv *priv)
4023 {
4024         u32 len = sizeof(u32);
4025
4026         priv->quality = 0;
4027
4028         average_init(&priv->average_missed_beacons);
4029         priv->exp_avg_rssi = -60;
4030         priv->exp_avg_noise = -85 + 0x100;
4031
4032         priv->last_rate = 0;
4033         priv->last_missed_beacons = 0;
4034         priv->last_rx_packets = 0;
4035         priv->last_tx_packets = 0;
4036         priv->last_tx_failures = 0;
4037
4038         /* Firmware managed, reset only when NIC is restarted, so we have to
4039          * normalize on the current value */
4040         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041                         &priv->last_rx_err, &len);
4042         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043                         &priv->last_tx_failures, &len);
4044
4045         /* Driver managed, reset with each association */
4046         priv->missed_adhoc_beacons = 0;
4047         priv->missed_beacons = 0;
4048         priv->tx_packets = 0;
4049         priv->rx_packets = 0;
4050
4051 }
4052
4053 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4054 {
4055         u32 i = 0x80000000;
4056         u32 mask = priv->rates_mask;
4057         /* If currently associated in B mode, restrict the maximum
4058          * rate match to B rates */
4059         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060                 mask &= IEEE80211_CCK_RATES_MASK;
4061
4062         /* TODO: Verify that the rate is supported by the current rates
4063          * list. */
4064
4065         while (i && !(mask & i))
4066                 i >>= 1;
4067         switch (i) {
4068         case IEEE80211_CCK_RATE_1MB_MASK:
4069                 return 1000000;
4070         case IEEE80211_CCK_RATE_2MB_MASK:
4071                 return 2000000;
4072         case IEEE80211_CCK_RATE_5MB_MASK:
4073                 return 5500000;
4074         case IEEE80211_OFDM_RATE_6MB_MASK:
4075                 return 6000000;
4076         case IEEE80211_OFDM_RATE_9MB_MASK:
4077                 return 9000000;
4078         case IEEE80211_CCK_RATE_11MB_MASK:
4079                 return 11000000;
4080         case IEEE80211_OFDM_RATE_12MB_MASK:
4081                 return 12000000;
4082         case IEEE80211_OFDM_RATE_18MB_MASK:
4083                 return 18000000;
4084         case IEEE80211_OFDM_RATE_24MB_MASK:
4085                 return 24000000;
4086         case IEEE80211_OFDM_RATE_36MB_MASK:
4087                 return 36000000;
4088         case IEEE80211_OFDM_RATE_48MB_MASK:
4089                 return 48000000;
4090         case IEEE80211_OFDM_RATE_54MB_MASK:
4091                 return 54000000;
4092         }
4093
4094         if (priv->ieee->mode == IEEE_B)
4095                 return 11000000;
4096         else
4097                 return 54000000;
4098 }
4099
4100 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4101 {
4102         u32 rate, len = sizeof(rate);
4103         int err;
4104
4105         if (!(priv->status & STATUS_ASSOCIATED))
4106                 return 0;
4107
4108         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4110                                       &len);
4111                 if (err) {
4112                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4113                         return 0;
4114                 }
4115         } else
4116                 return ipw_get_max_rate(priv);
4117
4118         switch (rate) {
4119         case IPW_TX_RATE_1MB:
4120                 return 1000000;
4121         case IPW_TX_RATE_2MB:
4122                 return 2000000;
4123         case IPW_TX_RATE_5MB:
4124                 return 5500000;
4125         case IPW_TX_RATE_6MB:
4126                 return 6000000;
4127         case IPW_TX_RATE_9MB:
4128                 return 9000000;
4129         case IPW_TX_RATE_11MB:
4130                 return 11000000;
4131         case IPW_TX_RATE_12MB:
4132                 return 12000000;
4133         case IPW_TX_RATE_18MB:
4134                 return 18000000;
4135         case IPW_TX_RATE_24MB:
4136                 return 24000000;
4137         case IPW_TX_RATE_36MB:
4138                 return 36000000;
4139         case IPW_TX_RATE_48MB:
4140                 return 48000000;
4141         case IPW_TX_RATE_54MB:
4142                 return 54000000;
4143         }
4144
4145         return 0;
4146 }
4147
4148 #define IPW_STATS_INTERVAL (2 * HZ)
4149 static void ipw_gather_stats(struct ipw_priv *priv)
4150 {
4151         u32 rx_err, rx_err_delta, rx_packets_delta;
4152         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153         u32 missed_beacons_percent, missed_beacons_delta;
4154         u32 quality = 0;
4155         u32 len = sizeof(u32);
4156         s16 rssi;
4157         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4158             rate_quality;
4159         u32 max_rate;
4160
4161         if (!(priv->status & STATUS_ASSOCIATED)) {
4162                 priv->quality = 0;
4163                 return;
4164         }
4165
4166         /* Update the statistics */
4167         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168                         &priv->missed_beacons, &len);
4169         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170         priv->last_missed_beacons = priv->missed_beacons;
4171         if (priv->assoc_request.beacon_interval) {
4172                 missed_beacons_percent = missed_beacons_delta *
4173                     (HZ * priv->assoc_request.beacon_interval) /
4174                     (IPW_STATS_INTERVAL * 10);
4175         } else {
4176                 missed_beacons_percent = 0;
4177         }
4178         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4179
4180         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181         rx_err_delta = rx_err - priv->last_rx_err;
4182         priv->last_rx_err = rx_err;
4183
4184         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185         tx_failures_delta = tx_failures - priv->last_tx_failures;
4186         priv->last_tx_failures = tx_failures;
4187
4188         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189         priv->last_rx_packets = priv->rx_packets;
4190
4191         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192         priv->last_tx_packets = priv->tx_packets;
4193
4194         /* Calculate quality based on the following:
4195          *
4196          * Missed beacon: 100% = 0, 0% = 70% missed
4197          * Rate: 60% = 1Mbs, 100% = Max
4198          * Rx and Tx errors represent a straight % of total Rx/Tx
4199          * RSSI: 100% = > -50,  0% = < -80
4200          * Rx errors: 100% = 0, 0% = 50% missed
4201          *
4202          * The lowest computed quality is used.
4203          *
4204          */
4205 #define BEACON_THRESHOLD 5
4206         beacon_quality = 100 - missed_beacons_percent;
4207         if (beacon_quality < BEACON_THRESHOLD)
4208                 beacon_quality = 0;
4209         else
4210                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211                     (100 - BEACON_THRESHOLD);
4212         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213                         beacon_quality, missed_beacons_percent);
4214
4215         priv->last_rate = ipw_get_current_rate(priv);
4216         max_rate = ipw_get_max_rate(priv);
4217         rate_quality = priv->last_rate * 40 / max_rate + 60;
4218         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219                         rate_quality, priv->last_rate / 1000000);
4220
4221         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222                 rx_quality = 100 - (rx_err_delta * 100) /
4223                     (rx_packets_delta + rx_err_delta);
4224         else
4225                 rx_quality = 100;
4226         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4227                         rx_quality, rx_err_delta, rx_packets_delta);
4228
4229         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230                 tx_quality = 100 - (tx_failures_delta * 100) /
4231                     (tx_packets_delta + tx_failures_delta);
4232         else
4233                 tx_quality = 100;
4234         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4235                         tx_quality, tx_failures_delta, tx_packets_delta);
4236
4237         rssi = priv->exp_avg_rssi;
4238         signal_quality =
4239             (100 *
4240              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242              (priv->ieee->perfect_rssi - rssi) *
4243              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244               62 * (priv->ieee->perfect_rssi - rssi))) /
4245             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247         if (signal_quality > 100)
4248                 signal_quality = 100;
4249         else if (signal_quality < 1)
4250                 signal_quality = 0;
4251
4252         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253                         signal_quality, rssi);
4254
4255         quality = min(beacon_quality,
4256                       min(rate_quality,
4257                           min(tx_quality, min(rx_quality, signal_quality))));
4258         if (quality == beacon_quality)
4259                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4260                                 quality);
4261         if (quality == rate_quality)
4262                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4263                                 quality);
4264         if (quality == tx_quality)
4265                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4266                                 quality);
4267         if (quality == rx_quality)
4268                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4269                                 quality);
4270         if (quality == signal_quality)
4271                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4272                                 quality);
4273
4274         priv->quality = quality;
4275
4276         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277                            IPW_STATS_INTERVAL);
4278 }
4279
4280 static void ipw_bg_gather_stats(struct work_struct *work)
4281 {
4282         struct ipw_priv *priv =
4283                 container_of(work, struct ipw_priv, gather_stats.work);
4284         mutex_lock(&priv->mutex);
4285         ipw_gather_stats(priv);
4286         mutex_unlock(&priv->mutex);
4287 }
4288
4289 /* Missed beacon behavior:
4290  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292  * Above disassociate threshold, give up and stop scanning.
4293  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4294 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4295                                             int missed_count)
4296 {
4297         priv->notif_missed_beacons = missed_count;
4298
4299         if (missed_count > priv->disassociate_threshold &&
4300             priv->status & STATUS_ASSOCIATED) {
4301                 /* If associated and we've hit the missed
4302                  * beacon threshold, disassociate, turn
4303                  * off roaming, and abort any active scans */
4304                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305                           IPW_DL_STATE | IPW_DL_ASSOC,
4306                           "Missed beacon: %d - disassociate\n", missed_count);
4307                 priv->status &= ~STATUS_ROAMING;
4308                 if (priv->status & STATUS_SCANNING) {
4309                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4310                                   IPW_DL_STATE,
4311                                   "Aborting scan with missed beacon.\n");
4312                         queue_work(priv->workqueue, &priv->abort_scan);
4313                 }
4314
4315                 queue_work(priv->workqueue, &priv->disassociate);
4316                 return;
4317         }
4318
4319         if (priv->status & STATUS_ROAMING) {
4320                 /* If we are currently roaming, then just
4321                  * print a debug statement... */
4322                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323                           "Missed beacon: %d - roam in progress\n",
4324                           missed_count);
4325                 return;
4326         }
4327
4328         if (roaming &&
4329             (missed_count > priv->roaming_threshold &&
4330              missed_count <= priv->disassociate_threshold)) {
4331                 /* If we are not already roaming, set the ROAM
4332                  * bit in the status and kick off a scan.
4333                  * This can happen several times before we reach
4334                  * disassociate_threshold. */
4335                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336                           "Missed beacon: %d - initiate "
4337                           "roaming\n", missed_count);
4338                 if (!(priv->status & STATUS_ROAMING)) {
4339                         priv->status |= STATUS_ROAMING;
4340                         if (!(priv->status & STATUS_SCANNING))
4341                                 queue_delayed_work(priv->workqueue,
4342                                                    &priv->request_scan, 0);
4343                 }
4344                 return;
4345         }
4346
4347         if (priv->status & STATUS_SCANNING) {
4348                 /* Stop scan to keep fw from getting
4349                  * stuck (only if we aren't roaming --
4350                  * otherwise we'll never scan more than 2 or 3
4351                  * channels..) */
4352                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353                           "Aborting scan with missed beacon.\n");
4354                 queue_work(priv->workqueue, &priv->abort_scan);
4355         }
4356
4357         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4358 }
4359
4360 static void ipw_scan_event(struct work_struct *work)
4361 {
4362         union iwreq_data wrqu;
4363
4364         struct ipw_priv *priv =
4365                 container_of(work, struct ipw_priv, scan_event.work);
4366
4367         wrqu.data.length = 0;
4368         wrqu.data.flags = 0;
4369         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4370 }
4371
4372 static void handle_scan_event(struct ipw_priv *priv)
4373 {
4374         /* Only userspace-requested scan completion events go out immediately */
4375         if (!priv->user_requested_scan) {
4376                 if (!delayed_work_pending(&priv->scan_event))
4377                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4378                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4379         } else {
4380                 union iwreq_data wrqu;
4381
4382                 priv->user_requested_scan = 0;
4383                 cancel_delayed_work(&priv->scan_event);
4384
4385                 wrqu.data.length = 0;
4386                 wrqu.data.flags = 0;
4387                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4388         }
4389 }
4390
4391 /**
4392  * Handle host notification packet.
4393  * Called from interrupt routine
4394  */
4395 static void ipw_rx_notification(struct ipw_priv *priv,
4396                                        struct ipw_rx_notification *notif)
4397 {
4398         DECLARE_MAC_BUF(mac);
4399         notif->size = le16_to_cpu(notif->size);
4400
4401         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4402
4403         switch (notif->subtype) {
4404         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4405                         struct notif_association *assoc = &notif->u.assoc;
4406
4407                         switch (assoc->state) {
4408                         case CMAS_ASSOCIATED:{
4409                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4410                                                   IPW_DL_ASSOC,
4411                                                   "associated: '%s' %s"
4412                                                   " \n",
4413                                                   escape_essid(priv->essid,
4414                                                                priv->essid_len),
4415                                                   print_mac(mac, priv->bssid));
4416
4417                                         switch (priv->ieee->iw_mode) {
4418                                         case IW_MODE_INFRA:
4419                                                 memcpy(priv->ieee->bssid,
4420                                                        priv->bssid, ETH_ALEN);
4421                                                 break;
4422
4423                                         case IW_MODE_ADHOC:
4424                                                 memcpy(priv->ieee->bssid,
4425                                                        priv->bssid, ETH_ALEN);
4426
4427                                                 /* clear out the station table */
4428                                                 priv->num_stations = 0;
4429
4430                                                 IPW_DEBUG_ASSOC
4431                                                     ("queueing adhoc check\n");
4432                                                 queue_delayed_work(priv->
4433                                                                    workqueue,
4434                                                                    &priv->
4435                                                                    adhoc_check,
4436                                                                    priv->
4437                                                                    assoc_request.
4438                                                                    beacon_interval);
4439                                                 break;
4440                                         }
4441
4442                                         priv->status &= ~STATUS_ASSOCIATING;
4443                                         priv->status |= STATUS_ASSOCIATED;
4444                                         queue_work(priv->workqueue,
4445                                                    &priv->system_config);
4446
4447 #ifdef CONFIG_IPW2200_QOS
4448 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4449                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4450                                         if ((priv->status & STATUS_AUTH) &&
4451                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4452                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4453                                                 if ((sizeof
4454                                                      (struct
4455                                                       ieee80211_assoc_response)
4456                                                      <= notif->size)
4457                                                     && (notif->size <= 2314)) {
4458                                                         struct
4459                                                         ieee80211_rx_stats
4460                                                             stats = {
4461                                                                 .len =
4462                                                                     notif->
4463                                                                     size - 1,
4464                                                         };
4465
4466                                                         IPW_DEBUG_QOS
4467                                                             ("QoS Associate "
4468                                                              "size %d\n",
4469                                                              notif->size);
4470                                                         ieee80211_rx_mgt(priv->
4471                                                                          ieee,
4472                                                                          (struct
4473                                                                           ieee80211_hdr_4addr
4474                                                                           *)
4475                                                                          &notif->u.raw, &stats);
4476                                                 }
4477                                         }
4478 #endif
4479
4480                                         schedule_work(&priv->link_up);
4481
4482                                         break;
4483                                 }
4484
4485                         case CMAS_AUTHENTICATED:{
4486                                         if (priv->
4487                                             status & (STATUS_ASSOCIATED |
4488                                                       STATUS_AUTH)) {
4489                                                 struct notif_authenticate *auth
4490                                                     = &notif->u.auth;
4491                                                 IPW_DEBUG(IPW_DL_NOTIF |
4492                                                           IPW_DL_STATE |
4493                                                           IPW_DL_ASSOC,
4494                                                           "deauthenticated: '%s' "
4495                                                           "%s"
4496                                                           ": (0x%04X) - %s \n",
4497                                                           escape_essid(priv->
4498                                                                        essid,
4499                                                                        priv->
4500                                                                        essid_len),
4501                                                           print_mac(mac, priv->bssid),
4502                                                           ntohs(auth->status),
4503                                                           ipw_get_status_code
4504                                                           (ntohs
4505                                                            (auth->status)));
4506
4507                                                 priv->status &=
4508                                                     ~(STATUS_ASSOCIATING |
4509                                                       STATUS_AUTH |
4510                                                       STATUS_ASSOCIATED);
4511
4512                                                 schedule_work(&priv->link_down);
4513                                                 break;
4514                                         }
4515
4516                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517                                                   IPW_DL_ASSOC,
4518                                                   "authenticated: '%s' %s"
4519                                                   "\n",
4520                                                   escape_essid(priv->essid,
4521                                                                priv->essid_len),
4522                                                   print_mac(mac, priv->bssid));
4523                                         break;
4524                                 }
4525
4526                         case CMAS_INIT:{
4527                                         if (priv->status & STATUS_AUTH) {
4528                                                 struct
4529                                                     ieee80211_assoc_response
4530                                                 *resp;
4531                                                 resp =
4532                                                     (struct
4533                                                      ieee80211_assoc_response
4534                                                      *)&notif->u.raw;
4535                                                 IPW_DEBUG(IPW_DL_NOTIF |
4536                                                           IPW_DL_STATE |
4537                                                           IPW_DL_ASSOC,
4538                                                           "association failed (0x%04X): %s\n",
4539                                                           ntohs(resp->status),
4540                                                           ipw_get_status_code
4541                                                           (ntohs
4542                                                            (resp->status)));
4543                                         }
4544
4545                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4546                                                   IPW_DL_ASSOC,
4547                                                   "disassociated: '%s' %s"
4548                                                   " \n",
4549                                                   escape_essid(priv->essid,
4550                                                                priv->essid_len),
4551                                                   print_mac(mac, priv->bssid));
4552
4553                                         priv->status &=
4554                                             ~(STATUS_DISASSOCIATING |
4555                                               STATUS_ASSOCIATING |
4556                                               STATUS_ASSOCIATED | STATUS_AUTH);
4557                                         if (priv->assoc_network
4558                                             && (priv->assoc_network->
4559                                                 capability &
4560                                                 WLAN_CAPABILITY_IBSS))
4561                                                 ipw_remove_current_network
4562                                                     (priv);
4563
4564                                         schedule_work(&priv->link_down);
4565
4566                                         break;
4567                                 }
4568
4569                         case CMAS_RX_ASSOC_RESP:
4570                                 break;
4571
4572                         default:
4573                                 IPW_ERROR("assoc: unknown (%d)\n",
4574                                           assoc->state);
4575                                 break;
4576                         }
4577
4578                         break;
4579                 }
4580
4581         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582                         struct notif_authenticate *auth = &notif->u.auth;
4583                         switch (auth->state) {
4584                         case CMAS_AUTHENTICATED:
4585                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586                                           "authenticated: '%s' %s \n",
4587                                           escape_essid(priv->essid,
4588                                                        priv->essid_len),
4589                                           print_mac(mac, priv->bssid));
4590                                 priv->status |= STATUS_AUTH;
4591                                 break;
4592
4593                         case CMAS_INIT:
4594                                 if (priv->status & STATUS_AUTH) {
4595                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4596                                                   IPW_DL_ASSOC,
4597                                                   "authentication failed (0x%04X): %s\n",
4598                                                   ntohs(auth->status),
4599                                                   ipw_get_status_code(ntohs
4600                                                                       (auth->
4601                                                                        status)));
4602                                 }
4603                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4604                                           IPW_DL_ASSOC,
4605                                           "deauthenticated: '%s' %s\n",
4606                                           escape_essid(priv->essid,
4607                                                        priv->essid_len),
4608                                           print_mac(mac, priv->bssid));
4609
4610                                 priv->status &= ~(STATUS_ASSOCIATING |
4611                                                   STATUS_AUTH |
4612                                                   STATUS_ASSOCIATED);
4613
4614                                 schedule_work(&priv->link_down);
4615                                 break;
4616
4617                         case CMAS_TX_AUTH_SEQ_1:
4618                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4620                                 break;
4621                         case CMAS_RX_AUTH_SEQ_2:
4622                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4624                                 break;
4625                         case CMAS_AUTH_SEQ_1_PASS:
4626                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4628                                 break;
4629                         case CMAS_AUTH_SEQ_1_FAIL:
4630                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4632                                 break;
4633                         case CMAS_TX_AUTH_SEQ_3:
4634                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4636                                 break;
4637                         case CMAS_RX_AUTH_SEQ_4:
4638                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4640                                 break;
4641                         case CMAS_AUTH_SEQ_2_PASS:
4642                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4644                                 break;
4645                         case CMAS_AUTH_SEQ_2_FAIL:
4646                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4648                                 break;
4649                         case CMAS_TX_ASSOC:
4650                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4652                                 break;
4653                         case CMAS_RX_ASSOC_RESP:
4654                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4656
4657                                 break;
4658                         case CMAS_ASSOCIATED:
4659                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4661                                 break;
4662                         default:
4663                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4664                                                 auth->state);
4665                                 break;
4666                         }
4667                         break;
4668                 }
4669
4670         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671                         struct notif_channel_result *x =
4672                             &notif->u.channel_result;
4673
4674                         if (notif->size == sizeof(*x)) {
4675                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4676                                                x->channel_num);
4677                         } else {
4678                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679                                                "(should be %zd)\n",
4680                                                notif->size, sizeof(*x));
4681                         }
4682                         break;
4683                 }
4684
4685         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686                         struct notif_scan_complete *x = &notif->u.scan_complete;
4687                         if (notif->size == sizeof(*x)) {
4688                                 IPW_DEBUG_SCAN
4689                                     ("Scan completed: type %d, %d channels, "
4690                                      "%d status\n", x->scan_type,
4691                                      x->num_channels, x->status);
4692                         } else {
4693                                 IPW_ERROR("Scan completed of wrong size %d "
4694                                           "(should be %zd)\n",
4695                                           notif->size, sizeof(*x));
4696                         }
4697
4698                         priv->status &=
4699                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4700
4701                         wake_up_interruptible(&priv->wait_state);
4702                         cancel_delayed_work(&priv->scan_check);
4703
4704                         if (priv->status & STATUS_EXIT_PENDING)
4705                                 break;
4706
4707                         priv->ieee->scans++;
4708
4709 #ifdef CONFIG_IPW2200_MONITOR
4710                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711                                 priv->status |= STATUS_SCAN_FORCED;
4712                                 queue_delayed_work(priv->workqueue,
4713                                                    &priv->request_scan, 0);
4714                                 break;
4715                         }
4716                         priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif                          /* CONFIG_IPW2200_MONITOR */
4718
4719                         if (!(priv->status & (STATUS_ASSOCIATED |
4720                                               STATUS_ASSOCIATING |
4721                                               STATUS_ROAMING |
4722                                               STATUS_DISASSOCIATING)))
4723                                 queue_work(priv->workqueue, &priv->associate);
4724                         else if (priv->status & STATUS_ROAMING) {
4725                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4726                                         /* If a scan completed and we are in roam mode, then
4727                                          * the scan that completed was the one requested as a
4728                                          * result of entering roam... so, schedule the
4729                                          * roam work */
4730                                         queue_work(priv->workqueue,
4731                                                    &priv->roam);
4732                                 else
4733                                         /* Don't schedule if we aborted the scan */
4734                                         priv->status &= ~STATUS_ROAMING;
4735                         } else if (priv->status & STATUS_SCAN_PENDING)
4736                                 queue_delayed_work(priv->workqueue,
4737                                                    &priv->request_scan, 0);
4738                         else if (priv->config & CFG_BACKGROUND_SCAN
4739                                  && priv->status & STATUS_ASSOCIATED)
4740                                 queue_delayed_work(priv->workqueue,
4741                                                    &priv->request_scan,
4742                                                    round_jiffies_relative(HZ));
4743
4744                         /* Send an empty event to user space.
4745                          * We don't send the received data on the event because
4746                          * it would require us to do complex transcoding, and
4747                          * we want to minimise the work done in the irq handler
4748                          * Use a request to extract the data.
4749                          * Also, we generate this even for any scan, regardless
4750                          * on how the scan was initiated. User space can just
4751                          * sync on periodic scan to get fresh data...
4752                          * Jean II */
4753                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4754                                 handle_scan_event(priv);
4755                         break;
4756                 }
4757
4758         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4759                         struct notif_frag_length *x = &notif->u.frag_len;
4760
4761                         if (notif->size == sizeof(*x))
4762                                 IPW_ERROR("Frag length: %d\n",
4763                                           le16_to_cpu(x->frag_length));
4764                         else
4765                                 IPW_ERROR("Frag length of wrong size %d "
4766                                           "(should be %zd)\n",
4767                                           notif->size, sizeof(*x));
4768                         break;
4769                 }
4770
4771         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4772                         struct notif_link_deterioration *x =
4773                             &notif->u.link_deterioration;
4774
4775                         if (notif->size == sizeof(*x)) {
4776                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4777                                         "link deterioration: type %d, cnt %d\n",
4778                                         x->silence_notification_type,
4779                                         x->silence_count);
4780                                 memcpy(&priv->last_link_deterioration, x,
4781                                        sizeof(*x));
4782                         } else {
4783                                 IPW_ERROR("Link Deterioration of wrong size %d "
4784                                           "(should be %zd)\n",
4785                                           notif->size, sizeof(*x));
4786                         }
4787                         break;
4788                 }
4789
4790         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4791                         IPW_ERROR("Dino config\n");
4792                         if (priv->hcmd
4793                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4794                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4795
4796                         break;
4797                 }
4798
4799         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4800                         struct notif_beacon_state *x = &notif->u.beacon_state;
4801                         if (notif->size != sizeof(*x)) {
4802                                 IPW_ERROR
4803                                     ("Beacon state of wrong size %d (should "
4804                                      "be %zd)\n", notif->size, sizeof(*x));
4805                                 break;
4806                         }
4807
4808                         if (le32_to_cpu(x->state) ==
4809                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4810                                 ipw_handle_missed_beacon(priv,
4811                                                          le32_to_cpu(x->
4812                                                                      number));
4813
4814                         break;
4815                 }
4816
4817         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4818                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4819                         if (notif->size == sizeof(*x)) {
4820                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4821                                           "0x%02x station %d\n",
4822                                           x->key_state, x->security_type,
4823                                           x->station_index);
4824                                 break;
4825                         }
4826
4827                         IPW_ERROR
4828                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4829                              notif->size, sizeof(*x));
4830                         break;
4831                 }
4832
4833         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4834                         struct notif_calibration *x = &notif->u.calibration;
4835
4836                         if (notif->size == sizeof(*x)) {
4837                                 memcpy(&priv->calib, x, sizeof(*x));
4838                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4839                                 break;
4840                         }
4841
4842                         IPW_ERROR
4843                             ("Calibration of wrong size %d (should be %zd)\n",
4844                              notif->size, sizeof(*x));
4845                         break;
4846                 }
4847
4848         case HOST_NOTIFICATION_NOISE_STATS:{
4849                         if (notif->size == sizeof(u32)) {
4850                                 priv->exp_avg_noise =
4851                                     exponential_average(priv->exp_avg_noise,
4852                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4853                                     DEPTH_NOISE);
4854                                 break;
4855                         }
4856
4857                         IPW_ERROR
4858                             ("Noise stat is wrong size %d (should be %zd)\n",
4859                              notif->size, sizeof(u32));
4860                         break;
4861                 }
4862
4863         default:
4864                 IPW_DEBUG_NOTIF("Unknown notification: "
4865                                 "subtype=%d,flags=0x%2x,size=%d\n",
4866                                 notif->subtype, notif->flags, notif->size);
4867         }
4868 }
4869
4870 /**
4871  * Destroys all DMA structures and initialise them again
4872  *
4873  * @param priv
4874  * @return error code
4875  */
4876 static int ipw_queue_reset(struct ipw_priv *priv)
4877 {
4878         int rc = 0;
4879         /** @todo customize queue sizes */
4880         int nTx = 64, nTxCmd = 8;
4881         ipw_tx_queue_free(priv);
4882         /* Tx CMD queue */
4883         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4884                                IPW_TX_CMD_QUEUE_READ_INDEX,
4885                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4886                                IPW_TX_CMD_QUEUE_BD_BASE,
4887                                IPW_TX_CMD_QUEUE_BD_SIZE);
4888         if (rc) {
4889                 IPW_ERROR("Tx Cmd queue init failed\n");
4890                 goto error;
4891         }
4892         /* Tx queue(s) */
4893         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4894                                IPW_TX_QUEUE_0_READ_INDEX,
4895                                IPW_TX_QUEUE_0_WRITE_INDEX,
4896                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4897         if (rc) {
4898                 IPW_ERROR("Tx 0 queue init failed\n");
4899                 goto error;
4900         }
4901         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4902                                IPW_TX_QUEUE_1_READ_INDEX,
4903                                IPW_TX_QUEUE_1_WRITE_INDEX,
4904                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4905         if (rc) {
4906                 IPW_ERROR("Tx 1 queue init failed\n");
4907                 goto error;
4908         }
4909         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4910                                IPW_TX_QUEUE_2_READ_INDEX,
4911                                IPW_TX_QUEUE_2_WRITE_INDEX,
4912                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4913         if (rc) {
4914                 IPW_ERROR("Tx 2 queue init failed\n");
4915                 goto error;
4916         }
4917         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4918                                IPW_TX_QUEUE_3_READ_INDEX,
4919                                IPW_TX_QUEUE_3_WRITE_INDEX,
4920                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4921         if (rc) {
4922                 IPW_ERROR("Tx 3 queue init failed\n");
4923                 goto error;
4924         }
4925         /* statistics */
4926         priv->rx_bufs_min = 0;
4927         priv->rx_pend_max = 0;
4928         return rc;
4929
4930       error:
4931         ipw_tx_queue_free(priv);
4932         return rc;
4933 }
4934
4935 /**
4936  * Reclaim Tx queue entries no more used by NIC.
4937  *
4938  * When FW advances 'R' index, all entries between old and
4939  * new 'R' index need to be reclaimed. As result, some free space
4940  * forms. If there is enough free space (> low mark), wake Tx queue.
4941  *
4942  * @note Need to protect against garbage in 'R' index
4943  * @param priv
4944  * @param txq
4945  * @param qindex
4946  * @return Number of used entries remains in the queue
4947  */
4948 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4949                                 struct clx2_tx_queue *txq, int qindex)
4950 {
4951         u32 hw_tail;
4952         int used;
4953         struct clx2_queue *q = &txq->q;
4954
4955         hw_tail = ipw_read32(priv, q->reg_r);
4956         if (hw_tail >= q->n_bd) {
4957                 IPW_ERROR
4958                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4959                      hw_tail, q->n_bd);
4960                 goto done;
4961         }
4962         for (; q->last_used != hw_tail;
4963              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4964                 ipw_queue_tx_free_tfd(priv, txq);
4965                 priv->tx_packets++;
4966         }
4967       done:
4968         if ((ipw_queue_space(q) > q->low_mark) &&
4969             (qindex >= 0) &&
4970             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4971                 netif_wake_queue(priv->net_dev);
4972         used = q->first_empty - q->last_used;
4973         if (used < 0)
4974                 used += q->n_bd;
4975
4976         return used;
4977 }
4978
4979 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4980                              int len, int sync)
4981 {
4982         struct clx2_tx_queue *txq = &priv->txq_cmd;
4983         struct clx2_queue *q = &txq->q;
4984         struct tfd_frame *tfd;
4985
4986         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4987                 IPW_ERROR("No space for Tx\n");
4988                 return -EBUSY;
4989         }
4990
4991         tfd = &txq->bd[q->first_empty];
4992         txq->txb[q->first_empty] = NULL;
4993
4994         memset(tfd, 0, sizeof(*tfd));
4995         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4996         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4997         priv->hcmd_seq++;
4998         tfd->u.cmd.index = hcmd;
4999         tfd->u.cmd.length = len;
5000         memcpy(tfd->u.cmd.payload, buf, len);
5001         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5002         ipw_write32(priv, q->reg_w, q->first_empty);
5003         _ipw_read32(priv, 0x90);
5004
5005         return 0;
5006 }
5007
5008 /*
5009  * Rx theory of operation
5010  *
5011  * The host allocates 32 DMA target addresses and passes the host address
5012  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5013  * 0 to 31
5014  *
5015  * Rx Queue Indexes
5016  * The host/firmware share two index registers for managing the Rx buffers.
5017  *
5018  * The READ index maps to the first position that the firmware may be writing
5019  * to -- the driver can read up to (but not including) this position and get
5020  * good data.
5021  * The READ index is managed by the firmware once the card is enabled.
5022  *
5023  * The WRITE index maps to the last position the driver has read from -- the
5024  * position preceding WRITE is the last slot the firmware can place a packet.
5025  *
5026  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5027  * WRITE = READ.
5028  *
5029  * During initialization the host sets up the READ queue position to the first
5030  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5031  *
5032  * When the firmware places a packet in a buffer it will advance the READ index
5033  * and fire the RX interrupt.  The driver can then query the READ index and
5034  * process as many packets as possible, moving the WRITE index forward as it
5035  * resets the Rx queue buffers with new memory.
5036  *
5037  * The management in the driver is as follows:
5038  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5039  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5040  *   to replensish the ipw->rxq->rx_free.
5041  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5042  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5043  *   'processed' and 'read' driver indexes as well)
5044  * + A received packet is processed and handed to the kernel network stack,
5045  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5046  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5047  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5048  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5049  *   were enough free buffers and RX_STALLED is set it is cleared.
5050  *
5051  *
5052  * Driver sequence:
5053  *
5054  * ipw_rx_queue_alloc()       Allocates rx_free
5055  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5056  *                            ipw_rx_queue_restock
5057  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5058  *                            queue, updates firmware pointers, and updates
5059  *                            the WRITE index.  If insufficient rx_free buffers
5060  *                            are available, schedules ipw_rx_queue_replenish
5061  *
5062  * -- enable interrupts --
5063  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5064  *                            READ INDEX, detaching the SKB from the pool.
5065  *                            Moves the packet buffer from queue to rx_used.
5066  *                            Calls ipw_rx_queue_restock to refill any empty
5067  *                            slots.
5068  * ...
5069  *
5070  */
5071
5072 /*
5073  * If there are slots in the RX queue that  need to be restocked,
5074  * and we have free pre-allocated buffers, fill the ranks as much
5075  * as we can pulling from rx_free.
5076  *
5077  * This moves the 'write' index forward to catch up with 'processed', and
5078  * also updates the memory address in the firmware to reference the new
5079  * target buffer.
5080  */
5081 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5082 {
5083         struct ipw_rx_queue *rxq = priv->rxq;
5084         struct list_head *element;
5085         struct ipw_rx_mem_buffer *rxb;
5086         unsigned long flags;
5087         int write;
5088
5089         spin_lock_irqsave(&rxq->lock, flags);
5090         write = rxq->write;
5091         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5092                 element = rxq->rx_free.next;
5093                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5094                 list_del(element);
5095
5096                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5097                             rxb->dma_addr);
5098                 rxq->queue[rxq->write] = rxb;
5099                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5100                 rxq->free_count--;
5101         }
5102         spin_unlock_irqrestore(&rxq->lock, flags);
5103
5104         /* If the pre-allocated buffer pool is dropping low, schedule to
5105          * refill it */
5106         if (rxq->free_count <= RX_LOW_WATERMARK)
5107                 queue_work(priv->workqueue, &priv->rx_replenish);
5108
5109         /* If we've added more space for the firmware to place data, tell it */
5110         if (write != rxq->write)
5111                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5112 }
5113
5114 /*
5115  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5116  * Also restock the Rx queue via ipw_rx_queue_restock.
5117  *
5118  * This is called as a scheduled work item (except for during intialization)
5119  */
5120 static void ipw_rx_queue_replenish(void *data)
5121 {
5122         struct ipw_priv *priv = data;
5123         struct ipw_rx_queue *rxq = priv->rxq;
5124         struct list_head *element;
5125         struct ipw_rx_mem_buffer *rxb;
5126         unsigned long flags;
5127
5128         spin_lock_irqsave(&rxq->lock, flags);
5129         while (!list_empty(&rxq->rx_used)) {
5130                 element = rxq->rx_used.next;
5131                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5132                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5133                 if (!rxb->skb) {
5134                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5135                                priv->net_dev->name);
5136                         /* We don't reschedule replenish work here -- we will
5137                          * call the restock method and if it still needs
5138                          * more buffers it will schedule replenish */
5139                         break;
5140                 }
5141                 list_del(element);
5142
5143                 rxb->dma_addr =
5144                     pci_map_single(priv->pci_dev, rxb->skb->data,
5145                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5146
5147                 list_add_tail(&rxb->list, &rxq->rx_free);
5148                 rxq->free_count++;
5149         }
5150         spin_unlock_irqrestore(&rxq->lock, flags);
5151
5152         ipw_rx_queue_restock(priv);
5153 }
5154
5155 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5156 {
5157         struct ipw_priv *priv =
5158                 container_of(work, struct ipw_priv, rx_replenish);
5159         mutex_lock(&priv->mutex);
5160         ipw_rx_queue_replenish(priv);
5161         mutex_unlock(&priv->mutex);
5162 }
5163
5164 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5165  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5166  * This free routine walks the list of POOL entries and if SKB is set to
5167  * non NULL it is unmapped and freed
5168  */
5169 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5170 {
5171         int i;
5172
5173         if (!rxq)
5174                 return;
5175
5176         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5177                 if (rxq->pool[i].skb != NULL) {
5178                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5179                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5180                         dev_kfree_skb(rxq->pool[i].skb);
5181                 }
5182         }
5183
5184         kfree(rxq);
5185 }
5186
5187 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5188 {
5189         struct ipw_rx_queue *rxq;
5190         int i;
5191
5192         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5193         if (unlikely(!rxq)) {
5194                 IPW_ERROR("memory allocation failed\n");
5195                 return NULL;
5196         }
5197         spin_lock_init(&rxq->lock);
5198         INIT_LIST_HEAD(&rxq->rx_free);
5199         INIT_LIST_HEAD(&rxq->rx_used);
5200
5201         /* Fill the rx_used queue with _all_ of the Rx buffers */
5202         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5203                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5204
5205         /* Set us so that we have processed and used all buffers, but have
5206          * not restocked the Rx queue with fresh buffers */
5207         rxq->read = rxq->write = 0;
5208         rxq->processed = RX_QUEUE_SIZE - 1;
5209         rxq->free_count = 0;
5210
5211         return rxq;
5212 }
5213
5214 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5215 {
5216         rate &= ~IEEE80211_BASIC_RATE_MASK;
5217         if (ieee_mode == IEEE_A) {
5218                 switch (rate) {
5219                 case IEEE80211_OFDM_RATE_6MB:
5220                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5221                             1 : 0;
5222                 case IEEE80211_OFDM_RATE_9MB:
5223                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5224                             1 : 0;
5225                 case IEEE80211_OFDM_RATE_12MB:
5226                         return priv->
5227                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5228                 case IEEE80211_OFDM_RATE_18MB:
5229                         return priv->
5230                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231                 case IEEE80211_OFDM_RATE_24MB:
5232                         return priv->
5233                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234                 case IEEE80211_OFDM_RATE_36MB:
5235                         return priv->
5236                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5237                 case IEEE80211_OFDM_RATE_48MB:
5238                         return priv->
5239                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5240                 case IEEE80211_OFDM_RATE_54MB:
5241                         return priv->
5242                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5243                 default:
5244                         return 0;
5245                 }
5246         }
5247
5248         /* B and G mixed */
5249         switch (rate) {
5250         case IEEE80211_CCK_RATE_1MB:
5251                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5252         case IEEE80211_CCK_RATE_2MB:
5253                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5254         case IEEE80211_CCK_RATE_5MB:
5255                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5256         case IEEE80211_CCK_RATE_11MB:
5257                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5258         }
5259
5260         /* If we are limited to B modulations, bail at this point */
5261         if (ieee_mode == IEEE_B)
5262                 return 0;
5263
5264         /* G */
5265         switch (rate) {
5266         case IEEE80211_OFDM_RATE_6MB:
5267                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5268         case IEEE80211_OFDM_RATE_9MB:
5269                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5270         case IEEE80211_OFDM_RATE_12MB:
5271                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5272         case IEEE80211_OFDM_RATE_18MB:
5273                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5274         case IEEE80211_OFDM_RATE_24MB:
5275                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5276         case IEEE80211_OFDM_RATE_36MB:
5277                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5278         case IEEE80211_OFDM_RATE_48MB:
5279                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5280         case IEEE80211_OFDM_RATE_54MB:
5281                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5282         }
5283
5284         return 0;
5285 }
5286
5287 static int ipw_compatible_rates(struct ipw_priv *priv,
5288                                 const struct ieee80211_network *network,
5289                                 struct ipw_supported_rates *rates)
5290 {
5291         int num_rates, i;
5292
5293         memset(rates, 0, sizeof(*rates));
5294         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5295         rates->num_rates = 0;
5296         for (i = 0; i < num_rates; i++) {
5297                 if (!ipw_is_rate_in_mask(priv, network->mode,
5298                                          network->rates[i])) {
5299
5300                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5301                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5302                                                "rate %02X\n",
5303                                                network->rates[i]);
5304                                 rates->supported_rates[rates->num_rates++] =
5305                                     network->rates[i];
5306                                 continue;
5307                         }
5308
5309                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5310                                        network->rates[i], priv->rates_mask);
5311                         continue;
5312                 }
5313
5314                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5315         }
5316
5317         num_rates = min(network->rates_ex_len,
5318                         (u8) (IPW_MAX_RATES - num_rates));
5319         for (i = 0; i < num_rates; i++) {
5320                 if (!ipw_is_rate_in_mask(priv, network->mode,
5321                                          network->rates_ex[i])) {
5322                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5323                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5324                                                "rate %02X\n",
5325                                                network->rates_ex[i]);
5326                                 rates->supported_rates[rates->num_rates++] =
5327                                     network->rates[i];
5328                                 continue;
5329                         }
5330
5331                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5332                                        network->rates_ex[i], priv->rates_mask);
5333                         continue;
5334                 }
5335
5336                 rates->supported_rates[rates->num_rates++] =
5337                     network->rates_ex[i];
5338         }
5339
5340         return 1;
5341 }
5342
5343 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5344                                   const struct ipw_supported_rates *src)
5345 {
5346         u8 i;
5347         for (i = 0; i < src->num_rates; i++)
5348                 dest->supported_rates[i] = src->supported_rates[i];
5349         dest->num_rates = src->num_rates;
5350 }
5351
5352 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5353  * mask should ever be used -- right now all callers to add the scan rates are
5354  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5355 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5356                                    u8 modulation, u32 rate_mask)
5357 {
5358         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5359             IEEE80211_BASIC_RATE_MASK : 0;
5360
5361         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5362                 rates->supported_rates[rates->num_rates++] =
5363                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5364
5365         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5366                 rates->supported_rates[rates->num_rates++] =
5367                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5368
5369         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5370                 rates->supported_rates[rates->num_rates++] = basic_mask |
5371                     IEEE80211_CCK_RATE_5MB;
5372
5373         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5374                 rates->supported_rates[rates->num_rates++] = basic_mask |
5375                     IEEE80211_CCK_RATE_11MB;
5376 }
5377
5378 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5379                                     u8 modulation, u32 rate_mask)
5380 {
5381         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5382             IEEE80211_BASIC_RATE_MASK : 0;
5383
5384         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5385                 rates->supported_rates[rates->num_rates++] = basic_mask |
5386                     IEEE80211_OFDM_RATE_6MB;
5387
5388         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5389                 rates->supported_rates[rates->num_rates++] =
5390                     IEEE80211_OFDM_RATE_9MB;
5391
5392         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5393                 rates->supported_rates[rates->num_rates++] = basic_mask |
5394                     IEEE80211_OFDM_RATE_12MB;
5395
5396         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5397                 rates->supported_rates[rates->num_rates++] =
5398                     IEEE80211_OFDM_RATE_18MB;
5399
5400         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5401                 rates->supported_rates[rates->num_rates++] = basic_mask |
5402                     IEEE80211_OFDM_RATE_24MB;
5403
5404         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5405                 rates->supported_rates[rates->num_rates++] =
5406                     IEEE80211_OFDM_RATE_36MB;
5407
5408         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5409                 rates->supported_rates[rates->num_rates++] =
5410                     IEEE80211_OFDM_RATE_48MB;
5411
5412         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5413                 rates->supported_rates[rates->num_rates++] =
5414                     IEEE80211_OFDM_RATE_54MB;
5415 }
5416
5417 struct ipw_network_match {
5418         struct ieee80211_network *network;
5419         struct ipw_supported_rates rates;
5420 };
5421
5422 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5423                                   struct ipw_network_match *match,
5424                                   struct ieee80211_network *network,
5425                                   int roaming)
5426 {
5427         struct ipw_supported_rates rates;
5428         DECLARE_MAC_BUF(mac);
5429         DECLARE_MAC_BUF(mac2);
5430
5431         /* Verify that this network's capability is compatible with the
5432          * current mode (AdHoc or Infrastructure) */
5433         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5434              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5435                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5436                                 "capability mismatch.\n",
5437                                 escape_essid(network->ssid, network->ssid_len),
5438                                 print_mac(mac, network->bssid));
5439                 return 0;
5440         }
5441
5442         /* If we do not have an ESSID for this AP, we can not associate with
5443          * it */
5444         if (network->flags & NETWORK_EMPTY_ESSID) {
5445                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5446                                 "because of hidden ESSID.\n",
5447                                 escape_essid(network->ssid, network->ssid_len),
5448                                 print_mac(mac, network->bssid));
5449                 return 0;
5450         }
5451
5452         if (unlikely(roaming)) {
5453                 /* If we are roaming, then ensure check if this is a valid
5454                  * network to try and roam to */
5455                 if ((network->ssid_len != match->network->ssid_len) ||
5456                     memcmp(network->ssid, match->network->ssid,
5457                            network->ssid_len)) {
5458                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5459                                         "because of non-network ESSID.\n",
5460                                         escape_essid(network->ssid,
5461                                                      network->ssid_len),
5462                                         print_mac(mac, network->bssid));
5463                         return 0;
5464                 }
5465         } else {
5466                 /* If an ESSID has been configured then compare the broadcast
5467                  * ESSID to ours */
5468                 if ((priv->config & CFG_STATIC_ESSID) &&
5469                     ((network->ssid_len != priv->essid_len) ||
5470                      memcmp(network->ssid, priv->essid,
5471                             min(network->ssid_len, priv->essid_len)))) {
5472                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5473
5474                         strncpy(escaped,
5475                                 escape_essid(network->ssid, network->ssid_len),
5476                                 sizeof(escaped));
5477                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5478                                         "because of ESSID mismatch: '%s'.\n",
5479                                         escaped, print_mac(mac, network->bssid),
5480                                         escape_essid(priv->essid,
5481                                                      priv->essid_len));
5482                         return 0;
5483                 }
5484         }
5485
5486         /* If the old network rate is better than this one, don't bother
5487          * testing everything else. */
5488
5489         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5490                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5491                                 "current network.\n",
5492                                 escape_essid(match->network->ssid,
5493                                              match->network->ssid_len));
5494                 return 0;
5495         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5496                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5497                                 "current network.\n",
5498                                 escape_essid(match->network->ssid,
5499                                              match->network->ssid_len));
5500                 return 0;
5501         }
5502
5503         /* Now go through and see if the requested network is valid... */
5504         if (priv->ieee->scan_age != 0 &&
5505             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5506                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5507                                 "because of age: %ums.\n",
5508                                 escape_essid(network->ssid, network->ssid_len),
5509                                 print_mac(mac, network->bssid),
5510                                 jiffies_to_msecs(jiffies -
5511                                                  network->last_scanned));
5512                 return 0;
5513         }
5514
5515         if ((priv->config & CFG_STATIC_CHANNEL) &&
5516             (network->channel != priv->channel)) {
5517                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5518                                 "because of channel mismatch: %d != %d.\n",
5519                                 escape_essid(network->ssid, network->ssid_len),
5520                                 print_mac(mac, network->bssid),
5521                                 network->channel, priv->channel);
5522                 return 0;
5523         }
5524
5525         /* Verify privacy compatability */
5526         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5527             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5528                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5529                                 "because of privacy mismatch: %s != %s.\n",
5530                                 escape_essid(network->ssid, network->ssid_len),
5531                                 print_mac(mac, network->bssid),
5532                                 priv->
5533                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5534                                 network->
5535                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5536                                 "off");
5537                 return 0;
5538         }
5539
5540         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5541                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5542                                 "because of the same BSSID match: %s"
5543                                 ".\n", escape_essid(network->ssid,
5544                                                     network->ssid_len),
5545                                 print_mac(mac, network->bssid),
5546                                 print_mac(mac2, priv->bssid));
5547                 return 0;
5548         }
5549
5550         /* Filter out any incompatible freq / mode combinations */
5551         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5552                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5553                                 "because of invalid frequency/mode "
5554                                 "combination.\n",
5555                                 escape_essid(network->ssid, network->ssid_len),
5556                                 print_mac(mac, network->bssid));
5557                 return 0;
5558         }
5559
5560         /* Ensure that the rates supported by the driver are compatible with
5561          * this AP, including verification of basic rates (mandatory) */
5562         if (!ipw_compatible_rates(priv, network, &rates)) {
5563                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5564                                 "because configured rate mask excludes "
5565                                 "AP mandatory rate.\n",
5566                                 escape_essid(network->ssid, network->ssid_len),
5567                                 print_mac(mac, network->bssid));
5568                 return 0;
5569         }
5570
5571         if (rates.num_rates == 0) {
5572                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5573                                 "because of no compatible rates.\n",
5574                                 escape_essid(network->ssid, network->ssid_len),
5575                                 print_mac(mac, network->bssid));
5576                 return 0;
5577         }
5578
5579         /* TODO: Perform any further minimal comparititive tests.  We do not
5580          * want to put too much policy logic here; intelligent scan selection
5581          * should occur within a generic IEEE 802.11 user space tool.  */
5582
5583         /* Set up 'new' AP to this network */
5584         ipw_copy_rates(&match->rates, &rates);
5585         match->network = network;
5586         IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5587                         escape_essid(network->ssid, network->ssid_len),
5588                         print_mac(mac, network->bssid));
5589
5590         return 1;
5591 }
5592
5593 static void ipw_merge_adhoc_network(struct work_struct *work)
5594 {
5595         struct ipw_priv *priv =
5596                 container_of(work, struct ipw_priv, merge_networks);
5597         struct ieee80211_network *network = NULL;
5598         struct ipw_network_match match = {
5599                 .network = priv->assoc_network
5600         };
5601
5602         if ((priv->status & STATUS_ASSOCIATED) &&
5603             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5604                 /* First pass through ROAM process -- look for a better
5605                  * network */
5606                 unsigned long flags;
5607
5608                 spin_lock_irqsave(&priv->ieee->lock, flags);
5609                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5610                         if (network != priv->assoc_network)
5611                                 ipw_find_adhoc_network(priv, &match, network,
5612                                                        1);
5613                 }
5614                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5615
5616                 if (match.network == priv->assoc_network) {
5617                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5618                                         "merge to.\n");
5619                         return;
5620                 }
5621
5622                 mutex_lock(&priv->mutex);
5623                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624                         IPW_DEBUG_MERGE("remove network %s\n",
5625                                         escape_essid(priv->essid,
5626                                                      priv->essid_len));
5627                         ipw_remove_current_network(priv);
5628                 }
5629
5630                 ipw_disassociate(priv);
5631                 priv->assoc_network = match.network;
5632                 mutex_unlock(&priv->mutex);
5633                 return;
5634         }
5635 }
5636
5637 static int ipw_best_network(struct ipw_priv *priv,
5638                             struct ipw_network_match *match,
5639                             struct ieee80211_network *network, int roaming)
5640 {
5641         struct ipw_supported_rates rates;
5642         DECLARE_MAC_BUF(mac);
5643
5644         /* Verify that this network's capability is compatible with the
5645          * current mode (AdHoc or Infrastructure) */
5646         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5647              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5648             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5649              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5650                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5651                                 "capability mismatch.\n",
5652                                 escape_essid(network->ssid, network->ssid_len),
5653                                 print_mac(mac, network->bssid));
5654                 return 0;
5655         }
5656
5657         /* If we do not have an ESSID for this AP, we can not associate with
5658          * it */
5659         if (network->flags & NETWORK_EMPTY_ESSID) {
5660                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5661                                 "because of hidden ESSID.\n",
5662                                 escape_essid(network->ssid, network->ssid_len),
5663                                 print_mac(mac, network->bssid));
5664                 return 0;
5665         }
5666
5667         if (unlikely(roaming)) {
5668                 /* If we are roaming, then ensure check if this is a valid
5669                  * network to try and roam to */
5670                 if ((network->ssid_len != match->network->ssid_len) ||
5671                     memcmp(network->ssid, match->network->ssid,
5672                            network->ssid_len)) {
5673                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5674                                         "because of non-network ESSID.\n",
5675                                         escape_essid(network->ssid,
5676                                                      network->ssid_len),
5677                                         print_mac(mac, network->bssid));
5678                         return 0;
5679                 }
5680         } else {
5681                 /* If an ESSID has been configured then compare the broadcast
5682                  * ESSID to ours */
5683                 if ((priv->config & CFG_STATIC_ESSID) &&
5684                     ((network->ssid_len != priv->essid_len) ||
5685                      memcmp(network->ssid, priv->essid,
5686                             min(network->ssid_len, priv->essid_len)))) {
5687                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5688                         strncpy(escaped,
5689                                 escape_essid(network->ssid, network->ssid_len),
5690                                 sizeof(escaped));
5691                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5692                                         "because of ESSID mismatch: '%s'.\n",
5693                                         escaped, print_mac(mac, network->bssid),
5694                                         escape_essid(priv->essid,
5695                                                      priv->essid_len));
5696                         return 0;
5697                 }
5698         }
5699
5700         /* If the old network rate is better than this one, don't bother
5701          * testing everything else. */
5702         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5704                 strncpy(escaped,
5705                         escape_essid(network->ssid, network->ssid_len),
5706                         sizeof(escaped));
5707                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5708                                 "'%s (%s)' has a stronger signal.\n",
5709                                 escaped, print_mac(mac, network->bssid),
5710                                 escape_essid(match->network->ssid,
5711                                              match->network->ssid_len),
5712                                 print_mac(mac, match->network->bssid));
5713                 return 0;
5714         }
5715
5716         /* If this network has already had an association attempt within the
5717          * last 3 seconds, do not try and associate again... */
5718         if (network->last_associate &&
5719             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5720                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5721                                 "because of storming (%ums since last "
5722                                 "assoc attempt).\n",
5723                                 escape_essid(network->ssid, network->ssid_len),
5724                                 print_mac(mac, network->bssid),
5725                                 jiffies_to_msecs(jiffies -
5726                                                  network->last_associate));
5727                 return 0;
5728         }
5729
5730         /* Now go through and see if the requested network is valid... */
5731         if (priv->ieee->scan_age != 0 &&
5732             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5733                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5734                                 "because of age: %ums.\n",
5735                                 escape_essid(network->ssid, network->ssid_len),
5736                                 print_mac(mac, network->bssid),
5737                                 jiffies_to_msecs(jiffies -
5738                                                  network->last_scanned));
5739                 return 0;
5740         }
5741
5742         if ((priv->config & CFG_STATIC_CHANNEL) &&
5743             (network->channel != priv->channel)) {
5744                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5745                                 "because of channel mismatch: %d != %d.\n",
5746                                 escape_essid(network->ssid, network->ssid_len),
5747                                 print_mac(mac, network->bssid),
5748                                 network->channel, priv->channel);
5749                 return 0;
5750         }
5751
5752         /* Verify privacy compatability */
5753         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5754             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5755                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5756                                 "because of privacy mismatch: %s != %s.\n",
5757                                 escape_essid(network->ssid, network->ssid_len),
5758                                 print_mac(mac, network->bssid),
5759                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5760                                 "off",
5761                                 network->capability &
5762                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5763                 return 0;
5764         }
5765
5766         if ((priv->config & CFG_STATIC_BSSID) &&
5767             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5768                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5769                                 "because of BSSID mismatch: %s.\n",
5770                                 escape_essid(network->ssid, network->ssid_len),
5771                                 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5772                 return 0;
5773         }
5774
5775         /* Filter out any incompatible freq / mode combinations */
5776         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5777                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5778                                 "because of invalid frequency/mode "
5779                                 "combination.\n",
5780                                 escape_essid(network->ssid, network->ssid_len),
5781                                 print_mac(mac, network->bssid));
5782                 return 0;
5783         }
5784
5785         /* Filter out invalid channel in current GEO */
5786         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5787                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5788                                 "because of invalid channel in current GEO\n",
5789                                 escape_essid(network->ssid, network->ssid_len),
5790                                 print_mac(mac, network->bssid));
5791                 return 0;
5792         }
5793
5794         /* Ensure that the rates supported by the driver are compatible with
5795          * this AP, including verification of basic rates (mandatory) */
5796         if (!ipw_compatible_rates(priv, network, &rates)) {
5797                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5798                                 "because configured rate mask excludes "
5799                                 "AP mandatory rate.\n",
5800                                 escape_essid(network->ssid, network->ssid_len),
5801                                 print_mac(mac, network->bssid));
5802                 return 0;
5803         }
5804
5805         if (rates.num_rates == 0) {
5806                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5807                                 "because of no compatible rates.\n",
5808                                 escape_essid(network->ssid, network->ssid_len),
5809                                 print_mac(mac, network->bssid));
5810                 return 0;
5811         }
5812
5813         /* TODO: Perform any further minimal comparititive tests.  We do not
5814          * want to put too much policy logic here; intelligent scan selection
5815          * should occur within a generic IEEE 802.11 user space tool.  */
5816
5817         /* Set up 'new' AP to this network */
5818         ipw_copy_rates(&match->rates, &rates);
5819         match->network = network;
5820
5821         IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5822                         escape_essid(network->ssid, network->ssid_len),
5823                         print_mac(mac, network->bssid));
5824
5825         return 1;
5826 }
5827
5828 static void ipw_adhoc_create(struct ipw_priv *priv,
5829                              struct ieee80211_network *network)
5830 {
5831         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5832         int i;
5833
5834         /*
5835          * For the purposes of scanning, we can set our wireless mode
5836          * to trigger scans across combinations of bands, but when it
5837          * comes to creating a new ad-hoc network, we have tell the FW
5838          * exactly which band to use.
5839          *
5840          * We also have the possibility of an invalid channel for the
5841          * chossen band.  Attempting to create a new ad-hoc network
5842          * with an invalid channel for wireless mode will trigger a
5843          * FW fatal error.
5844          *
5845          */
5846         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5847         case IEEE80211_52GHZ_BAND:
5848                 network->mode = IEEE_A;
5849                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5850                 BUG_ON(i == -1);
5851                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5852                         IPW_WARNING("Overriding invalid channel\n");
5853                         priv->channel = geo->a[0].channel;
5854                 }
5855                 break;
5856
5857         case IEEE80211_24GHZ_BAND:
5858                 if (priv->ieee->mode & IEEE_G)
5859                         network->mode = IEEE_G;
5860                 else
5861                         network->mode = IEEE_B;
5862                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863                 BUG_ON(i == -1);
5864                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865                         IPW_WARNING("Overriding invalid channel\n");
5866                         priv->channel = geo->bg[0].channel;
5867                 }
5868                 break;
5869
5870         default:
5871                 IPW_WARNING("Overriding invalid channel\n");
5872                 if (priv->ieee->mode & IEEE_A) {
5873                         network->mode = IEEE_A;
5874                         priv->channel = geo->a[0].channel;
5875                 } else if (priv->ieee->mode & IEEE_G) {
5876                         network->mode = IEEE_G;
5877                         priv->channel = geo->bg[0].channel;
5878                 } else {
5879                         network->mode = IEEE_B;
5880                         priv->channel = geo->bg[0].channel;
5881                 }
5882                 break;
5883         }
5884
5885         network->channel = priv->channel;
5886         priv->config |= CFG_ADHOC_PERSIST;
5887         ipw_create_bssid(priv, network->bssid);
5888         network->ssid_len = priv->essid_len;
5889         memcpy(network->ssid, priv->essid, priv->essid_len);
5890         memset(&network->stats, 0, sizeof(network->stats));
5891         network->capability = WLAN_CAPABILITY_IBSS;
5892         if (!(priv->config & CFG_PREAMBLE_LONG))
5893                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5894         if (priv->capability & CAP_PRIVACY_ON)
5895                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5896         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5897         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5898         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5899         memcpy(network->rates_ex,
5900                &priv->rates.supported_rates[network->rates_len],
5901                network->rates_ex_len);
5902         network->last_scanned = 0;
5903         network->flags = 0;
5904         network->last_associate = 0;
5905         network->time_stamp[0] = 0;
5906         network->time_stamp[1] = 0;
5907         network->beacon_interval = 100; /* Default */
5908         network->listen_interval = 10;  /* Default */
5909         network->atim_window = 0;       /* Default */
5910         network->wpa_ie_len = 0;
5911         network->rsn_ie_len = 0;
5912 }
5913
5914 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5915 {
5916         struct ipw_tgi_tx_key key;
5917
5918         if (!(priv->ieee->sec.flags & (1 << index)))
5919                 return;
5920
5921         key.key_id = index;
5922         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5923         key.security_type = type;
5924         key.station_index = 0;  /* always 0 for BSS */
5925         key.flags = 0;
5926         /* 0 for new key; previous value of counter (after fatal error) */
5927         key.tx_counter[0] = cpu_to_le32(0);
5928         key.tx_counter[1] = cpu_to_le32(0);
5929
5930         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5931 }
5932
5933 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5934 {
5935         struct ipw_wep_key key;
5936         int i;
5937
5938         key.cmd_id = DINO_CMD_WEP_KEY;
5939         key.seq_num = 0;
5940
5941         /* Note: AES keys cannot be set for multiple times.
5942          * Only set it at the first time. */
5943         for (i = 0; i < 4; i++) {
5944                 key.key_index = i | type;
5945                 if (!(priv->ieee->sec.flags & (1 << i))) {
5946                         key.key_size = 0;
5947                         continue;
5948                 }
5949
5950                 key.key_size = priv->ieee->sec.key_sizes[i];
5951                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5952
5953                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5954         }
5955 }
5956
5957 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5958 {
5959         if (priv->ieee->host_encrypt)
5960                 return;
5961
5962         switch (level) {
5963         case SEC_LEVEL_3:
5964                 priv->sys_config.disable_unicast_decryption = 0;
5965                 priv->ieee->host_decrypt = 0;
5966                 break;
5967         case SEC_LEVEL_2:
5968                 priv->sys_config.disable_unicast_decryption = 1;
5969                 priv->ieee->host_decrypt = 1;
5970                 break;
5971         case SEC_LEVEL_1:
5972                 priv->sys_config.disable_unicast_decryption = 0;
5973                 priv->ieee->host_decrypt = 0;
5974                 break;
5975         case SEC_LEVEL_0:
5976                 priv->sys_config.disable_unicast_decryption = 1;
5977                 break;
5978         default:
5979                 break;
5980         }
5981 }
5982
5983 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5984 {
5985         if (priv->ieee->host_encrypt)
5986                 return;
5987
5988         switch (level) {
5989         case SEC_LEVEL_3:
5990                 priv->sys_config.disable_multicast_decryption = 0;
5991                 break;
5992         case SEC_LEVEL_2:
5993                 priv->sys_config.disable_multicast_decryption = 1;
5994                 break;
5995         case SEC_LEVEL_1:
5996                 priv->sys_config.disable_multicast_decryption = 0;
5997                 break;
5998         case SEC_LEVEL_0:
5999                 priv->sys_config.disable_multicast_decryption = 1;
6000                 break;
6001         default:
6002                 break;
6003         }
6004 }
6005
6006 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6007 {
6008         switch (priv->ieee->sec.level) {
6009         case SEC_LEVEL_3:
6010                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6011                         ipw_send_tgi_tx_key(priv,
6012                                             DCT_FLAG_EXT_SECURITY_CCM,
6013                                             priv->ieee->sec.active_key);
6014
6015                 if (!priv->ieee->host_mc_decrypt)
6016                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6017                 break;
6018         case SEC_LEVEL_2:
6019                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6020                         ipw_send_tgi_tx_key(priv,
6021                                             DCT_FLAG_EXT_SECURITY_TKIP,
6022                                             priv->ieee->sec.active_key);
6023                 break;
6024         case SEC_LEVEL_1:
6025                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6026                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6027                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6028                 break;
6029         case SEC_LEVEL_0:
6030         default:
6031                 break;
6032         }
6033 }
6034
6035 static void ipw_adhoc_check(void *data)
6036 {
6037         struct ipw_priv *priv = data;
6038
6039         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6040             !(priv->config & CFG_ADHOC_PERSIST)) {
6041                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6042                           IPW_DL_STATE | IPW_DL_ASSOC,
6043                           "Missed beacon: %d - disassociate\n",
6044                           priv->missed_adhoc_beacons);
6045                 ipw_remove_current_network(priv);
6046                 ipw_disassociate(priv);
6047                 return;
6048         }
6049
6050         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6051                            priv->assoc_request.beacon_interval);
6052 }
6053
6054 static void ipw_bg_adhoc_check(struct work_struct *work)
6055 {
6056         struct ipw_priv *priv =
6057                 container_of(work, struct ipw_priv, adhoc_check.work);
6058         mutex_lock(&priv->mutex);
6059         ipw_adhoc_check(priv);
6060         mutex_unlock(&priv->mutex);
6061 }
6062
6063 static void ipw_debug_config(struct ipw_priv *priv)
6064 {
6065         DECLARE_MAC_BUF(mac);
6066         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6067                        "[CFG 0x%08X]\n", priv->config);
6068         if (priv->config & CFG_STATIC_CHANNEL)
6069                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6070         else
6071                 IPW_DEBUG_INFO("Channel unlocked.\n");
6072         if (priv->config & CFG_STATIC_ESSID)
6073                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6074                                escape_essid(priv->essid, priv->essid_len));
6075         else
6076                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6077         if (priv->config & CFG_STATIC_BSSID)
6078                 IPW_DEBUG_INFO("BSSID locked to %s\n",
6079                                print_mac(mac, priv->bssid));
6080         else
6081                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6082         if (priv->capability & CAP_PRIVACY_ON)
6083                 IPW_DEBUG_INFO("PRIVACY on\n");
6084         else
6085                 IPW_DEBUG_INFO("PRIVACY off\n");
6086         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6087 }
6088
6089 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6090 {
6091         /* TODO: Verify that this works... */
6092         struct ipw_fixed_rate fr = {
6093                 .tx_rates = priv->rates_mask
6094         };
6095         u32 reg;
6096         u16 mask = 0;
6097
6098         /* Identify 'current FW band' and match it with the fixed
6099          * Tx rates */
6100
6101         switch (priv->ieee->freq_band) {
6102         case IEEE80211_52GHZ_BAND:      /* A only */
6103                 /* IEEE_A */
6104                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6105                         /* Invalid fixed rate mask */
6106                         IPW_DEBUG_WX
6107                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6108                         fr.tx_rates = 0;
6109                         break;
6110                 }
6111
6112                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6113                 break;
6114
6115         default:                /* 2.4Ghz or Mixed */
6116                 /* IEEE_B */
6117                 if (mode == IEEE_B) {
6118                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6119                                 /* Invalid fixed rate mask */
6120                                 IPW_DEBUG_WX
6121                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122                                 fr.tx_rates = 0;
6123                         }
6124                         break;
6125                 }
6126
6127                 /* IEEE_G */
6128                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6129                                     IEEE80211_OFDM_RATES_MASK)) {
6130                         /* Invalid fixed rate mask */
6131                         IPW_DEBUG_WX
6132                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133                         fr.tx_rates = 0;
6134                         break;
6135                 }
6136
6137                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6138                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6139                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6140                 }
6141
6142                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6143                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6144                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6145                 }
6146
6147                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6148                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6149                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6150                 }
6151
6152                 fr.tx_rates |= mask;
6153                 break;
6154         }
6155
6156         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6158 }
6159
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6161 {
6162         int err;
6163
6164         if (priv->status & STATUS_SCAN_ABORTING) {
6165                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6166                 return;
6167         }
6168         priv->status |= STATUS_SCAN_ABORTING;
6169
6170         err = ipw_send_scan_abort(priv);
6171         if (err)
6172                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6173 }
6174
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176                                   struct ipw_scan_request_ext *scan,
6177                                   int scan_type)
6178 {
6179         int channel_index = 0;
6180         const struct ieee80211_geo *geo;
6181         int i;
6182
6183         geo = ieee80211_get_geo(priv->ieee);
6184
6185         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6186                 int start = channel_index;
6187                 for (i = 0; i < geo->a_channels; i++) {
6188                         if ((priv->status & STATUS_ASSOCIATED) &&
6189                             geo->a[i].channel == priv->channel)
6190                                 continue;
6191                         channel_index++;
6192                         scan->channels_list[channel_index] = geo->a[i].channel;
6193                         ipw_set_scan_type(scan, channel_index,
6194                                           geo->a[i].
6195                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6196                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6197                                           scan_type);
6198                 }
6199
6200                 if (start != channel_index) {
6201                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202                             (channel_index - start);
6203                         channel_index++;
6204                 }
6205         }
6206
6207         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6208                 int start = channel_index;
6209                 if (priv->config & CFG_SPEED_SCAN) {
6210                         int index;
6211                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6212                                 /* nop out the list */
6213                                 [0] = 0
6214                         };
6215
6216                         u8 channel;
6217                         while (channel_index < IPW_SCAN_CHANNELS) {
6218                                 channel =
6219                                     priv->speed_scan[priv->speed_scan_pos];
6220                                 if (channel == 0) {
6221                                         priv->speed_scan_pos = 0;
6222                                         channel = priv->speed_scan[0];
6223                                 }
6224                                 if ((priv->status & STATUS_ASSOCIATED) &&
6225                                     channel == priv->channel) {
6226                                         priv->speed_scan_pos++;
6227                                         continue;
6228                                 }
6229
6230                                 /* If this channel has already been
6231                                  * added in scan, break from loop
6232                                  * and this will be the first channel
6233                                  * in the next scan.
6234                                  */
6235                                 if (channels[channel - 1] != 0)
6236                                         break;
6237
6238                                 channels[channel - 1] = 1;
6239                                 priv->speed_scan_pos++;
6240                                 channel_index++;
6241                                 scan->channels_list[channel_index] = channel;
6242                                 index =
6243                                     ieee80211_channel_to_index(priv->ieee, channel);
6244                                 ipw_set_scan_type(scan, channel_index,
6245                                                   geo->bg[index].
6246                                                   flags &
6247                                                   IEEE80211_CH_PASSIVE_ONLY ?
6248                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6249                                                   : scan_type);
6250                         }
6251                 } else {
6252                         for (i = 0; i < geo->bg_channels; i++) {
6253                                 if ((priv->status & STATUS_ASSOCIATED) &&
6254                                     geo->bg[i].channel == priv->channel)
6255                                         continue;
6256                                 channel_index++;
6257                                 scan->channels_list[channel_index] =
6258                                     geo->bg[i].channel;
6259                                 ipw_set_scan_type(scan, channel_index,
6260                                                   geo->bg[i].
6261                                                   flags &
6262                                                   IEEE80211_CH_PASSIVE_ONLY ?
6263                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6264                                                   : scan_type);
6265                         }
6266                 }
6267
6268                 if (start != channel_index) {
6269                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270                             (channel_index - start);
6271                 }
6272         }
6273 }
6274
6275 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6276 {
6277         struct ipw_scan_request_ext scan;
6278         int err = 0, scan_type;
6279
6280         if (!(priv->status & STATUS_INIT) ||
6281             (priv->status & STATUS_EXIT_PENDING))
6282                 return 0;
6283
6284         mutex_lock(&priv->mutex);
6285
6286         if (priv->status & STATUS_SCANNING) {
6287                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6288                 priv->status |= STATUS_SCAN_PENDING;
6289                 goto done;
6290         }
6291
6292         if (!(priv->status & STATUS_SCAN_FORCED) &&
6293             priv->status & STATUS_SCAN_ABORTING) {
6294                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6295                 priv->status |= STATUS_SCAN_PENDING;
6296                 goto done;
6297         }
6298
6299         if (priv->status & STATUS_RF_KILL_MASK) {
6300                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6301                 priv->status |= STATUS_SCAN_PENDING;
6302                 goto done;
6303         }
6304
6305         memset(&scan, 0, sizeof(scan));
6306         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6307
6308         if (type == IW_SCAN_TYPE_PASSIVE) {
6309                 IPW_DEBUG_WX("use passive scanning\n");
6310                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6311                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6312                         cpu_to_le16(120);
6313                 ipw_add_scan_channels(priv, &scan, scan_type);
6314                 goto send_request;
6315         }
6316
6317         /* Use active scan by default. */
6318         if (priv->config & CFG_SPEED_SCAN)
6319                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6320                         cpu_to_le16(30);
6321         else
6322                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323                         cpu_to_le16(20);
6324
6325         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6326                 cpu_to_le16(20);
6327
6328         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6329
6330 #ifdef CONFIG_IPW2200_MONITOR
6331         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6332                 u8 channel;
6333                 u8 band = 0;
6334
6335                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6336                 case IEEE80211_52GHZ_BAND:
6337                         band = (u8) (IPW_A_MODE << 6) | 1;
6338                         channel = priv->channel;
6339                         break;
6340
6341                 case IEEE80211_24GHZ_BAND:
6342                         band = (u8) (IPW_B_MODE << 6) | 1;
6343                         channel = priv->channel;
6344                         break;
6345
6346                 default:
6347                         band = (u8) (IPW_B_MODE << 6) | 1;
6348                         channel = 9;
6349                         break;
6350                 }
6351
6352                 scan.channels_list[0] = band;
6353                 scan.channels_list[1] = channel;
6354                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6355
6356                 /* NOTE:  The card will sit on this channel for this time
6357                  * period.  Scan aborts are timing sensitive and frequently
6358                  * result in firmware restarts.  As such, it is best to
6359                  * set a small dwell_time here and just keep re-issuing
6360                  * scans.  Otherwise fast channel hopping will not actually
6361                  * hop channels.
6362                  *
6363                  * TODO: Move SPEED SCAN support to all modes and bands */
6364                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6365                         cpu_to_le16(2000);
6366         } else {
6367 #endif                          /* CONFIG_IPW2200_MONITOR */
6368                 /* If we are roaming, then make this a directed scan for the
6369                  * current network.  Otherwise, ensure that every other scan
6370                  * is a fast channel hop scan */
6371                 if ((priv->status & STATUS_ROAMING)
6372                     || (!(priv->status & STATUS_ASSOCIATED)
6373                         && (priv->config & CFG_STATIC_ESSID)
6374                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6375                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6376                         if (err) {
6377                                 IPW_DEBUG_HC("Attempt to send SSID command "
6378                                              "failed.\n");
6379                                 goto done;
6380                         }
6381
6382                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6383                 } else
6384                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6385
6386                 ipw_add_scan_channels(priv, &scan, scan_type);
6387 #ifdef CONFIG_IPW2200_MONITOR
6388         }
6389 #endif
6390
6391 send_request:
6392         err = ipw_send_scan_request_ext(priv, &scan);
6393         if (err) {
6394                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6395                 goto done;
6396         }
6397
6398         priv->status |= STATUS_SCANNING;
6399         priv->status &= ~STATUS_SCAN_PENDING;
6400         queue_delayed_work(priv->workqueue, &priv->scan_check,
6401                            IPW_SCAN_CHECK_WATCHDOG);
6402 done:
6403         mutex_unlock(&priv->mutex);
6404         return err;
6405 }
6406
6407 static void ipw_request_passive_scan(struct work_struct *work)
6408 {
6409         struct ipw_priv *priv =
6410                 container_of(work, struct ipw_priv, request_passive_scan);
6411         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6412 }
6413
6414 static void ipw_request_scan(struct work_struct *work)
6415 {
6416         struct ipw_priv *priv =
6417                 container_of(work, struct ipw_priv, request_scan.work);
6418         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6419 }
6420
6421 static void ipw_bg_abort_scan(struct work_struct *work)
6422 {
6423         struct ipw_priv *priv =
6424                 container_of(work, struct ipw_priv, abort_scan);
6425         mutex_lock(&priv->mutex);
6426         ipw_abort_scan(priv);
6427         mutex_unlock(&priv->mutex);
6428 }
6429
6430 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6431 {
6432         /* This is called when wpa_supplicant loads and closes the driver
6433          * interface. */
6434         priv->ieee->wpa_enabled = value;
6435         return 0;
6436 }
6437
6438 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6439 {
6440         struct ieee80211_device *ieee = priv->ieee;
6441         struct ieee80211_security sec = {
6442                 .flags = SEC_AUTH_MODE,
6443         };
6444         int ret = 0;
6445
6446         if (value & IW_AUTH_ALG_SHARED_KEY) {
6447                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6448                 ieee->open_wep = 0;
6449         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6450                 sec.auth_mode = WLAN_AUTH_OPEN;
6451                 ieee->open_wep = 1;
6452         } else if (value & IW_AUTH_ALG_LEAP) {
6453                 sec.auth_mode = WLAN_AUTH_LEAP;
6454                 ieee->open_wep = 1;
6455         } else
6456                 return -EINVAL;
6457
6458         if (ieee->set_security)
6459                 ieee->set_security(ieee->dev, &sec);
6460         else
6461                 ret = -EOPNOTSUPP;
6462
6463         return ret;
6464 }
6465
6466 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6467                                 int wpa_ie_len)
6468 {
6469         /* make sure WPA is enabled */
6470         ipw_wpa_enable(priv, 1);
6471 }
6472
6473 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6474                             char *capabilities, int length)
6475 {
6476         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6477
6478         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6479                                 capabilities);
6480 }
6481
6482 /*
6483  * WE-18 support
6484  */
6485
6486 /* SIOCSIWGENIE */
6487 static int ipw_wx_set_genie(struct net_device *dev,
6488                             struct iw_request_info *info,
6489                             union iwreq_data *wrqu, char *extra)
6490 {
6491         struct ipw_priv *priv = ieee80211_priv(dev);
6492         struct ieee80211_device *ieee = priv->ieee;
6493         u8 *buf;
6494         int err = 0;
6495
6496         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6497             (wrqu->data.length && extra == NULL))
6498                 return -EINVAL;
6499
6500         if (wrqu->data.length) {
6501                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6502                 if (buf == NULL) {
6503                         err = -ENOMEM;
6504                         goto out;
6505                 }
6506
6507                 memcpy(buf, extra, wrqu->data.length);
6508                 kfree(ieee->wpa_ie);
6509                 ieee->wpa_ie = buf;
6510                 ieee->wpa_ie_len = wrqu->data.length;
6511         } else {
6512                 kfree(ieee->wpa_ie);
6513                 ieee->wpa_ie = NULL;
6514                 ieee->wpa_ie_len = 0;
6515         }
6516
6517         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6518       out:
6519         return err;
6520 }
6521
6522 /* SIOCGIWGENIE */
6523 static int ipw_wx_get_genie(struct net_device *dev,
6524                             struct iw_request_info *info,
6525                             union iwreq_data *wrqu, char *extra)
6526 {
6527         struct ipw_priv *priv = ieee80211_priv(dev);
6528         struct ieee80211_device *ieee = priv->ieee;
6529         int err = 0;
6530
6531         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6532                 wrqu->data.length = 0;
6533                 goto out;
6534         }
6535
6536         if (wrqu->data.length < ieee->wpa_ie_len) {
6537                 err = -E2BIG;
6538                 goto out;
6539         }
6540
6541         wrqu->data.length = ieee->wpa_ie_len;
6542         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6543
6544       out:
6545         return err;
6546 }
6547
6548 static int wext_cipher2level(int cipher)
6549 {
6550         switch (cipher) {
6551         case IW_AUTH_CIPHER_NONE:
6552                 return SEC_LEVEL_0;
6553         case IW_AUTH_CIPHER_WEP40:
6554         case IW_AUTH_CIPHER_WEP104:
6555                 return SEC_LEVEL_1;
6556         case IW_AUTH_CIPHER_TKIP:
6557                 return SEC_LEVEL_2;
6558         case IW_AUTH_CIPHER_CCMP:
6559                 return SEC_LEVEL_3;
6560         default:
6561                 return -1;
6562         }
6563 }
6564
6565 /* SIOCSIWAUTH */
6566 static int ipw_wx_set_auth(struct net_device *dev,
6567                            struct iw_request_info *info,
6568                            union iwreq_data *wrqu, char *extra)
6569 {
6570         struct ipw_priv *priv = ieee80211_priv(dev);
6571         struct ieee80211_device *ieee = priv->ieee;
6572         struct iw_param *param = &wrqu->param;
6573         struct ieee80211_crypt_data *crypt;
6574         unsigned long flags;
6575         int ret = 0;
6576
6577         switch (param->flags & IW_AUTH_INDEX) {
6578         case IW_AUTH_WPA_VERSION:
6579                 break;
6580         case IW_AUTH_CIPHER_PAIRWISE:
6581                 ipw_set_hw_decrypt_unicast(priv,
6582                                            wext_cipher2level(param->value));
6583                 break;
6584         case IW_AUTH_CIPHER_GROUP:
6585                 ipw_set_hw_decrypt_multicast(priv,
6586                                              wext_cipher2level(param->value));
6587                 break;
6588         case IW_AUTH_KEY_MGMT:
6589                 /*
6590                  * ipw2200 does not use these parameters
6591                  */
6592                 break;
6593
6594         case IW_AUTH_TKIP_COUNTERMEASURES:
6595                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6596                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6597                         break;
6598
6599                 flags = crypt->ops->get_flags(crypt->priv);
6600
6601                 if (param->value)
6602                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6603                 else
6604                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6605
6606                 crypt->ops->set_flags(flags, crypt->priv);
6607
6608                 break;
6609
6610         case IW_AUTH_DROP_UNENCRYPTED:{
6611                         /* HACK:
6612                          *
6613                          * wpa_supplicant calls set_wpa_enabled when the driver
6614                          * is loaded and unloaded, regardless of if WPA is being
6615                          * used.  No other calls are made which can be used to
6616                          * determine if encryption will be used or not prior to
6617                          * association being expected.  If encryption is not being
6618                          * used, drop_unencrypted is set to false, else true -- we
6619                          * can use this to determine if the CAP_PRIVACY_ON bit should
6620                          * be set.
6621                          */
6622                         struct ieee80211_security sec = {
6623                                 .flags = SEC_ENABLED,
6624                                 .enabled = param->value,
6625                         };
6626                         priv->ieee->drop_unencrypted = param->value;
6627                         /* We only change SEC_LEVEL for open mode. Others
6628                          * are set by ipw_wpa_set_encryption.
6629                          */
6630                         if (!param->value) {
6631                                 sec.flags |= SEC_LEVEL;
6632                                 sec.level = SEC_LEVEL_0;
6633                         } else {
6634                                 sec.flags |= SEC_LEVEL;
6635                                 sec.level = SEC_LEVEL_1;
6636                         }
6637                         if (priv->ieee->set_security)
6638                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6639                         break;
6640                 }
6641
6642         case IW_AUTH_80211_AUTH_ALG:
6643                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6644                 break;
6645
6646         case IW_AUTH_WPA_ENABLED:
6647                 ret = ipw_wpa_enable(priv, param->value);
6648                 ipw_disassociate(priv);
6649                 break;
6650
6651         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6652                 ieee->ieee802_1x = param->value;
6653                 break;
6654
6655         case IW_AUTH_PRIVACY_INVOKED:
6656                 ieee->privacy_invoked = param->value;
6657                 break;
6658
6659         default:
6660                 return -EOPNOTSUPP;
6661         }
6662         return ret;
6663 }
6664
6665 /* SIOCGIWAUTH */
6666 static int ipw_wx_get_auth(struct net_device *dev,
6667                            struct iw_request_info *info,
6668                            union iwreq_data *wrqu, char *extra)
6669 {
6670         struct ipw_priv *priv = ieee80211_priv(dev);
6671         struct ieee80211_device *ieee = priv->ieee;
6672         struct ieee80211_crypt_data *crypt;
6673         struct iw_param *param = &wrqu->param;
6674         int ret = 0;
6675
6676         switch (param->flags & IW_AUTH_INDEX) {
6677         case IW_AUTH_WPA_VERSION:
6678         case IW_AUTH_CIPHER_PAIRWISE:
6679         case IW_AUTH_CIPHER_GROUP:
6680         case IW_AUTH_KEY_MGMT:
6681                 /*
6682                  * wpa_supplicant will control these internally
6683                  */
6684                 ret = -EOPNOTSUPP;
6685                 break;
6686
6687         case IW_AUTH_TKIP_COUNTERMEASURES:
6688                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6689                 if (!crypt || !crypt->ops->get_flags)
6690                         break;
6691
6692                 param->value = (crypt->ops->get_flags(crypt->priv) &
6693                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6694
6695                 break;
6696
6697         case IW_AUTH_DROP_UNENCRYPTED:
6698                 param->value = ieee->drop_unencrypted;
6699                 break;
6700
6701         case IW_AUTH_80211_AUTH_ALG:
6702                 param->value = ieee->sec.auth_mode;
6703                 break;
6704
6705         case IW_AUTH_WPA_ENABLED:
6706                 param->value = ieee->wpa_enabled;
6707                 break;
6708
6709         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710                 param->value = ieee->ieee802_1x;
6711                 break;
6712
6713         case IW_AUTH_ROAMING_CONTROL:
6714         case IW_AUTH_PRIVACY_INVOKED:
6715                 param->value = ieee->privacy_invoked;
6716                 break;
6717
6718         default:
6719                 return -EOPNOTSUPP;
6720         }
6721         return 0;
6722 }
6723
6724 /* SIOCSIWENCODEEXT */
6725 static int ipw_wx_set_encodeext(struct net_device *dev,
6726                                 struct iw_request_info *info,
6727                                 union iwreq_data *wrqu, char *extra)
6728 {
6729         struct ipw_priv *priv = ieee80211_priv(dev);
6730         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6731
6732         if (hwcrypto) {
6733                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6734                         /* IPW HW can't build TKIP MIC,
6735                            host decryption still needed */
6736                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6737                                 priv->ieee->host_mc_decrypt = 1;
6738                         else {
6739                                 priv->ieee->host_encrypt = 0;
6740                                 priv->ieee->host_encrypt_msdu = 1;
6741                                 priv->ieee->host_decrypt = 1;
6742                         }
6743                 } else {
6744                         priv->ieee->host_encrypt = 0;
6745                         priv->ieee->host_encrypt_msdu = 0;
6746                         priv->ieee->host_decrypt = 0;
6747                         priv->ieee->host_mc_decrypt = 0;
6748                 }
6749         }
6750
6751         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6752 }
6753
6754 /* SIOCGIWENCODEEXT */
6755 static int ipw_wx_get_encodeext(struct net_device *dev,
6756                                 struct iw_request_info *info,
6757                                 union iwreq_data *wrqu, char *extra)
6758 {
6759         struct ipw_priv *priv = ieee80211_priv(dev);
6760         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6761 }
6762
6763 /* SIOCSIWMLME */
6764 static int ipw_wx_set_mlme(struct net_device *dev,
6765                            struct iw_request_info *info,
6766                            union iwreq_data *wrqu, char *extra)
6767 {
6768         struct ipw_priv *priv = ieee80211_priv(dev);
6769         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6770         u16 reason;
6771
6772         reason = cpu_to_le16(mlme->reason_code);
6773
6774         switch (mlme->cmd) {
6775         case IW_MLME_DEAUTH:
6776                 /* silently ignore */
6777                 break;
6778
6779         case IW_MLME_DISASSOC:
6780                 ipw_disassociate(priv);
6781                 break;
6782
6783         default:
6784                 return -EOPNOTSUPP;
6785         }
6786         return 0;
6787 }
6788
6789 #ifdef CONFIG_IPW2200_QOS
6790
6791 /* QoS */
6792 /*
6793 * get the modulation type of the current network or
6794 * the card current mode
6795 */
6796 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6797 {
6798         u8 mode = 0;
6799
6800         if (priv->status & STATUS_ASSOCIATED) {
6801                 unsigned long flags;
6802
6803                 spin_lock_irqsave(&priv->ieee->lock, flags);
6804                 mode = priv->assoc_network->mode;
6805                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6806         } else {
6807                 mode = priv->ieee->mode;
6808         }
6809         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6810         return mode;
6811 }
6812
6813 /*
6814 * Handle management frame beacon and probe response
6815 */
6816 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6817                                          int active_network,
6818                                          struct ieee80211_network *network)
6819 {
6820         u32 size = sizeof(struct ieee80211_qos_parameters);
6821
6822         if (network->capability & WLAN_CAPABILITY_IBSS)
6823                 network->qos_data.active = network->qos_data.supported;
6824
6825         if (network->flags & NETWORK_HAS_QOS_MASK) {
6826                 if (active_network &&
6827                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6828                         network->qos_data.active = network->qos_data.supported;
6829
6830                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6831                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6832                     (network->qos_data.old_param_count !=
6833                      network->qos_data.param_count)) {
6834                         network->qos_data.old_param_count =
6835                             network->qos_data.param_count;
6836                         schedule_work(&priv->qos_activate);
6837                         IPW_DEBUG_QOS("QoS parameters change call "
6838                                       "qos_activate\n");
6839                 }
6840         } else {
6841                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6842                         memcpy(&network->qos_data.parameters,
6843                                &def_parameters_CCK, size);
6844                 else
6845                         memcpy(&network->qos_data.parameters,
6846                                &def_parameters_OFDM, size);
6847
6848                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6849                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6850                         schedule_work(&priv->qos_activate);
6851                 }
6852
6853                 network->qos_data.active = 0;
6854                 network->qos_data.supported = 0;
6855         }
6856         if ((priv->status & STATUS_ASSOCIATED) &&
6857             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6858                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6859                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6860                             !(network->flags & NETWORK_EMPTY_ESSID))
6861                                 if ((network->ssid_len ==
6862                                      priv->assoc_network->ssid_len) &&
6863                                     !memcmp(network->ssid,
6864                                             priv->assoc_network->ssid,
6865                                             network->ssid_len)) {
6866                                         queue_work(priv->workqueue,
6867                                                    &priv->merge_networks);
6868                                 }
6869         }
6870
6871         return 0;
6872 }
6873
6874 /*
6875 * This function set up the firmware to support QoS. It sends
6876 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6877 */
6878 static int ipw_qos_activate(struct ipw_priv *priv,
6879                             struct ieee80211_qos_data *qos_network_data)
6880 {
6881         int err;
6882         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6883         struct ieee80211_qos_parameters *active_one = NULL;
6884         u32 size = sizeof(struct ieee80211_qos_parameters);
6885         u32 burst_duration;
6886         int i;
6887         u8 type;
6888
6889         type = ipw_qos_current_mode(priv);
6890
6891         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6892         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6893         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6894         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6895
6896         if (qos_network_data == NULL) {
6897                 if (type == IEEE_B) {
6898                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6899                         active_one = &def_parameters_CCK;
6900                 } else
6901                         active_one = &def_parameters_OFDM;
6902
6903                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904                 burst_duration = ipw_qos_get_burst_duration(priv);
6905                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6906                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6907                             (u16)burst_duration;
6908         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6909                 if (type == IEEE_B) {
6910                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6911                                       type);
6912                         if (priv->qos_data.qos_enable == 0)
6913                                 active_one = &def_parameters_CCK;
6914                         else
6915                                 active_one = priv->qos_data.def_qos_parm_CCK;
6916                 } else {
6917                         if (priv->qos_data.qos_enable == 0)
6918                                 active_one = &def_parameters_OFDM;
6919                         else
6920                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6921                 }
6922                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6923         } else {
6924                 unsigned long flags;
6925                 int active;
6926
6927                 spin_lock_irqsave(&priv->ieee->lock, flags);
6928                 active_one = &(qos_network_data->parameters);
6929                 qos_network_data->old_param_count =
6930                     qos_network_data->param_count;
6931                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6932                 active = qos_network_data->supported;
6933                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6934
6935                 if (active == 0) {
6936                         burst_duration = ipw_qos_get_burst_duration(priv);
6937                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6938                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6939                                     tx_op_limit[i] = (u16)burst_duration;
6940                 }
6941         }
6942
6943         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6944         for (i = 0; i < 3; i++) {
6945                 int j;
6946                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6947                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6948                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6949                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6950                 }
6951         }
6952
6953         err = ipw_send_qos_params_command(priv,
6954                                           (struct ieee80211_qos_parameters *)
6955                                           &(qos_parameters[0]));
6956         if (err)
6957                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6958
6959         return err;
6960 }
6961
6962 /*
6963 * send IPW_CMD_WME_INFO to the firmware
6964 */
6965 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6966 {
6967         int ret = 0;
6968         struct ieee80211_qos_information_element qos_info;
6969
6970         if (priv == NULL)
6971                 return -1;
6972
6973         qos_info.elementID = QOS_ELEMENT_ID;
6974         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6975
6976         qos_info.version = QOS_VERSION_1;
6977         qos_info.ac_info = 0;
6978
6979         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6980         qos_info.qui_type = QOS_OUI_TYPE;
6981         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6982
6983         ret = ipw_send_qos_info_command(priv, &qos_info);
6984         if (ret != 0) {
6985                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6986         }
6987         return ret;
6988 }
6989
6990 /*
6991 * Set the QoS parameter with the association request structure
6992 */
6993 static int ipw_qos_association(struct ipw_priv *priv,
6994                                struct ieee80211_network *network)
6995 {
6996         int err = 0;
6997         struct ieee80211_qos_data *qos_data = NULL;
6998         struct ieee80211_qos_data ibss_data = {
6999                 .supported = 1,
7000                 .active = 1,
7001         };
7002
7003         switch (priv->ieee->iw_mode) {
7004         case IW_MODE_ADHOC:
7005                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7006
7007                 qos_data = &ibss_data;
7008                 break;
7009
7010         case IW_MODE_INFRA:
7011                 qos_data = &network->qos_data;
7012                 break;
7013
7014         default:
7015                 BUG();
7016                 break;
7017         }
7018
7019         err = ipw_qos_activate(priv, qos_data);
7020         if (err) {
7021                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7022                 return err;
7023         }
7024
7025         if (priv->qos_data.qos_enable && qos_data->supported) {
7026                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7027                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7028                 return ipw_qos_set_info_element(priv);
7029         }
7030
7031         return 0;
7032 }
7033
7034 /*
7035 * handling the beaconing responses. if we get different QoS setting
7036 * off the network from the associated setting, adjust the QoS
7037 * setting
7038 */
7039 static int ipw_qos_association_resp(struct ipw_priv *priv,
7040                                     struct ieee80211_network *network)
7041 {
7042         int ret = 0;
7043         unsigned long flags;
7044         u32 size = sizeof(struct ieee80211_qos_parameters);
7045         int set_qos_param = 0;
7046
7047         if ((priv == NULL) || (network == NULL) ||
7048             (priv->assoc_network == NULL))
7049                 return ret;
7050
7051         if (!(priv->status & STATUS_ASSOCIATED))
7052                 return ret;
7053
7054         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7055                 return ret;
7056
7057         spin_lock_irqsave(&priv->ieee->lock, flags);
7058         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7059                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7060                        sizeof(struct ieee80211_qos_data));
7061                 priv->assoc_network->qos_data.active = 1;
7062                 if ((network->qos_data.old_param_count !=
7063                      network->qos_data.param_count)) {
7064                         set_qos_param = 1;
7065                         network->qos_data.old_param_count =
7066                             network->qos_data.param_count;
7067                 }
7068
7069         } else {
7070                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7071                         memcpy(&priv->assoc_network->qos_data.parameters,
7072                                &def_parameters_CCK, size);
7073                 else
7074                         memcpy(&priv->assoc_network->qos_data.parameters,
7075                                &def_parameters_OFDM, size);
7076                 priv->assoc_network->qos_data.active = 0;
7077                 priv->assoc_network->qos_data.supported = 0;
7078                 set_qos_param = 1;
7079         }
7080
7081         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7082
7083         if (set_qos_param == 1)
7084                 schedule_work(&priv->qos_activate);
7085
7086         return ret;
7087 }
7088
7089 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7090 {
7091         u32 ret = 0;
7092
7093         if ((priv == NULL))
7094                 return 0;
7095
7096         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7097                 ret = priv->qos_data.burst_duration_CCK;
7098         else
7099                 ret = priv->qos_data.burst_duration_OFDM;
7100
7101         return ret;
7102 }
7103
7104 /*
7105 * Initialize the setting of QoS global
7106 */
7107 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7108                          int burst_enable, u32 burst_duration_CCK,
7109                          u32 burst_duration_OFDM)
7110 {
7111         priv->qos_data.qos_enable = enable;
7112
7113         if (priv->qos_data.qos_enable) {
7114                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7115                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7116                 IPW_DEBUG_QOS("QoS is enabled\n");
7117         } else {
7118                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7119                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7120                 IPW_DEBUG_QOS("QoS is not enabled\n");
7121         }
7122
7123         priv->qos_data.burst_enable = burst_enable;
7124
7125         if (burst_enable) {
7126                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7127                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7128         } else {
7129                 priv->qos_data.burst_duration_CCK = 0;
7130                 priv->qos_data.burst_duration_OFDM = 0;
7131         }
7132 }
7133
7134 /*
7135 * map the packet priority to the right TX Queue
7136 */
7137 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7138 {
7139         if (priority > 7 || !priv->qos_data.qos_enable)
7140                 priority = 0;
7141
7142         return from_priority_to_tx_queue[priority] - 1;
7143 }
7144
7145 static int ipw_is_qos_active(struct net_device *dev,
7146                              struct sk_buff *skb)
7147 {
7148         struct ipw_priv *priv = ieee80211_priv(dev);
7149         struct ieee80211_qos_data *qos_data = NULL;
7150         int active, supported;
7151         u8 *daddr = skb->data + ETH_ALEN;
7152         int unicast = !is_multicast_ether_addr(daddr);
7153
7154         if (!(priv->status & STATUS_ASSOCIATED))
7155                 return 0;
7156
7157         qos_data = &priv->assoc_network->qos_data;
7158
7159         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7160                 if (unicast == 0)
7161                         qos_data->active = 0;
7162                 else
7163                         qos_data->active = qos_data->supported;
7164         }
7165         active = qos_data->active;
7166         supported = qos_data->supported;
7167         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7168                       "unicast %d\n",
7169                       priv->qos_data.qos_enable, active, supported, unicast);
7170         if (active && priv->qos_data.qos_enable)
7171                 return 1;
7172
7173         return 0;
7174
7175 }
7176 /*
7177 * add QoS parameter to the TX command
7178 */
7179 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7180                                         u16 priority,
7181                                         struct tfd_data *tfd)
7182 {
7183         int tx_queue_id = 0;
7184
7185
7186         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7187         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7188
7189         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7190                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7191                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7192         }
7193         return 0;
7194 }
7195
7196 /*
7197 * background support to run QoS activate functionality
7198 */
7199 static void ipw_bg_qos_activate(struct work_struct *work)
7200 {
7201         struct ipw_priv *priv =
7202                 container_of(work, struct ipw_priv, qos_activate);
7203
7204         if (priv == NULL)
7205                 return;
7206
7207         mutex_lock(&priv->mutex);
7208
7209         if (priv->status & STATUS_ASSOCIATED)
7210                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7211
7212         mutex_unlock(&priv->mutex);
7213 }
7214
7215 static int ipw_handle_probe_response(struct net_device *dev,
7216                                      struct ieee80211_probe_response *resp,
7217                                      struct ieee80211_network *network)
7218 {
7219         struct ipw_priv *priv = ieee80211_priv(dev);
7220         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7221                               (network == priv->assoc_network));
7222
7223         ipw_qos_handle_probe_response(priv, active_network, network);
7224
7225         return 0;
7226 }
7227
7228 static int ipw_handle_beacon(struct net_device *dev,
7229                              struct ieee80211_beacon *resp,
7230                              struct ieee80211_network *network)
7231 {
7232         struct ipw_priv *priv = ieee80211_priv(dev);
7233         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7234                               (network == priv->assoc_network));
7235
7236         ipw_qos_handle_probe_response(priv, active_network, network);
7237
7238         return 0;
7239 }
7240
7241 static int ipw_handle_assoc_response(struct net_device *dev,
7242                                      struct ieee80211_assoc_response *resp,
7243                                      struct ieee80211_network *network)
7244 {
7245         struct ipw_priv *priv = ieee80211_priv(dev);
7246         ipw_qos_association_resp(priv, network);
7247         return 0;
7248 }
7249
7250 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7251                                        *qos_param)
7252 {
7253         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7254                                 sizeof(*qos_param) * 3, qos_param);
7255 }
7256
7257 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7258                                      *qos_param)
7259 {
7260         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7261                                 qos_param);
7262 }
7263
7264 #endif                          /* CONFIG_IPW2200_QOS */
7265
7266 static int ipw_associate_network(struct ipw_priv *priv,
7267                                  struct ieee80211_network *network,
7268                                  struct ipw_supported_rates *rates, int roaming)
7269 {
7270         int err;
7271         DECLARE_MAC_BUF(mac);
7272
7273         if (priv->config & CFG_FIXED_RATE)
7274                 ipw_set_fixed_rate(priv, network->mode);
7275
7276         if (!(priv->config & CFG_STATIC_ESSID)) {
7277                 priv->essid_len = min(network->ssid_len,
7278                                       (u8) IW_ESSID_MAX_SIZE);
7279                 memcpy(priv->essid, network->ssid, priv->essid_len);
7280         }
7281
7282         network->last_associate = jiffies;
7283
7284         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285         priv->assoc_request.channel = network->channel;
7286         priv->assoc_request.auth_key = 0;
7287
7288         if ((priv->capability & CAP_PRIVACY_ON) &&
7289             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7292
7293                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7294                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7295
7296         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7297                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298                 priv->assoc_request.auth_type = AUTH_LEAP;
7299         else
7300                 priv->assoc_request.auth_type = AUTH_OPEN;
7301
7302         if (priv->ieee->wpa_ie_len) {
7303                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7304                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305                                  priv->ieee->wpa_ie_len);
7306         }
7307
7308         /*
7309          * It is valid for our ieee device to support multiple modes, but
7310          * when it comes to associating to a given network we have to choose
7311          * just one mode.
7312          */
7313         if (network->mode & priv->ieee->mode & IEEE_A)
7314                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7315         else if (network->mode & priv->ieee->mode & IEEE_G)
7316                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7317         else if (network->mode & priv->ieee->mode & IEEE_B)
7318                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7319
7320         priv->assoc_request.capability = network->capability;
7321         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322             && !(priv->config & CFG_PREAMBLE_LONG)) {
7323                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324         } else {
7325                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7326
7327                 /* Clear the short preamble if we won't be supporting it */
7328                 priv->assoc_request.capability &=
7329                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7330         }
7331
7332         /* Clear capability bits that aren't used in Ad Hoc */
7333         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334                 priv->assoc_request.capability &=
7335                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7336
7337         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7338                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7339                         roaming ? "Rea" : "A",
7340                         escape_essid(priv->essid, priv->essid_len),
7341                         network->channel,
7342                         ipw_modes[priv->assoc_request.ieee_mode],
7343                         rates->num_rates,
7344                         (priv->assoc_request.preamble_length ==
7345                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7346                         network->capability &
7347                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7348                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7349                         priv->capability & CAP_PRIVACY_ON ?
7350                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7351                          "(open)") : "",
7352                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7353                         priv->capability & CAP_PRIVACY_ON ?
7354                         '1' + priv->ieee->sec.active_key : '.',
7355                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7356
7357         priv->assoc_request.beacon_interval = network->beacon_interval;
7358         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7359             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7360                 priv->assoc_request.assoc_type = HC_IBSS_START;
7361                 priv->assoc_request.assoc_tsf_msw = 0;
7362                 priv->assoc_request.assoc_tsf_lsw = 0;
7363         } else {
7364                 if (unlikely(roaming))
7365                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7366                 else
7367                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7368                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7369                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7370         }
7371
7372         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7373
7374         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7375                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7376                 priv->assoc_request.atim_window = network->atim_window;
7377         } else {
7378                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7379                 priv->assoc_request.atim_window = 0;
7380         }
7381
7382         priv->assoc_request.listen_interval = network->listen_interval;
7383
7384         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7385         if (err) {
7386                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7387                 return err;
7388         }
7389
7390         rates->ieee_mode = priv->assoc_request.ieee_mode;
7391         rates->purpose = IPW_RATE_CONNECT;
7392         ipw_send_supported_rates(priv, rates);
7393
7394         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7395                 priv->sys_config.dot11g_auto_detection = 1;
7396         else
7397                 priv->sys_config.dot11g_auto_detection = 0;
7398
7399         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7400                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7401         else
7402                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7403
7404         err = ipw_send_system_config(priv);
7405         if (err) {
7406                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7407                 return err;
7408         }
7409
7410         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7411         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7412         if (err) {
7413                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7414                 return err;
7415         }
7416
7417         /*
7418          * If preemption is enabled, it is possible for the association
7419          * to complete before we return from ipw_send_associate.  Therefore
7420          * we have to be sure and update our priviate data first.
7421          */
7422         priv->channel = network->channel;
7423         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7424         priv->status |= STATUS_ASSOCIATING;
7425         priv->status &= ~STATUS_SECURITY_UPDATED;
7426
7427         priv->assoc_network = network;
7428
7429 #ifdef CONFIG_IPW2200_QOS
7430         ipw_qos_association(priv, network);
7431 #endif
7432
7433         err = ipw_send_associate(priv, &priv->assoc_request);
7434         if (err) {
7435                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7436                 return err;
7437         }
7438
7439         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7440                   escape_essid(priv->essid, priv->essid_len),
7441                   print_mac(mac, priv->bssid));
7442
7443         return 0;
7444 }
7445
7446 static void ipw_roam(void *data)
7447 {
7448         struct ipw_priv *priv = data;
7449         struct ieee80211_network *network = NULL;
7450         struct ipw_network_match match = {
7451                 .network = priv->assoc_network
7452         };
7453
7454         /* The roaming process is as follows:
7455          *
7456          * 1.  Missed beacon threshold triggers the roaming process by
7457          *     setting the status ROAM bit and requesting a scan.
7458          * 2.  When the scan completes, it schedules the ROAM work
7459          * 3.  The ROAM work looks at all of the known networks for one that
7460          *     is a better network than the currently associated.  If none
7461          *     found, the ROAM process is over (ROAM bit cleared)
7462          * 4.  If a better network is found, a disassociation request is
7463          *     sent.
7464          * 5.  When the disassociation completes, the roam work is again
7465          *     scheduled.  The second time through, the driver is no longer
7466          *     associated, and the newly selected network is sent an
7467          *     association request.
7468          * 6.  At this point ,the roaming process is complete and the ROAM
7469          *     status bit is cleared.
7470          */
7471
7472         /* If we are no longer associated, and the roaming bit is no longer
7473          * set, then we are not actively roaming, so just return */
7474         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7475                 return;
7476
7477         if (priv->status & STATUS_ASSOCIATED) {
7478                 /* First pass through ROAM process -- look for a better
7479                  * network */
7480                 unsigned long flags;
7481                 u8 rssi = priv->assoc_network->stats.rssi;
7482                 priv->assoc_network->stats.rssi = -128;
7483                 spin_lock_irqsave(&priv->ieee->lock, flags);
7484                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7485                         if (network != priv->assoc_network)
7486                                 ipw_best_network(priv, &match, network, 1);
7487                 }
7488                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7489                 priv->assoc_network->stats.rssi = rssi;
7490
7491                 if (match.network == priv->assoc_network) {
7492                         IPW_DEBUG_ASSOC("No better APs in this network to "
7493                                         "roam to.\n");
7494                         priv->status &= ~STATUS_ROAMING;
7495                         ipw_debug_config(priv);
7496                         return;
7497                 }
7498
7499                 ipw_send_disassociate(priv, 1);
7500                 priv->assoc_network = match.network;
7501
7502                 return;
7503         }
7504
7505         /* Second pass through ROAM process -- request association */
7506         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7507         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7508         priv->status &= ~STATUS_ROAMING;
7509 }
7510
7511 static void ipw_bg_roam(struct work_struct *work)
7512 {
7513         struct ipw_priv *priv =
7514                 container_of(work, struct ipw_priv, roam);
7515         mutex_lock(&priv->mutex);
7516         ipw_roam(priv);
7517         mutex_unlock(&priv->mutex);
7518 }
7519
7520 static int ipw_associate(void *data)
7521 {
7522         struct ipw_priv *priv = data;
7523
7524         struct ieee80211_network *network = NULL;
7525         struct ipw_network_match match = {
7526                 .network = NULL
7527         };
7528         struct ipw_supported_rates *rates;
7529         struct list_head *element;
7530         unsigned long flags;
7531
7532         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7533                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7534                 return 0;
7535         }
7536
7537         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7538                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7539                                 "progress)\n");
7540                 return 0;
7541         }
7542
7543         if (priv->status & STATUS_DISASSOCIATING) {
7544                 IPW_DEBUG_ASSOC("Not attempting association (in "
7545                                 "disassociating)\n ");
7546                 queue_work(priv->workqueue, &priv->associate);
7547                 return 0;
7548         }
7549
7550         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7551                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7552                                 "initialized)\n");
7553                 return 0;
7554         }
7555
7556         if (!(priv->config & CFG_ASSOCIATE) &&
7557             !(priv->config & (CFG_STATIC_ESSID |
7558                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7559                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7560                 return 0;
7561         }
7562
7563         /* Protect our use of the network_list */
7564         spin_lock_irqsave(&priv->ieee->lock, flags);
7565         list_for_each_entry(network, &priv->ieee->network_list, list)
7566             ipw_best_network(priv, &match, network, 0);
7567
7568         network = match.network;
7569         rates = &match.rates;
7570
7571         if (network == NULL &&
7572             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7573             priv->config & CFG_ADHOC_CREATE &&
7574             priv->config & CFG_STATIC_ESSID &&
7575             priv->config & CFG_STATIC_CHANNEL &&
7576             !list_empty(&priv->ieee->network_free_list)) {
7577                 element = priv->ieee->network_free_list.next;
7578                 network = list_entry(element, struct ieee80211_network, list);
7579                 ipw_adhoc_create(priv, network);
7580                 rates = &priv->rates;
7581                 list_del(element);
7582                 list_add_tail(&network->list, &priv->ieee->network_list);
7583         }
7584         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7585
7586         /* If we reached the end of the list, then we don't have any valid
7587          * matching APs */
7588         if (!network) {
7589                 ipw_debug_config(priv);
7590
7591                 if (!(priv->status & STATUS_SCANNING)) {
7592                         if (!(priv->config & CFG_SPEED_SCAN))
7593                                 queue_delayed_work(priv->workqueue,
7594                                                    &priv->request_scan,
7595                                                    SCAN_INTERVAL);
7596                         else
7597                                 queue_delayed_work(priv->workqueue,
7598                                                    &priv->request_scan, 0);
7599                 }
7600
7601                 return 0;
7602         }
7603
7604         ipw_associate_network(priv, network, rates, 0);
7605
7606         return 1;
7607 }
7608
7609 static void ipw_bg_associate(struct work_struct *work)
7610 {
7611         struct ipw_priv *priv =
7612                 container_of(work, struct ipw_priv, associate);
7613         mutex_lock(&priv->mutex);
7614         ipw_associate(priv);
7615         mutex_unlock(&priv->mutex);
7616 }
7617
7618 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7619                                       struct sk_buff *skb)
7620 {
7621         struct ieee80211_hdr *hdr;
7622         u16 fc;
7623
7624         hdr = (struct ieee80211_hdr *)skb->data;
7625         fc = le16_to_cpu(hdr->frame_ctl);
7626         if (!(fc & IEEE80211_FCTL_PROTECTED))
7627                 return;
7628
7629         fc &= ~IEEE80211_FCTL_PROTECTED;
7630         hdr->frame_ctl = cpu_to_le16(fc);
7631         switch (priv->ieee->sec.level) {
7632         case SEC_LEVEL_3:
7633                 /* Remove CCMP HDR */
7634                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7635                         skb->data + IEEE80211_3ADDR_LEN + 8,
7636                         skb->len - IEEE80211_3ADDR_LEN - 8);
7637                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7638                 break;
7639         case SEC_LEVEL_2:
7640                 break;
7641         case SEC_LEVEL_1:
7642                 /* Remove IV */
7643                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7644                         skb->data + IEEE80211_3ADDR_LEN + 4,
7645                         skb->len - IEEE80211_3ADDR_LEN - 4);
7646                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7647                 break;
7648         case SEC_LEVEL_0:
7649                 break;
7650         default:
7651                 printk(KERN_ERR "Unknow security level %d\n",
7652                        priv->ieee->sec.level);
7653                 break;
7654         }
7655 }
7656
7657 static void ipw_handle_data_packet(struct ipw_priv *priv,
7658                                    struct ipw_rx_mem_buffer *rxb,
7659                                    struct ieee80211_rx_stats *stats)
7660 {
7661         struct ieee80211_hdr_4addr *hdr;
7662         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7663
7664         /* We received data from the HW, so stop the watchdog */
7665         priv->net_dev->trans_start = jiffies;
7666
7667         /* We only process data packets if the
7668          * interface is open */
7669         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7670                      skb_tailroom(rxb->skb))) {
7671                 priv->ieee->stats.rx_errors++;
7672                 priv->wstats.discard.misc++;
7673                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7674                 return;
7675         } else if (unlikely(!netif_running(priv->net_dev))) {
7676                 priv->ieee->stats.rx_dropped++;
7677                 priv->wstats.discard.misc++;
7678                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7679                 return;
7680         }
7681
7682         /* Advance skb->data to the start of the actual payload */
7683         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7684
7685         /* Set the size of the skb to the size of the frame */
7686         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7687
7688         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7689
7690         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7691         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7692         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7693             (is_multicast_ether_addr(hdr->addr1) ?
7694              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7695                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7696
7697         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7698                 priv->ieee->stats.rx_errors++;
7699         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7700                 rxb->skb = NULL;
7701                 __ipw_led_activity_on(priv);
7702         }
7703 }
7704
7705 #ifdef CONFIG_IPW2200_RADIOTAP
7706 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7707                                            struct ipw_rx_mem_buffer *rxb,
7708                                            struct ieee80211_rx_stats *stats)
7709 {
7710         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7711         struct ipw_rx_frame *frame = &pkt->u.frame;
7712
7713         /* initial pull of some data */
7714         u16 received_channel = frame->received_channel;
7715         u8 antennaAndPhy = frame->antennaAndPhy;
7716         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7717         u16 pktrate = frame->rate;
7718
7719         /* Magic struct that slots into the radiotap header -- no reason
7720          * to build this manually element by element, we can write it much
7721          * more efficiently than we can parse it. ORDER MATTERS HERE */
7722         struct ipw_rt_hdr *ipw_rt;
7723
7724         short len = le16_to_cpu(pkt->u.frame.length);
7725
7726         /* We received data from the HW, so stop the watchdog */
7727         priv->net_dev->trans_start = jiffies;
7728
7729         /* We only process data packets if the
7730          * interface is open */
7731         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7732                      skb_tailroom(rxb->skb))) {
7733                 priv->ieee->stats.rx_errors++;
7734                 priv->wstats.discard.misc++;
7735                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7736                 return;
7737         } else if (unlikely(!netif_running(priv->net_dev))) {
7738                 priv->ieee->stats.rx_dropped++;
7739                 priv->wstats.discard.misc++;
7740                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7741                 return;
7742         }
7743
7744         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7745          * that now */
7746         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7747                 /* FIXME: Should alloc bigger skb instead */
7748                 priv->ieee->stats.rx_dropped++;
7749                 priv->wstats.discard.misc++;
7750                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7751                 return;
7752         }
7753
7754         /* copy the frame itself */
7755         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7756                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7757
7758         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7759          * part of our real header, saves a little time.
7760          *
7761          * No longer necessary since we fill in all our data.  Purge before merging
7762          * patch officially.
7763          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7764          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7765          */
7766
7767         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7768
7769         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7770         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7771         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7772
7773         /* Big bitfield of all the fields we provide in radiotap */
7774         ipw_rt->rt_hdr.it_present =
7775             ((1 << IEEE80211_RADIOTAP_TSFT) |
7776              (1 << IEEE80211_RADIOTAP_FLAGS) |
7777              (1 << IEEE80211_RADIOTAP_RATE) |
7778              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7779              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7780              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7781              (1 << IEEE80211_RADIOTAP_ANTENNA));
7782
7783         /* Zero the flags, we'll add to them as we go */
7784         ipw_rt->rt_flags = 0;
7785         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7786                                frame->parent_tsf[2] << 16 |
7787                                frame->parent_tsf[1] << 8  |
7788                                frame->parent_tsf[0]);
7789
7790         /* Convert signal to DBM */
7791         ipw_rt->rt_dbmsignal = antsignal;
7792         ipw_rt->rt_dbmnoise = frame->noise;
7793
7794         /* Convert the channel data and set the flags */
7795         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7796         if (received_channel > 14) {    /* 802.11a */
7797                 ipw_rt->rt_chbitmask =
7798                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7799         } else if (antennaAndPhy & 32) {        /* 802.11b */
7800                 ipw_rt->rt_chbitmask =
7801                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7802         } else {                /* 802.11g */
7803                 ipw_rt->rt_chbitmask =
7804                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7805         }
7806
7807         /* set the rate in multiples of 500k/s */
7808         switch (pktrate) {
7809         case IPW_TX_RATE_1MB:
7810                 ipw_rt->rt_rate = 2;
7811                 break;
7812         case IPW_TX_RATE_2MB:
7813                 ipw_rt->rt_rate = 4;
7814                 break;
7815         case IPW_TX_RATE_5MB:
7816                 ipw_rt->rt_rate = 10;
7817                 break;
7818         case IPW_TX_RATE_6MB:
7819                 ipw_rt->rt_rate = 12;
7820                 break;
7821         case IPW_TX_RATE_9MB:
7822                 ipw_rt->rt_rate = 18;
7823                 break;
7824         case IPW_TX_RATE_11MB:
7825                 ipw_rt->rt_rate = 22;
7826                 break;
7827         case IPW_TX_RATE_12MB:
7828                 ipw_rt->rt_rate = 24;
7829                 break;
7830         case IPW_TX_RATE_18MB:
7831                 ipw_rt->rt_rate = 36;
7832                 break;
7833         case IPW_TX_RATE_24MB:
7834                 ipw_rt->rt_rate = 48;
7835                 break;
7836         case IPW_TX_RATE_36MB:
7837                 ipw_rt->rt_rate = 72;
7838                 break;
7839         case IPW_TX_RATE_48MB:
7840                 ipw_rt->rt_rate = 96;
7841                 break;
7842         case IPW_TX_RATE_54MB:
7843                 ipw_rt->rt_rate = 108;
7844                 break;
7845         default:
7846                 ipw_rt->rt_rate = 0;
7847                 break;
7848         }
7849
7850         /* antenna number */
7851         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7852
7853         /* set the preamble flag if we have it */
7854         if ((antennaAndPhy & 64))
7855                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7856
7857         /* Set the size of the skb to the size of the frame */
7858         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7859
7860         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7861
7862         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7863                 priv->ieee->stats.rx_errors++;
7864         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7865                 rxb->skb = NULL;
7866                 /* no LED during capture */
7867         }
7868 }
7869 #endif
7870
7871 #ifdef CONFIG_IPW2200_PROMISCUOUS
7872 #define ieee80211_is_probe_response(fc) \
7873    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7874     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7875
7876 #define ieee80211_is_management(fc) \
7877    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7878
7879 #define ieee80211_is_control(fc) \
7880    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7881
7882 #define ieee80211_is_data(fc) \
7883    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7884
7885 #define ieee80211_is_assoc_request(fc) \
7886    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7887
7888 #define ieee80211_is_reassoc_request(fc) \
7889    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7890
7891 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7892                                       struct ipw_rx_mem_buffer *rxb,
7893                                       struct ieee80211_rx_stats *stats)
7894 {
7895         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7896         struct ipw_rx_frame *frame = &pkt->u.frame;
7897         struct ipw_rt_hdr *ipw_rt;
7898
7899         /* First cache any information we need before we overwrite
7900          * the information provided in the skb from the hardware */
7901         struct ieee80211_hdr *hdr;
7902         u16 channel = frame->received_channel;
7903         u8 phy_flags = frame->antennaAndPhy;
7904         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7905         s8 noise = frame->noise;
7906         u8 rate = frame->rate;
7907         short len = le16_to_cpu(pkt->u.frame.length);
7908         struct sk_buff *skb;
7909         int hdr_only = 0;
7910         u16 filter = priv->prom_priv->filter;
7911
7912         /* If the filter is set to not include Rx frames then return */
7913         if (filter & IPW_PROM_NO_RX)
7914                 return;
7915
7916         /* We received data from the HW, so stop the watchdog */
7917         priv->prom_net_dev->trans_start = jiffies;
7918
7919         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7920                 priv->prom_priv->ieee->stats.rx_errors++;
7921                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7922                 return;
7923         }
7924
7925         /* We only process data packets if the interface is open */
7926         if (unlikely(!netif_running(priv->prom_net_dev))) {
7927                 priv->prom_priv->ieee->stats.rx_dropped++;
7928                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7929                 return;
7930         }
7931
7932         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7933          * that now */
7934         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7935                 /* FIXME: Should alloc bigger skb instead */
7936                 priv->prom_priv->ieee->stats.rx_dropped++;
7937                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7938                 return;
7939         }
7940
7941         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7942         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7943                 if (filter & IPW_PROM_NO_MGMT)
7944                         return;
7945                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7946                         hdr_only = 1;
7947         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7948                 if (filter & IPW_PROM_NO_CTL)
7949                         return;
7950                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7951                         hdr_only = 1;
7952         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7953                 if (filter & IPW_PROM_NO_DATA)
7954                         return;
7955                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7956                         hdr_only = 1;
7957         }
7958
7959         /* Copy the SKB since this is for the promiscuous side */
7960         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7961         if (skb == NULL) {
7962                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7963                 return;
7964         }
7965
7966         /* copy the frame data to write after where the radiotap header goes */
7967         ipw_rt = (void *)skb->data;
7968
7969         if (hdr_only)
7970                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7971
7972         memcpy(ipw_rt->payload, hdr, len);
7973
7974         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7975          * NOT part of our real header, saves a little time.
7976          *
7977          * No longer necessary since we fill in all our data.  Purge before
7978          * merging patch officially.
7979          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7980          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7981          */
7982
7983         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7984         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7985         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7986
7987         /* Set the size of the skb to the size of the frame */
7988         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7989
7990         /* Big bitfield of all the fields we provide in radiotap */
7991         ipw_rt->rt_hdr.it_present =
7992             ((1 << IEEE80211_RADIOTAP_TSFT) |
7993              (1 << IEEE80211_RADIOTAP_FLAGS) |
7994              (1 << IEEE80211_RADIOTAP_RATE) |
7995              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7996              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7997              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7998              (1 << IEEE80211_RADIOTAP_ANTENNA));
7999
8000         /* Zero the flags, we'll add to them as we go */
8001         ipw_rt->rt_flags = 0;
8002         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8003                                frame->parent_tsf[2] << 16 |
8004                                frame->parent_tsf[1] << 8  |
8005                                frame->parent_tsf[0]);
8006
8007         /* Convert to DBM */
8008         ipw_rt->rt_dbmsignal = signal;
8009         ipw_rt->rt_dbmnoise = noise;
8010
8011         /* Convert the channel data and set the flags */
8012         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8013         if (channel > 14) {     /* 802.11a */
8014                 ipw_rt->rt_chbitmask =
8015                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8016         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8017                 ipw_rt->rt_chbitmask =
8018                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8019         } else {                /* 802.11g */
8020                 ipw_rt->rt_chbitmask =
8021                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8022         }
8023
8024         /* set the rate in multiples of 500k/s */
8025         switch (rate) {
8026         case IPW_TX_RATE_1MB:
8027                 ipw_rt->rt_rate = 2;
8028                 break;
8029         case IPW_TX_RATE_2MB:
8030                 ipw_rt->rt_rate = 4;
8031                 break;
8032         case IPW_TX_RATE_5MB:
8033                 ipw_rt->rt_rate = 10;
8034                 break;
8035         case IPW_TX_RATE_6MB:
8036                 ipw_rt->rt_rate = 12;
8037                 break;
8038         case IPW_TX_RATE_9MB:
8039                 ipw_rt->rt_rate = 18;
8040                 break;
8041         case IPW_TX_RATE_11MB:
8042                 ipw_rt->rt_rate = 22;
8043                 break;
8044         case IPW_TX_RATE_12MB:
8045                 ipw_rt->rt_rate = 24;
8046                 break;
8047         case IPW_TX_RATE_18MB:
8048                 ipw_rt->rt_rate = 36;
8049                 break;
8050         case IPW_TX_RATE_24MB:
8051                 ipw_rt->rt_rate = 48;
8052                 break;
8053         case IPW_TX_RATE_36MB:
8054                 ipw_rt->rt_rate = 72;
8055                 break;
8056         case IPW_TX_RATE_48MB:
8057                 ipw_rt->rt_rate = 96;
8058                 break;
8059         case IPW_TX_RATE_54MB:
8060                 ipw_rt->rt_rate = 108;
8061                 break;
8062         default:
8063                 ipw_rt->rt_rate = 0;
8064                 break;
8065         }
8066
8067         /* antenna number */
8068         ipw_rt->rt_antenna = (phy_flags & 3);
8069
8070         /* set the preamble flag if we have it */
8071         if (phy_flags & (1 << 6))
8072                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8073
8074         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8075
8076         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8077                 priv->prom_priv->ieee->stats.rx_errors++;
8078                 dev_kfree_skb_any(skb);
8079         }
8080 }
8081 #endif
8082
8083 static int is_network_packet(struct ipw_priv *priv,
8084                                     struct ieee80211_hdr_4addr *header)
8085 {
8086         /* Filter incoming packets to determine if they are targetted toward
8087          * this network, discarding packets coming from ourselves */
8088         switch (priv->ieee->iw_mode) {
8089         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8090                 /* packets from our adapter are dropped (echo) */
8091                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8092                         return 0;
8093
8094                 /* {broad,multi}cast packets to our BSSID go through */
8095                 if (is_multicast_ether_addr(header->addr1))
8096                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8097
8098                 /* packets to our adapter go through */
8099                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8100                                ETH_ALEN);
8101
8102         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8103                 /* packets from our adapter are dropped (echo) */
8104                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8105                         return 0;
8106
8107                 /* {broad,multi}cast packets to our BSS go through */
8108                 if (is_multicast_ether_addr(header->addr1))
8109                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8110
8111                 /* packets to our adapter go through */
8112                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8113                                ETH_ALEN);
8114         }
8115
8116         return 1;
8117 }
8118
8119 #define IPW_PACKET_RETRY_TIME HZ
8120
8121 static  int is_duplicate_packet(struct ipw_priv *priv,
8122                                       struct ieee80211_hdr_4addr *header)
8123 {
8124         u16 sc = le16_to_cpu(header->seq_ctl);
8125         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8126         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8127         u16 *last_seq, *last_frag;
8128         unsigned long *last_time;
8129
8130         switch (priv->ieee->iw_mode) {
8131         case IW_MODE_ADHOC:
8132                 {
8133                         struct list_head *p;
8134                         struct ipw_ibss_seq *entry = NULL;
8135                         u8 *mac = header->addr2;
8136                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8137
8138                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8139                                 entry =
8140                                     list_entry(p, struct ipw_ibss_seq, list);
8141                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8142                                         break;
8143                         }
8144                         if (p == &priv->ibss_mac_hash[index]) {
8145                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8146                                 if (!entry) {
8147                                         IPW_ERROR
8148                                             ("Cannot malloc new mac entry\n");
8149                                         return 0;
8150                                 }
8151                                 memcpy(entry->mac, mac, ETH_ALEN);
8152                                 entry->seq_num = seq;
8153                                 entry->frag_num = frag;
8154                                 entry->packet_time = jiffies;
8155                                 list_add(&entry->list,
8156                                          &priv->ibss_mac_hash[index]);
8157                                 return 0;
8158                         }
8159                         last_seq = &entry->seq_num;
8160                         last_frag = &entry->frag_num;
8161                         last_time = &entry->packet_time;
8162                         break;
8163                 }
8164         case IW_MODE_INFRA:
8165                 last_seq = &priv->last_seq_num;
8166                 last_frag = &priv->last_frag_num;
8167                 last_time = &priv->last_packet_time;
8168                 break;
8169         default:
8170                 return 0;
8171         }
8172         if ((*last_seq == seq) &&
8173             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8174                 if (*last_frag == frag)
8175                         goto drop;
8176                 if (*last_frag + 1 != frag)
8177                         /* out-of-order fragment */
8178                         goto drop;
8179         } else
8180                 *last_seq = seq;
8181
8182         *last_frag = frag;
8183         *last_time = jiffies;
8184         return 0;
8185
8186       drop:
8187         /* Comment this line now since we observed the card receives
8188          * duplicate packets but the FCTL_RETRY bit is not set in the
8189          * IBSS mode with fragmentation enabled.
8190          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8191         return 1;
8192 }
8193
8194 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8195                                    struct ipw_rx_mem_buffer *rxb,
8196                                    struct ieee80211_rx_stats *stats)
8197 {
8198         struct sk_buff *skb = rxb->skb;
8199         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8200         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8201             (skb->data + IPW_RX_FRAME_SIZE);
8202
8203         ieee80211_rx_mgt(priv->ieee, header, stats);
8204
8205         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8206             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8207               IEEE80211_STYPE_PROBE_RESP) ||
8208              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8209               IEEE80211_STYPE_BEACON))) {
8210                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8211                         ipw_add_station(priv, header->addr2);
8212         }
8213
8214         if (priv->config & CFG_NET_STATS) {
8215                 IPW_DEBUG_HC("sending stat packet\n");
8216
8217                 /* Set the size of the skb to the size of the full
8218                  * ipw header and 802.11 frame */
8219                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8220                         IPW_RX_FRAME_SIZE);
8221
8222                 /* Advance past the ipw packet header to the 802.11 frame */
8223                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8224
8225                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8226                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8227
8228                 skb->dev = priv->ieee->dev;
8229
8230                 /* Point raw at the ieee80211_stats */
8231                 skb_reset_mac_header(skb);
8232
8233                 skb->pkt_type = PACKET_OTHERHOST;
8234                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8235                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8236                 netif_rx(skb);
8237                 rxb->skb = NULL;
8238         }
8239 }
8240
8241 /*
8242  * Main entry function for recieving a packet with 80211 headers.  This
8243  * should be called when ever the FW has notified us that there is a new
8244  * skb in the recieve queue.
8245  */
8246 static void ipw_rx(struct ipw_priv *priv)
8247 {
8248         struct ipw_rx_mem_buffer *rxb;
8249         struct ipw_rx_packet *pkt;
8250         struct ieee80211_hdr_4addr *header;
8251         u32 r, w, i;
8252         u8 network_packet;
8253         DECLARE_MAC_BUF(mac);
8254         DECLARE_MAC_BUF(mac2);
8255         DECLARE_MAC_BUF(mac3);
8256
8257         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8258         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8259         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8260
8261         while (i != r) {
8262                 rxb = priv->rxq->queue[i];
8263                 if (unlikely(rxb == NULL)) {
8264                         printk(KERN_CRIT "Queue not allocated!\n");
8265                         break;
8266                 }
8267                 priv->rxq->queue[i] = NULL;
8268
8269                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8270                                             IPW_RX_BUF_SIZE,
8271                                             PCI_DMA_FROMDEVICE);
8272
8273                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8274                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8275                              pkt->header.message_type,
8276                              pkt->header.rx_seq_num, pkt->header.control_bits);
8277
8278                 switch (pkt->header.message_type) {
8279                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8280                                 struct ieee80211_rx_stats stats = {
8281                                         .rssi = pkt->u.frame.rssi_dbm -
8282                                             IPW_RSSI_TO_DBM,
8283                                         .signal =
8284                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8285                                             IPW_RSSI_TO_DBM + 0x100,
8286                                         .noise =
8287                                             le16_to_cpu(pkt->u.frame.noise),
8288                                         .rate = pkt->u.frame.rate,
8289                                         .mac_time = jiffies,
8290                                         .received_channel =
8291                                             pkt->u.frame.received_channel,
8292                                         .freq =
8293                                             (pkt->u.frame.
8294                                              control & (1 << 0)) ?
8295                                             IEEE80211_24GHZ_BAND :
8296                                             IEEE80211_52GHZ_BAND,
8297                                         .len = le16_to_cpu(pkt->u.frame.length),
8298                                 };
8299
8300                                 if (stats.rssi != 0)
8301                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8302                                 if (stats.signal != 0)
8303                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8304                                 if (stats.noise != 0)
8305                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8306                                 if (stats.rate != 0)
8307                                         stats.mask |= IEEE80211_STATMASK_RATE;
8308
8309                                 priv->rx_packets++;
8310
8311 #ifdef CONFIG_IPW2200_PROMISCUOUS
8312         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8313                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8314 #endif
8315
8316 #ifdef CONFIG_IPW2200_MONITOR
8317                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8318 #ifdef CONFIG_IPW2200_RADIOTAP
8319
8320                 ipw_handle_data_packet_monitor(priv,
8321                                                rxb,
8322                                                &stats);
8323 #else
8324                 ipw_handle_data_packet(priv, rxb,
8325                                        &stats);
8326 #endif
8327                                         break;
8328                                 }
8329 #endif
8330
8331                                 header =
8332                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8333                                                                    data +
8334                                                                    IPW_RX_FRAME_SIZE);
8335                                 /* TODO: Check Ad-Hoc dest/source and make sure
8336                                  * that we are actually parsing these packets
8337                                  * correctly -- we should probably use the
8338                                  * frame control of the packet and disregard
8339                                  * the current iw_mode */
8340
8341                                 network_packet =
8342                                     is_network_packet(priv, header);
8343                                 if (network_packet && priv->assoc_network) {
8344                                         priv->assoc_network->stats.rssi =
8345                                             stats.rssi;
8346                                         priv->exp_avg_rssi =
8347                                             exponential_average(priv->exp_avg_rssi,
8348                                             stats.rssi, DEPTH_RSSI);
8349                                 }
8350
8351                                 IPW_DEBUG_RX("Frame: len=%u\n",
8352                                              le16_to_cpu(pkt->u.frame.length));
8353
8354                                 if (le16_to_cpu(pkt->u.frame.length) <
8355                                     ieee80211_get_hdrlen(le16_to_cpu(
8356                                                     header->frame_ctl))) {
8357                                         IPW_DEBUG_DROP
8358                                             ("Received packet is too small. "
8359                                              "Dropping.\n");
8360                                         priv->ieee->stats.rx_errors++;
8361                                         priv->wstats.discard.misc++;
8362                                         break;
8363                                 }
8364
8365                                 switch (WLAN_FC_GET_TYPE
8366                                         (le16_to_cpu(header->frame_ctl))) {
8367
8368                                 case IEEE80211_FTYPE_MGMT:
8369                                         ipw_handle_mgmt_packet(priv, rxb,
8370                                                                &stats);
8371                                         break;
8372
8373                                 case IEEE80211_FTYPE_CTL:
8374                                         break;
8375
8376                                 case IEEE80211_FTYPE_DATA:
8377                                         if (unlikely(!network_packet ||
8378                                                      is_duplicate_packet(priv,
8379                                                                          header)))
8380                                         {
8381                                                 IPW_DEBUG_DROP("Dropping: "
8382                                                                "%s, "
8383                                                                "%s, "
8384                                                                "%s\n",
8385                                                                print_mac(mac,
8386                                                                          header->
8387                                                                        addr1),
8388                                                                print_mac(mac2,
8389                                                                          header->
8390                                                                        addr2),
8391                                                                print_mac(mac3,
8392                                                                          header->
8393                                                                        addr3));
8394                                                 break;
8395                                         }
8396
8397                                         ipw_handle_data_packet(priv, rxb,
8398                                                                &stats);
8399
8400                                         break;
8401                                 }
8402                                 break;
8403                         }
8404
8405                 case RX_HOST_NOTIFICATION_TYPE:{
8406                                 IPW_DEBUG_RX
8407                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8408                                      pkt->u.notification.subtype,
8409                                      pkt->u.notification.flags,
8410                                      le16_to_cpu(pkt->u.notification.size));
8411                                 ipw_rx_notification(priv, &pkt->u.notification);
8412                                 break;
8413                         }
8414
8415                 default:
8416                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8417                                      pkt->header.message_type);
8418                         break;
8419                 }
8420
8421                 /* For now we just don't re-use anything.  We can tweak this
8422                  * later to try and re-use notification packets and SKBs that
8423                  * fail to Rx correctly */
8424                 if (rxb->skb != NULL) {
8425                         dev_kfree_skb_any(rxb->skb);
8426                         rxb->skb = NULL;
8427                 }
8428
8429                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8430                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8431                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8432
8433                 i = (i + 1) % RX_QUEUE_SIZE;
8434         }
8435
8436         /* Backtrack one entry */
8437         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8438
8439         ipw_rx_queue_restock(priv);
8440 }
8441
8442 #define DEFAULT_RTS_THRESHOLD     2304U
8443 #define MIN_RTS_THRESHOLD         1U
8444 #define MAX_RTS_THRESHOLD         2304U
8445 #define DEFAULT_BEACON_INTERVAL   100U
8446 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8447 #define DEFAULT_LONG_RETRY_LIMIT  4U
8448
8449 /**
8450  * ipw_sw_reset
8451  * @option: options to control different reset behaviour
8452  *          0 = reset everything except the 'disable' module_param
8453  *          1 = reset everything and print out driver info (for probe only)
8454  *          2 = reset everything
8455  */
8456 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8457 {
8458         int band, modulation;
8459         int old_mode = priv->ieee->iw_mode;
8460
8461         /* Initialize module parameter values here */
8462         priv->config = 0;
8463
8464         /* We default to disabling the LED code as right now it causes
8465          * too many systems to lock up... */
8466         if (!led)
8467                 priv->config |= CFG_NO_LED;
8468
8469         if (associate)
8470                 priv->config |= CFG_ASSOCIATE;
8471         else
8472                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8473
8474         if (auto_create)
8475                 priv->config |= CFG_ADHOC_CREATE;
8476         else
8477                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8478
8479         priv->config &= ~CFG_STATIC_ESSID;
8480         priv->essid_len = 0;
8481         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8482
8483         if (disable && option) {
8484                 priv->status |= STATUS_RF_KILL_SW;
8485                 IPW_DEBUG_INFO("Radio disabled.\n");
8486         }
8487
8488         if (channel != 0) {
8489                 priv->config |= CFG_STATIC_CHANNEL;
8490                 priv->channel = channel;
8491                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8492                 /* TODO: Validate that provided channel is in range */
8493         }
8494 #ifdef CONFIG_IPW2200_QOS
8495         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8496                      burst_duration_CCK, burst_duration_OFDM);
8497 #endif                          /* CONFIG_IPW2200_QOS */
8498
8499         switch (mode) {
8500         case 1:
8501                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8502                 priv->net_dev->type = ARPHRD_ETHER;
8503
8504                 break;
8505 #ifdef CONFIG_IPW2200_MONITOR
8506         case 2:
8507                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8508 #ifdef CONFIG_IPW2200_RADIOTAP
8509                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8510 #else
8511                 priv->net_dev->type = ARPHRD_IEEE80211;
8512 #endif
8513                 break;
8514 #endif
8515         default:
8516         case 0:
8517                 priv->net_dev->type = ARPHRD_ETHER;
8518                 priv->ieee->iw_mode = IW_MODE_INFRA;
8519                 break;
8520         }
8521
8522         if (hwcrypto) {
8523                 priv->ieee->host_encrypt = 0;
8524                 priv->ieee->host_encrypt_msdu = 0;
8525                 priv->ieee->host_decrypt = 0;
8526                 priv->ieee->host_mc_decrypt = 0;
8527         }
8528         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8529
8530         /* IPW2200/2915 is abled to do hardware fragmentation. */
8531         priv->ieee->host_open_frag = 0;
8532
8533         if ((priv->pci_dev->device == 0x4223) ||
8534             (priv->pci_dev->device == 0x4224)) {
8535                 if (option == 1)
8536                         printk(KERN_INFO DRV_NAME
8537                                ": Detected Intel PRO/Wireless 2915ABG Network "
8538                                "Connection\n");
8539                 priv->ieee->abg_true = 1;
8540                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8541                 modulation = IEEE80211_OFDM_MODULATION |
8542                     IEEE80211_CCK_MODULATION;
8543                 priv->adapter = IPW_2915ABG;
8544                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8545         } else {
8546                 if (option == 1)
8547                         printk(KERN_INFO DRV_NAME
8548                                ": Detected Intel PRO/Wireless 2200BG Network "
8549                                "Connection\n");
8550
8551                 priv->ieee->abg_true = 0;
8552                 band = IEEE80211_24GHZ_BAND;
8553                 modulation = IEEE80211_OFDM_MODULATION |
8554                     IEEE80211_CCK_MODULATION;
8555                 priv->adapter = IPW_2200BG;
8556                 priv->ieee->mode = IEEE_G | IEEE_B;
8557         }
8558
8559         priv->ieee->freq_band = band;
8560         priv->ieee->modulation = modulation;
8561
8562         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8563
8564         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8565         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8566
8567         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8568         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8569         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8570
8571         /* If power management is turned on, default to AC mode */
8572         priv->power_mode = IPW_POWER_AC;
8573         priv->tx_power = IPW_TX_POWER_DEFAULT;
8574
8575         return old_mode == priv->ieee->iw_mode;
8576 }
8577
8578 /*
8579  * This file defines the Wireless Extension handlers.  It does not
8580  * define any methods of hardware manipulation and relies on the
8581  * functions defined in ipw_main to provide the HW interaction.
8582  *
8583  * The exception to this is the use of the ipw_get_ordinal()
8584  * function used to poll the hardware vs. making unecessary calls.
8585  *
8586  */
8587
8588 static int ipw_wx_get_name(struct net_device *dev,
8589                            struct iw_request_info *info,
8590                            union iwreq_data *wrqu, char *extra)
8591 {
8592         struct ipw_priv *priv = ieee80211_priv(dev);
8593         mutex_lock(&priv->mutex);
8594         if (priv->status & STATUS_RF_KILL_MASK)
8595                 strcpy(wrqu->name, "radio off");
8596         else if (!(priv->status & STATUS_ASSOCIATED))
8597                 strcpy(wrqu->name, "unassociated");
8598         else
8599                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8600                          ipw_modes[priv->assoc_request.ieee_mode]);
8601         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8602         mutex_unlock(&priv->mutex);
8603         return 0;
8604 }
8605
8606 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8607 {
8608         if (channel == 0) {
8609                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8610                 priv->config &= ~CFG_STATIC_CHANNEL;
8611                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8612                                 "parameters.\n");
8613                 ipw_associate(priv);
8614                 return 0;
8615         }
8616
8617         priv->config |= CFG_STATIC_CHANNEL;
8618
8619         if (priv->channel == channel) {
8620                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8621                                channel);
8622                 return 0;
8623         }
8624
8625         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8626         priv->channel = channel;
8627
8628 #ifdef CONFIG_IPW2200_MONITOR
8629         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8630                 int i;
8631                 if (priv->status & STATUS_SCANNING) {
8632                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8633                                        "channel change.\n");
8634                         ipw_abort_scan(priv);
8635                 }
8636
8637                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8638                         udelay(10);
8639
8640                 if (priv->status & STATUS_SCANNING)
8641                         IPW_DEBUG_SCAN("Still scanning...\n");
8642                 else
8643                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8644                                        1000 - i);
8645
8646                 return 0;
8647         }
8648 #endif                          /* CONFIG_IPW2200_MONITOR */
8649
8650         /* Network configuration changed -- force [re]association */
8651         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8652         if (!ipw_disassociate(priv))
8653                 ipw_associate(priv);
8654
8655         return 0;
8656 }
8657
8658 static int ipw_wx_set_freq(struct net_device *dev,
8659                            struct iw_request_info *info,
8660                            union iwreq_data *wrqu, char *extra)
8661 {
8662         struct ipw_priv *priv = ieee80211_priv(dev);
8663         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8664         struct iw_freq *fwrq = &wrqu->freq;
8665         int ret = 0, i;
8666         u8 channel, flags;
8667         int band;
8668
8669         if (fwrq->m == 0) {
8670                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8671                 mutex_lock(&priv->mutex);
8672                 ret = ipw_set_channel(priv, 0);
8673                 mutex_unlock(&priv->mutex);
8674                 return ret;
8675         }
8676         /* if setting by freq convert to channel */
8677         if (fwrq->e == 1) {
8678                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8679                 if (channel == 0)
8680                         return -EINVAL;
8681         } else
8682                 channel = fwrq->m;
8683
8684         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8685                 return -EINVAL;
8686
8687         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8688                 i = ieee80211_channel_to_index(priv->ieee, channel);
8689                 if (i == -1)
8690                         return -EINVAL;
8691
8692                 flags = (band == IEEE80211_24GHZ_BAND) ?
8693                     geo->bg[i].flags : geo->a[i].flags;
8694                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8695                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8696                         return -EINVAL;
8697                 }
8698         }
8699
8700         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8701         mutex_lock(&priv->mutex);
8702         ret = ipw_set_channel(priv, channel);
8703         mutex_unlock(&priv->mutex);
8704         return ret;
8705 }
8706
8707 static int ipw_wx_get_freq(struct net_device *dev,
8708                            struct iw_request_info *info,
8709                            union iwreq_data *wrqu, char *extra)
8710 {
8711         struct ipw_priv *priv = ieee80211_priv(dev);
8712
8713         wrqu->freq.e = 0;
8714
8715         /* If we are associated, trying to associate, or have a statically
8716          * configured CHANNEL then return that; otherwise return ANY */
8717         mutex_lock(&priv->mutex);
8718         if (priv->config & CFG_STATIC_CHANNEL ||
8719             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8720                 int i;
8721
8722                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8723                 BUG_ON(i == -1);
8724                 wrqu->freq.e = 1;
8725
8726                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8727                 case IEEE80211_52GHZ_BAND:
8728                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8729                         break;
8730
8731                 case IEEE80211_24GHZ_BAND:
8732                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8733                         break;
8734
8735                 default:
8736                         BUG();
8737                 }
8738         } else
8739                 wrqu->freq.m = 0;
8740
8741         mutex_unlock(&priv->mutex);
8742         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8743         return 0;
8744 }
8745
8746 static int ipw_wx_set_mode(struct net_device *dev,
8747                            struct iw_request_info *info,
8748                            union iwreq_data *wrqu, char *extra)
8749 {
8750         struct ipw_priv *priv = ieee80211_priv(dev);
8751         int err = 0;
8752
8753         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8754
8755         switch (wrqu->mode) {
8756 #ifdef CONFIG_IPW2200_MONITOR
8757         case IW_MODE_MONITOR:
8758 #endif
8759         case IW_MODE_ADHOC:
8760         case IW_MODE_INFRA:
8761                 break;
8762         case IW_MODE_AUTO:
8763                 wrqu->mode = IW_MODE_INFRA;
8764                 break;
8765         default:
8766                 return -EINVAL;
8767         }
8768         if (wrqu->mode == priv->ieee->iw_mode)
8769                 return 0;
8770
8771         mutex_lock(&priv->mutex);
8772
8773         ipw_sw_reset(priv, 0);
8774
8775 #ifdef CONFIG_IPW2200_MONITOR
8776         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8777                 priv->net_dev->type = ARPHRD_ETHER;
8778
8779         if (wrqu->mode == IW_MODE_MONITOR)
8780 #ifdef CONFIG_IPW2200_RADIOTAP
8781                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8782 #else
8783                 priv->net_dev->type = ARPHRD_IEEE80211;
8784 #endif
8785 #endif                          /* CONFIG_IPW2200_MONITOR */
8786
8787         /* Free the existing firmware and reset the fw_loaded
8788          * flag so ipw_load() will bring in the new firmawre */
8789         free_firmware();
8790
8791         priv->ieee->iw_mode = wrqu->mode;
8792
8793         queue_work(priv->workqueue, &priv->adapter_restart);
8794         mutex_unlock(&priv->mutex);
8795         return err;
8796 }
8797
8798 static int ipw_wx_get_mode(struct net_device *dev,
8799                            struct iw_request_info *info,
8800                            union iwreq_data *wrqu, char *extra)
8801 {
8802         struct ipw_priv *priv = ieee80211_priv(dev);
8803         mutex_lock(&priv->mutex);
8804         wrqu->mode = priv->ieee->iw_mode;
8805         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8806         mutex_unlock(&priv->mutex);
8807         return 0;
8808 }
8809
8810 /* Values are in microsecond */
8811 static const s32 timeout_duration[] = {
8812         350000,
8813         250000,
8814         75000,
8815         37000,
8816         25000,
8817 };
8818
8819 static const s32 period_duration[] = {
8820         400000,
8821         700000,
8822         1000000,
8823         1000000,
8824         1000000
8825 };
8826
8827 static int ipw_wx_get_range(struct net_device *dev,
8828                             struct iw_request_info *info,
8829                             union iwreq_data *wrqu, char *extra)
8830 {
8831         struct ipw_priv *priv = ieee80211_priv(dev);
8832         struct iw_range *range = (struct iw_range *)extra;
8833         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8834         int i = 0, j;
8835
8836         wrqu->data.length = sizeof(*range);
8837         memset(range, 0, sizeof(*range));
8838
8839         /* 54Mbs == ~27 Mb/s real (802.11g) */
8840         range->throughput = 27 * 1000 * 1000;
8841
8842         range->max_qual.qual = 100;
8843         /* TODO: Find real max RSSI and stick here */
8844         range->max_qual.level = 0;
8845         range->max_qual.noise = 0;
8846         range->max_qual.updated = 7;    /* Updated all three */
8847
8848         range->avg_qual.qual = 70;
8849         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8850         range->avg_qual.level = 0;      /* FIXME to real average level */
8851         range->avg_qual.noise = 0;
8852         range->avg_qual.updated = 7;    /* Updated all three */
8853         mutex_lock(&priv->mutex);
8854         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8855
8856         for (i = 0; i < range->num_bitrates; i++)
8857                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8858                     500000;
8859
8860         range->max_rts = DEFAULT_RTS_THRESHOLD;
8861         range->min_frag = MIN_FRAG_THRESHOLD;
8862         range->max_frag = MAX_FRAG_THRESHOLD;
8863
8864         range->encoding_size[0] = 5;
8865         range->encoding_size[1] = 13;
8866         range->num_encoding_sizes = 2;
8867         range->max_encoding_tokens = WEP_KEYS;
8868
8869         /* Set the Wireless Extension versions */
8870         range->we_version_compiled = WIRELESS_EXT;
8871         range->we_version_source = 18;
8872
8873         i = 0;
8874         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8875                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8876                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8877                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8878                                 continue;
8879
8880                         range->freq[i].i = geo->bg[j].channel;
8881                         range->freq[i].m = geo->bg[j].freq * 100000;
8882                         range->freq[i].e = 1;
8883                         i++;
8884                 }
8885         }
8886
8887         if (priv->ieee->mode & IEEE_A) {
8888                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8889                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8890                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8891                                 continue;
8892
8893                         range->freq[i].i = geo->a[j].channel;
8894                         range->freq[i].m = geo->a[j].freq * 100000;
8895                         range->freq[i].e = 1;
8896                         i++;
8897                 }
8898         }
8899
8900         range->num_channels = i;
8901         range->num_frequency = i;
8902
8903         mutex_unlock(&priv->mutex);
8904
8905         /* Event capability (kernel + driver) */
8906         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8907                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8908                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8909                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8910         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8911
8912         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8913                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8914
8915         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8916
8917         IPW_DEBUG_WX("GET Range\n");
8918         return 0;
8919 }
8920
8921 static int ipw_wx_set_wap(struct net_device *dev,
8922                           struct iw_request_info *info,
8923                           union iwreq_data *wrqu, char *extra)
8924 {
8925         struct ipw_priv *priv = ieee80211_priv(dev);
8926         DECLARE_MAC_BUF(mac);
8927
8928         static const unsigned char any[] = {
8929                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8930         };
8931         static const unsigned char off[] = {
8932                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8933         };
8934
8935         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8936                 return -EINVAL;
8937         mutex_lock(&priv->mutex);
8938         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8939             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8940                 /* we disable mandatory BSSID association */
8941                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8942                 priv->config &= ~CFG_STATIC_BSSID;
8943                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8944                                 "parameters.\n");
8945                 ipw_associate(priv);
8946                 mutex_unlock(&priv->mutex);
8947                 return 0;
8948         }
8949
8950         priv->config |= CFG_STATIC_BSSID;
8951         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8952                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8953                 mutex_unlock(&priv->mutex);
8954                 return 0;
8955         }
8956
8957         IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8958                      print_mac(mac, wrqu->ap_addr.sa_data));
8959
8960         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8961
8962         /* Network configuration changed -- force [re]association */
8963         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8964         if (!ipw_disassociate(priv))
8965                 ipw_associate(priv);
8966
8967         mutex_unlock(&priv->mutex);
8968         return 0;
8969 }
8970
8971 static int ipw_wx_get_wap(struct net_device *dev,
8972                           struct iw_request_info *info,
8973                           union iwreq_data *wrqu, char *extra)
8974 {
8975         struct ipw_priv *priv = ieee80211_priv(dev);
8976         DECLARE_MAC_BUF(mac);
8977
8978         /* If we are associated, trying to associate, or have a statically
8979          * configured BSSID then return that; otherwise return ANY */
8980         mutex_lock(&priv->mutex);
8981         if (priv->config & CFG_STATIC_BSSID ||
8982             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8983                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8984                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8985         } else
8986                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8987
8988         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8989                      print_mac(mac, wrqu->ap_addr.sa_data));
8990         mutex_unlock(&priv->mutex);
8991         return 0;
8992 }
8993
8994 static int ipw_wx_set_essid(struct net_device *dev,
8995                             struct iw_request_info *info,
8996                             union iwreq_data *wrqu, char *extra)
8997 {
8998         struct ipw_priv *priv = ieee80211_priv(dev);
8999         int length;
9000
9001         mutex_lock(&priv->mutex);
9002
9003         if (!wrqu->essid.flags)
9004         {
9005                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9006                 ipw_disassociate(priv);
9007                 priv->config &= ~CFG_STATIC_ESSID;
9008                 ipw_associate(priv);
9009                 mutex_unlock(&priv->mutex);
9010                 return 0;
9011         }
9012
9013         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9014
9015         priv->config |= CFG_STATIC_ESSID;
9016
9017         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9018             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9019                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9020                 mutex_unlock(&priv->mutex);
9021                 return 0;
9022         }
9023
9024         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9025                      length);
9026
9027         priv->essid_len = length;
9028         memcpy(priv->essid, extra, priv->essid_len);
9029
9030         /* Network configuration changed -- force [re]association */
9031         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9032         if (!ipw_disassociate(priv))
9033                 ipw_associate(priv);
9034
9035         mutex_unlock(&priv->mutex);
9036         return 0;
9037 }
9038
9039 static int ipw_wx_get_essid(struct net_device *dev,
9040                             struct iw_request_info *info,
9041                             union iwreq_data *wrqu, char *extra)
9042 {
9043         struct ipw_priv *priv = ieee80211_priv(dev);
9044
9045         /* If we are associated, trying to associate, or have a statically
9046          * configured ESSID then return that; otherwise return ANY */
9047         mutex_lock(&priv->mutex);
9048         if (priv->config & CFG_STATIC_ESSID ||
9049             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9050                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9051                              escape_essid(priv->essid, priv->essid_len));
9052                 memcpy(extra, priv->essid, priv->essid_len);
9053                 wrqu->essid.length = priv->essid_len;
9054                 wrqu->essid.flags = 1;  /* active */
9055         } else {
9056                 IPW_DEBUG_WX("Getting essid: ANY\n");
9057                 wrqu->essid.length = 0;
9058                 wrqu->essid.flags = 0;  /* active */
9059         }
9060         mutex_unlock(&priv->mutex);
9061         return 0;
9062 }
9063
9064 static int ipw_wx_set_nick(struct net_device *dev,
9065                            struct iw_request_info *info,
9066                            union iwreq_data *wrqu, char *extra)
9067 {
9068         struct ipw_priv *priv = ieee80211_priv(dev);
9069
9070         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9071         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9072                 return -E2BIG;
9073         mutex_lock(&priv->mutex);
9074         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9075         memset(priv->nick, 0, sizeof(priv->nick));
9076         memcpy(priv->nick, extra, wrqu->data.length);
9077         IPW_DEBUG_TRACE("<<\n");
9078         mutex_unlock(&priv->mutex);
9079         return 0;
9080
9081 }
9082
9083 static int ipw_wx_get_nick(struct net_device *dev,
9084                            struct iw_request_info *info,
9085                            union iwreq_data *wrqu, char *extra)
9086 {
9087         struct ipw_priv *priv = ieee80211_priv(dev);
9088         IPW_DEBUG_WX("Getting nick\n");
9089         mutex_lock(&priv->mutex);
9090         wrqu->data.length = strlen(priv->nick);
9091         memcpy(extra, priv->nick, wrqu->data.length);
9092         wrqu->data.flags = 1;   /* active */
9093         mutex_unlock(&priv->mutex);
9094         return 0;
9095 }
9096
9097 static int ipw_wx_set_sens(struct net_device *dev,
9098                             struct iw_request_info *info,
9099                             union iwreq_data *wrqu, char *extra)
9100 {
9101         struct ipw_priv *priv = ieee80211_priv(dev);
9102         int err = 0;
9103
9104         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9105         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9106         mutex_lock(&priv->mutex);
9107
9108         if (wrqu->sens.fixed == 0)
9109         {
9110                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9111                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9112                 goto out;
9113         }
9114         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9115             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9116                 err = -EINVAL;
9117                 goto out;
9118         }
9119
9120         priv->roaming_threshold = wrqu->sens.value;
9121         priv->disassociate_threshold = 3*wrqu->sens.value;
9122       out:
9123         mutex_unlock(&priv->mutex);
9124         return err;
9125 }
9126
9127 static int ipw_wx_get_sens(struct net_device *dev,
9128                             struct iw_request_info *info,
9129                             union iwreq_data *wrqu, char *extra)
9130 {
9131         struct ipw_priv *priv = ieee80211_priv(dev);
9132         mutex_lock(&priv->mutex);
9133         wrqu->sens.fixed = 1;
9134         wrqu->sens.value = priv->roaming_threshold;
9135         mutex_unlock(&priv->mutex);
9136
9137         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9138                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9139
9140         return 0;
9141 }
9142
9143 static int ipw_wx_set_rate(struct net_device *dev,
9144                            struct iw_request_info *info,
9145                            union iwreq_data *wrqu, char *extra)
9146 {
9147         /* TODO: We should use semaphores or locks for access to priv */
9148         struct ipw_priv *priv = ieee80211_priv(dev);
9149         u32 target_rate = wrqu->bitrate.value;
9150         u32 fixed, mask;
9151
9152         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9153         /* value = X, fixed = 1 means only rate X */
9154         /* value = X, fixed = 0 means all rates lower equal X */
9155
9156         if (target_rate == -1) {
9157                 fixed = 0;
9158                 mask = IEEE80211_DEFAULT_RATES_MASK;
9159                 /* Now we should reassociate */
9160                 goto apply;
9161         }
9162
9163         mask = 0;
9164         fixed = wrqu->bitrate.fixed;
9165
9166         if (target_rate == 1000000 || !fixed)
9167                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9168         if (target_rate == 1000000)
9169                 goto apply;
9170
9171         if (target_rate == 2000000 || !fixed)
9172                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9173         if (target_rate == 2000000)
9174                 goto apply;
9175
9176         if (target_rate == 5500000 || !fixed)
9177                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9178         if (target_rate == 5500000)
9179                 goto apply;
9180
9181         if (target_rate == 6000000 || !fixed)
9182                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9183         if (target_rate == 6000000)
9184                 goto apply;
9185
9186         if (target_rate == 9000000 || !fixed)
9187                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9188         if (target_rate == 9000000)
9189                 goto apply;
9190
9191         if (target_rate == 11000000 || !fixed)
9192                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9193         if (target_rate == 11000000)
9194                 goto apply;
9195
9196         if (target_rate == 12000000 || !fixed)
9197                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9198         if (target_rate == 12000000)
9199                 goto apply;
9200
9201         if (target_rate == 18000000 || !fixed)
9202                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9203         if (target_rate == 18000000)
9204                 goto apply;
9205
9206         if (target_rate == 24000000 || !fixed)
9207                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9208         if (target_rate == 24000000)
9209                 goto apply;
9210
9211         if (target_rate == 36000000 || !fixed)
9212                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9213         if (target_rate == 36000000)
9214                 goto apply;
9215
9216         if (target_rate == 48000000 || !fixed)
9217                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9218         if (target_rate == 48000000)
9219                 goto apply;
9220
9221         if (target_rate == 54000000 || !fixed)
9222                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9223         if (target_rate == 54000000)
9224                 goto apply;
9225
9226         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9227         return -EINVAL;
9228
9229       apply:
9230         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9231                      mask, fixed ? "fixed" : "sub-rates");
9232         mutex_lock(&priv->mutex);
9233         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9234                 priv->config &= ~CFG_FIXED_RATE;
9235                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9236         } else
9237                 priv->config |= CFG_FIXED_RATE;
9238
9239         if (priv->rates_mask == mask) {
9240                 IPW_DEBUG_WX("Mask set to current mask.\n");
9241                 mutex_unlock(&priv->mutex);
9242                 return 0;
9243         }
9244
9245         priv->rates_mask = mask;
9246
9247         /* Network configuration changed -- force [re]association */
9248         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9249         if (!ipw_disassociate(priv))
9250                 ipw_associate(priv);
9251
9252         mutex_unlock(&priv->mutex);
9253         return 0;
9254 }
9255
9256 static int ipw_wx_get_rate(struct net_device *dev,
9257                            struct iw_request_info *info,
9258                            union iwreq_data *wrqu, char *extra)
9259 {
9260         struct ipw_priv *priv = ieee80211_priv(dev);
9261         mutex_lock(&priv->mutex);
9262         wrqu->bitrate.value = priv->last_rate;
9263         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9264         mutex_unlock(&priv->mutex);
9265         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9266         return 0;
9267 }
9268
9269 static int ipw_wx_set_rts(struct net_device *dev,
9270                           struct iw_request_info *info,
9271                           union iwreq_data *wrqu, char *extra)
9272 {
9273         struct ipw_priv *priv = ieee80211_priv(dev);
9274         mutex_lock(&priv->mutex);
9275         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9276                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9277         else {
9278                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9279                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9280                         mutex_unlock(&priv->mutex);
9281                         return -EINVAL;
9282                 }
9283                 priv->rts_threshold = wrqu->rts.value;
9284         }
9285
9286         ipw_send_rts_threshold(priv, priv->rts_threshold);
9287         mutex_unlock(&priv->mutex);
9288         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9289         return 0;
9290 }
9291
9292 static int ipw_wx_get_rts(struct net_device *dev,
9293                           struct iw_request_info *info,
9294                           union iwreq_data *wrqu, char *extra)
9295 {
9296         struct ipw_priv *priv = ieee80211_priv(dev);
9297         mutex_lock(&priv->mutex);
9298         wrqu->rts.value = priv->rts_threshold;
9299         wrqu->rts.fixed = 0;    /* no auto select */
9300         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9301         mutex_unlock(&priv->mutex);
9302         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9303         return 0;
9304 }
9305
9306 static int ipw_wx_set_txpow(struct net_device *dev,
9307                             struct iw_request_info *info,
9308                             union iwreq_data *wrqu, char *extra)
9309 {
9310         struct ipw_priv *priv = ieee80211_priv(dev);
9311         int err = 0;
9312
9313         mutex_lock(&priv->mutex);
9314         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9315                 err = -EINPROGRESS;
9316                 goto out;
9317         }
9318
9319         if (!wrqu->power.fixed)
9320                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9321
9322         if (wrqu->power.flags != IW_TXPOW_DBM) {
9323                 err = -EINVAL;
9324                 goto out;
9325         }
9326
9327         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9328             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9329                 err = -EINVAL;
9330                 goto out;
9331         }
9332
9333         priv->tx_power = wrqu->power.value;
9334         err = ipw_set_tx_power(priv);
9335       out:
9336         mutex_unlock(&priv->mutex);
9337         return err;
9338 }
9339
9340 static int ipw_wx_get_txpow(struct net_device *dev,
9341                             struct iw_request_info *info,
9342                             union iwreq_data *wrqu, char *extra)
9343 {
9344         struct ipw_priv *priv = ieee80211_priv(dev);
9345         mutex_lock(&priv->mutex);
9346         wrqu->power.value = priv->tx_power;
9347         wrqu->power.fixed = 1;
9348         wrqu->power.flags = IW_TXPOW_DBM;
9349         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9350         mutex_unlock(&priv->mutex);
9351
9352         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9353                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9354
9355         return 0;
9356 }
9357
9358 static int ipw_wx_set_frag(struct net_device *dev,
9359                            struct iw_request_info *info,
9360                            union iwreq_data *wrqu, char *extra)
9361 {
9362         struct ipw_priv *priv = ieee80211_priv(dev);
9363         mutex_lock(&priv->mutex);
9364         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9365                 priv->ieee->fts = DEFAULT_FTS;
9366         else {
9367                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9368                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9369                         mutex_unlock(&priv->mutex);
9370                         return -EINVAL;
9371                 }
9372
9373                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9374         }
9375
9376         ipw_send_frag_threshold(priv, wrqu->frag.value);
9377         mutex_unlock(&priv->mutex);
9378         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9379         return 0;
9380 }
9381
9382 static int ipw_wx_get_frag(struct net_device *dev,
9383                            struct iw_request_info *info,
9384                            union iwreq_data *wrqu, char *extra)
9385 {
9386         struct ipw_priv *priv = ieee80211_priv(dev);
9387         mutex_lock(&priv->mutex);
9388         wrqu->frag.value = priv->ieee->fts;
9389         wrqu->frag.fixed = 0;   /* no auto select */
9390         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9391         mutex_unlock(&priv->mutex);
9392         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9393
9394         return 0;
9395 }
9396
9397 static int ipw_wx_set_retry(struct net_device *dev,
9398                             struct iw_request_info *info,
9399                             union iwreq_data *wrqu, char *extra)
9400 {
9401         struct ipw_priv *priv = ieee80211_priv(dev);
9402
9403         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9404                 return -EINVAL;
9405
9406         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9407                 return 0;
9408
9409         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9410                 return -EINVAL;
9411
9412         mutex_lock(&priv->mutex);
9413         if (wrqu->retry.flags & IW_RETRY_SHORT)
9414                 priv->short_retry_limit = (u8) wrqu->retry.value;
9415         else if (wrqu->retry.flags & IW_RETRY_LONG)
9416                 priv->long_retry_limit = (u8) wrqu->retry.value;
9417         else {
9418                 priv->short_retry_limit = (u8) wrqu->retry.value;
9419                 priv->long_retry_limit = (u8) wrqu->retry.value;
9420         }
9421
9422         ipw_send_retry_limit(priv, priv->short_retry_limit,
9423                              priv->long_retry_limit);
9424         mutex_unlock(&priv->mutex);
9425         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9426                      priv->short_retry_limit, priv->long_retry_limit);
9427         return 0;
9428 }
9429
9430 static int ipw_wx_get_retry(struct net_device *dev,
9431                             struct iw_request_info *info,
9432                             union iwreq_data *wrqu, char *extra)
9433 {
9434         struct ipw_priv *priv = ieee80211_priv(dev);
9435
9436         mutex_lock(&priv->mutex);
9437         wrqu->retry.disabled = 0;
9438
9439         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9440                 mutex_unlock(&priv->mutex);
9441                 return -EINVAL;
9442         }
9443
9444         if (wrqu->retry.flags & IW_RETRY_LONG) {
9445                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9446                 wrqu->retry.value = priv->long_retry_limit;
9447         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9448                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9449                 wrqu->retry.value = priv->short_retry_limit;
9450         } else {
9451                 wrqu->retry.flags = IW_RETRY_LIMIT;
9452                 wrqu->retry.value = priv->short_retry_limit;
9453         }
9454         mutex_unlock(&priv->mutex);
9455
9456         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9457
9458         return 0;
9459 }
9460
9461 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9462                                    int essid_len)
9463 {
9464         struct ipw_scan_request_ext scan;
9465         int err = 0, scan_type;
9466
9467         if (!(priv->status & STATUS_INIT) ||
9468             (priv->status & STATUS_EXIT_PENDING))
9469                 return 0;
9470
9471         mutex_lock(&priv->mutex);
9472
9473         if (priv->status & STATUS_RF_KILL_MASK) {
9474                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9475                 priv->status |= STATUS_SCAN_PENDING;
9476                 goto done;
9477         }
9478
9479         IPW_DEBUG_HC("starting request direct scan!\n");
9480
9481         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9482                 /* We should not sleep here; otherwise we will block most
9483                  * of the system (for instance, we hold rtnl_lock when we
9484                  * get here).
9485                  */
9486                 err = -EAGAIN;
9487                 goto done;
9488         }
9489         memset(&scan, 0, sizeof(scan));
9490
9491         if (priv->config & CFG_SPEED_SCAN)
9492                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9493                     cpu_to_le16(30);
9494         else
9495                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9496                     cpu_to_le16(20);
9497
9498         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9499             cpu_to_le16(20);
9500         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9501         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9502
9503         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9504
9505         err = ipw_send_ssid(priv, essid, essid_len);
9506         if (err) {
9507                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9508                 goto done;
9509         }
9510         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9511
9512         ipw_add_scan_channels(priv, &scan, scan_type);
9513
9514         err = ipw_send_scan_request_ext(priv, &scan);
9515         if (err) {
9516                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9517                 goto done;
9518         }
9519
9520         priv->status |= STATUS_SCANNING;
9521
9522       done:
9523         mutex_unlock(&priv->mutex);
9524         return err;
9525 }
9526
9527 static int ipw_wx_set_scan(struct net_device *dev,
9528                            struct iw_request_info *info,
9529                            union iwreq_data *wrqu, char *extra)
9530 {
9531         struct ipw_priv *priv = ieee80211_priv(dev);
9532         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9533
9534         mutex_lock(&priv->mutex);
9535         priv->user_requested_scan = 1;
9536         mutex_unlock(&priv->mutex);
9537
9538         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9539                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9540                         ipw_request_direct_scan(priv, req->essid,
9541                                                 req->essid_len);
9542                         return 0;
9543                 }
9544                 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9545                         queue_work(priv->workqueue,
9546                                    &priv->request_passive_scan);
9547                         return 0;
9548                 }
9549         }
9550
9551         IPW_DEBUG_WX("Start scan\n");
9552
9553         queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9554
9555         return 0;
9556 }
9557
9558 static int ipw_wx_get_scan(struct net_device *dev,
9559                            struct iw_request_info *info,
9560                            union iwreq_data *wrqu, char *extra)
9561 {
9562         struct ipw_priv *priv = ieee80211_priv(dev);
9563         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9564 }
9565
9566 static int ipw_wx_set_encode(struct net_device *dev,
9567                              struct iw_request_info *info,
9568                              union iwreq_data *wrqu, char *key)
9569 {
9570         struct ipw_priv *priv = ieee80211_priv(dev);
9571         int ret;
9572         u32 cap = priv->capability;
9573
9574         mutex_lock(&priv->mutex);
9575         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9576
9577         /* In IBSS mode, we need to notify the firmware to update
9578          * the beacon info after we changed the capability. */
9579         if (cap != priv->capability &&
9580             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9581             priv->status & STATUS_ASSOCIATED)
9582                 ipw_disassociate(priv);
9583
9584         mutex_unlock(&priv->mutex);
9585         return ret;
9586 }
9587
9588 static int ipw_wx_get_encode(struct net_device *dev,
9589                              struct iw_request_info *info,
9590                              union iwreq_data *wrqu, char *key)
9591 {
9592         struct ipw_priv *priv = ieee80211_priv(dev);
9593         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9594 }
9595
9596 static int ipw_wx_set_power(struct net_device *dev,
9597                             struct iw_request_info *info,
9598                             union iwreq_data *wrqu, char *extra)
9599 {
9600         struct ipw_priv *priv = ieee80211_priv(dev);
9601         int err;
9602         mutex_lock(&priv->mutex);
9603         if (wrqu->power.disabled) {
9604                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9605                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9606                 if (err) {
9607                         IPW_DEBUG_WX("failed setting power mode.\n");
9608                         mutex_unlock(&priv->mutex);
9609                         return err;
9610                 }
9611                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9612                 mutex_unlock(&priv->mutex);
9613                 return 0;
9614         }
9615
9616         switch (wrqu->power.flags & IW_POWER_MODE) {
9617         case IW_POWER_ON:       /* If not specified */
9618         case IW_POWER_MODE:     /* If set all mask */
9619         case IW_POWER_ALL_R:    /* If explicitly state all */
9620                 break;
9621         default:                /* Otherwise we don't support it */
9622                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9623                              wrqu->power.flags);
9624                 mutex_unlock(&priv->mutex);
9625                 return -EOPNOTSUPP;
9626         }
9627
9628         /* If the user hasn't specified a power management mode yet, default
9629          * to BATTERY */
9630         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9631                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9632         else
9633                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9634
9635         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9636         if (err) {
9637                 IPW_DEBUG_WX("failed setting power mode.\n");
9638                 mutex_unlock(&priv->mutex);
9639                 return err;
9640         }
9641
9642         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9643         mutex_unlock(&priv->mutex);
9644         return 0;
9645 }
9646
9647 static int ipw_wx_get_power(struct net_device *dev,
9648                             struct iw_request_info *info,
9649                             union iwreq_data *wrqu, char *extra)
9650 {
9651         struct ipw_priv *priv = ieee80211_priv(dev);
9652         mutex_lock(&priv->mutex);
9653         if (!(priv->power_mode & IPW_POWER_ENABLED))
9654                 wrqu->power.disabled = 1;
9655         else
9656                 wrqu->power.disabled = 0;
9657
9658         mutex_unlock(&priv->mutex);
9659         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9660
9661         return 0;
9662 }
9663
9664 static int ipw_wx_set_powermode(struct net_device *dev,
9665                                 struct iw_request_info *info,
9666                                 union iwreq_data *wrqu, char *extra)
9667 {
9668         struct ipw_priv *priv = ieee80211_priv(dev);
9669         int mode = *(int *)extra;
9670         int err;
9671
9672         mutex_lock(&priv->mutex);
9673         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9674                 mode = IPW_POWER_AC;
9675
9676         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9677                 err = ipw_send_power_mode(priv, mode);
9678                 if (err) {
9679                         IPW_DEBUG_WX("failed setting power mode.\n");
9680                         mutex_unlock(&priv->mutex);
9681                         return err;
9682                 }
9683                 priv->power_mode = IPW_POWER_ENABLED | mode;
9684         }
9685         mutex_unlock(&priv->mutex);
9686         return 0;
9687 }
9688
9689 #define MAX_WX_STRING 80
9690 static int ipw_wx_get_powermode(struct net_device *dev,
9691                                 struct iw_request_info *info,
9692                                 union iwreq_data *wrqu, char *extra)
9693 {
9694         struct ipw_priv *priv = ieee80211_priv(dev);
9695         int level = IPW_POWER_LEVEL(priv->power_mode);
9696         char *p = extra;
9697
9698         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9699
9700         switch (level) {
9701         case IPW_POWER_AC:
9702                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9703                 break;
9704         case IPW_POWER_BATTERY:
9705                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9706                 break;
9707         default:
9708                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9709                               "(Timeout %dms, Period %dms)",
9710                               timeout_duration[level - 1] / 1000,
9711                               period_duration[level - 1] / 1000);
9712         }
9713
9714         if (!(priv->power_mode & IPW_POWER_ENABLED))
9715                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9716
9717         wrqu->data.length = p - extra + 1;
9718
9719         return 0;
9720 }
9721
9722 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9723                                     struct iw_request_info *info,
9724                                     union iwreq_data *wrqu, char *extra)
9725 {
9726         struct ipw_priv *priv = ieee80211_priv(dev);
9727         int mode = *(int *)extra;
9728         u8 band = 0, modulation = 0;
9729
9730         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9731                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9732                 return -EINVAL;
9733         }
9734         mutex_lock(&priv->mutex);
9735         if (priv->adapter == IPW_2915ABG) {
9736                 priv->ieee->abg_true = 1;
9737                 if (mode & IEEE_A) {
9738                         band |= IEEE80211_52GHZ_BAND;
9739                         modulation |= IEEE80211_OFDM_MODULATION;
9740                 } else
9741                         priv->ieee->abg_true = 0;
9742         } else {
9743                 if (mode & IEEE_A) {
9744                         IPW_WARNING("Attempt to set 2200BG into "
9745                                     "802.11a mode\n");
9746                         mutex_unlock(&priv->mutex);
9747                         return -EINVAL;
9748                 }
9749
9750                 priv->ieee->abg_true = 0;
9751         }
9752
9753         if (mode & IEEE_B) {
9754                 band |= IEEE80211_24GHZ_BAND;
9755                 modulation |= IEEE80211_CCK_MODULATION;
9756         } else
9757                 priv->ieee->abg_true = 0;
9758
9759         if (mode & IEEE_G) {
9760                 band |= IEEE80211_24GHZ_BAND;
9761                 modulation |= IEEE80211_OFDM_MODULATION;
9762         } else
9763                 priv->ieee->abg_true = 0;
9764
9765         priv->ieee->mode = mode;
9766         priv->ieee->freq_band = band;
9767         priv->ieee->modulation = modulation;
9768         init_supported_rates(priv, &priv->rates);
9769
9770         /* Network configuration changed -- force [re]association */
9771         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9772         if (!ipw_disassociate(priv)) {
9773                 ipw_send_supported_rates(priv, &priv->rates);
9774                 ipw_associate(priv);
9775         }
9776
9777         /* Update the band LEDs */
9778         ipw_led_band_on(priv);
9779
9780         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9781                      mode & IEEE_A ? 'a' : '.',
9782                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9783         mutex_unlock(&priv->mutex);
9784         return 0;
9785 }
9786
9787 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9788                                     struct iw_request_info *info,
9789                                     union iwreq_data *wrqu, char *extra)
9790 {
9791         struct ipw_priv *priv = ieee80211_priv(dev);
9792         mutex_lock(&priv->mutex);
9793         switch (priv->ieee->mode) {
9794         case IEEE_A:
9795                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9796                 break;
9797         case IEEE_B:
9798                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9799                 break;
9800         case IEEE_A | IEEE_B:
9801                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9802                 break;
9803         case IEEE_G:
9804                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9805                 break;
9806         case IEEE_A | IEEE_G:
9807                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9808                 break;
9809         case IEEE_B | IEEE_G:
9810                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9811                 break;
9812         case IEEE_A | IEEE_B | IEEE_G:
9813                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9814                 break;
9815         default:
9816                 strncpy(extra, "unknown", MAX_WX_STRING);
9817                 break;
9818         }
9819
9820         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9821
9822         wrqu->data.length = strlen(extra) + 1;
9823         mutex_unlock(&priv->mutex);
9824
9825         return 0;
9826 }
9827
9828 static int ipw_wx_set_preamble(struct net_device *dev,
9829                                struct iw_request_info *info,
9830                                union iwreq_data *wrqu, char *extra)
9831 {
9832         struct ipw_priv *priv = ieee80211_priv(dev);
9833         int mode = *(int *)extra;
9834         mutex_lock(&priv->mutex);
9835         /* Switching from SHORT -> LONG requires a disassociation */
9836         if (mode == 1) {
9837                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9838                         priv->config |= CFG_PREAMBLE_LONG;
9839
9840                         /* Network configuration changed -- force [re]association */
9841                         IPW_DEBUG_ASSOC
9842                             ("[re]association triggered due to preamble change.\n");
9843                         if (!ipw_disassociate(priv))
9844                                 ipw_associate(priv);
9845                 }
9846                 goto done;
9847         }
9848
9849         if (mode == 0) {
9850                 priv->config &= ~CFG_PREAMBLE_LONG;
9851                 goto done;
9852         }
9853         mutex_unlock(&priv->mutex);
9854         return -EINVAL;
9855
9856       done:
9857         mutex_unlock(&priv->mutex);
9858         return 0;
9859 }
9860
9861 static int ipw_wx_get_preamble(struct net_device *dev,
9862                                struct iw_request_info *info,
9863                                union iwreq_data *wrqu, char *extra)
9864 {
9865         struct ipw_priv *priv = ieee80211_priv(dev);
9866         mutex_lock(&priv->mutex);
9867         if (priv->config & CFG_PREAMBLE_LONG)
9868                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9869         else
9870                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9871         mutex_unlock(&priv->mutex);
9872         return 0;
9873 }
9874
9875 #ifdef CONFIG_IPW2200_MONITOR
9876 static int ipw_wx_set_monitor(struct net_device *dev,
9877                               struct iw_request_info *info,
9878                               union iwreq_data *wrqu, char *extra)
9879 {
9880         struct ipw_priv *priv = ieee80211_priv(dev);
9881         int *parms = (int *)extra;
9882         int enable = (parms[0] > 0);
9883         mutex_lock(&priv->mutex);
9884         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9885         if (enable) {
9886                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9887 #ifdef CONFIG_IPW2200_RADIOTAP
9888                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9889 #else
9890                         priv->net_dev->type = ARPHRD_IEEE80211;
9891 #endif
9892                         queue_work(priv->workqueue, &priv->adapter_restart);
9893                 }
9894
9895                 ipw_set_channel(priv, parms[1]);
9896         } else {
9897                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9898                         mutex_unlock(&priv->mutex);
9899                         return 0;
9900                 }
9901                 priv->net_dev->type = ARPHRD_ETHER;
9902                 queue_work(priv->workqueue, &priv->adapter_restart);
9903         }
9904         mutex_unlock(&priv->mutex);
9905         return 0;
9906 }
9907
9908 #endif                          /* CONFIG_IPW2200_MONITOR */
9909
9910 static int ipw_wx_reset(struct net_device *dev,
9911                         struct iw_request_info *info,
9912                         union iwreq_data *wrqu, char *extra)
9913 {
9914         struct ipw_priv *priv = ieee80211_priv(dev);
9915         IPW_DEBUG_WX("RESET\n");
9916         queue_work(priv->workqueue, &priv->adapter_restart);
9917         return 0;
9918 }
9919
9920 static int ipw_wx_sw_reset(struct net_device *dev,
9921                            struct iw_request_info *info,
9922                            union iwreq_data *wrqu, char *extra)
9923 {
9924         struct ipw_priv *priv = ieee80211_priv(dev);
9925         union iwreq_data wrqu_sec = {
9926                 .encoding = {
9927                              .flags = IW_ENCODE_DISABLED,
9928                              },
9929         };
9930         int ret;
9931
9932         IPW_DEBUG_WX("SW_RESET\n");
9933
9934         mutex_lock(&priv->mutex);
9935
9936         ret = ipw_sw_reset(priv, 2);
9937         if (!ret) {
9938                 free_firmware();
9939                 ipw_adapter_restart(priv);
9940         }
9941
9942         /* The SW reset bit might have been toggled on by the 'disable'
9943          * module parameter, so take appropriate action */
9944         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9945
9946         mutex_unlock(&priv->mutex);
9947         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9948         mutex_lock(&priv->mutex);
9949
9950         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9951                 /* Configuration likely changed -- force [re]association */
9952                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9953                                 "reset.\n");
9954                 if (!ipw_disassociate(priv))
9955                         ipw_associate(priv);
9956         }
9957
9958         mutex_unlock(&priv->mutex);
9959
9960         return 0;
9961 }
9962
9963 /* Rebase the WE IOCTLs to zero for the handler array */
9964 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9965 static iw_handler ipw_wx_handlers[] = {
9966         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9967         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9968         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9969         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9970         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9971         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9972         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9973         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9974         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9975         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9976         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9977         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9978         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9979         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9980         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9981         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9982         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9983         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9984         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9985         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9986         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9987         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9988         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9989         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9990         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9991         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9992         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9993         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9994         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9995         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9996         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9997         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9998         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9999         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10000         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10001         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10002         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10003         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10004         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10005         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10006         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10007 };
10008
10009 enum {
10010         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10011         IPW_PRIV_GET_POWER,
10012         IPW_PRIV_SET_MODE,
10013         IPW_PRIV_GET_MODE,
10014         IPW_PRIV_SET_PREAMBLE,
10015         IPW_PRIV_GET_PREAMBLE,
10016         IPW_PRIV_RESET,
10017         IPW_PRIV_SW_RESET,
10018 #ifdef CONFIG_IPW2200_MONITOR
10019         IPW_PRIV_SET_MONITOR,
10020 #endif
10021 };
10022
10023 static struct iw_priv_args ipw_priv_args[] = {
10024         {
10025          .cmd = IPW_PRIV_SET_POWER,
10026          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10027          .name = "set_power"},
10028         {
10029          .cmd = IPW_PRIV_GET_POWER,
10030          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10031          .name = "get_power"},
10032         {
10033          .cmd = IPW_PRIV_SET_MODE,
10034          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10035          .name = "set_mode"},
10036         {
10037          .cmd = IPW_PRIV_GET_MODE,
10038          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10039          .name = "get_mode"},
10040         {
10041          .cmd = IPW_PRIV_SET_PREAMBLE,
10042          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10043          .name = "set_preamble"},
10044         {
10045          .cmd = IPW_PRIV_GET_PREAMBLE,
10046          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10047          .name = "get_preamble"},
10048         {
10049          IPW_PRIV_RESET,
10050          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10051         {
10052          IPW_PRIV_SW_RESET,
10053          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10054 #ifdef CONFIG_IPW2200_MONITOR
10055         {
10056          IPW_PRIV_SET_MONITOR,
10057          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10058 #endif                          /* CONFIG_IPW2200_MONITOR */
10059 };
10060
10061 static iw_handler ipw_priv_handler[] = {
10062         ipw_wx_set_powermode,
10063         ipw_wx_get_powermode,
10064         ipw_wx_set_wireless_mode,
10065         ipw_wx_get_wireless_mode,
10066         ipw_wx_set_preamble,
10067         ipw_wx_get_preamble,
10068         ipw_wx_reset,
10069         ipw_wx_sw_reset,
10070 #ifdef CONFIG_IPW2200_MONITOR
10071         ipw_wx_set_monitor,
10072 #endif
10073 };
10074
10075 static struct iw_handler_def ipw_wx_handler_def = {
10076         .standard = ipw_wx_handlers,
10077         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10078         .num_private = ARRAY_SIZE(ipw_priv_handler),
10079         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10080         .private = ipw_priv_handler,
10081         .private_args = ipw_priv_args,
10082         .get_wireless_stats = ipw_get_wireless_stats,
10083 };
10084
10085 /*
10086  * Get wireless statistics.
10087  * Called by /proc/net/wireless
10088  * Also called by SIOCGIWSTATS
10089  */
10090 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10091 {
10092         struct ipw_priv *priv = ieee80211_priv(dev);
10093         struct iw_statistics *wstats;
10094
10095         wstats = &priv->wstats;
10096
10097         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10098          * netdev->get_wireless_stats seems to be called before fw is
10099          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10100          * and associated; if not associcated, the values are all meaningless
10101          * anyway, so set them all to NULL and INVALID */
10102         if (!(priv->status & STATUS_ASSOCIATED)) {
10103                 wstats->miss.beacon = 0;
10104                 wstats->discard.retries = 0;
10105                 wstats->qual.qual = 0;
10106                 wstats->qual.level = 0;
10107                 wstats->qual.noise = 0;
10108                 wstats->qual.updated = 7;
10109                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10110                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10111                 return wstats;
10112         }
10113
10114         wstats->qual.qual = priv->quality;
10115         wstats->qual.level = priv->exp_avg_rssi;
10116         wstats->qual.noise = priv->exp_avg_noise;
10117         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10118             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10119
10120         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10121         wstats->discard.retries = priv->last_tx_failures;
10122         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10123
10124 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10125         goto fail_get_ordinal;
10126         wstats->discard.retries += tx_retry; */
10127
10128         return wstats;
10129 }
10130
10131 /* net device stuff */
10132
10133 static  void init_sys_config(struct ipw_sys_config *sys_config)
10134 {
10135         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10136         sys_config->bt_coexistence = 0;
10137         sys_config->answer_broadcast_ssid_probe = 0;
10138         sys_config->accept_all_data_frames = 0;
10139         sys_config->accept_non_directed_frames = 1;
10140         sys_config->exclude_unicast_unencrypted = 0;
10141         sys_config->disable_unicast_decryption = 1;
10142         sys_config->exclude_multicast_unencrypted = 0;
10143         sys_config->disable_multicast_decryption = 1;
10144         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10145                 antenna = CFG_SYS_ANTENNA_BOTH;
10146         sys_config->antenna_diversity = antenna;
10147         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10148         sys_config->dot11g_auto_detection = 0;
10149         sys_config->enable_cts_to_self = 0;
10150         sys_config->bt_coexist_collision_thr = 0;
10151         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10152         sys_config->silence_threshold = 0x1e;
10153 }
10154
10155 static int ipw_net_open(struct net_device *dev)
10156 {
10157         struct ipw_priv *priv = ieee80211_priv(dev);
10158         IPW_DEBUG_INFO("dev->open\n");
10159         /* we should be verifying the device is ready to be opened */
10160         mutex_lock(&priv->mutex);
10161         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10162             (priv->status & STATUS_ASSOCIATED))
10163                 netif_start_queue(dev);
10164         mutex_unlock(&priv->mutex);
10165         return 0;
10166 }
10167
10168 static int ipw_net_stop(struct net_device *dev)
10169 {
10170         IPW_DEBUG_INFO("dev->close\n");
10171         netif_stop_queue(dev);
10172         return 0;
10173 }
10174
10175 /*
10176 todo:
10177
10178 modify to send one tfd per fragment instead of using chunking.  otherwise
10179 we need to heavily modify the ieee80211_skb_to_txb.
10180 */
10181
10182 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10183                              int pri)
10184 {
10185         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10186             txb->fragments[0]->data;
10187         int i = 0;
10188         struct tfd_frame *tfd;
10189 #ifdef CONFIG_IPW2200_QOS
10190         int tx_id = ipw_get_tx_queue_number(priv, pri);
10191         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10192 #else
10193         struct clx2_tx_queue *txq = &priv->txq[0];
10194 #endif
10195         struct clx2_queue *q = &txq->q;
10196         u8 id, hdr_len, unicast;
10197         u16 remaining_bytes;
10198         int fc;
10199         DECLARE_MAC_BUF(mac);
10200
10201         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10202         switch (priv->ieee->iw_mode) {
10203         case IW_MODE_ADHOC:
10204                 unicast = !is_multicast_ether_addr(hdr->addr1);
10205                 id = ipw_find_station(priv, hdr->addr1);
10206                 if (id == IPW_INVALID_STATION) {
10207                         id = ipw_add_station(priv, hdr->addr1);
10208                         if (id == IPW_INVALID_STATION) {
10209                                 IPW_WARNING("Attempt to send data to "
10210                                             "invalid cell: %s\n",
10211                                             print_mac(mac, hdr->addr1));
10212                                 goto drop;
10213                         }
10214                 }
10215                 break;
10216
10217         case IW_MODE_INFRA:
10218         default:
10219                 unicast = !is_multicast_ether_addr(hdr->addr3);
10220                 id = 0;
10221                 break;
10222         }
10223
10224         tfd = &txq->bd[q->first_empty];
10225         txq->txb[q->first_empty] = txb;
10226         memset(tfd, 0, sizeof(*tfd));
10227         tfd->u.data.station_number = id;
10228
10229         tfd->control_flags.message_type = TX_FRAME_TYPE;
10230         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10231
10232         tfd->u.data.cmd_id = DINO_CMD_TX;
10233         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10234         remaining_bytes = txb->payload_size;
10235
10236         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10237                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10238         else
10239                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10240
10241         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10242                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10243
10244         fc = le16_to_cpu(hdr->frame_ctl);
10245         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10246
10247         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10248
10249         if (likely(unicast))
10250                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10251
10252         if (txb->encrypted && !priv->ieee->host_encrypt) {
10253                 switch (priv->ieee->sec.level) {
10254                 case SEC_LEVEL_3:
10255                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10256                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10257                         /* XXX: ACK flag must be set for CCMP even if it
10258                          * is a multicast/broadcast packet, because CCMP
10259                          * group communication encrypted by GTK is
10260                          * actually done by the AP. */
10261                         if (!unicast)
10262                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10263
10264                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10265                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10266                         tfd->u.data.key_index = 0;
10267                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10268                         break;
10269                 case SEC_LEVEL_2:
10270                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10271                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10272                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10273                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10274                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10275                         break;
10276                 case SEC_LEVEL_1:
10277                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10278                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10279                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10280                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10281                             40)
10282                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10283                         else
10284                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10285                         break;
10286                 case SEC_LEVEL_0:
10287                         break;
10288                 default:
10289                         printk(KERN_ERR "Unknow security level %d\n",
10290                                priv->ieee->sec.level);
10291                         break;
10292                 }
10293         } else
10294                 /* No hardware encryption */
10295                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10296
10297 #ifdef CONFIG_IPW2200_QOS
10298         if (fc & IEEE80211_STYPE_QOS_DATA)
10299                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10300 #endif                          /* CONFIG_IPW2200_QOS */
10301
10302         /* payload */
10303         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10304                                                  txb->nr_frags));
10305         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10306                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10307         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10308                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10309                                i, le32_to_cpu(tfd->u.data.num_chunks),
10310                                txb->fragments[i]->len - hdr_len);
10311                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10312                              i, tfd->u.data.num_chunks,
10313                              txb->fragments[i]->len - hdr_len);
10314                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10315                            txb->fragments[i]->len - hdr_len);
10316
10317                 tfd->u.data.chunk_ptr[i] =
10318                     cpu_to_le32(pci_map_single
10319                                 (priv->pci_dev,
10320                                  txb->fragments[i]->data + hdr_len,
10321                                  txb->fragments[i]->len - hdr_len,
10322                                  PCI_DMA_TODEVICE));
10323                 tfd->u.data.chunk_len[i] =
10324                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10325         }
10326
10327         if (i != txb->nr_frags) {
10328                 struct sk_buff *skb;
10329                 u16 remaining_bytes = 0;
10330                 int j;
10331
10332                 for (j = i; j < txb->nr_frags; j++)
10333                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10334
10335                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10336                        remaining_bytes);
10337                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10338                 if (skb != NULL) {
10339                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10340                         for (j = i; j < txb->nr_frags; j++) {
10341                                 int size = txb->fragments[j]->len - hdr_len;
10342
10343                                 printk(KERN_INFO "Adding frag %d %d...\n",
10344                                        j, size);
10345                                 memcpy(skb_put(skb, size),
10346                                        txb->fragments[j]->data + hdr_len, size);
10347                         }
10348                         dev_kfree_skb_any(txb->fragments[i]);
10349                         txb->fragments[i] = skb;
10350                         tfd->u.data.chunk_ptr[i] =
10351                             cpu_to_le32(pci_map_single
10352                                         (priv->pci_dev, skb->data,
10353                                          tfd->u.data.chunk_len[i],
10354                                          PCI_DMA_TODEVICE));
10355
10356                         tfd->u.data.num_chunks =
10357                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10358                                         1);
10359                 }
10360         }
10361
10362         /* kick DMA */
10363         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10364         ipw_write32(priv, q->reg_w, q->first_empty);
10365
10366         if (ipw_queue_space(q) < q->high_mark)
10367                 netif_stop_queue(priv->net_dev);
10368
10369         return NETDEV_TX_OK;
10370
10371       drop:
10372         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10373         ieee80211_txb_free(txb);
10374         return NETDEV_TX_OK;
10375 }
10376
10377 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10378 {
10379         struct ipw_priv *priv = ieee80211_priv(dev);
10380 #ifdef CONFIG_IPW2200_QOS
10381         int tx_id = ipw_get_tx_queue_number(priv, pri);
10382         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10383 #else
10384         struct clx2_tx_queue *txq = &priv->txq[0];
10385 #endif                          /* CONFIG_IPW2200_QOS */
10386
10387         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10388                 return 1;
10389
10390         return 0;
10391 }
10392
10393 #ifdef CONFIG_IPW2200_PROMISCUOUS
10394 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10395                                       struct ieee80211_txb *txb)
10396 {
10397         struct ieee80211_rx_stats dummystats;
10398         struct ieee80211_hdr *hdr;
10399         u8 n;
10400         u16 filter = priv->prom_priv->filter;
10401         int hdr_only = 0;
10402
10403         if (filter & IPW_PROM_NO_TX)
10404                 return;
10405
10406         memset(&dummystats, 0, sizeof(dummystats));
10407
10408         /* Filtering of fragment chains is done agains the first fragment */
10409         hdr = (void *)txb->fragments[0]->data;
10410         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10411                 if (filter & IPW_PROM_NO_MGMT)
10412                         return;
10413                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10414                         hdr_only = 1;
10415         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10416                 if (filter & IPW_PROM_NO_CTL)
10417                         return;
10418                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10419                         hdr_only = 1;
10420         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10421                 if (filter & IPW_PROM_NO_DATA)
10422                         return;
10423                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10424                         hdr_only = 1;
10425         }
10426
10427         for(n=0; n<txb->nr_frags; ++n) {
10428                 struct sk_buff *src = txb->fragments[n];
10429                 struct sk_buff *dst;
10430                 struct ieee80211_radiotap_header *rt_hdr;
10431                 int len;
10432
10433                 if (hdr_only) {
10434                         hdr = (void *)src->data;
10435                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10436                 } else
10437                         len = src->len;
10438
10439                 dst = alloc_skb(
10440                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10441                 if (!dst) continue;
10442
10443                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10444
10445                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10446                 rt_hdr->it_pad = 0;
10447                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10448                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10449
10450                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10451                         ieee80211chan2mhz(priv->channel));
10452                 if (priv->channel > 14)         /* 802.11a */
10453                         *(u16*)skb_put(dst, sizeof(u16)) =
10454                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10455                                              IEEE80211_CHAN_5GHZ);
10456                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10457                         *(u16*)skb_put(dst, sizeof(u16)) =
10458                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10459                                              IEEE80211_CHAN_2GHZ);
10460                 else            /* 802.11g */
10461                         *(u16*)skb_put(dst, sizeof(u16)) =
10462                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10463                                  IEEE80211_CHAN_2GHZ);
10464
10465                 rt_hdr->it_len = dst->len;
10466
10467                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10468
10469                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10470                         dev_kfree_skb_any(dst);
10471         }
10472 }
10473 #endif
10474
10475 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10476                                    struct net_device *dev, int pri)
10477 {
10478         struct ipw_priv *priv = ieee80211_priv(dev);
10479         unsigned long flags;
10480         int ret;
10481
10482         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10483         spin_lock_irqsave(&priv->lock, flags);
10484
10485         if (!(priv->status & STATUS_ASSOCIATED)) {
10486                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10487                 priv->ieee->stats.tx_carrier_errors++;
10488                 netif_stop_queue(dev);
10489                 goto fail_unlock;
10490         }
10491
10492 #ifdef CONFIG_IPW2200_PROMISCUOUS
10493         if (rtap_iface && netif_running(priv->prom_net_dev))
10494                 ipw_handle_promiscuous_tx(priv, txb);
10495 #endif
10496
10497         ret = ipw_tx_skb(priv, txb, pri);
10498         if (ret == NETDEV_TX_OK)
10499                 __ipw_led_activity_on(priv);
10500         spin_unlock_irqrestore(&priv->lock, flags);
10501
10502         return ret;
10503
10504       fail_unlock:
10505         spin_unlock_irqrestore(&priv->lock, flags);
10506         return 1;
10507 }
10508
10509 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10510 {
10511         struct ipw_priv *priv = ieee80211_priv(dev);
10512
10513         priv->ieee->stats.tx_packets = priv->tx_packets;
10514         priv->ieee->stats.rx_packets = priv->rx_packets;
10515         return &priv->ieee->stats;
10516 }
10517
10518 static void ipw_net_set_multicast_list(struct net_device *dev)
10519 {
10520
10521 }
10522
10523 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10524 {
10525         struct ipw_priv *priv = ieee80211_priv(dev);
10526         struct sockaddr *addr = p;
10527         DECLARE_MAC_BUF(mac);
10528
10529         if (!is_valid_ether_addr(addr->sa_data))
10530                 return -EADDRNOTAVAIL;
10531         mutex_lock(&priv->mutex);
10532         priv->config |= CFG_CUSTOM_MAC;
10533         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10534         printk(KERN_INFO "%s: Setting MAC to %s\n",
10535                priv->net_dev->name, print_mac(mac, priv->mac_addr));
10536         queue_work(priv->workqueue, &priv->adapter_restart);
10537         mutex_unlock(&priv->mutex);
10538         return 0;
10539 }
10540
10541 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10542                                     struct ethtool_drvinfo *info)
10543 {
10544         struct ipw_priv *p = ieee80211_priv(dev);
10545         char vers[64];
10546         char date[32];
10547         u32 len;
10548
10549         strcpy(info->driver, DRV_NAME);
10550         strcpy(info->version, DRV_VERSION);
10551
10552         len = sizeof(vers);
10553         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10554         len = sizeof(date);
10555         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10556
10557         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10558                  vers, date);
10559         strcpy(info->bus_info, pci_name(p->pci_dev));
10560         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10561 }
10562
10563 static u32 ipw_ethtool_get_link(struct net_device *dev)
10564 {
10565         struct ipw_priv *priv = ieee80211_priv(dev);
10566         return (priv->status & STATUS_ASSOCIATED) != 0;
10567 }
10568
10569 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10570 {
10571         return IPW_EEPROM_IMAGE_SIZE;
10572 }
10573
10574 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10575                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10576 {
10577         struct ipw_priv *p = ieee80211_priv(dev);
10578
10579         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10580                 return -EINVAL;
10581         mutex_lock(&p->mutex);
10582         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10583         mutex_unlock(&p->mutex);
10584         return 0;
10585 }
10586
10587 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10588                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10589 {
10590         struct ipw_priv *p = ieee80211_priv(dev);
10591         int i;
10592
10593         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10594                 return -EINVAL;
10595         mutex_lock(&p->mutex);
10596         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10597         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10598                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10599         mutex_unlock(&p->mutex);
10600         return 0;
10601 }
10602
10603 static const struct ethtool_ops ipw_ethtool_ops = {
10604         .get_link = ipw_ethtool_get_link,
10605         .get_drvinfo = ipw_ethtool_get_drvinfo,
10606         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10607         .get_eeprom = ipw_ethtool_get_eeprom,
10608         .set_eeprom = ipw_ethtool_set_eeprom,
10609 };
10610
10611 static irqreturn_t ipw_isr(int irq, void *data)
10612 {
10613         struct ipw_priv *priv = data;
10614         u32 inta, inta_mask;
10615
10616         if (!priv)
10617                 return IRQ_NONE;
10618
10619         spin_lock(&priv->irq_lock);
10620
10621         if (!(priv->status & STATUS_INT_ENABLED)) {
10622                 /* IRQ is disabled */
10623                 goto none;
10624         }
10625
10626         inta = ipw_read32(priv, IPW_INTA_RW);
10627         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10628
10629         if (inta == 0xFFFFFFFF) {
10630                 /* Hardware disappeared */
10631                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10632                 goto none;
10633         }
10634
10635         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10636                 /* Shared interrupt */
10637                 goto none;
10638         }
10639
10640         /* tell the device to stop sending interrupts */
10641         __ipw_disable_interrupts(priv);
10642
10643         /* ack current interrupts */
10644         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10645         ipw_write32(priv, IPW_INTA_RW, inta);
10646
10647         /* Cache INTA value for our tasklet */
10648         priv->isr_inta = inta;
10649
10650         tasklet_schedule(&priv->irq_tasklet);
10651
10652         spin_unlock(&priv->irq_lock);
10653
10654         return IRQ_HANDLED;
10655       none:
10656         spin_unlock(&priv->irq_lock);
10657         return IRQ_NONE;
10658 }
10659
10660 static void ipw_rf_kill(void *adapter)
10661 {
10662         struct ipw_priv *priv = adapter;
10663         unsigned long flags;
10664
10665         spin_lock_irqsave(&priv->lock, flags);
10666
10667         if (rf_kill_active(priv)) {
10668                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10669                 if (priv->workqueue)
10670                         queue_delayed_work(priv->workqueue,
10671                                            &priv->rf_kill, 2 * HZ);
10672                 goto exit_unlock;
10673         }
10674
10675         /* RF Kill is now disabled, so bring the device back up */
10676
10677         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10678                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10679                                   "device\n");
10680
10681                 /* we can not do an adapter restart while inside an irq lock */
10682                 queue_work(priv->workqueue, &priv->adapter_restart);
10683         } else
10684                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10685                                   "enabled\n");
10686
10687       exit_unlock:
10688         spin_unlock_irqrestore(&priv->lock, flags);
10689 }
10690
10691 static void ipw_bg_rf_kill(struct work_struct *work)
10692 {
10693         struct ipw_priv *priv =
10694                 container_of(work, struct ipw_priv, rf_kill.work);
10695         mutex_lock(&priv->mutex);
10696         ipw_rf_kill(priv);
10697         mutex_unlock(&priv->mutex);
10698 }
10699
10700 static void ipw_link_up(struct ipw_priv *priv)
10701 {
10702         priv->last_seq_num = -1;
10703         priv->last_frag_num = -1;
10704         priv->last_packet_time = 0;
10705
10706         netif_carrier_on(priv->net_dev);
10707         if (netif_queue_stopped(priv->net_dev)) {
10708                 IPW_DEBUG_NOTIF("waking queue\n");
10709                 netif_wake_queue(priv->net_dev);
10710         } else {
10711                 IPW_DEBUG_NOTIF("starting queue\n");
10712                 netif_start_queue(priv->net_dev);
10713         }
10714
10715         cancel_delayed_work(&priv->request_scan);
10716         cancel_delayed_work(&priv->scan_event);
10717         ipw_reset_stats(priv);
10718         /* Ensure the rate is updated immediately */
10719         priv->last_rate = ipw_get_current_rate(priv);
10720         ipw_gather_stats(priv);
10721         ipw_led_link_up(priv);
10722         notify_wx_assoc_event(priv);
10723
10724         if (priv->config & CFG_BACKGROUND_SCAN)
10725                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10726 }
10727
10728 static void ipw_bg_link_up(struct work_struct *work)
10729 {
10730         struct ipw_priv *priv =
10731                 container_of(work, struct ipw_priv, link_up);
10732         mutex_lock(&priv->mutex);
10733         ipw_link_up(priv);
10734         mutex_unlock(&priv->mutex);
10735 }
10736
10737 static void ipw_link_down(struct ipw_priv *priv)
10738 {
10739         ipw_led_link_down(priv);
10740         netif_carrier_off(priv->net_dev);
10741         netif_stop_queue(priv->net_dev);
10742         notify_wx_assoc_event(priv);
10743
10744         /* Cancel any queued work ... */
10745         cancel_delayed_work(&priv->request_scan);
10746         cancel_delayed_work(&priv->adhoc_check);
10747         cancel_delayed_work(&priv->gather_stats);
10748
10749         ipw_reset_stats(priv);
10750
10751         if (!(priv->status & STATUS_EXIT_PENDING)) {
10752                 /* Queue up another scan... */
10753                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10754         } else
10755                 cancel_delayed_work(&priv->scan_event);
10756 }
10757
10758 static void ipw_bg_link_down(struct work_struct *work)
10759 {
10760         struct ipw_priv *priv =
10761                 container_of(work, struct ipw_priv, link_down);
10762         mutex_lock(&priv->mutex);
10763         ipw_link_down(priv);
10764         mutex_unlock(&priv->mutex);
10765 }
10766
10767 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10768 {
10769         int ret = 0;
10770
10771         priv->workqueue = create_workqueue(DRV_NAME);
10772         init_waitqueue_head(&priv->wait_command_queue);
10773         init_waitqueue_head(&priv->wait_state);
10774
10775         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10776         INIT_WORK(&priv->associate, ipw_bg_associate);
10777         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10778         INIT_WORK(&priv->system_config, ipw_system_config);
10779         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10780         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10781         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10782         INIT_WORK(&priv->up, ipw_bg_up);
10783         INIT_WORK(&priv->down, ipw_bg_down);
10784         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10785         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10786         INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10787         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10788         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10789         INIT_WORK(&priv->roam, ipw_bg_roam);
10790         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10791         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10792         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10793         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10794         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10795         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10796         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10797
10798 #ifdef CONFIG_IPW2200_QOS
10799         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10800 #endif                          /* CONFIG_IPW2200_QOS */
10801
10802         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10803                      ipw_irq_tasklet, (unsigned long)priv);
10804
10805         return ret;
10806 }
10807
10808 static void shim__set_security(struct net_device *dev,
10809                                struct ieee80211_security *sec)
10810 {
10811         struct ipw_priv *priv = ieee80211_priv(dev);
10812         int i;
10813         for (i = 0; i < 4; i++) {
10814                 if (sec->flags & (1 << i)) {
10815                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10816                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10817                         if (sec->key_sizes[i] == 0)
10818                                 priv->ieee->sec.flags &= ~(1 << i);
10819                         else {
10820                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10821                                        sec->key_sizes[i]);
10822                                 priv->ieee->sec.flags |= (1 << i);
10823                         }
10824                         priv->status |= STATUS_SECURITY_UPDATED;
10825                 } else if (sec->level != SEC_LEVEL_1)
10826                         priv->ieee->sec.flags &= ~(1 << i);
10827         }
10828
10829         if (sec->flags & SEC_ACTIVE_KEY) {
10830                 if (sec->active_key <= 3) {
10831                         priv->ieee->sec.active_key = sec->active_key;
10832                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10833                 } else
10834                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10835                 priv->status |= STATUS_SECURITY_UPDATED;
10836         } else
10837                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10838
10839         if ((sec->flags & SEC_AUTH_MODE) &&
10840             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10841                 priv->ieee->sec.auth_mode = sec->auth_mode;
10842                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10843                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10844                         priv->capability |= CAP_SHARED_KEY;
10845                 else
10846                         priv->capability &= ~CAP_SHARED_KEY;
10847                 priv->status |= STATUS_SECURITY_UPDATED;
10848         }
10849
10850         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10851                 priv->ieee->sec.flags |= SEC_ENABLED;
10852                 priv->ieee->sec.enabled = sec->enabled;
10853                 priv->status |= STATUS_SECURITY_UPDATED;
10854                 if (sec->enabled)
10855                         priv->capability |= CAP_PRIVACY_ON;
10856                 else
10857                         priv->capability &= ~CAP_PRIVACY_ON;
10858         }
10859
10860         if (sec->flags & SEC_ENCRYPT)
10861                 priv->ieee->sec.encrypt = sec->encrypt;
10862
10863         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10864                 priv->ieee->sec.level = sec->level;
10865                 priv->ieee->sec.flags |= SEC_LEVEL;
10866                 priv->status |= STATUS_SECURITY_UPDATED;
10867         }
10868
10869         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10870                 ipw_set_hwcrypto_keys(priv);
10871
10872         /* To match current functionality of ipw2100 (which works well w/
10873          * various supplicants, we don't force a disassociate if the
10874          * privacy capability changes ... */
10875 #if 0
10876         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10877             (((priv->assoc_request.capability &
10878                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10879              (!(priv->assoc_request.capability &
10880                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10881                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10882                                 "change.\n");
10883                 ipw_disassociate(priv);
10884         }
10885 #endif
10886 }
10887
10888 static int init_supported_rates(struct ipw_priv *priv,
10889                                 struct ipw_supported_rates *rates)
10890 {
10891         /* TODO: Mask out rates based on priv->rates_mask */
10892
10893         memset(rates, 0, sizeof(*rates));
10894         /* configure supported rates */
10895         switch (priv->ieee->freq_band) {
10896         case IEEE80211_52GHZ_BAND:
10897                 rates->ieee_mode = IPW_A_MODE;
10898                 rates->purpose = IPW_RATE_CAPABILITIES;
10899                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10900                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10901                 break;
10902
10903         default:                /* Mixed or 2.4Ghz */
10904                 rates->ieee_mode = IPW_G_MODE;
10905                 rates->purpose = IPW_RATE_CAPABILITIES;
10906                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10907                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10908                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10909                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10910                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10911                 }
10912                 break;
10913         }
10914
10915         return 0;
10916 }
10917
10918 static int ipw_config(struct ipw_priv *priv)
10919 {
10920         /* This is only called from ipw_up, which resets/reloads the firmware
10921            so, we don't need to first disable the card before we configure
10922            it */
10923         if (ipw_set_tx_power(priv))
10924                 goto error;
10925
10926         /* initialize adapter address */
10927         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10928                 goto error;
10929
10930         /* set basic system config settings */
10931         init_sys_config(&priv->sys_config);
10932
10933         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10934          * Does not support BT priority yet (don't abort or defer our Tx) */
10935         if (bt_coexist) {
10936                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10937
10938                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10939                         priv->sys_config.bt_coexistence
10940                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10941                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10942                         priv->sys_config.bt_coexistence
10943                             |= CFG_BT_COEXISTENCE_OOB;
10944         }
10945
10946 #ifdef CONFIG_IPW2200_PROMISCUOUS
10947         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10948                 priv->sys_config.accept_all_data_frames = 1;
10949                 priv->sys_config.accept_non_directed_frames = 1;
10950                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10951                 priv->sys_config.accept_all_mgmt_frames = 1;
10952         }
10953 #endif
10954
10955         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10956                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10957         else
10958                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10959
10960         if (ipw_send_system_config(priv))
10961                 goto error;
10962
10963         init_supported_rates(priv, &priv->rates);
10964         if (ipw_send_supported_rates(priv, &priv->rates))
10965                 goto error;
10966
10967         /* Set request-to-send threshold */
10968         if (priv->rts_threshold) {
10969                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10970                         goto error;
10971         }
10972 #ifdef CONFIG_IPW2200_QOS
10973         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10974         ipw_qos_activate(priv, NULL);
10975 #endif                          /* CONFIG_IPW2200_QOS */
10976
10977         if (ipw_set_random_seed(priv))
10978                 goto error;
10979
10980         /* final state transition to the RUN state */
10981         if (ipw_send_host_complete(priv))
10982                 goto error;
10983
10984         priv->status |= STATUS_INIT;
10985
10986         ipw_led_init(priv);
10987         ipw_led_radio_on(priv);
10988         priv->notif_missed_beacons = 0;
10989
10990         /* Set hardware WEP key if it is configured. */
10991         if ((priv->capability & CAP_PRIVACY_ON) &&
10992             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10993             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10994                 ipw_set_hwcrypto_keys(priv);
10995
10996         return 0;
10997
10998       error:
10999         return -EIO;
11000 }
11001
11002 /*
11003  * NOTE:
11004  *
11005  * These tables have been tested in conjunction with the
11006  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11007  *
11008  * Altering this values, using it on other hardware, or in geographies
11009  * not intended for resale of the above mentioned Intel adapters has
11010  * not been tested.
11011  *
11012  * Remember to update the table in README.ipw2200 when changing this
11013  * table.
11014  *
11015  */
11016 static const struct ieee80211_geo ipw_geos[] = {
11017         {                       /* Restricted */
11018          "---",
11019          .bg_channels = 11,
11020          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021                 {2427, 4}, {2432, 5}, {2437, 6},
11022                 {2442, 7}, {2447, 8}, {2452, 9},
11023                 {2457, 10}, {2462, 11}},
11024          },
11025
11026         {                       /* Custom US/Canada */
11027          "ZZF",
11028          .bg_channels = 11,
11029          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11030                 {2427, 4}, {2432, 5}, {2437, 6},
11031                 {2442, 7}, {2447, 8}, {2452, 9},
11032                 {2457, 10}, {2462, 11}},
11033          .a_channels = 8,
11034          .a = {{5180, 36},
11035                {5200, 40},
11036                {5220, 44},
11037                {5240, 48},
11038                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11039                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11040                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11041                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11042          },
11043
11044         {                       /* Rest of World */
11045          "ZZD",
11046          .bg_channels = 13,
11047          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11048                 {2427, 4}, {2432, 5}, {2437, 6},
11049                 {2442, 7}, {2447, 8}, {2452, 9},
11050                 {2457, 10}, {2462, 11}, {2467, 12},
11051                 {2472, 13}},
11052          },
11053
11054         {                       /* Custom USA & Europe & High */
11055          "ZZA",
11056          .bg_channels = 11,
11057          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058                 {2427, 4}, {2432, 5}, {2437, 6},
11059                 {2442, 7}, {2447, 8}, {2452, 9},
11060                 {2457, 10}, {2462, 11}},
11061          .a_channels = 13,
11062          .a = {{5180, 36},
11063                {5200, 40},
11064                {5220, 44},
11065                {5240, 48},
11066                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11067                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11068                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11069                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11070                {5745, 149},
11071                {5765, 153},
11072                {5785, 157},
11073                {5805, 161},
11074                {5825, 165}},
11075          },
11076
11077         {                       /* Custom NA & Europe */
11078          "ZZB",
11079          .bg_channels = 11,
11080          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11081                 {2427, 4}, {2432, 5}, {2437, 6},
11082                 {2442, 7}, {2447, 8}, {2452, 9},
11083                 {2457, 10}, {2462, 11}},
11084          .a_channels = 13,
11085          .a = {{5180, 36},
11086                {5200, 40},
11087                {5220, 44},
11088                {5240, 48},
11089                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11090                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11091                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11092                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11093                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11094                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11095                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11096                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11097                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11098          },
11099
11100         {                       /* Custom Japan */
11101          "ZZC",
11102          .bg_channels = 11,
11103          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11104                 {2427, 4}, {2432, 5}, {2437, 6},
11105                 {2442, 7}, {2447, 8}, {2452, 9},
11106                 {2457, 10}, {2462, 11}},
11107          .a_channels = 4,
11108          .a = {{5170, 34}, {5190, 38},
11109                {5210, 42}, {5230, 46}},
11110          },
11111
11112         {                       /* Custom */
11113          "ZZM",
11114          .bg_channels = 11,
11115          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11116                 {2427, 4}, {2432, 5}, {2437, 6},
11117                 {2442, 7}, {2447, 8}, {2452, 9},
11118                 {2457, 10}, {2462, 11}},
11119          },
11120
11121         {                       /* Europe */
11122          "ZZE",
11123          .bg_channels = 13,
11124          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125                 {2427, 4}, {2432, 5}, {2437, 6},
11126                 {2442, 7}, {2447, 8}, {2452, 9},
11127                 {2457, 10}, {2462, 11}, {2467, 12},
11128                 {2472, 13}},
11129          .a_channels = 19,
11130          .a = {{5180, 36},
11131                {5200, 40},
11132                {5220, 44},
11133                {5240, 48},
11134                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11135                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11136                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11137                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11138                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11139                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11140                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11141                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11142                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11143                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11144                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11145                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11146                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11147                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11148                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11149          },
11150
11151         {                       /* Custom Japan */
11152          "ZZJ",
11153          .bg_channels = 14,
11154          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11155                 {2427, 4}, {2432, 5}, {2437, 6},
11156                 {2442, 7}, {2447, 8}, {2452, 9},
11157                 {2457, 10}, {2462, 11}, {2467, 12},
11158                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11159          .a_channels = 4,
11160          .a = {{5170, 34}, {5190, 38},
11161                {5210, 42}, {5230, 46}},
11162          },
11163
11164         {                       /* Rest of World */
11165          "ZZR",
11166          .bg_channels = 14,
11167          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11168                 {2427, 4}, {2432, 5}, {2437, 6},
11169                 {2442, 7}, {2447, 8}, {2452, 9},
11170                 {2457, 10}, {2462, 11}, {2467, 12},
11171                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11172                              IEEE80211_CH_PASSIVE_ONLY}},
11173          },
11174
11175         {                       /* High Band */
11176          "ZZH",
11177          .bg_channels = 13,
11178          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11179                 {2427, 4}, {2432, 5}, {2437, 6},
11180                 {2442, 7}, {2447, 8}, {2452, 9},
11181                 {2457, 10}, {2462, 11},
11182                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11183                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11184          .a_channels = 4,
11185          .a = {{5745, 149}, {5765, 153},
11186                {5785, 157}, {5805, 161}},
11187          },
11188
11189         {                       /* Custom Europe */
11190          "ZZG",
11191          .bg_channels = 13,
11192          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11193                 {2427, 4}, {2432, 5}, {2437, 6},
11194                 {2442, 7}, {2447, 8}, {2452, 9},
11195                 {2457, 10}, {2462, 11},
11196                 {2467, 12}, {2472, 13}},
11197          .a_channels = 4,
11198          .a = {{5180, 36}, {5200, 40},
11199                {5220, 44}, {5240, 48}},
11200          },
11201
11202         {                       /* Europe */
11203          "ZZK",
11204          .bg_channels = 13,
11205          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11206                 {2427, 4}, {2432, 5}, {2437, 6},
11207                 {2442, 7}, {2447, 8}, {2452, 9},
11208                 {2457, 10}, {2462, 11},
11209                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11210                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11211          .a_channels = 24,
11212          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11213                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11214                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11215                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11216                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11217                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11218                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11219                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11220                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11221                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11222                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11223                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11224                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11225                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11226                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11227                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11228                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11229                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11230                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11231                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11232                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11233                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11234                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11235                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11236          },
11237
11238         {                       /* Europe */
11239          "ZZL",
11240          .bg_channels = 11,
11241          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11242                 {2427, 4}, {2432, 5}, {2437, 6},
11243                 {2442, 7}, {2447, 8}, {2452, 9},
11244                 {2457, 10}, {2462, 11}},
11245          .a_channels = 13,
11246          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11247                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11248                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11249                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11250                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11251                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11252                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11253                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11254                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11255                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11256                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11257                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11258                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11259          }
11260 };
11261
11262 #define MAX_HW_RESTARTS 5
11263 static int ipw_up(struct ipw_priv *priv)
11264 {
11265         int rc, i, j;
11266
11267         if (priv->status & STATUS_EXIT_PENDING)
11268                 return -EIO;
11269
11270         if (cmdlog && !priv->cmdlog) {
11271                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11272                                        GFP_KERNEL);
11273                 if (priv->cmdlog == NULL) {
11274                         IPW_ERROR("Error allocating %d command log entries.\n",
11275                                   cmdlog);
11276                         return -ENOMEM;
11277                 } else {
11278                         priv->cmdlog_len = cmdlog;
11279                 }
11280         }
11281
11282         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11283                 /* Load the microcode, firmware, and eeprom.
11284                  * Also start the clocks. */
11285                 rc = ipw_load(priv);
11286                 if (rc) {
11287                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11288                         return rc;
11289                 }
11290
11291                 ipw_init_ordinals(priv);
11292                 if (!(priv->config & CFG_CUSTOM_MAC))
11293                         eeprom_parse_mac(priv, priv->mac_addr);
11294                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11295
11296                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11297                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11298                                     ipw_geos[j].name, 3))
11299                                 break;
11300                 }
11301                 if (j == ARRAY_SIZE(ipw_geos)) {
11302                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11303                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11304                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11305                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11306                         j = 0;
11307                 }
11308                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11309                         IPW_WARNING("Could not set geography.");
11310                         return 0;
11311                 }
11312
11313                 if (priv->status & STATUS_RF_KILL_SW) {
11314                         IPW_WARNING("Radio disabled by module parameter.\n");
11315                         return 0;
11316                 } else if (rf_kill_active(priv)) {
11317                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11318                                     "Kill switch must be turned off for "
11319                                     "wireless networking to work.\n");
11320                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11321                                            2 * HZ);
11322                         return 0;
11323                 }
11324
11325                 rc = ipw_config(priv);
11326                 if (!rc) {
11327                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11328
11329                         /* If configure to try and auto-associate, kick
11330                          * off a scan. */
11331                         queue_delayed_work(priv->workqueue,
11332                                            &priv->request_scan, 0);
11333
11334                         return 0;
11335                 }
11336
11337                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11338                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11339                                i, MAX_HW_RESTARTS);
11340
11341                 /* We had an error bringing up the hardware, so take it
11342                  * all the way back down so we can try again */
11343                 ipw_down(priv);
11344         }
11345
11346         /* tried to restart and config the device for as long as our
11347          * patience could withstand */
11348         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11349
11350         return -EIO;
11351 }
11352
11353 static void ipw_bg_up(struct work_struct *work)
11354 {
11355         struct ipw_priv *priv =
11356                 container_of(work, struct ipw_priv, up);
11357         mutex_lock(&priv->mutex);
11358         ipw_up(priv);
11359         mutex_unlock(&priv->mutex);
11360 }
11361
11362 static void ipw_deinit(struct ipw_priv *priv)
11363 {
11364         int i;
11365
11366         if (priv->status & STATUS_SCANNING) {
11367                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11368                 ipw_abort_scan(priv);
11369         }
11370
11371         if (priv->status & STATUS_ASSOCIATED) {
11372                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11373                 ipw_disassociate(priv);
11374         }
11375
11376         ipw_led_shutdown(priv);
11377
11378         /* Wait up to 1s for status to change to not scanning and not
11379          * associated (disassociation can take a while for a ful 802.11
11380          * exchange */
11381         for (i = 1000; i && (priv->status &
11382                              (STATUS_DISASSOCIATING |
11383                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11384                 udelay(10);
11385
11386         if (priv->status & (STATUS_DISASSOCIATING |
11387                             STATUS_ASSOCIATED | STATUS_SCANNING))
11388                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11389         else
11390                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11391
11392         /* Attempt to disable the card */
11393         ipw_send_card_disable(priv, 0);
11394
11395         priv->status &= ~STATUS_INIT;
11396 }
11397
11398 static void ipw_down(struct ipw_priv *priv)
11399 {
11400         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11401
11402         priv->status |= STATUS_EXIT_PENDING;
11403
11404         if (ipw_is_init(priv))
11405                 ipw_deinit(priv);
11406
11407         /* Wipe out the EXIT_PENDING status bit if we are not actually
11408          * exiting the module */
11409         if (!exit_pending)
11410                 priv->status &= ~STATUS_EXIT_PENDING;
11411
11412         /* tell the device to stop sending interrupts */
11413         ipw_disable_interrupts(priv);
11414
11415         /* Clear all bits but the RF Kill */
11416         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11417         netif_carrier_off(priv->net_dev);
11418         netif_stop_queue(priv->net_dev);
11419
11420         ipw_stop_nic(priv);
11421
11422         ipw_led_radio_off(priv);
11423 }
11424
11425 static void ipw_bg_down(struct work_struct *work)
11426 {
11427         struct ipw_priv *priv =
11428                 container_of(work, struct ipw_priv, down);
11429         mutex_lock(&priv->mutex);
11430         ipw_down(priv);
11431         mutex_unlock(&priv->mutex);
11432 }
11433
11434 /* Called by register_netdev() */
11435 static int ipw_net_init(struct net_device *dev)
11436 {
11437         struct ipw_priv *priv = ieee80211_priv(dev);
11438         mutex_lock(&priv->mutex);
11439
11440         if (ipw_up(priv)) {
11441                 mutex_unlock(&priv->mutex);
11442                 return -EIO;
11443         }
11444
11445         mutex_unlock(&priv->mutex);
11446         return 0;
11447 }
11448
11449 /* PCI driver stuff */
11450 static struct pci_device_id card_ids[] = {
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11457         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11458         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11459         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11460         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11461         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11462         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11463         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11464         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11465         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11466         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11467         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11468         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11469         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11470         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11471         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11472         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11473
11474         /* required last entry */
11475         {0,}
11476 };
11477
11478 MODULE_DEVICE_TABLE(pci, card_ids);
11479
11480 static struct attribute *ipw_sysfs_entries[] = {
11481         &dev_attr_rf_kill.attr,
11482         &dev_attr_direct_dword.attr,
11483         &dev_attr_indirect_byte.attr,
11484         &dev_attr_indirect_dword.attr,
11485         &dev_attr_mem_gpio_reg.attr,
11486         &dev_attr_command_event_reg.attr,
11487         &dev_attr_nic_type.attr,
11488         &dev_attr_status.attr,
11489         &dev_attr_cfg.attr,
11490         &dev_attr_error.attr,
11491         &dev_attr_event_log.attr,
11492         &dev_attr_cmd_log.attr,
11493         &dev_attr_eeprom_delay.attr,
11494         &dev_attr_ucode_version.attr,
11495         &dev_attr_rtc.attr,
11496         &dev_attr_scan_age.attr,
11497         &dev_attr_led.attr,
11498         &dev_attr_speed_scan.attr,
11499         &dev_attr_net_stats.attr,
11500         &dev_attr_channels.attr,
11501 #ifdef CONFIG_IPW2200_PROMISCUOUS
11502         &dev_attr_rtap_iface.attr,
11503         &dev_attr_rtap_filter.attr,
11504 #endif
11505         NULL
11506 };
11507
11508 static struct attribute_group ipw_attribute_group = {
11509         .name = NULL,           /* put in device directory */
11510         .attrs = ipw_sysfs_entries,
11511 };
11512
11513 #ifdef CONFIG_IPW2200_PROMISCUOUS
11514 static int ipw_prom_open(struct net_device *dev)
11515 {
11516         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11517         struct ipw_priv *priv = prom_priv->priv;
11518
11519         IPW_DEBUG_INFO("prom dev->open\n");
11520         netif_carrier_off(dev);
11521         netif_stop_queue(dev);
11522
11523         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11524                 priv->sys_config.accept_all_data_frames = 1;
11525                 priv->sys_config.accept_non_directed_frames = 1;
11526                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11527                 priv->sys_config.accept_all_mgmt_frames = 1;
11528
11529                 ipw_send_system_config(priv);
11530         }
11531
11532         return 0;
11533 }
11534
11535 static int ipw_prom_stop(struct net_device *dev)
11536 {
11537         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11538         struct ipw_priv *priv = prom_priv->priv;
11539
11540         IPW_DEBUG_INFO("prom dev->stop\n");
11541
11542         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11543                 priv->sys_config.accept_all_data_frames = 0;
11544                 priv->sys_config.accept_non_directed_frames = 0;
11545                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11546                 priv->sys_config.accept_all_mgmt_frames = 0;
11547
11548                 ipw_send_system_config(priv);
11549         }
11550
11551         return 0;
11552 }
11553
11554 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11555 {
11556         IPW_DEBUG_INFO("prom dev->xmit\n");
11557         netif_stop_queue(dev);
11558         return -EOPNOTSUPP;
11559 }
11560
11561 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11562 {
11563         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11564         return &prom_priv->ieee->stats;
11565 }
11566
11567 static int ipw_prom_alloc(struct ipw_priv *priv)
11568 {
11569         int rc = 0;
11570
11571         if (priv->prom_net_dev)
11572                 return -EPERM;
11573
11574         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11575         if (priv->prom_net_dev == NULL)
11576                 return -ENOMEM;
11577
11578         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11579         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11580         priv->prom_priv->priv = priv;
11581
11582         strcpy(priv->prom_net_dev->name, "rtap%d");
11583
11584         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11585         priv->prom_net_dev->open = ipw_prom_open;
11586         priv->prom_net_dev->stop = ipw_prom_stop;
11587         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11588         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11589
11590         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11591
11592         rc = register_netdev(priv->prom_net_dev);
11593         if (rc) {
11594                 free_ieee80211(priv->prom_net_dev);
11595                 priv->prom_net_dev = NULL;
11596                 return rc;
11597         }
11598
11599         return 0;
11600 }
11601
11602 static void ipw_prom_free(struct ipw_priv *priv)
11603 {
11604         if (!priv->prom_net_dev)
11605                 return;
11606
11607         unregister_netdev(priv->prom_net_dev);
11608         free_ieee80211(priv->prom_net_dev);
11609
11610         priv->prom_net_dev = NULL;
11611 }
11612
11613 #endif
11614
11615
11616 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11617                                    const struct pci_device_id *ent)
11618 {
11619         int err = 0;
11620         struct net_device *net_dev;
11621         void __iomem *base;
11622         u32 length, val;
11623         struct ipw_priv *priv;
11624         int i;
11625
11626         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11627         if (net_dev == NULL) {
11628                 err = -ENOMEM;
11629                 goto out;
11630         }
11631
11632         priv = ieee80211_priv(net_dev);
11633         priv->ieee = netdev_priv(net_dev);
11634
11635         priv->net_dev = net_dev;
11636         priv->pci_dev = pdev;
11637         ipw_debug_level = debug;
11638         spin_lock_init(&priv->irq_lock);
11639         spin_lock_init(&priv->lock);
11640         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11641                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11642
11643         mutex_init(&priv->mutex);
11644         if (pci_enable_device(pdev)) {
11645                 err = -ENODEV;
11646                 goto out_free_ieee80211;
11647         }
11648
11649         pci_set_master(pdev);
11650
11651         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11652         if (!err)
11653                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11654         if (err) {
11655                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11656                 goto out_pci_disable_device;
11657         }
11658
11659         pci_set_drvdata(pdev, priv);
11660
11661         err = pci_request_regions(pdev, DRV_NAME);
11662         if (err)
11663                 goto out_pci_disable_device;
11664
11665         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11666          * PCI Tx retries from interfering with C3 CPU state */
11667         pci_read_config_dword(pdev, 0x40, &val);
11668         if ((val & 0x0000ff00) != 0)
11669                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11670
11671         length = pci_resource_len(pdev, 0);
11672         priv->hw_len = length;
11673
11674         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11675         if (!base) {
11676                 err = -ENODEV;
11677                 goto out_pci_release_regions;
11678         }
11679
11680         priv->hw_base = base;
11681         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11682         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11683
11684         err = ipw_setup_deferred_work(priv);
11685         if (err) {
11686                 IPW_ERROR("Unable to setup deferred work\n");
11687                 goto out_iounmap;
11688         }
11689
11690         ipw_sw_reset(priv, 1);
11691
11692         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11693         if (err) {
11694                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11695                 goto out_destroy_workqueue;
11696         }
11697
11698         SET_NETDEV_DEV(net_dev, &pdev->dev);
11699
11700         mutex_lock(&priv->mutex);
11701
11702         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11703         priv->ieee->set_security = shim__set_security;
11704         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11705
11706 #ifdef CONFIG_IPW2200_QOS
11707         priv->ieee->is_qos_active = ipw_is_qos_active;
11708         priv->ieee->handle_probe_response = ipw_handle_beacon;
11709         priv->ieee->handle_beacon = ipw_handle_probe_response;
11710         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11711 #endif                          /* CONFIG_IPW2200_QOS */
11712
11713         priv->ieee->perfect_rssi = -20;
11714         priv->ieee->worst_rssi = -85;
11715
11716         net_dev->open = ipw_net_open;
11717         net_dev->stop = ipw_net_stop;
11718         net_dev->init = ipw_net_init;
11719         net_dev->get_stats = ipw_net_get_stats;
11720         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11721         net_dev->set_mac_address = ipw_net_set_mac_address;
11722         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11723         net_dev->wireless_data = &priv->wireless_data;
11724         net_dev->wireless_handlers = &ipw_wx_handler_def;
11725         net_dev->ethtool_ops = &ipw_ethtool_ops;
11726         net_dev->irq = pdev->irq;
11727         net_dev->base_addr = (unsigned long)priv->hw_base;
11728         net_dev->mem_start = pci_resource_start(pdev, 0);
11729         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11730
11731         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11732         if (err) {
11733                 IPW_ERROR("failed to create sysfs device attributes\n");
11734                 mutex_unlock(&priv->mutex);
11735                 goto out_release_irq;
11736         }
11737
11738         mutex_unlock(&priv->mutex);
11739         err = register_netdev(net_dev);
11740         if (err) {
11741                 IPW_ERROR("failed to register network device\n");
11742                 goto out_remove_sysfs;
11743         }
11744
11745 #ifdef CONFIG_IPW2200_PROMISCUOUS
11746         if (rtap_iface) {
11747                 err = ipw_prom_alloc(priv);
11748                 if (err) {
11749                         IPW_ERROR("Failed to register promiscuous network "
11750                                   "device (error %d).\n", err);
11751                         unregister_netdev(priv->net_dev);
11752                         goto out_remove_sysfs;
11753                 }
11754         }
11755 #endif
11756
11757         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11758                "channels, %d 802.11a channels)\n",
11759                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11760                priv->ieee->geo.a_channels);
11761
11762         return 0;
11763
11764       out_remove_sysfs:
11765         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11766       out_release_irq:
11767         free_irq(pdev->irq, priv);
11768       out_destroy_workqueue:
11769         destroy_workqueue(priv->workqueue);
11770         priv->workqueue = NULL;
11771       out_iounmap:
11772         iounmap(priv->hw_base);
11773       out_pci_release_regions:
11774         pci_release_regions(pdev);
11775       out_pci_disable_device:
11776         pci_disable_device(pdev);
11777         pci_set_drvdata(pdev, NULL);
11778       out_free_ieee80211:
11779         free_ieee80211(priv->net_dev);
11780       out:
11781         return err;
11782 }
11783
11784 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11785 {
11786         struct ipw_priv *priv = pci_get_drvdata(pdev);
11787         struct list_head *p, *q;
11788         int i;
11789
11790         if (!priv)
11791                 return;
11792
11793         mutex_lock(&priv->mutex);
11794
11795         priv->status |= STATUS_EXIT_PENDING;
11796         ipw_down(priv);
11797         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11798
11799         mutex_unlock(&priv->mutex);
11800
11801         unregister_netdev(priv->net_dev);
11802
11803         if (priv->rxq) {
11804                 ipw_rx_queue_free(priv, priv->rxq);
11805                 priv->rxq = NULL;
11806         }
11807         ipw_tx_queue_free(priv);
11808
11809         if (priv->cmdlog) {
11810                 kfree(priv->cmdlog);
11811                 priv->cmdlog = NULL;
11812         }
11813         /* ipw_down will ensure that there is no more pending work
11814          * in the workqueue's, so we can safely remove them now. */
11815         cancel_delayed_work(&priv->adhoc_check);
11816         cancel_delayed_work(&priv->gather_stats);
11817         cancel_delayed_work(&priv->request_scan);
11818         cancel_delayed_work(&priv->scan_event);
11819         cancel_delayed_work(&priv->rf_kill);
11820         cancel_delayed_work(&priv->scan_check);
11821         destroy_workqueue(priv->workqueue);
11822         priv->workqueue = NULL;
11823
11824         /* Free MAC hash list for ADHOC */
11825         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11826                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11827                         list_del(p);
11828                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11829                 }
11830         }
11831
11832         kfree(priv->error);
11833         priv->error = NULL;
11834
11835 #ifdef CONFIG_IPW2200_PROMISCUOUS
11836         ipw_prom_free(priv);
11837 #endif
11838
11839         free_irq(pdev->irq, priv);
11840         iounmap(priv->hw_base);
11841         pci_release_regions(pdev);
11842         pci_disable_device(pdev);
11843         pci_set_drvdata(pdev, NULL);
11844         free_ieee80211(priv->net_dev);
11845         free_firmware();
11846 }
11847
11848 #ifdef CONFIG_PM
11849 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11850 {
11851         struct ipw_priv *priv = pci_get_drvdata(pdev);
11852         struct net_device *dev = priv->net_dev;
11853
11854         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11855
11856         /* Take down the device; powers it off, etc. */
11857         ipw_down(priv);
11858
11859         /* Remove the PRESENT state of the device */
11860         netif_device_detach(dev);
11861
11862         pci_save_state(pdev);
11863         pci_disable_device(pdev);
11864         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11865
11866         return 0;
11867 }
11868
11869 static int ipw_pci_resume(struct pci_dev *pdev)
11870 {
11871         struct ipw_priv *priv = pci_get_drvdata(pdev);
11872         struct net_device *dev = priv->net_dev;
11873         int err;
11874         u32 val;
11875
11876         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11877
11878         pci_set_power_state(pdev, PCI_D0);
11879         err = pci_enable_device(pdev);
11880         if (err) {
11881                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11882                        dev->name);
11883                 return err;
11884         }
11885         pci_restore_state(pdev);
11886
11887         /*
11888          * Suspend/Resume resets the PCI configuration space, so we have to
11889          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11890          * from interfering with C3 CPU state. pci_restore_state won't help
11891          * here since it only restores the first 64 bytes pci config header.
11892          */
11893         pci_read_config_dword(pdev, 0x40, &val);
11894         if ((val & 0x0000ff00) != 0)
11895                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11896
11897         /* Set the device back into the PRESENT state; this will also wake
11898          * the queue of needed */
11899         netif_device_attach(dev);
11900
11901         /* Bring the device back up */
11902         queue_work(priv->workqueue, &priv->up);
11903
11904         return 0;
11905 }
11906 #endif
11907
11908 static void ipw_pci_shutdown(struct pci_dev *pdev)
11909 {
11910         struct ipw_priv *priv = pci_get_drvdata(pdev);
11911
11912         /* Take down the device; powers it off, etc. */
11913         ipw_down(priv);
11914
11915         pci_disable_device(pdev);
11916 }
11917
11918 /* driver initialization stuff */
11919 static struct pci_driver ipw_driver = {
11920         .name = DRV_NAME,
11921         .id_table = card_ids,
11922         .probe = ipw_pci_probe,
11923         .remove = __devexit_p(ipw_pci_remove),
11924 #ifdef CONFIG_PM
11925         .suspend = ipw_pci_suspend,
11926         .resume = ipw_pci_resume,
11927 #endif
11928         .shutdown = ipw_pci_shutdown,
11929 };
11930
11931 static int __init ipw_init(void)
11932 {
11933         int ret;
11934
11935         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11936         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11937
11938         ret = pci_register_driver(&ipw_driver);
11939         if (ret) {
11940                 IPW_ERROR("Unable to initialize PCI module\n");
11941                 return ret;
11942         }
11943
11944         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11945         if (ret) {
11946                 IPW_ERROR("Unable to create driver sysfs file\n");
11947                 pci_unregister_driver(&ipw_driver);
11948                 return ret;
11949         }
11950
11951         return ret;
11952 }
11953
11954 static void __exit ipw_exit(void)
11955 {
11956         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11957         pci_unregister_driver(&ipw_driver);
11958 }
11959
11960 module_param(disable, int, 0444);
11961 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11962
11963 module_param(associate, int, 0444);
11964 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11965
11966 module_param(auto_create, int, 0444);
11967 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11968
11969 module_param(led, int, 0444);
11970 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11971
11972 module_param(debug, int, 0444);
11973 MODULE_PARM_DESC(debug, "debug output mask");
11974
11975 module_param(channel, int, 0444);
11976 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11977
11978 #ifdef CONFIG_IPW2200_PROMISCUOUS
11979 module_param(rtap_iface, int, 0444);
11980 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11981 #endif
11982
11983 #ifdef CONFIG_IPW2200_QOS
11984 module_param(qos_enable, int, 0444);
11985 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11986
11987 module_param(qos_burst_enable, int, 0444);
11988 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11989
11990 module_param(qos_no_ack_mask, int, 0444);
11991 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11992
11993 module_param(burst_duration_CCK, int, 0444);
11994 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11995
11996 module_param(burst_duration_OFDM, int, 0444);
11997 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11998 #endif                          /* CONFIG_IPW2200_QOS */
11999
12000 #ifdef CONFIG_IPW2200_MONITOR
12001 module_param(mode, int, 0444);
12002 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12003 #else
12004 module_param(mode, int, 0444);
12005 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12006 #endif
12007
12008 module_param(bt_coexist, int, 0444);
12009 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12010
12011 module_param(hwcrypto, int, 0444);
12012 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12013
12014 module_param(cmdlog, int, 0444);
12015 MODULE_PARM_DESC(cmdlog,
12016                  "allocate a ring buffer for logging firmware commands");
12017
12018 module_param(roaming, int, 0444);
12019 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12020
12021 module_param(antenna, int, 0444);
12022 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12023
12024 module_exit(ipw_exit);
12025 module_init(ipw_init);