]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2500pci.c
[PATCH] rt2x00: Use enum defines
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 /*
28  * Set enviroment defines for rt2x00.h
29  */
30 #define DRV_NAME "rt2500pci"
31
32 #include <linux/delay.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/eeprom_93cx6.h>
39
40 #include "rt2x00.h"
41 #include "rt2x00pci.h"
42 #include "rt2500pci.h"
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00pci_register_read and rt2x00pci_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58 {
59         u32 reg;
60         unsigned int i;
61
62         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65                         break;
66                 udelay(REGISTER_BUSY_DELAY);
67         }
68
69         return reg;
70 }
71
72 static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73                                 const unsigned int word, const u8 value)
74 {
75         u32 reg;
76
77         /*
78          * Wait until the BBP becomes ready.
79          */
80         reg = rt2500pci_bbp_check(rt2x00dev);
81         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83                 return;
84         }
85
86         /*
87          * Write the data into the BBP.
88          */
89         reg = 0;
90         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96 }
97
98 static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99                                const unsigned int word, u8 *value)
100 {
101         u32 reg;
102
103         /*
104          * Wait until the BBP becomes ready.
105          */
106         reg = rt2500pci_bbp_check(rt2x00dev);
107         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109                 return;
110         }
111
112         /*
113          * Write the request into the BBP.
114          */
115         reg = 0;
116         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122         /*
123          * Wait until the BBP becomes ready.
124          */
125         reg = rt2500pci_bbp_check(rt2x00dev);
126         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128                 *value = 0xff;
129                 return;
130         }
131
132         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133 }
134
135 static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136                                const unsigned int word, const u32 value)
137 {
138         u32 reg;
139         unsigned int i;
140
141         if (!word)
142                 return;
143
144         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147                         goto rf_write;
148                 udelay(REGISTER_BUSY_DELAY);
149         }
150
151         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152         return;
153
154 rf_write:
155         reg = 0;
156         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162         rt2x00_rf_write(rt2x00dev, word, value);
163 }
164
165 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166 {
167         struct rt2x00_dev *rt2x00dev = eeprom->data;
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174         eeprom->reg_data_clock =
175             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176         eeprom->reg_chip_select =
177             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178 }
179
180 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181 {
182         struct rt2x00_dev *rt2x00dev = eeprom->data;
183         u32 reg = 0;
184
185         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188                            !!eeprom->reg_data_clock);
189         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190                            !!eeprom->reg_chip_select);
191
192         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193 }
194
195 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
196 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198 static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, u32 *data)
200 {
201         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202 }
203
204 static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205                                 const unsigned int word, u32 data)
206 {
207         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208 }
209
210 static const struct rt2x00debug rt2500pci_rt2x00debug = {
211         .owner  = THIS_MODULE,
212         .csr    = {
213                 .read           = rt2500pci_read_csr,
214                 .write          = rt2500pci_write_csr,
215                 .word_size      = sizeof(u32),
216                 .word_count     = CSR_REG_SIZE / sizeof(u32),
217         },
218         .eeprom = {
219                 .read           = rt2x00_eeprom_read,
220                 .write          = rt2x00_eeprom_write,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt2500pci_bbp_read,
226                 .write          = rt2500pci_bbp_write,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt2500pci_rf_write,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 #ifdef CONFIG_RT2500PCI_RFKILL
240 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246 }
247 #else
248 #define rt2500pci_rfkill_poll   NULL
249 #endif /* CONFIG_RT2500PCI_RFKILL */
250
251 /*
252  * Configuration handlers.
253  */
254 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
255                                       __le32 *mac)
256 {
257         rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
258                                       (2 * sizeof(__le32)));
259 }
260
261 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
262                                    __le32 *bssid)
263 {
264         rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
265                                       (2 * sizeof(__le32)));
266 }
267
268 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
269                                   const int tsf_sync)
270 {
271         u32 reg;
272
273         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
274
275         /*
276          * Enable beacon config
277          */
278         rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
279         rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
280                            PREAMBLE + get_duration(IEEE80211_HEADER, 20));
281         rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
282                            rt2x00lib_get_ring(rt2x00dev,
283                                               IEEE80211_TX_QUEUE_BEACON)
284                            ->tx_params.cw_min);
285         rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
286
287         /*
288          * Enable synchronisation.
289          */
290         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
291         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
292         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
293         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
294         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);
295         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
296 }
297
298 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
299                                       const int short_preamble,
300                                       const int ack_timeout,
301                                       const int ack_consume_time)
302 {
303         int preamble_mask;
304         u32 reg;
305
306         /*
307          * When short preamble is enabled, we should set bit 0x08
308          */
309         preamble_mask = short_preamble << 3;
310
311         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
312         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
313         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
314         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
315
316         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
317         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
318         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
319         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
320         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
321
322         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
323         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
324         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
325         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
326         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
327
328         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
329         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
330         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
331         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
332         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
333
334         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
335         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
336         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
337         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
338         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
339 }
340
341 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
342                                      const int basic_rate_mask)
343 {
344         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
345 }
346
347 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
348                                      struct rf_channel *rf, const int txpower)
349 {
350         u8 r70;
351
352         /*
353          * Set TXpower.
354          */
355         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
356
357         /*
358          * Switch on tuning bits.
359          * For RT2523 devices we do not need to update the R1 register.
360          */
361         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
362                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
363         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
364
365         /*
366          * For RT2525 we should first set the channel to half band higher.
367          */
368         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
369                 static const u32 vals[] = {
370                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
371                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
372                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
373                         0x00080d2e, 0x00080d3a
374                 };
375
376                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
377                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
378                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
379                 if (rf->rf4)
380                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
381         }
382
383         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
384         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
385         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
386         if (rf->rf4)
387                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
388
389         /*
390          * Channel 14 requires the Japan filter bit to be set.
391          */
392         r70 = 0x46;
393         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
394         rt2500pci_bbp_write(rt2x00dev, 70, r70);
395
396         msleep(1);
397
398         /*
399          * Switch off tuning bits.
400          * For RT2523 devices we do not need to update the R1 register.
401          */
402         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
403                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
404                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
405         }
406
407         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
408         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
409
410         /*
411          * Clear false CRC during channel switch.
412          */
413         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
414 }
415
416 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
417                                      const int txpower)
418 {
419         u32 rf3;
420
421         rt2x00_rf_read(rt2x00dev, 3, &rf3);
422         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
423         rt2500pci_rf_write(rt2x00dev, 3, rf3);
424 }
425
426 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
427                                      const int antenna_tx, const int antenna_rx)
428 {
429         u32 reg;
430         u8 r14;
431         u8 r2;
432
433         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
434         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
435         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
436
437         /*
438          * Configure the TX antenna.
439          */
440         switch (antenna_tx) {
441         case ANTENNA_SW_DIVERSITY:
442         case ANTENNA_HW_DIVERSITY:
443                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
444                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
445                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
446                 break;
447         case ANTENNA_A:
448                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
449                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
450                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
451                 break;
452         case ANTENNA_B:
453                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
454                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
455                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
456                 break;
457         }
458
459         /*
460          * Configure the RX antenna.
461          */
462         switch (antenna_rx) {
463         case ANTENNA_SW_DIVERSITY:
464         case ANTENNA_HW_DIVERSITY:
465                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
466                 break;
467         case ANTENNA_A:
468                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
469                 break;
470         case ANTENNA_B:
471                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
472                 break;
473         }
474
475         /*
476          * RT2525E and RT5222 need to flip TX I/Q
477          */
478         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
479             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
480                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
481                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
482                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
483
484                 /*
485                  * RT2525E does not need RX I/Q Flip.
486                  */
487                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
488                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
489         } else {
490                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
491                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
492         }
493
494         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
495         rt2500pci_bbp_write(rt2x00dev, 14, r14);
496         rt2500pci_bbp_write(rt2x00dev, 2, r2);
497 }
498
499 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
500                                       struct rt2x00lib_conf *libconf)
501 {
502         u32 reg;
503
504         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
505         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
506         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
507
508         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
509         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
510         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
511         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
512
513         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
514         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
515         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
516         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
517
518         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
519         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
520         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
521         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
522
523         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
524         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
525                            libconf->conf->beacon_int * 16);
526         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
527                            libconf->conf->beacon_int * 16);
528         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
529 }
530
531 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
532                              const unsigned int flags,
533                              struct rt2x00lib_conf *libconf)
534 {
535         if (flags & CONFIG_UPDATE_PHYMODE)
536                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
537         if (flags & CONFIG_UPDATE_CHANNEL)
538                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
539                                          libconf->conf->power_level);
540         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
541                 rt2500pci_config_txpower(rt2x00dev,
542                                          libconf->conf->power_level);
543         if (flags & CONFIG_UPDATE_ANTENNA)
544                 rt2500pci_config_antenna(rt2x00dev,
545                                          libconf->conf->antenna_sel_tx,
546                                          libconf->conf->antenna_sel_rx);
547         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
548                 rt2500pci_config_duration(rt2x00dev, libconf);
549 }
550
551 /*
552  * LED functions.
553  */
554 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
555 {
556         u32 reg;
557
558         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
559
560         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
561         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
562
563         if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
564                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
565                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
566         } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
567                 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
568                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
569         } else {
570                 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
571                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
572         }
573
574         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
575 }
576
577 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
578 {
579         u32 reg;
580
581         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
582         rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
583         rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
584         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
585 }
586
587 /*
588  * Link tuning
589  */
590 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
591                                  struct link_qual *qual)
592 {
593         u32 reg;
594
595         /*
596          * Update FCS error count from register.
597          */
598         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
599         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
600
601         /*
602          * Update False CCA count from register.
603          */
604         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
605         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
606 }
607
608 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
609 {
610         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
611         rt2x00dev->link.vgc_level = 0x48;
612 }
613
614 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
615 {
616         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
617         u8 r17;
618
619         /*
620          * To prevent collisions with MAC ASIC on chipsets
621          * up to version C the link tuning should halt after 20
622          * seconds.
623          */
624         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
625             rt2x00dev->link.count > 20)
626                 return;
627
628         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
629
630         /*
631          * Chipset versions C and lower should directly continue
632          * to the dynamic CCA tuning.
633          */
634         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
635                 goto dynamic_cca_tune;
636
637         /*
638          * A too low RSSI will cause too much false CCA which will
639          * then corrupt the R17 tuning. To remidy this the tuning should
640          * be stopped (While making sure the R17 value will not exceed limits)
641          */
642         if (rssi < -80 && rt2x00dev->link.count > 20) {
643                 if (r17 >= 0x41) {
644                         r17 = rt2x00dev->link.vgc_level;
645                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
646                 }
647                 return;
648         }
649
650         /*
651          * Special big-R17 for short distance
652          */
653         if (rssi >= -58) {
654                 if (r17 != 0x50)
655                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
656                 return;
657         }
658
659         /*
660          * Special mid-R17 for middle distance
661          */
662         if (rssi >= -74) {
663                 if (r17 != 0x41)
664                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
665                 return;
666         }
667
668         /*
669          * Leave short or middle distance condition, restore r17
670          * to the dynamic tuning range.
671          */
672         if (r17 >= 0x41) {
673                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
674                 return;
675         }
676
677 dynamic_cca_tune:
678
679         /*
680          * R17 is inside the dynamic tuning range,
681          * start tuning the link based on the false cca counter.
682          */
683         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
684                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
685                 rt2x00dev->link.vgc_level = r17;
686         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
687                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
688                 rt2x00dev->link.vgc_level = r17;
689         }
690 }
691
692 /*
693  * Initialization functions.
694  */
695 static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
696 {
697         struct data_ring *ring = rt2x00dev->rx;
698         struct data_desc *rxd;
699         unsigned int i;
700         u32 word;
701
702         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
703
704         for (i = 0; i < ring->stats.limit; i++) {
705                 rxd = ring->entry[i].priv;
706
707                 rt2x00_desc_read(rxd, 1, &word);
708                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
709                                    ring->entry[i].data_dma);
710                 rt2x00_desc_write(rxd, 1, word);
711
712                 rt2x00_desc_read(rxd, 0, &word);
713                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
714                 rt2x00_desc_write(rxd, 0, word);
715         }
716
717         rt2x00_ring_index_clear(rt2x00dev->rx);
718 }
719
720 static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
721 {
722         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
723         struct data_desc *txd;
724         unsigned int i;
725         u32 word;
726
727         memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
728
729         for (i = 0; i < ring->stats.limit; i++) {
730                 txd = ring->entry[i].priv;
731
732                 rt2x00_desc_read(txd, 1, &word);
733                 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
734                                    ring->entry[i].data_dma);
735                 rt2x00_desc_write(txd, 1, word);
736
737                 rt2x00_desc_read(txd, 0, &word);
738                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
739                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
740                 rt2x00_desc_write(txd, 0, word);
741         }
742
743         rt2x00_ring_index_clear(ring);
744 }
745
746 static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
747 {
748         u32 reg;
749
750         /*
751          * Initialize rings.
752          */
753         rt2500pci_init_rxring(rt2x00dev);
754         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
755         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
756         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
757         rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
758
759         /*
760          * Initialize registers.
761          */
762         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
763         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
764                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
765         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
766                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
767         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
768                            rt2x00dev->bcn[1].stats.limit);
769         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
770                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
771         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
772
773         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
774         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
775                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
776         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
777
778         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
779         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
780                            rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
781         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
782
783         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
784         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
785                            rt2x00dev->bcn[1].data_dma);
786         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
787
788         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
789         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
790                            rt2x00dev->bcn[0].data_dma);
791         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
792
793         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
794         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
795         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
796         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
797
798         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
799         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
800                            rt2x00dev->rx->data_dma);
801         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
802
803         return 0;
804 }
805
806 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
807 {
808         u32 reg;
809
810         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
811         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
812         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
813         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
814
815         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
816         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
817         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
818         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
819         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
820
821         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
822         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
823                            rt2x00dev->rx->data_size / 128);
824         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
825
826         /*
827          * Always use CWmin and CWmax set in descriptor.
828          */
829         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
830         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
831         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
832
833         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
834
835         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
836         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
837         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
838         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
839         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
840         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
841         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
842         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
843         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
844         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
845
846         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
847         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
848         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
849         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
850         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
851         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
852
853         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
854         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
855         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
856         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
857         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
858         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
859
860         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
861         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
862         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
863         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
864         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
865         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
866
867         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
868         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
869         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
870         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
871         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
872         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
873         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
874         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
875         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
876         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
877
878         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
879         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
880         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
881         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
882         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
883         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
884         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
885         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
886         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
887
888         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
889
890         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
891         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
892
893         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
894                 return -EBUSY;
895
896         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
897         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
898
899         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
900         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
901         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
902
903         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
904         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
905         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
906         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
907         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
908         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
909         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
910         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
911
912         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
913
914         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
915
916         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
917         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
918         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
919         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
920         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
921
922         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
923         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
924         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
925         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
926
927         /*
928          * We must clear the FCS and FIFO error count.
929          * These registers are cleared on read,
930          * so we may pass a useless variable to store the value.
931          */
932         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
933         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
934
935         return 0;
936 }
937
938 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
939 {
940         unsigned int i;
941         u16 eeprom;
942         u8 reg_id;
943         u8 value;
944
945         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
946                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
947                 if ((value != 0xff) && (value != 0x00))
948                         goto continue_csr_init;
949                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
950                 udelay(REGISTER_BUSY_DELAY);
951         }
952
953         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
954         return -EACCES;
955
956 continue_csr_init:
957         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
958         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
959         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
960         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
961         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
962         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
963         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
964         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
965         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
966         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
967         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
968         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
969         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
970         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
971         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
972         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
973         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
974         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
975         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
976         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
977         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
978         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
979         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
980         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
981         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
982         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
983         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
984         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
985         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
986         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
987
988         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
989         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
990                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
991
992                 if (eeprom != 0xffff && eeprom != 0x0000) {
993                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
994                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
995                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
996                               reg_id, value);
997                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
998                 }
999         }
1000         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * Device state switch handlers.
1007  */
1008 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1009                                 enum dev_state state)
1010 {
1011         u32 reg;
1012
1013         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1014         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1015                            state == STATE_RADIO_RX_OFF);
1016         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1017 }
1018
1019 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1020                                  enum dev_state state)
1021 {
1022         int mask = (state == STATE_RADIO_IRQ_OFF);
1023         u32 reg;
1024
1025         /*
1026          * When interrupts are being enabled, the interrupt registers
1027          * should clear the register to assure a clean state.
1028          */
1029         if (state == STATE_RADIO_IRQ_ON) {
1030                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1031                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1032         }
1033
1034         /*
1035          * Only toggle the interrupts bits we are going to use.
1036          * Non-checked interrupt bits are disabled by default.
1037          */
1038         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1039         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1040         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1041         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1042         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1043         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1044         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1045 }
1046
1047 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1048 {
1049         /*
1050          * Initialize all registers.
1051          */
1052         if (rt2500pci_init_rings(rt2x00dev) ||
1053             rt2500pci_init_registers(rt2x00dev) ||
1054             rt2500pci_init_bbp(rt2x00dev)) {
1055                 ERROR(rt2x00dev, "Register initialization failed.\n");
1056                 return -EIO;
1057         }
1058
1059         /*
1060          * Enable interrupts.
1061          */
1062         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1063
1064         /*
1065          * Enable LED
1066          */
1067         rt2500pci_enable_led(rt2x00dev);
1068
1069         return 0;
1070 }
1071
1072 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1073 {
1074         u32 reg;
1075
1076         /*
1077          * Disable LED
1078          */
1079         rt2500pci_disable_led(rt2x00dev);
1080
1081         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1082
1083         /*
1084          * Disable synchronisation.
1085          */
1086         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1087
1088         /*
1089          * Cancel RX and TX.
1090          */
1091         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1092         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1093         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1094
1095         /*
1096          * Disable interrupts.
1097          */
1098         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1099 }
1100
1101 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1102                                enum dev_state state)
1103 {
1104         u32 reg;
1105         unsigned int i;
1106         char put_to_sleep;
1107         char bbp_state;
1108         char rf_state;
1109
1110         put_to_sleep = (state != STATE_AWAKE);
1111
1112         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1113         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1114         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1115         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1116         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1117         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1118
1119         /*
1120          * Device is not guaranteed to be in the requested state yet.
1121          * We must wait until the register indicates that the
1122          * device has entered the correct state.
1123          */
1124         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1125                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1126                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1127                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1128                 if (bbp_state == state && rf_state == state)
1129                         return 0;
1130                 msleep(10);
1131         }
1132
1133         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1134                "current device state: bbp %d and rf %d.\n",
1135                state, bbp_state, rf_state);
1136
1137         return -EBUSY;
1138 }
1139
1140 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1141                                       enum dev_state state)
1142 {
1143         int retval = 0;
1144
1145         switch (state) {
1146         case STATE_RADIO_ON:
1147                 retval = rt2500pci_enable_radio(rt2x00dev);
1148                 break;
1149         case STATE_RADIO_OFF:
1150                 rt2500pci_disable_radio(rt2x00dev);
1151                 break;
1152         case STATE_RADIO_RX_ON:
1153         case STATE_RADIO_RX_OFF:
1154                 rt2500pci_toggle_rx(rt2x00dev, state);
1155                 break;
1156         case STATE_DEEP_SLEEP:
1157         case STATE_SLEEP:
1158         case STATE_STANDBY:
1159         case STATE_AWAKE:
1160                 retval = rt2500pci_set_state(rt2x00dev, state);
1161                 break;
1162         default:
1163                 retval = -ENOTSUPP;
1164                 break;
1165         }
1166
1167         return retval;
1168 }
1169
1170 /*
1171  * TX descriptor initialization
1172  */
1173 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1174                                     struct data_desc *txd,
1175                                     struct txdata_entry_desc *desc,
1176                                     struct ieee80211_hdr *ieee80211hdr,
1177                                     unsigned int length,
1178                                     struct ieee80211_tx_control *control)
1179 {
1180         u32 word;
1181
1182         /*
1183          * Start writing the descriptor words.
1184          */
1185         rt2x00_desc_read(txd, 2, &word);
1186         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1187         rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1188         rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1189         rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1190         rt2x00_desc_write(txd, 2, word);
1191
1192         rt2x00_desc_read(txd, 3, &word);
1193         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1194         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1195         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1196         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1197         rt2x00_desc_write(txd, 3, word);
1198
1199         rt2x00_desc_read(txd, 10, &word);
1200         rt2x00_set_field32(&word, TXD_W10_RTS,
1201                            test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1202         rt2x00_desc_write(txd, 10, word);
1203
1204         rt2x00_desc_read(txd, 0, &word);
1205         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1206         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1207         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1208                            test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1209         rt2x00_set_field32(&word, TXD_W0_ACK,
1210                            !(control->flags & IEEE80211_TXCTL_NO_ACK));
1211         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1212                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1213         rt2x00_set_field32(&word, TXD_W0_OFDM,
1214                            test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1215         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1216         rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1217         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1218                            !!(control->flags &
1219                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1220         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1221         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1222         rt2x00_desc_write(txd, 0, word);
1223 }
1224
1225 /*
1226  * TX data initialization
1227  */
1228 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1229                                     unsigned int queue)
1230 {
1231         u32 reg;
1232
1233         if (queue == IEEE80211_TX_QUEUE_BEACON) {
1234                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1235                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1236                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1237                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1238                 }
1239                 return;
1240         }
1241
1242         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1243         if (queue == IEEE80211_TX_QUEUE_DATA0)
1244                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1245         else if (queue == IEEE80211_TX_QUEUE_DATA1)
1246                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1247         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1248                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1249         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1250 }
1251
1252 /*
1253  * RX control handlers
1254  */
1255 static void rt2500pci_fill_rxdone(struct data_entry *entry,
1256                                   struct rxdata_entry_desc *desc)
1257 {
1258         struct data_desc *rxd = entry->priv;
1259         u32 word0;
1260         u32 word2;
1261
1262         rt2x00_desc_read(rxd, 0, &word0);
1263         rt2x00_desc_read(rxd, 2, &word2);
1264
1265         desc->flags = 0;
1266         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1267                 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
1268         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1269                 desc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1270
1271         desc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1272         desc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1273             entry->ring->rt2x00dev->rssi_offset;
1274         desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1275         desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1276 }
1277
1278 /*
1279  * Interrupt functions.
1280  */
1281 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1282 {
1283         struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1284         struct data_entry *entry;
1285         struct data_desc *txd;
1286         u32 word;
1287         int tx_status;
1288         int retry;
1289
1290         while (!rt2x00_ring_empty(ring)) {
1291                 entry = rt2x00_get_data_entry_done(ring);
1292                 txd = entry->priv;
1293                 rt2x00_desc_read(txd, 0, &word);
1294
1295                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1296                     !rt2x00_get_field32(word, TXD_W0_VALID))
1297                         break;
1298
1299                 /*
1300                  * Obtain the status about this packet.
1301                  */
1302                 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1303                 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1304
1305                 rt2x00lib_txdone(entry, tx_status, retry);
1306
1307                 /*
1308                  * Make this entry available for reuse.
1309                  */
1310                 entry->flags = 0;
1311                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1312                 rt2x00_desc_write(txd, 0, word);
1313                 rt2x00_ring_index_done_inc(ring);
1314         }
1315
1316         /*
1317          * If the data ring was full before the txdone handler
1318          * we must make sure the packet queue in the mac80211 stack
1319          * is reenabled when the txdone handler has finished.
1320          */
1321         entry = ring->entry;
1322         if (!rt2x00_ring_full(ring))
1323                 ieee80211_wake_queue(rt2x00dev->hw,
1324                                      entry->tx_status.control.queue);
1325 }
1326
1327 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1328 {
1329         struct rt2x00_dev *rt2x00dev = dev_instance;
1330         u32 reg;
1331
1332         /*
1333          * Get the interrupt sources & saved to local variable.
1334          * Write register value back to clear pending interrupts.
1335          */
1336         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1337         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1338
1339         if (!reg)
1340                 return IRQ_NONE;
1341
1342         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1343                 return IRQ_HANDLED;
1344
1345         /*
1346          * Handle interrupts, walk through all bits
1347          * and run the tasks, the bits are checked in order of
1348          * priority.
1349          */
1350
1351         /*
1352          * 1 - Beacon timer expired interrupt.
1353          */
1354         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1355                 rt2x00lib_beacondone(rt2x00dev);
1356
1357         /*
1358          * 2 - Rx ring done interrupt.
1359          */
1360         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1361                 rt2x00pci_rxdone(rt2x00dev);
1362
1363         /*
1364          * 3 - Atim ring transmit done interrupt.
1365          */
1366         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1367                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1368
1369         /*
1370          * 4 - Priority ring transmit done interrupt.
1371          */
1372         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1373                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1374
1375         /*
1376          * 5 - Tx ring transmit done interrupt.
1377          */
1378         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1379                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1380
1381         return IRQ_HANDLED;
1382 }
1383
1384 /*
1385  * Device probe functions.
1386  */
1387 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1388 {
1389         struct eeprom_93cx6 eeprom;
1390         u32 reg;
1391         u16 word;
1392         u8 *mac;
1393
1394         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1395
1396         eeprom.data = rt2x00dev;
1397         eeprom.register_read = rt2500pci_eepromregister_read;
1398         eeprom.register_write = rt2500pci_eepromregister_write;
1399         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1400             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1401         eeprom.reg_data_in = 0;
1402         eeprom.reg_data_out = 0;
1403         eeprom.reg_data_clock = 0;
1404         eeprom.reg_chip_select = 0;
1405
1406         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1407                                EEPROM_SIZE / sizeof(u16));
1408
1409         /*
1410          * Start validation of the data that has been read.
1411          */
1412         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1413         if (!is_valid_ether_addr(mac)) {
1414                 DECLARE_MAC_BUF(macbuf);
1415
1416                 random_ether_addr(mac);
1417                 EEPROM(rt2x00dev, "MAC: %s\n",
1418                        print_mac(macbuf, mac));
1419         }
1420
1421         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1422         if (word == 0xffff) {
1423                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1424                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1425                                    ANTENNA_SW_DIVERSITY);
1426                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1427                                    ANTENNA_SW_DIVERSITY);
1428                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1429                                    LED_MODE_DEFAULT);
1430                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1431                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1432                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1433                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1434                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1435         }
1436
1437         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1438         if (word == 0xffff) {
1439                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1440                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1441                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1442                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1443                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1444         }
1445
1446         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1447         if (word == 0xffff) {
1448                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1449                                    DEFAULT_RSSI_OFFSET);
1450                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1451                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1452         }
1453
1454         return 0;
1455 }
1456
1457 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1458 {
1459         u32 reg;
1460         u16 value;
1461         u16 eeprom;
1462
1463         /*
1464          * Read EEPROM word for configuration.
1465          */
1466         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1467
1468         /*
1469          * Identify RF chipset.
1470          */
1471         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1472         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1473         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1474
1475         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1476             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1477             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1478             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1479             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1480             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1481                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1482                 return -ENODEV;
1483         }
1484
1485         /*
1486          * Identify default antenna configuration.
1487          */
1488         rt2x00dev->hw->conf.antenna_sel_tx =
1489             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1490         rt2x00dev->hw->conf.antenna_sel_rx =
1491             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1492
1493         /*
1494          * Store led mode, for correct led behaviour.
1495          */
1496         rt2x00dev->led_mode =
1497             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1498
1499         /*
1500          * Detect if this device has an hardware controlled radio.
1501          */
1502 #ifdef CONFIG_RT2500PCI_RFKILL
1503         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1504                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1505 #endif /* CONFIG_RT2500PCI_RFKILL */
1506
1507         /*
1508          * Check if the BBP tuning should be enabled.
1509          */
1510         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1511
1512         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1513                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1514
1515         /*
1516          * Read the RSSI <-> dBm offset information.
1517          */
1518         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1519         rt2x00dev->rssi_offset =
1520             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1521
1522         return 0;
1523 }
1524
1525 /*
1526  * RF value list for RF2522
1527  * Supports: 2.4 GHz
1528  */
1529 static const struct rf_channel rf_vals_bg_2522[] = {
1530         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1531         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1532         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1533         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1534         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1535         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1536         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1537         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1538         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1539         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1540         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1541         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1542         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1543         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1544 };
1545
1546 /*
1547  * RF value list for RF2523
1548  * Supports: 2.4 GHz
1549  */
1550 static const struct rf_channel rf_vals_bg_2523[] = {
1551         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1552         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1553         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1554         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1555         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1556         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1557         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1558         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1559         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1560         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1561         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1562         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1563         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1564         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1565 };
1566
1567 /*
1568  * RF value list for RF2524
1569  * Supports: 2.4 GHz
1570  */
1571 static const struct rf_channel rf_vals_bg_2524[] = {
1572         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1573         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1574         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1575         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1576         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1577         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1578         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1579         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1580         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1581         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1582         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1583         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1584         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1585         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1586 };
1587
1588 /*
1589  * RF value list for RF2525
1590  * Supports: 2.4 GHz
1591  */
1592 static const struct rf_channel rf_vals_bg_2525[] = {
1593         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1594         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1595         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1596         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1597         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1598         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1599         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1600         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1601         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1602         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1603         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1604         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1605         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1606         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1607 };
1608
1609 /*
1610  * RF value list for RF2525e
1611  * Supports: 2.4 GHz
1612  */
1613 static const struct rf_channel rf_vals_bg_2525e[] = {
1614         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1615         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1616         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1617         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1618         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1619         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1620         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1621         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1622         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1623         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1624         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1625         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1626         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1627         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1628 };
1629
1630 /*
1631  * RF value list for RF5222
1632  * Supports: 2.4 GHz & 5.2 GHz
1633  */
1634 static const struct rf_channel rf_vals_5222[] = {
1635         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1636         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1637         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1638         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1639         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1640         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1641         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1642         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1643         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1644         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1645         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1646         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1647         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1648         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1649
1650         /* 802.11 UNI / HyperLan 2 */
1651         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1652         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1653         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1654         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1655         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1656         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1657         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1658         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1659
1660         /* 802.11 HyperLan 2 */
1661         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1662         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1663         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1664         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1665         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1666         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1667         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1668         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1669         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1670         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1671
1672         /* 802.11 UNII */
1673         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1674         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1675         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1676         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1677         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1678 };
1679
1680 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1681 {
1682         struct hw_mode_spec *spec = &rt2x00dev->spec;
1683         u8 *txpower;
1684         unsigned int i;
1685
1686         /*
1687          * Initialize all hw fields.
1688          */
1689         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1690         rt2x00dev->hw->extra_tx_headroom = 0;
1691         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1692         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1693         rt2x00dev->hw->queues = 2;
1694
1695         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1696         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1697                                 rt2x00_eeprom_addr(rt2x00dev,
1698                                                    EEPROM_MAC_ADDR_0));
1699
1700         /*
1701          * Convert tx_power array in eeprom.
1702          */
1703         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1704         for (i = 0; i < 14; i++)
1705                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1706
1707         /*
1708          * Initialize hw_mode information.
1709          */
1710         spec->num_modes = 2;
1711         spec->num_rates = 12;
1712         spec->tx_power_a = NULL;
1713         spec->tx_power_bg = txpower;
1714         spec->tx_power_default = DEFAULT_TXPOWER;
1715
1716         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1717                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1718                 spec->channels = rf_vals_bg_2522;
1719         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1720                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1721                 spec->channels = rf_vals_bg_2523;
1722         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1723                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1724                 spec->channels = rf_vals_bg_2524;
1725         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1726                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1727                 spec->channels = rf_vals_bg_2525;
1728         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1729                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1730                 spec->channels = rf_vals_bg_2525e;
1731         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1732                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1733                 spec->channels = rf_vals_5222;
1734                 spec->num_modes = 3;
1735         }
1736 }
1737
1738 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1739 {
1740         int retval;
1741
1742         /*
1743          * Allocate eeprom data.
1744          */
1745         retval = rt2500pci_validate_eeprom(rt2x00dev);
1746         if (retval)
1747                 return retval;
1748
1749         retval = rt2500pci_init_eeprom(rt2x00dev);
1750         if (retval)
1751                 return retval;
1752
1753         /*
1754          * Initialize hw specifications.
1755          */
1756         rt2500pci_probe_hw_mode(rt2x00dev);
1757
1758         /*
1759          * This device requires the beacon ring
1760          */
1761         __set_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
1762
1763         /*
1764          * Set the rssi offset.
1765          */
1766         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1767
1768         return 0;
1769 }
1770
1771 /*
1772  * IEEE80211 stack callback functions.
1773  */
1774 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1775                                        unsigned int changed_flags,
1776                                        unsigned int *total_flags,
1777                                        int mc_count,
1778                                        struct dev_addr_list *mc_list)
1779 {
1780         struct rt2x00_dev *rt2x00dev = hw->priv;
1781         struct interface *intf = &rt2x00dev->interface;
1782         u32 reg;
1783
1784         /*
1785          * Mask off any flags we are going to ignore from
1786          * the total_flags field.
1787          */
1788         *total_flags &=
1789             FIF_ALLMULTI |
1790             FIF_FCSFAIL |
1791             FIF_PLCPFAIL |
1792             FIF_CONTROL |
1793             FIF_OTHER_BSS |
1794             FIF_PROMISC_IN_BSS;
1795
1796         /*
1797          * Apply some rules to the filters:
1798          * - Some filters imply different filters to be set.
1799          * - Some things we can't filter out at all.
1800          * - Some filters are set based on interface type.
1801          */
1802         if (mc_count)
1803                 *total_flags |= FIF_ALLMULTI;
1804         if (*total_flags & FIF_OTHER_BSS ||
1805             *total_flags & FIF_PROMISC_IN_BSS)
1806                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1807         if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
1808                 *total_flags |= FIF_PROMISC_IN_BSS;
1809
1810         /*
1811          * Check if there is any work left for us.
1812          */
1813         if (intf->filter == *total_flags)
1814                 return;
1815         intf->filter = *total_flags;
1816
1817         /*
1818          * Start configuration steps.
1819          * Note that the version error will always be dropped
1820          * and broadcast frames will always be accepted since
1821          * there is no filter for it at this time.
1822          */
1823         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1824         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1825                            !(*total_flags & FIF_FCSFAIL));
1826         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1827                            !(*total_flags & FIF_PLCPFAIL));
1828         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1829                            !(*total_flags & FIF_CONTROL));
1830         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1831                            !(*total_flags & FIF_PROMISC_IN_BSS));
1832         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1833                            !(*total_flags & FIF_PROMISC_IN_BSS));
1834         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1835         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1836                            !(*total_flags & FIF_ALLMULTI));
1837         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1838         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1839 }
1840
1841 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1842                                      u32 short_retry, u32 long_retry)
1843 {
1844         struct rt2x00_dev *rt2x00dev = hw->priv;
1845         u32 reg;
1846
1847         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1848         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1849         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1850         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1851
1852         return 0;
1853 }
1854
1855 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1856 {
1857         struct rt2x00_dev *rt2x00dev = hw->priv;
1858         u64 tsf;
1859         u32 reg;
1860
1861         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1862         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1863         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1864         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1865
1866         return tsf;
1867 }
1868
1869 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1870 {
1871         struct rt2x00_dev *rt2x00dev = hw->priv;
1872
1873         rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1874         rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1875 }
1876
1877 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1878 {
1879         struct rt2x00_dev *rt2x00dev = hw->priv;
1880         u32 reg;
1881
1882         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1883         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1884 }
1885
1886 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1887         .tx                     = rt2x00mac_tx,
1888         .start                  = rt2x00mac_start,
1889         .stop                   = rt2x00mac_stop,
1890         .add_interface          = rt2x00mac_add_interface,
1891         .remove_interface       = rt2x00mac_remove_interface,
1892         .config                 = rt2x00mac_config,
1893         .config_interface       = rt2x00mac_config_interface,
1894         .configure_filter       = rt2500pci_configure_filter,
1895         .get_stats              = rt2x00mac_get_stats,
1896         .set_retry_limit        = rt2500pci_set_retry_limit,
1897         .erp_ie_changed         = rt2x00mac_erp_ie_changed,
1898         .conf_tx                = rt2x00mac_conf_tx,
1899         .get_tx_stats           = rt2x00mac_get_tx_stats,
1900         .get_tsf                = rt2500pci_get_tsf,
1901         .reset_tsf              = rt2500pci_reset_tsf,
1902         .beacon_update          = rt2x00pci_beacon_update,
1903         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1904 };
1905
1906 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1907         .irq_handler            = rt2500pci_interrupt,
1908         .probe_hw               = rt2500pci_probe_hw,
1909         .initialize             = rt2x00pci_initialize,
1910         .uninitialize           = rt2x00pci_uninitialize,
1911         .set_device_state       = rt2500pci_set_device_state,
1912         .rfkill_poll            = rt2500pci_rfkill_poll,
1913         .link_stats             = rt2500pci_link_stats,
1914         .reset_tuner            = rt2500pci_reset_tuner,
1915         .link_tuner             = rt2500pci_link_tuner,
1916         .write_tx_desc          = rt2500pci_write_tx_desc,
1917         .write_tx_data          = rt2x00pci_write_tx_data,
1918         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1919         .fill_rxdone            = rt2500pci_fill_rxdone,
1920         .config_mac_addr        = rt2500pci_config_mac_addr,
1921         .config_bssid           = rt2500pci_config_bssid,
1922         .config_type            = rt2500pci_config_type,
1923         .config_preamble        = rt2500pci_config_preamble,
1924         .config                 = rt2500pci_config,
1925 };
1926
1927 static const struct rt2x00_ops rt2500pci_ops = {
1928         .name           = DRV_NAME,
1929         .rxd_size       = RXD_DESC_SIZE,
1930         .txd_size       = TXD_DESC_SIZE,
1931         .eeprom_size    = EEPROM_SIZE,
1932         .rf_size        = RF_SIZE,
1933         .lib            = &rt2500pci_rt2x00_ops,
1934         .hw             = &rt2500pci_mac80211_ops,
1935 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1936         .debugfs        = &rt2500pci_rt2x00debug,
1937 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1938 };
1939
1940 /*
1941  * RT2500pci module information.
1942  */
1943 static struct pci_device_id rt2500pci_device_table[] = {
1944         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1945         { 0, }
1946 };
1947
1948 MODULE_AUTHOR(DRV_PROJECT);
1949 MODULE_VERSION(DRV_VERSION);
1950 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1951 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1952 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1953 MODULE_LICENSE("GPL");
1954
1955 static struct pci_driver rt2500pci_driver = {
1956         .name           = DRV_NAME,
1957         .id_table       = rt2500pci_device_table,
1958         .probe          = rt2x00pci_probe,
1959         .remove         = __devexit_p(rt2x00pci_remove),
1960         .suspend        = rt2x00pci_suspend,
1961         .resume         = rt2x00pci_resume,
1962 };
1963
1964 static int __init rt2500pci_init(void)
1965 {
1966         return pci_register_driver(&rt2500pci_driver);
1967 }
1968
1969 static void __exit rt2500pci_exit(void)
1970 {
1971         pci_unregister_driver(&rt2500pci_driver);
1972 }
1973
1974 module_init(rt2500pci_init);
1975 module_exit(rt2500pci_exit);