]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/p54/p54common.c
p54: don't report known but unhandled EEPROM codes as unknown
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  * C\ 2  Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
29 MODULE_DESCRIPTION("Softmac Prism54 common code");
30 MODULE_LICENSE("GPL");
31 MODULE_ALIAS("prism54common");
32
33 static struct ieee80211_rate p54_bgrates[] = {
34         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
36         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
37         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 60, .hw_value = 4, },
39         { .bitrate = 90, .hw_value = 5, },
40         { .bitrate = 120, .hw_value = 6, },
41         { .bitrate = 180, .hw_value = 7, },
42         { .bitrate = 240, .hw_value = 8, },
43         { .bitrate = 360, .hw_value = 9, },
44         { .bitrate = 480, .hw_value = 10, },
45         { .bitrate = 540, .hw_value = 11, },
46 };
47
48 static struct ieee80211_channel p54_bgchannels[] = {
49         { .center_freq = 2412, .hw_value = 1, },
50         { .center_freq = 2417, .hw_value = 2, },
51         { .center_freq = 2422, .hw_value = 3, },
52         { .center_freq = 2427, .hw_value = 4, },
53         { .center_freq = 2432, .hw_value = 5, },
54         { .center_freq = 2437, .hw_value = 6, },
55         { .center_freq = 2442, .hw_value = 7, },
56         { .center_freq = 2447, .hw_value = 8, },
57         { .center_freq = 2452, .hw_value = 9, },
58         { .center_freq = 2457, .hw_value = 10, },
59         { .center_freq = 2462, .hw_value = 11, },
60         { .center_freq = 2467, .hw_value = 12, },
61         { .center_freq = 2472, .hw_value = 13, },
62         { .center_freq = 2484, .hw_value = 14, },
63 };
64
65 static struct ieee80211_supported_band band_2GHz = {
66         .channels = p54_bgchannels,
67         .n_channels = ARRAY_SIZE(p54_bgchannels),
68         .bitrates = p54_bgrates,
69         .n_bitrates = ARRAY_SIZE(p54_bgrates),
70 };
71
72 static struct ieee80211_rate p54_arates[] = {
73         { .bitrate = 60, .hw_value = 4, },
74         { .bitrate = 90, .hw_value = 5, },
75         { .bitrate = 120, .hw_value = 6, },
76         { .bitrate = 180, .hw_value = 7, },
77         { .bitrate = 240, .hw_value = 8, },
78         { .bitrate = 360, .hw_value = 9, },
79         { .bitrate = 480, .hw_value = 10, },
80         { .bitrate = 540, .hw_value = 11, },
81 };
82
83 static struct ieee80211_channel p54_achannels[] = {
84         { .center_freq = 4920 },
85         { .center_freq = 4940 },
86         { .center_freq = 4960 },
87         { .center_freq = 4980 },
88         { .center_freq = 5040 },
89         { .center_freq = 5060 },
90         { .center_freq = 5080 },
91         { .center_freq = 5170 },
92         { .center_freq = 5180 },
93         { .center_freq = 5190 },
94         { .center_freq = 5200 },
95         { .center_freq = 5210 },
96         { .center_freq = 5220 },
97         { .center_freq = 5230 },
98         { .center_freq = 5240 },
99         { .center_freq = 5260 },
100         { .center_freq = 5280 },
101         { .center_freq = 5300 },
102         { .center_freq = 5320 },
103         { .center_freq = 5500 },
104         { .center_freq = 5520 },
105         { .center_freq = 5540 },
106         { .center_freq = 5560 },
107         { .center_freq = 5580 },
108         { .center_freq = 5600 },
109         { .center_freq = 5620 },
110         { .center_freq = 5640 },
111         { .center_freq = 5660 },
112         { .center_freq = 5680 },
113         { .center_freq = 5700 },
114         { .center_freq = 5745 },
115         { .center_freq = 5765 },
116         { .center_freq = 5785 },
117         { .center_freq = 5805 },
118         { .center_freq = 5825 },
119 };
120
121 static struct ieee80211_supported_band band_5GHz = {
122         .channels = p54_achannels,
123         .n_channels = ARRAY_SIZE(p54_achannels),
124         .bitrates = p54_arates,
125         .n_bitrates = ARRAY_SIZE(p54_arates),
126 };
127
128 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
129 {
130         struct p54_common *priv = dev->priv;
131         struct bootrec_exp_if *exp_if;
132         struct bootrec *bootrec;
133         u32 *data = (u32 *)fw->data;
134         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
135         u8 *fw_version = NULL;
136         size_t len;
137         int i;
138
139         if (priv->rx_start)
140                 return 0;
141
142         while (data < end_data && *data)
143                 data++;
144
145         while (data < end_data && !*data)
146                 data++;
147
148         bootrec = (struct bootrec *) data;
149
150         while (bootrec->data <= end_data &&
151                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
152                 u32 code = le32_to_cpu(bootrec->code);
153                 switch (code) {
154                 case BR_CODE_COMPONENT_ID:
155                         priv->fw_interface = be32_to_cpup((__be32 *)
156                                              bootrec->data);
157                         switch (priv->fw_interface) {
158                         case FW_FMAC:
159                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
160                                 break;
161                         case FW_LM20:
162                                 printk(KERN_INFO "p54: LM20 firmware\n");
163                                 break;
164                         case FW_LM86:
165                                 printk(KERN_INFO "p54: LM86 firmware\n");
166                                 break;
167                         case FW_LM87:
168                                 printk(KERN_INFO "p54: LM87 firmware\n");
169                                 break;
170                         default:
171                                 printk(KERN_INFO "p54: unknown firmware\n");
172                                 break;
173                         }
174                         break;
175                 case BR_CODE_COMPONENT_VERSION:
176                         /* 24 bytes should be enough for all firmwares */
177                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
178                                 fw_version = (unsigned char*)bootrec->data;
179                         break;
180                 case BR_CODE_DESCR: {
181                         struct bootrec_desc *desc =
182                                 (struct bootrec_desc *)bootrec->data;
183                         priv->rx_start = le32_to_cpu(desc->rx_start);
184                         /* FIXME add sanity checking */
185                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
186                         priv->headroom = desc->headroom;
187                         priv->tailroom = desc->tailroom;
188                         if (le32_to_cpu(bootrec->len) == 11)
189                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
190                         else
191                                 priv->rx_mtu = (size_t)
192                                         0x620 - priv->tx_hdr_len;
193                         break;
194                         }
195                 case BR_CODE_EXPOSED_IF:
196                         exp_if = (struct bootrec_exp_if *) bootrec->data;
197                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
198                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
199                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
200                         break;
201                 case BR_CODE_DEPENDENT_IF:
202                         break;
203                 case BR_CODE_END_OF_BRA:
204                 case LEGACY_BR_CODE_END_OF_BRA:
205                         end_data = NULL;
206                         break;
207                 default:
208                         break;
209                 }
210                 bootrec = (struct bootrec *)&bootrec->data[len];
211         }
212
213         if (fw_version)
214                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
215                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
216
217         if (priv->fw_var < 0x500)
218                 printk(KERN_INFO "p54: you are using an obsolete firmware. "
219                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
220                        "and grab one for \"kernel >= 2.6.28\"!\n");
221
222         if (priv->fw_var >= 0x300) {
223                 /* Firmware supports QoS, use it! */
224                 priv->tx_stats[4].limit = 3;            /* AC_VO */
225                 priv->tx_stats[5].limit = 4;            /* AC_VI */
226                 priv->tx_stats[6].limit = 3;            /* AC_BE */
227                 priv->tx_stats[7].limit = 2;            /* AC_BK */
228                 dev->queues = 4;
229         }
230
231         return 0;
232 }
233 EXPORT_SYMBOL_GPL(p54_parse_firmware);
234
235 static int p54_convert_rev0(struct ieee80211_hw *dev,
236                             struct pda_pa_curve_data *curve_data)
237 {
238         struct p54_common *priv = dev->priv;
239         struct p54_pa_curve_data_sample *dst;
240         struct pda_pa_curve_data_sample_rev0 *src;
241         size_t cd_len = sizeof(*curve_data) +
242                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
243                  curve_data->channels;
244         unsigned int i, j;
245         void *source, *target;
246
247         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
248         if (!priv->curve_data)
249                 return -ENOMEM;
250
251         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
252         source = curve_data->data;
253         target = priv->curve_data->data;
254         for (i = 0; i < curve_data->channels; i++) {
255                 __le16 *freq = source;
256                 source += sizeof(__le16);
257                 *((__le16 *)target) = *freq;
258                 target += sizeof(__le16);
259                 for (j = 0; j < curve_data->points_per_channel; j++) {
260                         dst = target;
261                         src = source;
262
263                         dst->rf_power = src->rf_power;
264                         dst->pa_detector = src->pa_detector;
265                         dst->data_64qam = src->pcv;
266                         /* "invent" the points for the other modulations */
267 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
268                         dst->data_16qam = SUB(src->pcv, 12);
269                         dst->data_qpsk = SUB(dst->data_16qam, 12);
270                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
271                         dst->data_barker = SUB(dst->data_bpsk, 14);
272 #undef SUB
273                         target += sizeof(*dst);
274                         source += sizeof(*src);
275                 }
276         }
277
278         return 0;
279 }
280
281 static int p54_convert_rev1(struct ieee80211_hw *dev,
282                             struct pda_pa_curve_data *curve_data)
283 {
284         struct p54_common *priv = dev->priv;
285         struct p54_pa_curve_data_sample *dst;
286         struct pda_pa_curve_data_sample_rev1 *src;
287         size_t cd_len = sizeof(*curve_data) +
288                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
289                  curve_data->channels;
290         unsigned int i, j;
291         void *source, *target;
292
293         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
294         if (!priv->curve_data)
295                 return -ENOMEM;
296
297         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
298         source = curve_data->data;
299         target = priv->curve_data->data;
300         for (i = 0; i < curve_data->channels; i++) {
301                 __le16 *freq = source;
302                 source += sizeof(__le16);
303                 *((__le16 *)target) = *freq;
304                 target += sizeof(__le16);
305                 for (j = 0; j < curve_data->points_per_channel; j++) {
306                         memcpy(target, source, sizeof(*src));
307
308                         target += sizeof(*dst);
309                         source += sizeof(*src);
310                 }
311                 source++;
312         }
313
314         return 0;
315 }
316
317 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
318                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
319 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
320
321 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
322 {
323         struct p54_common *priv = dev->priv;
324         struct eeprom_pda_wrap *wrap = NULL;
325         struct pda_entry *entry;
326         unsigned int data_len, entry_len;
327         void *tmp;
328         int err;
329         u8 *end = (u8 *)eeprom + len;
330         u16 synth = 0;
331
332         wrap = (struct eeprom_pda_wrap *) eeprom;
333         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
334
335         /* verify that at least the entry length/code fits */
336         while ((u8 *)entry <= end - sizeof(*entry)) {
337                 entry_len = le16_to_cpu(entry->len);
338                 data_len = ((entry_len - 1) << 1);
339
340                 /* abort if entry exceeds whole structure */
341                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
342                         break;
343
344                 switch (le16_to_cpu(entry->code)) {
345                 case PDR_MAC_ADDRESS:
346                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
347                         break;
348                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
349                         if (data_len < 2) {
350                                 err = -EINVAL;
351                                 goto err;
352                         }
353
354                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
355                                 err = -EINVAL;
356                                 goto err;
357                         }
358
359                         priv->output_limit = kmalloc(entry->data[1] *
360                                 sizeof(*priv->output_limit), GFP_KERNEL);
361
362                         if (!priv->output_limit) {
363                                 err = -ENOMEM;
364                                 goto err;
365                         }
366
367                         memcpy(priv->output_limit, &entry->data[2],
368                                entry->data[1]*sizeof(*priv->output_limit));
369                         priv->output_limit_len = entry->data[1];
370                         break;
371                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
372                         struct pda_pa_curve_data *curve_data =
373                                 (struct pda_pa_curve_data *)entry->data;
374                         if (data_len < sizeof(*curve_data)) {
375                                 err = -EINVAL;
376                                 goto err;
377                         }
378
379                         switch (curve_data->cal_method_rev) {
380                         case 0:
381                                 err = p54_convert_rev0(dev, curve_data);
382                                 break;
383                         case 1:
384                                 err = p54_convert_rev1(dev, curve_data);
385                                 break;
386                         default:
387                                 printk(KERN_ERR "p54: unknown curve data "
388                                                 "revision %d\n",
389                                                 curve_data->cal_method_rev);
390                                 err = -ENODEV;
391                                 break;
392                         }
393                         if (err)
394                                 goto err;
395
396                 }
397                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
398                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
399                         if (!priv->iq_autocal) {
400                                 err = -ENOMEM;
401                                 goto err;
402                         }
403
404                         memcpy(priv->iq_autocal, entry->data, data_len);
405                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
406                         break;
407                 case PDR_INTERFACE_LIST:
408                         tmp = entry->data;
409                         while ((u8 *)tmp < entry->data + data_len) {
410                                 struct bootrec_exp_if *exp_if = tmp;
411                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
412                                         synth = le16_to_cpu(exp_if->variant);
413                                 tmp += sizeof(struct bootrec_exp_if);
414                         }
415                         break;
416                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
417                         priv->version = *(u8 *)(entry->data + 1);
418                         break;
419                 case PDR_END:
420                         /* make it overrun */
421                         entry_len = len;
422                         break;
423                 case PDR_MANUFACTURING_PART_NUMBER:
424                 case PDR_PDA_VERSION:
425                 case PDR_NIC_SERIAL_NUMBER:
426                 case PDR_REGULATORY_DOMAIN_LIST:
427                 case PDR_TEMPERATURE_TYPE:
428                 case PDR_PRISM_PCI_IDENTIFIER:
429                 case PDR_COUNTRY_INFORMATION:
430                 case PDR_OEM_NAME:
431                 case PDR_PRODUCT_NAME:
432                 case PDR_UTF8_OEM_NAME:
433                 case PDR_UTF8_PRODUCT_NAME:
434                 case PDR_COUNTRY_LIST:
435                 case PDR_DEFAULT_COUNTRY:
436                 case PDR_ANTENNA_GAIN:
437                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
438                 case PDR_RSSI_LINEAR_APPROXIMATION:
439                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
440                 case PDR_REGULATORY_POWER_LIMITS:
441                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
442                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
443                 case PDR_PRISM_TX_IQ_CALIBRATION:
444                 case PDR_BASEBAND_REGISTERS:
445                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
446                         break;
447                 default:
448                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
449                                 le16_to_cpu(entry->code));
450                         break;
451                 }
452
453                 entry = (void *)entry + (entry_len + 1)*2;
454         }
455
456         if (!synth || !priv->iq_autocal || !priv->output_limit ||
457             !priv->curve_data) {
458                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
459                 err = -EINVAL;
460                 goto err;
461         }
462
463         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
464         if (priv->rxhw == 4)
465                 p54_init_xbow_synth(dev);
466         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
467                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
468         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
469                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
470
471         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
472                 u8 perm_addr[ETH_ALEN];
473
474                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
475                         wiphy_name(dev->wiphy));
476                 random_ether_addr(perm_addr);
477                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
478         }
479
480         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
481                 wiphy_name(dev->wiphy),
482                 dev->wiphy->perm_addr,
483                 priv->version, p54_rf_chips[priv->rxhw]);
484
485         return 0;
486
487   err:
488         if (priv->iq_autocal) {
489                 kfree(priv->iq_autocal);
490                 priv->iq_autocal = NULL;
491         }
492
493         if (priv->output_limit) {
494                 kfree(priv->output_limit);
495                 priv->output_limit = NULL;
496         }
497
498         if (priv->curve_data) {
499                 kfree(priv->curve_data);
500                 priv->curve_data = NULL;
501         }
502
503         printk(KERN_ERR "p54: eeprom parse failed!\n");
504         return err;
505 }
506
507 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
508 {
509         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
510         return ((rssi * 0x83) / 64 - 400) / 4;
511 }
512
513 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
514 {
515         struct p54_common *priv = dev->priv;
516         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
517         struct ieee80211_rx_status rx_status = {0};
518         u16 freq = le16_to_cpu(hdr->freq);
519         size_t header_len = sizeof(*hdr);
520         u32 tsf32;
521
522         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
523                 if (priv->filter_flags & FIF_FCSFAIL)
524                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
525                 else
526                         return 0;
527         }
528
529         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
530         rx_status.noise = priv->noise;
531         /* XX correct? */
532         rx_status.qual = (100 * hdr->rssi) / 127;
533         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
534                         hdr->rate : (hdr->rate - 4)) & 0xf;
535         rx_status.freq = freq;
536         rx_status.band =  dev->conf.channel->band;
537         rx_status.antenna = hdr->antenna;
538
539         tsf32 = le32_to_cpu(hdr->tsf32);
540         if (tsf32 < priv->tsf_low32)
541                 priv->tsf_high32++;
542         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
543         priv->tsf_low32 = tsf32;
544
545         rx_status.flag |= RX_FLAG_TSFT;
546
547         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
548                 header_len += hdr->align[0];
549
550         skb_pull(skb, header_len);
551         skb_trim(skb, le16_to_cpu(hdr->len));
552
553         ieee80211_rx_irqsafe(dev, skb, &rx_status);
554
555         return -1;
556 }
557
558 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
559 {
560         struct p54_common *priv = dev->priv;
561         int i;
562
563         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
564                 return ;
565
566         for (i = 0; i < dev->queues; i++)
567                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
568                         ieee80211_wake_queue(dev, i);
569 }
570
571 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
572 {
573         struct p54_common *priv = dev->priv;
574         struct ieee80211_tx_info *info;
575         struct memrecord *range;
576         unsigned long flags;
577         u32 freed = 0, last_addr = priv->rx_start;
578
579         if (!skb || !dev)
580                 return;
581
582         spin_lock_irqsave(&priv->tx_queue.lock, flags);
583         info = IEEE80211_SKB_CB(skb);
584         range = (void *)info->rate_driver_data;
585         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
586                 struct ieee80211_tx_info *ni;
587                 struct memrecord *mr;
588
589                 ni = IEEE80211_SKB_CB(skb->prev);
590                 mr = (struct memrecord *)ni->rate_driver_data;
591                 last_addr = mr->end_addr;
592         }
593         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
594                 struct ieee80211_tx_info *ni;
595                 struct memrecord *mr;
596
597                 ni = IEEE80211_SKB_CB(skb->next);
598                 mr = (struct memrecord *)ni->rate_driver_data;
599                 freed = mr->start_addr - last_addr;
600         } else
601                 freed = priv->rx_end - last_addr;
602         __skb_unlink(skb, &priv->tx_queue);
603         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
604         kfree_skb(skb);
605
606         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
607                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
608                 p54_wake_free_queues(dev);
609 }
610 EXPORT_SYMBOL_GPL(p54_free_skb);
611
612 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
613 {
614         struct p54_common *priv = dev->priv;
615         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
616         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
617         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
618         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
619         struct memrecord *range = NULL;
620         u32 freed = 0;
621         u32 last_addr = priv->rx_start;
622         unsigned long flags;
623         int count, idx;
624
625         spin_lock_irqsave(&priv->tx_queue.lock, flags);
626         while (entry != (struct sk_buff *)&priv->tx_queue) {
627                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
628                 struct p54_hdr *entry_hdr;
629                 struct p54_tx_data *entry_data;
630                 int pad = 0;
631
632                 range = (void *)info->rate_driver_data;
633                 if (range->start_addr != addr) {
634                         last_addr = range->end_addr;
635                         entry = entry->next;
636                         continue;
637                 }
638
639                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
640                         struct ieee80211_tx_info *ni;
641                         struct memrecord *mr;
642
643                         ni = IEEE80211_SKB_CB(entry->next);
644                         mr = (struct memrecord *)ni->rate_driver_data;
645                         freed = mr->start_addr - last_addr;
646                 } else
647                         freed = priv->rx_end - last_addr;
648
649                 last_addr = range->end_addr;
650                 __skb_unlink(entry, &priv->tx_queue);
651                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
652
653                 if (unlikely(entry == priv->cached_beacon)) {
654                         kfree_skb(entry);
655                         priv->cached_beacon = NULL;
656                         goto out;
657                 }
658
659                 /*
660                  * Clear manually, ieee80211_tx_info_clear_status would
661                  * clear the counts too and we need them.
662                  */
663                 memset(&info->status.ampdu_ack_len, 0,
664                        sizeof(struct ieee80211_tx_info) -
665                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
666                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
667                                       status.ampdu_ack_len) != 23);
668
669                 entry_hdr = (struct p54_hdr *) entry->data;
670                 entry_data = (struct p54_tx_data *) entry_hdr->data;
671                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
672                         pad = entry_data->align[0];
673
674                 /* walk through the rates array and adjust the counts */
675                 count = payload->tries;
676                 for (idx = 0; idx < 4; idx++) {
677                         if (count >= info->status.rates[idx].count) {
678                                 count -= info->status.rates[idx].count;
679                         } else if (count > 0) {
680                                 info->status.rates[idx].count = count;
681                                 count = 0;
682                         } else {
683                                 info->status.rates[idx].idx = -1;
684                                 info->status.rates[idx].count = 0;
685                         }
686                 }
687
688                 priv->tx_stats[entry_data->hw_queue].len--;
689                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
690                      (!payload->status))
691                         info->flags |= IEEE80211_TX_STAT_ACK;
692                 if (payload->status & P54_TX_PSM_CANCELLED)
693                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
694                 info->status.ack_signal = p54_rssi_to_dbm(dev,
695                                 (int)payload->ack_rssi);
696                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
697                 ieee80211_tx_status_irqsafe(dev, entry);
698                 goto out;
699         }
700         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
701
702 out:
703         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
704                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
705                 p54_wake_free_queues(dev);
706 }
707
708 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
709                                    struct sk_buff *skb)
710 {
711         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
712         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
713         struct p54_common *priv = dev->priv;
714
715         if (!priv->eeprom)
716                 return ;
717
718         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
719
720         complete(&priv->eeprom_comp);
721 }
722
723 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
724 {
725         struct p54_common *priv = dev->priv;
726         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
727         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
728         u32 tsf32 = le32_to_cpu(stats->tsf32);
729
730         if (tsf32 < priv->tsf_low32)
731                 priv->tsf_high32++;
732         priv->tsf_low32 = tsf32;
733
734         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
735         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
736         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
737
738         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
739         complete(&priv->stats_comp);
740
741         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
742 }
743
744 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
745 {
746         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
747         struct p54_trap *trap = (struct p54_trap *) hdr->data;
748         u16 event = le16_to_cpu(trap->event);
749         u16 freq = le16_to_cpu(trap->frequency);
750
751         switch (event) {
752         case P54_TRAP_BEACON_TX:
753                 break;
754         case P54_TRAP_RADAR:
755                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
756                         wiphy_name(dev->wiphy), freq);
757                 break;
758         case P54_TRAP_NO_BEACON:
759                 break;
760         case P54_TRAP_SCAN:
761                 break;
762         case P54_TRAP_TBTT:
763                 break;
764         case P54_TRAP_TIMER:
765                 break;
766         default:
767                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
768                        wiphy_name(dev->wiphy), event, freq);
769                 break;
770         }
771 }
772
773 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
774 {
775         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
776
777         switch (le16_to_cpu(hdr->type)) {
778         case P54_CONTROL_TYPE_TXDONE:
779                 p54_rx_frame_sent(dev, skb);
780                 break;
781         case P54_CONTROL_TYPE_TRAP:
782                 p54_rx_trap(dev, skb);
783                 break;
784         case P54_CONTROL_TYPE_BBP:
785                 break;
786         case P54_CONTROL_TYPE_STAT_READBACK:
787                 p54_rx_stats(dev, skb);
788                 break;
789         case P54_CONTROL_TYPE_EEPROM_READBACK:
790                 p54_rx_eeprom_readback(dev, skb);
791                 break;
792         default:
793                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
794                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
795                 break;
796         }
797
798         return 0;
799 }
800
801 /* returns zero if skb can be reused */
802 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
803 {
804         u16 type = le16_to_cpu(*((__le16 *)skb->data));
805
806         if (type & P54_HDR_FLAG_CONTROL)
807                 return p54_rx_control(dev, skb);
808         else
809                 return p54_rx_data(dev, skb);
810 }
811 EXPORT_SYMBOL_GPL(p54_rx);
812
813 /*
814  * So, the firmware is somewhat stupid and doesn't know what places in its
815  * memory incoming data should go to. By poking around in the firmware, we
816  * can find some unused memory to upload our packets to. However, data that we
817  * want the card to TX needs to stay intact until the card has told us that
818  * it is done with it. This function finds empty places we can upload to and
819  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
820  * allocated areas.
821  */
822 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
823                                struct p54_hdr *data, u32 len)
824 {
825         struct p54_common *priv = dev->priv;
826         struct sk_buff *entry = priv->tx_queue.next;
827         struct sk_buff *target_skb = NULL;
828         struct ieee80211_tx_info *info;
829         struct memrecord *range;
830         u32 last_addr = priv->rx_start;
831         u32 largest_hole = 0;
832         u32 target_addr = priv->rx_start;
833         unsigned long flags;
834         unsigned int left;
835         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
836
837         if (!skb)
838                 return -EINVAL;
839
840         spin_lock_irqsave(&priv->tx_queue.lock, flags);
841         left = skb_queue_len(&priv->tx_queue);
842         while (left--) {
843                 u32 hole_size;
844                 info = IEEE80211_SKB_CB(entry);
845                 range = (void *)info->rate_driver_data;
846                 hole_size = range->start_addr - last_addr;
847                 if (!target_skb && hole_size >= len) {
848                         target_skb = entry->prev;
849                         hole_size -= len;
850                         target_addr = last_addr;
851                 }
852                 largest_hole = max(largest_hole, hole_size);
853                 last_addr = range->end_addr;
854                 entry = entry->next;
855         }
856         if (!target_skb && priv->rx_end - last_addr >= len) {
857                 target_skb = priv->tx_queue.prev;
858                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
859                 if (!skb_queue_empty(&priv->tx_queue)) {
860                         info = IEEE80211_SKB_CB(target_skb);
861                         range = (void *)info->rate_driver_data;
862                         target_addr = range->end_addr;
863                 }
864         } else
865                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
866
867         if (!target_skb) {
868                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
869                 ieee80211_stop_queues(dev);
870                 return -ENOMEM;
871         }
872
873         info = IEEE80211_SKB_CB(skb);
874         range = (void *)info->rate_driver_data;
875         range->start_addr = target_addr;
876         range->end_addr = target_addr + len;
877         __skb_queue_after(&priv->tx_queue, target_skb, skb);
878         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
879
880         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
881                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
882                 ieee80211_stop_queues(dev);
883
884         data->req_id = cpu_to_le32(target_addr + priv->headroom);
885         return 0;
886 }
887
888 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
889                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
890 {
891         struct p54_common *priv = dev->priv;
892         struct p54_hdr *hdr;
893         struct sk_buff *skb;
894
895         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
896         if (!skb)
897                 return NULL;
898         skb_reserve(skb, priv->tx_hdr_len);
899
900         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
901         hdr->flags = cpu_to_le16(hdr_flags);
902         hdr->len = cpu_to_le16(len - sizeof(*hdr));
903         hdr->type = cpu_to_le16(type);
904         hdr->tries = hdr->rts_tries = 0;
905
906         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
907                 kfree_skb(skb);
908                 return NULL;
909         }
910         return skb;
911 }
912
913 int p54_read_eeprom(struct ieee80211_hw *dev)
914 {
915         struct p54_common *priv = dev->priv;
916         struct p54_hdr *hdr = NULL;
917         struct p54_eeprom_lm86 *eeprom_hdr;
918         struct sk_buff *skb;
919         size_t eeprom_size = 0x2020, offset = 0, blocksize;
920         int ret = -ENOMEM;
921         void *eeprom = NULL;
922
923         skb = p54_alloc_skb(dev, 0x8000, sizeof(*hdr) + sizeof(*eeprom_hdr) +
924                             EEPROM_READBACK_LEN,
925                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
926         if (!skb)
927                 goto free;
928         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
929         if (!priv->eeprom)
930                 goto free;
931         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
932         if (!eeprom)
933                 goto free;
934
935         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
936                      sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN);
937
938         while (eeprom_size) {
939                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
940                 eeprom_hdr->offset = cpu_to_le16(offset);
941                 eeprom_hdr->len = cpu_to_le16(blocksize);
942                 priv->tx(dev, skb, 0);
943
944                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
945                         printk(KERN_ERR "%s: device does not respond!\n",
946                                 wiphy_name(dev->wiphy));
947                         ret = -EBUSY;
948                         goto free;
949                 }
950
951                 memcpy(eeprom + offset, priv->eeprom, blocksize);
952                 offset += blocksize;
953                 eeprom_size -= blocksize;
954         }
955
956         ret = p54_parse_eeprom(dev, eeprom, offset);
957 free:
958         kfree(priv->eeprom);
959         priv->eeprom = NULL;
960         p54_free_skb(dev, skb);
961         kfree(eeprom);
962
963         return ret;
964 }
965 EXPORT_SYMBOL_GPL(p54_read_eeprom);
966
967 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
968                 bool set)
969 {
970         struct p54_common *priv = dev->priv;
971         struct sk_buff *skb;
972         struct p54_tim *tim;
973
974         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
975                       sizeof(struct p54_hdr) + sizeof(*tim),
976                       P54_CONTROL_TYPE_TIM, GFP_KERNEL);
977         if (!skb)
978                 return -ENOMEM;
979
980         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
981         tim->count = 1;
982         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
983         priv->tx(dev, skb, 1);
984         return 0;
985 }
986
987 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
988 {
989         struct p54_common *priv = dev->priv;
990         struct sk_buff *skb;
991         struct p54_sta_unlock *sta;
992
993         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
994                 sizeof(struct p54_hdr) + sizeof(*sta),
995                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
996         if (!skb)
997                 return -ENOMEM;
998
999         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1000         memcpy(sta->addr, addr, ETH_ALEN);
1001         priv->tx(dev, skb, 1);
1002         return 0;
1003 }
1004
1005 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1006 {
1007         struct p54_common *priv = dev->priv;
1008         struct sk_buff *skb;
1009         struct p54_hdr *hdr;
1010         struct p54_txcancel *cancel;
1011
1012         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1013                 sizeof(struct p54_hdr) + sizeof(*cancel),
1014                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1015         if (!skb)
1016                 return -ENOMEM;
1017
1018         hdr = (void *)entry->data;
1019         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1020         cancel->req_id = hdr->req_id;
1021         priv->tx(dev, skb, 1);
1022         return 0;
1023 }
1024
1025 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1026                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1027                 u16 *flags, u16 *aid)
1028 {
1029         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1030         struct p54_common *priv = dev->priv;
1031         int ret = 0;
1032
1033         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1034                 if (ieee80211_is_beacon(hdr->frame_control)) {
1035                         *aid = 0;
1036                         *queue = 0;
1037                         *extra_len = IEEE80211_MAX_TIM_LEN;
1038                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1039                         return 0;
1040                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1041                         *aid = 0;
1042                         *queue = 2;
1043                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1044                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1045                         return 0;
1046                 } else {
1047                         *queue = 2;
1048                         ret = 0;
1049                 }
1050         } else {
1051                 *queue += 4;
1052                 ret = 1;
1053         }
1054
1055         switch (priv->mode) {
1056         case NL80211_IFTYPE_STATION:
1057                 *aid = 1;
1058                 break;
1059         case NL80211_IFTYPE_AP:
1060         case NL80211_IFTYPE_ADHOC:
1061                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1062                         *aid = 0;
1063                         *queue = 3;
1064                         return 0;
1065                 }
1066                 if (info->control.sta)
1067                         *aid = info->control.sta->aid;
1068                 else
1069                         *flags = P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1070         }
1071         return ret;
1072 }
1073
1074 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1075 {
1076         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1077         struct ieee80211_tx_queue_stats *current_queue = NULL;
1078         struct p54_common *priv = dev->priv;
1079         struct p54_hdr *hdr;
1080         struct p54_tx_data *txhdr;
1081         size_t padding, len, tim_len = 0;
1082         int i, j, ridx;
1083         u16 hdr_flags = 0, aid = 0;
1084         u8 rate, queue;
1085         u8 cts_rate = 0x20;
1086         u8 rc_flags;
1087         u8 calculated_tries[4];
1088         u8 nrates = 0, nremaining = 8;
1089
1090         queue = skb_get_queue_mapping(skb);
1091
1092         if (p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid)) {
1093                 current_queue = &priv->tx_stats[queue];
1094                 if (unlikely(current_queue->len > current_queue->limit))
1095                         return NETDEV_TX_BUSY;
1096                 current_queue->len++;
1097                 current_queue->count++;
1098                 if (current_queue->len == current_queue->limit)
1099                         ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1100         }
1101
1102         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1103         len = skb->len;
1104
1105         if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) {
1106                 if (info->control.sta)
1107                         if (p54_sta_unlock(dev, info->control.sta->addr)) {
1108                                 if (current_queue) {
1109                                         current_queue->len--;
1110                                         current_queue->count--;
1111                                 }
1112                                 return NETDEV_TX_BUSY;
1113                         }
1114         }
1115
1116         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1117         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1118
1119         if (padding)
1120                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1121         hdr->len = cpu_to_le16(len);
1122         hdr->type = cpu_to_le16(aid);
1123         hdr->rts_tries = info->control.rates[0].count;
1124
1125         /*
1126          * we register the rates in perfect order, and
1127          * RTS/CTS won't happen on 5 GHz
1128          */
1129         cts_rate = info->control.rts_cts_rate_idx;
1130
1131         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1132
1133         /* see how many rates got used */
1134         for (i = 0; i < 4; i++) {
1135                 if (info->control.rates[i].idx < 0)
1136                         break;
1137                 nrates++;
1138         }
1139
1140         /* limit tries to 8/nrates per rate */
1141         for (i = 0; i < nrates; i++) {
1142                 /*
1143                  * The magic expression here is equivalent to 8/nrates for
1144                  * all values that matter, but avoids division and jumps.
1145                  * Note that nrates can only take the values 1 through 4.
1146                  */
1147                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1148                                                  info->control.rates[i].count);
1149                 nremaining -= calculated_tries[i];
1150         }
1151
1152         /* if there are tries left, distribute from back to front */
1153         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1154                 int tmp = info->control.rates[i].count - calculated_tries[i];
1155
1156                 if (tmp <= 0)
1157                         continue;
1158                 /* RC requested more tries at this rate */
1159
1160                 tmp = min_t(int, tmp, nremaining);
1161                 calculated_tries[i] += tmp;
1162                 nremaining -= tmp;
1163         }
1164
1165         ridx = 0;
1166         for (i = 0; i < nrates && ridx < 8; i++) {
1167                 /* we register the rates in perfect order */
1168                 rate = info->control.rates[i].idx;
1169                 if (info->band == IEEE80211_BAND_5GHZ)
1170                         rate += 4;
1171
1172                 /* store the count we actually calculated for TX status */
1173                 info->control.rates[i].count = calculated_tries[i];
1174
1175                 rc_flags = info->control.rates[i].flags;
1176                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1177                         rate |= 0x10;
1178                         cts_rate |= 0x10;
1179                 }
1180                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1181                         rate |= 0x40;
1182                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1183                         rate |= 0x20;
1184                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1185                         txhdr->rateset[ridx] = rate;
1186                         ridx++;
1187                 }
1188         }
1189
1190         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1191                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1192
1193         /* TODO: enable bursting */
1194         hdr->flags = cpu_to_le16(hdr_flags);
1195         hdr->tries = ridx;
1196         txhdr->crypt_offset = 0;
1197         txhdr->rts_rate_idx = 0;
1198         txhdr->key_type = 0;
1199         txhdr->key_len = 0;
1200         txhdr->hw_queue = queue;
1201         txhdr->backlog = 32;
1202         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1203         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1204                 2 : info->antenna_sel_tx - 1;
1205         txhdr->output_power = priv->output_power;
1206         txhdr->cts_rate = cts_rate;
1207         if (padding)
1208                 txhdr->align[0] = padding;
1209
1210         /* modifies skb->cb and with it info, so must be last! */
1211         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len))) {
1212                 skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1213                 if (current_queue) {
1214                         current_queue->len--;
1215                         current_queue->count--;
1216                 }
1217                 return NETDEV_TX_BUSY;
1218         }
1219         priv->tx(dev, skb, 0);
1220         return 0;
1221 }
1222
1223 static int p54_setup_mac(struct ieee80211_hw *dev, u16 mode, const u8 *bssid)
1224 {
1225         struct p54_common *priv = dev->priv;
1226         struct sk_buff *skb;
1227         struct p54_setup_mac *setup;
1228
1229         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1230                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1231                             GFP_ATOMIC);
1232         if (!skb)
1233                 return -ENOMEM;
1234
1235         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1236         priv->mac_mode = mode;
1237         setup->mac_mode = cpu_to_le16(mode);
1238         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1239         if (!bssid)
1240                 memset(setup->bssid, ~0, ETH_ALEN);
1241         else
1242                 memcpy(setup->bssid, bssid, ETH_ALEN);
1243         setup->rx_antenna = priv->rx_antenna;
1244         if (priv->fw_var < 0x500) {
1245                 setup->v1.basic_rate_mask = cpu_to_le32(0x15f);
1246                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1247                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1248                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1249                 setup->v1.wakeup_timer = cpu_to_le16(500);
1250                 setup->v1.unalloc0 = cpu_to_le16(0);
1251         } else {
1252                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1253                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1254                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1255                 setup->v2.timer = cpu_to_le16(1000);
1256                 setup->v2.truncate = cpu_to_le16(48896);
1257                 setup->v2.basic_rate_mask = cpu_to_le32(0x15f);
1258                 setup->v2.sbss_offset = 0;
1259                 setup->v2.mcast_window = 0;
1260                 setup->v2.rx_rssi_threshold = 0;
1261                 setup->v2.rx_ed_threshold = 0;
1262                 setup->v2.ref_clock = cpu_to_le32(644245094);
1263                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1264                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1265         }
1266         priv->tx(dev, skb, 1);
1267         return 0;
1268 }
1269
1270 static int p54_set_freq(struct ieee80211_hw *dev, u16 frequency)
1271 {
1272         struct p54_common *priv = dev->priv;
1273         struct sk_buff *skb;
1274         struct p54_scan *chan;
1275         unsigned int i;
1276         void *entry;
1277         __le16 freq = cpu_to_le16(frequency);
1278
1279         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1280                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1281                             GFP_ATOMIC);
1282         if (!skb)
1283                 return -ENOMEM;
1284
1285         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1286         memset(chan->padding1, 0, sizeof(chan->padding1));
1287         chan->mode = cpu_to_le16(P54_SCAN_EXIT);
1288         chan->dwell = cpu_to_le16(0x0);
1289
1290         for (i = 0; i < priv->iq_autocal_len; i++) {
1291                 if (priv->iq_autocal[i].freq != freq)
1292                         continue;
1293
1294                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1295                        sizeof(*priv->iq_autocal));
1296                 break;
1297         }
1298         if (i == priv->iq_autocal_len)
1299                 goto err;
1300
1301         for (i = 0; i < priv->output_limit_len; i++) {
1302                 if (priv->output_limit[i].freq != freq)
1303                         continue;
1304
1305                 chan->val_barker = 0x38;
1306                 chan->val_bpsk = chan->dup_bpsk =
1307                         priv->output_limit[i].val_bpsk;
1308                 chan->val_qpsk = chan->dup_qpsk =
1309                         priv->output_limit[i].val_qpsk;
1310                 chan->val_16qam = chan->dup_16qam =
1311                         priv->output_limit[i].val_16qam;
1312                 chan->val_64qam = chan->dup_64qam =
1313                         priv->output_limit[i].val_64qam;
1314                 break;
1315         }
1316         if (i == priv->output_limit_len)
1317                 goto err;
1318
1319         entry = priv->curve_data->data;
1320         for (i = 0; i < priv->curve_data->channels; i++) {
1321                 if (*((__le16 *)entry) != freq) {
1322                         entry += sizeof(__le16);
1323                         entry += sizeof(struct p54_pa_curve_data_sample) *
1324                                  priv->curve_data->points_per_channel;
1325                         continue;
1326                 }
1327
1328                 entry += sizeof(__le16);
1329                 chan->pa_points_per_curve =
1330                         min(priv->curve_data->points_per_channel, (u8) 8);
1331
1332                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1333                        chan->pa_points_per_curve);
1334                 break;
1335         }
1336
1337         if (priv->fw_var < 0x500) {
1338                 chan->v1.rssical_mul = cpu_to_le16(130);
1339                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1340         } else {
1341                 chan->v2.rssical_mul = cpu_to_le16(130);
1342                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1343                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1344                 memset(chan->v2.rts_rates, 0, 8);
1345         }
1346         priv->tx(dev, skb, 1);
1347         return 0;
1348
1349  err:
1350         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1351         kfree_skb(skb);
1352         return -EINVAL;
1353 }
1354
1355 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1356 {
1357         struct p54_common *priv = dev->priv;
1358         struct sk_buff *skb;
1359         struct p54_led *led;
1360
1361         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1362                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1363                         GFP_ATOMIC);
1364         if (!skb)
1365                 return -ENOMEM;
1366
1367         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1368         led->mode = cpu_to_le16(mode);
1369         led->led_permanent = cpu_to_le16(link);
1370         led->led_temporary = cpu_to_le16(act);
1371         led->duration = cpu_to_le16(1000);
1372         priv->tx(dev, skb, 1);
1373         return 0;
1374 }
1375
1376 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1377 do {                                                            \
1378         queue.aifs = cpu_to_le16(ai_fs);                        \
1379         queue.cwmin = cpu_to_le16(cw_min);                      \
1380         queue.cwmax = cpu_to_le16(cw_max);                      \
1381         queue.txop = cpu_to_le16(_txop);                        \
1382 } while(0)
1383
1384 static int p54_set_edcf(struct ieee80211_hw *dev)
1385 {
1386         struct p54_common *priv = dev->priv;
1387         struct sk_buff *skb;
1388         struct p54_edcf *edcf;
1389
1390         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1391                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1392                         GFP_ATOMIC);
1393         if (!skb)
1394                 return -ENOMEM;
1395
1396         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1397         if (priv->use_short_slot) {
1398                 edcf->slottime = 9;
1399                 edcf->sifs = 0x10;
1400                 edcf->eofpad = 0x00;
1401         } else {
1402                 edcf->slottime = 20;
1403                 edcf->sifs = 0x0a;
1404                 edcf->eofpad = 0x06;
1405         }
1406         /* (see prism54/isl_oid.h for further details) */
1407         edcf->frameburst = cpu_to_le16(0);
1408         edcf->round_trip_delay = cpu_to_le16(0);
1409         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1410         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1411         priv->tx(dev, skb, 1);
1412         return 0;
1413 }
1414
1415 static int p54_init_stats(struct ieee80211_hw *dev)
1416 {
1417         struct p54_common *priv = dev->priv;
1418
1419         priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
1420                         sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
1421                         P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1422         if (!priv->cached_stats)
1423                         return -ENOMEM;
1424
1425         mod_timer(&priv->stats_timer, jiffies + HZ);
1426         return 0;
1427 }
1428
1429 static int p54_beacon_tim(struct sk_buff *skb)
1430 {
1431         /*
1432          * the good excuse for this mess is ... the firmware.
1433          * The dummy TIM MUST be at the end of the beacon frame,
1434          * because it'll be overwritten!
1435          */
1436
1437         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1438         u8 *pos, *end;
1439
1440         if (skb->len <= sizeof(mgmt)) {
1441                 printk(KERN_ERR "p54: beacon is too short!\n");
1442                 return -EINVAL;
1443         }
1444
1445         pos = (u8 *)mgmt->u.beacon.variable;
1446         end = skb->data + skb->len;
1447         while (pos < end) {
1448                 if (pos + 2 + pos[1] > end) {
1449                         printk(KERN_ERR "p54: parsing beacon failed\n");
1450                         return -EINVAL;
1451                 }
1452
1453                 if (pos[0] == WLAN_EID_TIM) {
1454                         u8 dtim_len = pos[1];
1455                         u8 dtim_period = pos[3];
1456                         u8 *next = pos + 2 + dtim_len;
1457
1458                         if (dtim_len < 3) {
1459                                 printk(KERN_ERR "p54: invalid dtim len!\n");
1460                                 return -EINVAL;
1461                         }
1462                         memmove(pos, next, end - next);
1463
1464                         if (dtim_len > 3)
1465                                 skb_trim(skb, skb->len - (dtim_len - 3));
1466
1467                         pos = end - (dtim_len + 2);
1468
1469                         /* add the dummy at the end */
1470                         pos[0] = WLAN_EID_TIM;
1471                         pos[1] = 3;
1472                         pos[2] = 0;
1473                         pos[3] = dtim_period;
1474                         pos[4] = 0;
1475                         return 0;
1476                 }
1477                 pos += 2 + pos[1];
1478         }
1479         return 0;
1480 }
1481
1482 static int p54_beacon_update(struct ieee80211_hw *dev,
1483                         struct ieee80211_vif *vif)
1484 {
1485         struct p54_common *priv = dev->priv;
1486         struct sk_buff *beacon;
1487         int ret;
1488
1489         if (priv->cached_beacon) {
1490                 p54_tx_cancel(dev, priv->cached_beacon);
1491                 /* wait for the last beacon the be freed */
1492                 msleep(10);
1493         }
1494
1495         beacon = ieee80211_beacon_get(dev, vif);
1496         if (!beacon)
1497                 return -ENOMEM;
1498         ret = p54_beacon_tim(beacon);
1499         if (ret)
1500                 return ret;
1501         ret = p54_tx(dev, beacon);
1502         if (ret)
1503                 return ret;
1504         priv->cached_beacon = beacon;
1505         priv->tsf_high32 = 0;
1506         priv->tsf_low32 = 0;
1507
1508         return 0;
1509 }
1510
1511 static int p54_start(struct ieee80211_hw *dev)
1512 {
1513         struct p54_common *priv = dev->priv;
1514         int err;
1515
1516         mutex_lock(&priv->conf_mutex);
1517         err = priv->open(dev);
1518         if (!err)
1519                 priv->mode = NL80211_IFTYPE_MONITOR;
1520         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1521         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1522         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1523         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1524         err = p54_set_edcf(dev);
1525         if (!err)
1526                 err = p54_init_stats(dev);
1527
1528         mutex_unlock(&priv->conf_mutex);
1529         return err;
1530 }
1531
1532 static void p54_stop(struct ieee80211_hw *dev)
1533 {
1534         struct p54_common *priv = dev->priv;
1535         struct sk_buff *skb;
1536
1537         mutex_lock(&priv->conf_mutex);
1538         del_timer(&priv->stats_timer);
1539         p54_free_skb(dev, priv->cached_stats);
1540         priv->cached_stats = NULL;
1541         if (priv->cached_beacon)
1542                 p54_tx_cancel(dev, priv->cached_beacon);
1543
1544         while ((skb = skb_dequeue(&priv->tx_queue)))
1545                 kfree_skb(skb);
1546
1547         kfree(priv->cached_beacon);
1548         priv->cached_beacon = NULL;
1549         priv->stop(dev);
1550         priv->tsf_high32 = priv->tsf_low32 = 0;
1551         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1552         mutex_unlock(&priv->conf_mutex);
1553 }
1554
1555 static int p54_add_interface(struct ieee80211_hw *dev,
1556                              struct ieee80211_if_init_conf *conf)
1557 {
1558         struct p54_common *priv = dev->priv;
1559
1560         mutex_lock(&priv->conf_mutex);
1561         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1562                 mutex_unlock(&priv->conf_mutex);
1563                 return -EOPNOTSUPP;
1564         }
1565
1566         switch (conf->type) {
1567         case NL80211_IFTYPE_STATION:
1568         case NL80211_IFTYPE_ADHOC:
1569         case NL80211_IFTYPE_AP:
1570                 priv->mode = conf->type;
1571                 break;
1572         default:
1573                 mutex_unlock(&priv->conf_mutex);
1574                 return -EOPNOTSUPP;
1575         }
1576
1577         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1578
1579         p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
1580
1581         switch (conf->type) {
1582         case NL80211_IFTYPE_STATION:
1583                 p54_setup_mac(dev, P54_FILTER_TYPE_STATION, NULL);
1584                 break;
1585         case NL80211_IFTYPE_AP:
1586                 p54_setup_mac(dev, P54_FILTER_TYPE_AP, priv->mac_addr);
1587                 break;
1588         case NL80211_IFTYPE_ADHOC:
1589                 p54_setup_mac(dev, P54_FILTER_TYPE_IBSS, NULL);
1590                 break;
1591         default:
1592                 BUG();  /* impossible */
1593                 break;
1594         }
1595
1596         p54_set_leds(dev, 1, 0, 0);
1597
1598         mutex_unlock(&priv->conf_mutex);
1599         return 0;
1600 }
1601
1602 static void p54_remove_interface(struct ieee80211_hw *dev,
1603                                  struct ieee80211_if_init_conf *conf)
1604 {
1605         struct p54_common *priv = dev->priv;
1606
1607         mutex_lock(&priv->conf_mutex);
1608         if (priv->cached_beacon)
1609                 p54_tx_cancel(dev, priv->cached_beacon);
1610         p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
1611         priv->mode = NL80211_IFTYPE_MONITOR;
1612         memset(priv->mac_addr, 0, ETH_ALEN);
1613         mutex_unlock(&priv->conf_mutex);
1614 }
1615
1616 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1617 {
1618         int ret;
1619         struct p54_common *priv = dev->priv;
1620         struct ieee80211_conf *conf = &dev->conf;
1621
1622         mutex_lock(&priv->conf_mutex);
1623         priv->rx_antenna = 2; /* automatic */
1624         priv->output_power = conf->power_level << 2;
1625         ret = p54_set_freq(dev, conf->channel->center_freq);
1626         if (!ret)
1627                 ret = p54_set_edcf(dev);
1628         mutex_unlock(&priv->conf_mutex);
1629         return ret;
1630 }
1631
1632 static int p54_config_interface(struct ieee80211_hw *dev,
1633                                 struct ieee80211_vif *vif,
1634                                 struct ieee80211_if_conf *conf)
1635 {
1636         struct p54_common *priv = dev->priv;
1637         int ret = 0;
1638
1639         mutex_lock(&priv->conf_mutex);
1640         switch (priv->mode) {
1641         case NL80211_IFTYPE_STATION:
1642                 ret = p54_setup_mac(dev, P54_FILTER_TYPE_STATION, conf->bssid);
1643                 if (ret)
1644                         goto out;
1645                 ret = p54_set_leds(dev, 1,
1646                                    !is_multicast_ether_addr(conf->bssid), 0);
1647                 if (ret)
1648                         goto out;
1649                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1650                 break;
1651         case NL80211_IFTYPE_AP:
1652         case NL80211_IFTYPE_ADHOC:
1653                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1654                 ret = p54_set_freq(dev, dev->conf.channel->center_freq);
1655                 if (ret)
1656                         goto out;
1657                 ret = p54_setup_mac(dev, priv->mac_mode, priv->bssid);
1658                 if (ret)
1659                         goto out;
1660                 if (conf->changed & IEEE80211_IFCC_BEACON) {
1661                         ret = p54_beacon_update(dev, vif);
1662                         if (ret)
1663                                 goto out;
1664                         ret = p54_set_edcf(dev);
1665                         if (ret)
1666                                 goto out;
1667                 }
1668         }
1669 out:
1670         mutex_unlock(&priv->conf_mutex);
1671         return ret;
1672 }
1673
1674 static void p54_configure_filter(struct ieee80211_hw *dev,
1675                                  unsigned int changed_flags,
1676                                  unsigned int *total_flags,
1677                                  int mc_count, struct dev_mc_list *mclist)
1678 {
1679         struct p54_common *priv = dev->priv;
1680
1681         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1682                         FIF_PROMISC_IN_BSS |
1683                         FIF_FCSFAIL;
1684
1685         priv->filter_flags = *total_flags;
1686
1687         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1688                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1689                         p54_setup_mac(dev, priv->mac_mode, NULL);
1690                 else
1691                         p54_setup_mac(dev, priv->mac_mode, priv->bssid);
1692         }
1693
1694         if (changed_flags & FIF_PROMISC_IN_BSS) {
1695                 if (*total_flags & FIF_PROMISC_IN_BSS)
1696                         p54_setup_mac(dev, priv->mac_mode | 0x8, NULL);
1697                 else
1698                         p54_setup_mac(dev, priv->mac_mode & ~0x8, priv->bssid);
1699         }
1700 }
1701
1702 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1703                        const struct ieee80211_tx_queue_params *params)
1704 {
1705         struct p54_common *priv = dev->priv;
1706         int ret;
1707
1708         mutex_lock(&priv->conf_mutex);
1709         if ((params) && !(queue > 4)) {
1710                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1711                         params->cw_min, params->cw_max, params->txop);
1712         } else
1713                 ret = -EINVAL;
1714         if (!ret)
1715                 ret = p54_set_edcf(dev);
1716         mutex_unlock(&priv->conf_mutex);
1717         return ret;
1718 }
1719
1720 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1721 {
1722         struct p54_common *priv = dev->priv;
1723         struct sk_buff *skb;
1724         struct p54_xbow_synth *xbow;
1725
1726         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1727                             sizeof(struct p54_hdr),
1728                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1729                             GFP_KERNEL);
1730         if (!skb)
1731                 return -ENOMEM;
1732
1733         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1734         xbow->magic1 = cpu_to_le16(0x1);
1735         xbow->magic2 = cpu_to_le16(0x2);
1736         xbow->freq = cpu_to_le16(5390);
1737         memset(xbow->padding, 0, sizeof(xbow->padding));
1738         priv->tx(dev, skb, 1);
1739         return 0;
1740 }
1741
1742 static void p54_statistics_timer(unsigned long data)
1743 {
1744         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1745         struct p54_common *priv = dev->priv;
1746
1747         BUG_ON(!priv->cached_stats);
1748
1749         priv->tx(dev, priv->cached_stats, 0);
1750 }
1751
1752 static int p54_get_stats(struct ieee80211_hw *dev,
1753                          struct ieee80211_low_level_stats *stats)
1754 {
1755         struct p54_common *priv = dev->priv;
1756
1757         del_timer(&priv->stats_timer);
1758         p54_statistics_timer((unsigned long)dev);
1759
1760         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1761                 printk(KERN_ERR "%s: device does not respond!\n",
1762                         wiphy_name(dev->wiphy));
1763                 return -EBUSY;
1764         }
1765
1766         memcpy(stats, &priv->stats, sizeof(*stats));
1767
1768         return 0;
1769 }
1770
1771 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1772                             struct ieee80211_tx_queue_stats *stats)
1773 {
1774         struct p54_common *priv = dev->priv;
1775
1776         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1777
1778         return 0;
1779 }
1780
1781 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1782                                  struct ieee80211_vif *vif,
1783                                  struct ieee80211_bss_conf *info,
1784                                  u32 changed)
1785 {
1786         struct p54_common *priv = dev->priv;
1787
1788         if (changed & BSS_CHANGED_ERP_SLOT) {
1789                 priv->use_short_slot = info->use_short_slot;
1790                 p54_set_edcf(dev);
1791         }
1792 }
1793
1794 static const struct ieee80211_ops p54_ops = {
1795         .tx                     = p54_tx,
1796         .start                  = p54_start,
1797         .stop                   = p54_stop,
1798         .add_interface          = p54_add_interface,
1799         .remove_interface       = p54_remove_interface,
1800         .set_tim                = p54_set_tim,
1801         .config                 = p54_config,
1802         .config_interface       = p54_config_interface,
1803         .bss_info_changed       = p54_bss_info_changed,
1804         .configure_filter       = p54_configure_filter,
1805         .conf_tx                = p54_conf_tx,
1806         .get_stats              = p54_get_stats,
1807         .get_tx_stats           = p54_get_tx_stats
1808 };
1809
1810 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1811 {
1812         struct ieee80211_hw *dev;
1813         struct p54_common *priv;
1814
1815         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1816         if (!dev)
1817                 return NULL;
1818
1819         priv = dev->priv;
1820         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1821         skb_queue_head_init(&priv->tx_queue);
1822         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1823                      IEEE80211_HW_SIGNAL_DBM |
1824                      IEEE80211_HW_NOISE_DBM;
1825
1826         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION |
1827                                           NL80211_IFTYPE_ADHOC |
1828                                           NL80211_IFTYPE_AP);
1829
1830         dev->channel_change_time = 1000;        /* TODO: find actual value */
1831         priv->tx_stats[0].limit = 1;            /* Beacon queue */
1832         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
1833         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
1834         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
1835         priv->tx_stats[4].limit = 5;            /* Data */
1836         dev->queues = 1;
1837         priv->noise = -94;
1838         /*
1839          * We support at most 8 tries no matter which rate they're at,
1840          * we cannot support max_rates * max_rate_tries as we set it
1841          * here, but setting it correctly to 4/2 or so would limit us
1842          * artificially if the RC algorithm wants just two rates, so
1843          * let's say 4/7, we'll redistribute it at TX time, see the
1844          * comments there.
1845          */
1846         dev->max_rates = 4;
1847         dev->max_rate_tries = 7;
1848         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
1849                                  sizeof(struct p54_tx_data);
1850
1851         mutex_init(&priv->conf_mutex);
1852         init_completion(&priv->eeprom_comp);
1853         init_completion(&priv->stats_comp);
1854         setup_timer(&priv->stats_timer, p54_statistics_timer,
1855                 (unsigned long)dev);
1856
1857         return dev;
1858 }
1859 EXPORT_SYMBOL_GPL(p54_init_common);
1860
1861 void p54_free_common(struct ieee80211_hw *dev)
1862 {
1863         struct p54_common *priv = dev->priv;
1864         del_timer(&priv->stats_timer);
1865         kfree_skb(priv->cached_stats);
1866         kfree(priv->iq_autocal);
1867         kfree(priv->output_limit);
1868         kfree(priv->curve_data);
1869 }
1870 EXPORT_SYMBOL_GPL(p54_free_common);
1871
1872 static int __init p54_init(void)
1873 {
1874         return 0;
1875 }
1876
1877 static void __exit p54_exit(void)
1878 {
1879 }
1880
1881 module_init(p54_init);
1882 module_exit(p54_exit);