]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
23dc566b26fd02ce8c71bf816a412a4b92e54d2e
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
112                                                        STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
117
118         /*
119          * Enable RX.
120          */
121         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
122
123         /*
124          * Start the TX queues.
125          */
126         ieee80211_start_queues(rt2x00dev->hw);
127
128         return 0;
129 }
130
131 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
132 {
133         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
134                 return;
135
136         /*
137          * Stop all scheduled work.
138          */
139         if (work_pending(&rt2x00dev->intf_work))
140                 cancel_work_sync(&rt2x00dev->intf_work);
141         if (work_pending(&rt2x00dev->filter_work))
142                 cancel_work_sync(&rt2x00dev->filter_work);
143
144         /*
145          * Stop the TX queues.
146          */
147         ieee80211_stop_queues(rt2x00dev->hw);
148
149         /*
150          * Disable RX.
151          */
152         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
153
154         /*
155          * Disable radio.
156          */
157         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
158 }
159
160 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
161 {
162         /*
163          * When we are disabling the RX, we should also stop the link tuner.
164          */
165         if (state == STATE_RADIO_RX_OFF)
166                 rt2x00lib_stop_link_tuner(rt2x00dev);
167
168         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
169
170         /*
171          * When we are enabling the RX, we should also start the link tuner.
172          */
173         if (state == STATE_RADIO_RX_ON &&
174             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
175                 rt2x00lib_start_link_tuner(rt2x00dev);
176 }
177
178 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
179 {
180         enum antenna rx = rt2x00dev->link.ant.active.rx;
181         enum antenna tx = rt2x00dev->link.ant.active.tx;
182         int sample_a =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
184         int sample_b =
185             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         enum antenna rx = rt2x00dev->link.ant.active.rx;
215         enum antenna tx = rt2x00dev->link.ant.active.tx;
216         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
217         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
254             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
257             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
259
260         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
261             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
262                 rt2x00dev->link.ant.flags = 0;
263                 return;
264         }
265
266         /*
267          * If we have only sampled the data over the last period
268          * we should now harvest the data. Otherwise just evaluate
269          * the data. The latter should only be performed once
270          * every 2 seconds.
271          */
272         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
273                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
274         else if (rt2x00dev->link.count & 1)
275                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
276 }
277
278 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
279 {
280         int avg_rssi = rssi;
281
282         /*
283          * Update global RSSI
284          */
285         if (link->qual.avg_rssi)
286                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
287         link->qual.avg_rssi = avg_rssi;
288
289         /*
290          * Update antenna RSSI
291          */
292         if (link->ant.rssi_ant)
293                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
294         link->ant.rssi_ant = rssi;
295 }
296
297 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
298 {
299         if (qual->rx_failed || qual->rx_success)
300                 qual->rx_percentage =
301                     (qual->rx_success * 100) /
302                     (qual->rx_failed + qual->rx_success);
303         else
304                 qual->rx_percentage = 50;
305
306         if (qual->tx_failed || qual->tx_success)
307                 qual->tx_percentage =
308                     (qual->tx_success * 100) /
309                     (qual->tx_failed + qual->tx_success);
310         else
311                 qual->tx_percentage = 50;
312
313         qual->rx_success = 0;
314         qual->rx_failed = 0;
315         qual->tx_success = 0;
316         qual->tx_failed = 0;
317 }
318
319 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
320                                            int rssi)
321 {
322         int rssi_percentage = 0;
323         int signal;
324
325         /*
326          * We need a positive value for the RSSI.
327          */
328         if (rssi < 0)
329                 rssi += rt2x00dev->rssi_offset;
330
331         /*
332          * Calculate the different percentages,
333          * which will be used for the signal.
334          */
335         if (rt2x00dev->rssi_offset)
336                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
337
338         /*
339          * Add the individual percentages and use the WEIGHT
340          * defines to calculate the current link signal.
341          */
342         signal = ((WEIGHT_RSSI * rssi_percentage) +
343                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
344                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
345
346         return (signal > 100) ? 100 : signal;
347 }
348
349 static void rt2x00lib_link_tuner(struct work_struct *work)
350 {
351         struct rt2x00_dev *rt2x00dev =
352             container_of(work, struct rt2x00_dev, link.work.work);
353
354         /*
355          * When the radio is shutting down we should
356          * immediately cease all link tuning.
357          */
358         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
359                 return;
360
361         /*
362          * Update statistics.
363          */
364         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
365         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
366             rt2x00dev->link.qual.rx_failed;
367
368         /*
369          * Only perform the link tuning when Link tuning
370          * has been enabled (This could have been disabled from the EEPROM).
371          */
372         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
373                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
374
375         /*
376          * Precalculate a portion of the link signal which is
377          * in based on the tx/rx success/failure counters.
378          */
379         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
380
381         /*
382          * Send a signal to the led to update the led signal strength.
383          */
384         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
385
386         /*
387          * Evaluate antenna setup, make this the last step since this could
388          * possibly reset some statistics.
389          */
390         rt2x00lib_evaluate_antenna(rt2x00dev);
391
392         /*
393          * Increase tuner counter, and reschedule the next link tuner run.
394          */
395         rt2x00dev->link.count++;
396         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
397                            LINK_TUNE_INTERVAL);
398 }
399
400 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
401 {
402         struct rt2x00_dev *rt2x00dev =
403             container_of(work, struct rt2x00_dev, filter_work);
404         unsigned int filter = rt2x00dev->packet_filter;
405
406         /*
407          * Since we had stored the filter inside rt2x00dev->packet_filter,
408          * we should now clear that field. Otherwise the driver will
409          * assume nothing has changed (*total_flags will be compared
410          * to rt2x00dev->packet_filter to determine if any action is required).
411          */
412         rt2x00dev->packet_filter = 0;
413
414         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
415                                              filter, &filter, 0, NULL);
416 }
417
418 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
419                                           struct ieee80211_vif *vif)
420 {
421         struct rt2x00_dev *rt2x00dev = data;
422         struct rt2x00_intf *intf = vif_to_intf(vif);
423         struct sk_buff *skb;
424         struct ieee80211_tx_control control;
425         struct ieee80211_bss_conf conf;
426         int delayed_flags;
427
428         /*
429          * Copy all data we need during this action under the protection
430          * of a spinlock. Otherwise race conditions might occur which results
431          * into an invalid configuration.
432          */
433         spin_lock(&intf->lock);
434
435         memcpy(&conf, &intf->conf, sizeof(conf));
436         delayed_flags = intf->delayed_flags;
437         intf->delayed_flags = 0;
438
439         spin_unlock(&intf->lock);
440
441         if (delayed_flags & DELAYED_UPDATE_BEACON) {
442                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
443                 if (skb) {
444                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
445                                                           &control);
446                         dev_kfree_skb(skb);
447                 }
448         }
449
450         if (delayed_flags & DELAYED_CONFIG_PREAMBLE)
451                 rt2x00lib_config_preamble(rt2x00dev, intf,
452                                           intf->conf.use_short_preamble);
453 }
454
455 static void rt2x00lib_intf_scheduled(struct work_struct *work)
456 {
457         struct rt2x00_dev *rt2x00dev =
458             container_of(work, struct rt2x00_dev, intf_work);
459
460         /*
461          * Iterate over each interface and perform the
462          * requested configurations.
463          */
464         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
465                                             rt2x00lib_intf_scheduled_iter,
466                                             rt2x00dev);
467 }
468
469 /*
470  * Interrupt context handlers.
471  */
472 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
473                                       struct ieee80211_vif *vif)
474 {
475         struct rt2x00_intf *intf = vif_to_intf(vif);
476
477         if (vif->type != IEEE80211_IF_TYPE_AP &&
478             vif->type != IEEE80211_IF_TYPE_IBSS)
479                 return;
480
481         spin_lock(&intf->lock);
482         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
483         spin_unlock(&intf->lock);
484 }
485
486 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
487 {
488         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
489                 return;
490
491         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
492                                             rt2x00lib_beacondone_iter,
493                                             rt2x00dev);
494
495         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
496 }
497 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
498
499 void rt2x00lib_txdone(struct queue_entry *entry,
500                       struct txdone_entry_desc *txdesc)
501 {
502         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
503         struct ieee80211_tx_status tx_status;
504         int success = !!(txdesc->status == TX_SUCCESS ||
505                          txdesc->status == TX_SUCCESS_RETRY);
506         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
507                       txdesc->status == TX_FAIL_INVALID ||
508                       txdesc->status == TX_FAIL_OTHER);
509
510         /*
511          * Update TX statistics.
512          */
513         rt2x00dev->link.qual.tx_success += success;
514         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
515
516         /*
517          * Initialize TX status
518          */
519         tx_status.flags = 0;
520         tx_status.ack_signal = 0;
521         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
522         tx_status.retry_count = txdesc->retry;
523         memcpy(&tx_status.control, txdesc->control, sizeof(txdesc->control));
524
525         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
526                 if (success)
527                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
528                 else
529                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
530         }
531
532         tx_status.queue_length = entry->queue->limit;
533         tx_status.queue_number = tx_status.control.queue;
534
535         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
536                 if (success)
537                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
538                 else
539                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
540         }
541
542         /*
543          * Send the tx_status to mac80211 & debugfs.
544          * mac80211 will clean up the skb structure.
545          */
546         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
547         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
548         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, &tx_status);
549         entry->skb = NULL;
550 }
551 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
552
553 void rt2x00lib_rxdone(struct queue_entry *entry,
554                       struct rxdone_entry_desc *rxdesc)
555 {
556         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
557         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
558         struct ieee80211_supported_band *sband;
559         struct ieee80211_hdr *hdr;
560         const struct rt2x00_rate *rate;
561         unsigned int i;
562         int idx = -1;
563         u16 fc;
564
565         /*
566          * Update RX statistics.
567          */
568         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
569         for (i = 0; i < sband->n_bitrates; i++) {
570                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
571
572                 /*
573                  * When frame was received with an OFDM bitrate,
574                  * the signal is the PLCP value. If it was received with
575                  * a CCK bitrate the signal is the rate in 100kbit/s.
576                  */
577                 if ((rxdesc->ofdm && rate->plcp == rxdesc->signal) ||
578                     (!rxdesc->ofdm && rate->bitrate == rxdesc->signal)) {
579                         idx = i;
580                         break;
581                 }
582         }
583
584         /*
585          * Only update link status if this is a beacon frame carrying our bssid.
586          */
587         hdr = (struct ieee80211_hdr *)entry->skb->data;
588         fc = le16_to_cpu(hdr->frame_control);
589         if (is_beacon(fc) && rxdesc->my_bss)
590                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
591
592         rt2x00dev->link.qual.rx_success++;
593
594         rx_status->rate_idx = idx;
595         rx_status->signal =
596             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
597         rx_status->ssi = rxdesc->rssi;
598         rx_status->flag = rxdesc->flags;
599         rx_status->antenna = rt2x00dev->link.ant.active.rx;
600
601         /*
602          * Send frame to mac80211 & debugfs.
603          * mac80211 will clean up the skb structure.
604          */
605         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
606         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
607         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
608         entry->skb = NULL;
609 }
610 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
611
612 /*
613  * TX descriptor initializer
614  */
615 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
616                              struct sk_buff *skb,
617                              struct ieee80211_tx_control *control)
618 {
619         struct txentry_desc txdesc;
620         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
621         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
622         const struct rt2x00_rate *rate;
623         int tx_rate;
624         int length;
625         int duration;
626         int residual;
627         u16 frame_control;
628         u16 seq_ctrl;
629
630         memset(&txdesc, 0, sizeof(txdesc));
631
632         txdesc.queue = skbdesc->entry->queue->qid;
633         txdesc.cw_min = skbdesc->entry->queue->cw_min;
634         txdesc.cw_max = skbdesc->entry->queue->cw_max;
635         txdesc.aifs = skbdesc->entry->queue->aifs;
636
637         /*
638          * Read required fields from ieee80211 header.
639          */
640         frame_control = le16_to_cpu(hdr->frame_control);
641         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
642
643         tx_rate = control->tx_rate->hw_value;
644
645         /*
646          * Check whether this frame is to be acked
647          */
648         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
649                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
650
651         /*
652          * Check if this is a RTS/CTS frame
653          */
654         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
655                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
656                 if (is_rts_frame(frame_control)) {
657                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
658                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
659                 } else
660                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
661                 if (control->rts_cts_rate)
662                         tx_rate = control->rts_cts_rate->hw_value;
663         }
664
665         rate = rt2x00_get_rate(tx_rate);
666
667         /*
668          * Check if more fragments are pending
669          */
670         if (ieee80211_get_morefrag(hdr)) {
671                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
672                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
673         }
674
675         /*
676          * Beacons and probe responses require the tsf timestamp
677          * to be inserted into the frame.
678          */
679         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
680             is_probe_resp(frame_control))
681                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
682
683         /*
684          * Determine with what IFS priority this frame should be send.
685          * Set ifs to IFS_SIFS when the this is not the first fragment,
686          * or this fragment came after RTS/CTS.
687          */
688         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
689             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
690                 txdesc.ifs = IFS_SIFS;
691         else
692                 txdesc.ifs = IFS_BACKOFF;
693
694         /*
695          * PLCP setup
696          * Length calculation depends on OFDM/CCK rate.
697          */
698         txdesc.signal = rate->plcp;
699         txdesc.service = 0x04;
700
701         length = skb->len + FCS_LEN;
702         if (rate->flags & DEV_RATE_OFDM) {
703                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
704
705                 txdesc.length_high = (length >> 6) & 0x3f;
706                 txdesc.length_low = length & 0x3f;
707         } else {
708                 /*
709                  * Convert length to microseconds.
710                  */
711                 residual = get_duration_res(length, rate->bitrate);
712                 duration = get_duration(length, rate->bitrate);
713
714                 if (residual != 0) {
715                         duration++;
716
717                         /*
718                          * Check if we need to set the Length Extension
719                          */
720                         if (rate->bitrate == 110 && residual <= 30)
721                                 txdesc.service |= 0x80;
722                 }
723
724                 txdesc.length_high = (duration >> 8) & 0xff;
725                 txdesc.length_low = duration & 0xff;
726
727                 /*
728                  * When preamble is enabled we should set the
729                  * preamble bit for the signal.
730                  */
731                 if (rt2x00_get_rate_preamble(tx_rate))
732                         txdesc.signal |= 0x08;
733         }
734
735         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
736
737         /*
738          * Update queue entry.
739          */
740         skbdesc->entry->skb = skb;
741
742         /*
743          * The frame has been completely initialized and ready
744          * for sending to the device. The caller will push the
745          * frame to the device, but we are going to push the
746          * frame to debugfs here.
747          */
748         skbdesc->frame_type = DUMP_FRAME_TX;
749         rt2x00debug_dump_frame(rt2x00dev, skb);
750 }
751 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
752
753 /*
754  * Driver initialization handlers.
755  */
756 const struct rt2x00_rate rt2x00_supported_rates[12] = {
757         {
758                 .flags = 0,
759                 .bitrate = 10,
760                 .ratemask = DEV_RATEMASK_1MB,
761                 .plcp = 0x00,
762         },
763         {
764                 .flags = DEV_RATE_SHORT_PREAMBLE,
765                 .bitrate = 20,
766                 .ratemask = DEV_RATEMASK_2MB,
767                 .plcp = 0x01,
768         },
769         {
770                 .flags = DEV_RATE_SHORT_PREAMBLE,
771                 .bitrate = 55,
772                 .ratemask = DEV_RATEMASK_5_5MB,
773                 .plcp = 0x02,
774         },
775         {
776                 .flags = DEV_RATE_SHORT_PREAMBLE,
777                 .bitrate = 110,
778                 .ratemask = DEV_RATEMASK_11MB,
779                 .plcp = 0x03,
780         },
781         {
782                 .flags = DEV_RATE_OFDM,
783                 .bitrate = 60,
784                 .ratemask = DEV_RATEMASK_6MB,
785                 .plcp = 0x0b,
786         },
787         {
788                 .flags = DEV_RATE_OFDM,
789                 .bitrate = 90,
790                 .ratemask = DEV_RATEMASK_9MB,
791                 .plcp = 0x0f,
792         },
793         {
794                 .flags = DEV_RATE_OFDM,
795                 .bitrate = 120,
796                 .ratemask = DEV_RATEMASK_12MB,
797                 .plcp = 0x0a,
798         },
799         {
800                 .flags = DEV_RATE_OFDM,
801                 .bitrate = 180,
802                 .ratemask = DEV_RATEMASK_18MB,
803                 .plcp = 0x0e,
804         },
805         {
806                 .flags = DEV_RATE_OFDM,
807                 .bitrate = 240,
808                 .ratemask = DEV_RATEMASK_24MB,
809                 .plcp = 0x09,
810         },
811         {
812                 .flags = DEV_RATE_OFDM,
813                 .bitrate = 360,
814                 .ratemask = DEV_RATEMASK_36MB,
815                 .plcp = 0x0d,
816         },
817         {
818                 .flags = DEV_RATE_OFDM,
819                 .bitrate = 480,
820                 .ratemask = DEV_RATEMASK_48MB,
821                 .plcp = 0x08,
822         },
823         {
824                 .flags = DEV_RATE_OFDM,
825                 .bitrate = 540,
826                 .ratemask = DEV_RATEMASK_54MB,
827                 .plcp = 0x0c,
828         },
829 };
830
831 static void rt2x00lib_channel(struct ieee80211_channel *entry,
832                               const int channel, const int tx_power,
833                               const int value)
834 {
835         entry->center_freq = ieee80211_channel_to_frequency(channel);
836         entry->hw_value = value;
837         entry->max_power = tx_power;
838         entry->max_antenna_gain = 0xff;
839 }
840
841 static void rt2x00lib_rate(struct ieee80211_rate *entry,
842                            const u16 index, const struct rt2x00_rate *rate)
843 {
844         entry->flags = 0;
845         entry->bitrate = rate->bitrate;
846         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
847         entry->hw_value_short = entry->hw_value;
848
849         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
850                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
851                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
852         }
853 }
854
855 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
856                                     struct hw_mode_spec *spec)
857 {
858         struct ieee80211_hw *hw = rt2x00dev->hw;
859         struct ieee80211_supported_band *sbands;
860         struct ieee80211_channel *channels;
861         struct ieee80211_rate *rates;
862         unsigned int i;
863         unsigned char tx_power;
864
865         sbands = &rt2x00dev->bands[0];
866
867         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
868         if (!channels)
869                 return -ENOMEM;
870
871         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
872         if (!rates)
873                 goto exit_free_channels;
874
875         /*
876          * Initialize Rate list.
877          */
878         for (i = 0; i < spec->num_rates; i++)
879                 rt2x00lib_rate(&rates[0], i, rt2x00_get_rate(i));
880
881         /*
882          * Initialize Channel list.
883          */
884         for (i = 0; i < spec->num_channels; i++) {
885                 if (spec->channels[i].channel <= 14)
886                         tx_power = spec->tx_power_bg[i];
887                 else if (spec->tx_power_a)
888                         tx_power = spec->tx_power_a[i];
889                 else
890                         tx_power = spec->tx_power_default;
891
892                 rt2x00lib_channel(&channels[i],
893                                   spec->channels[i].channel, tx_power, i);
894         }
895
896         /*
897          * Intitialize 802.11b
898          * Rates: CCK.
899          * Channels: 2.4 GHz
900          */
901         if (spec->num_modes > 0) {
902                 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
903                 sbands[IEEE80211_BAND_2GHZ].n_bitrates = 4;
904                 sbands[IEEE80211_BAND_2GHZ].channels = channels;
905                 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
906                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
907         }
908
909         /*
910          * Intitialize 802.11g
911          * Rates: CCK, OFDM.
912          * Channels: 2.4 GHz
913          */
914         if (spec->num_modes > 1) {
915                 sbands[IEEE80211_BAND_2GHZ].n_channels = 14;
916                 sbands[IEEE80211_BAND_2GHZ].n_bitrates = spec->num_rates;
917                 sbands[IEEE80211_BAND_2GHZ].channels = channels;
918                 sbands[IEEE80211_BAND_2GHZ].bitrates = rates;
919                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
920         }
921
922         /*
923          * Intitialize 802.11a
924          * Rates: OFDM.
925          * Channels: OFDM, UNII, HiperLAN2.
926          */
927         if (spec->num_modes > 2) {
928                 sbands[IEEE80211_BAND_5GHZ].n_channels = spec->num_channels - 14;
929                 sbands[IEEE80211_BAND_5GHZ].n_bitrates = spec->num_rates - 4;
930                 sbands[IEEE80211_BAND_5GHZ].channels = &channels[14];
931                 sbands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
932                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
933         }
934
935         return 0;
936
937  exit_free_channels:
938         kfree(channels);
939         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
940         return -ENOMEM;
941 }
942
943 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
944 {
945         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
946                 ieee80211_unregister_hw(rt2x00dev->hw);
947
948         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
949                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
950                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
951                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
952                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
953         }
954 }
955
956 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
957 {
958         struct hw_mode_spec *spec = &rt2x00dev->spec;
959         int status;
960
961         /*
962          * Initialize HW modes.
963          */
964         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
965         if (status)
966                 return status;
967
968         /*
969          * Register HW.
970          */
971         status = ieee80211_register_hw(rt2x00dev->hw);
972         if (status) {
973                 rt2x00lib_remove_hw(rt2x00dev);
974                 return status;
975         }
976
977         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
978
979         return 0;
980 }
981
982 /*
983  * Initialization/uninitialization handlers.
984  */
985 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
986 {
987         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
988                 return;
989
990         /*
991          * Unregister rfkill.
992          */
993         rt2x00rfkill_unregister(rt2x00dev);
994
995         /*
996          * Allow the HW to uninitialize.
997          */
998         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
999
1000         /*
1001          * Free allocated queue entries.
1002          */
1003         rt2x00queue_uninitialize(rt2x00dev);
1004 }
1005
1006 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1007 {
1008         int status;
1009
1010         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1011                 return 0;
1012
1013         /*
1014          * Allocate all queue entries.
1015          */
1016         status = rt2x00queue_initialize(rt2x00dev);
1017         if (status)
1018                 return status;
1019
1020         /*
1021          * Initialize the device.
1022          */
1023         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1024         if (status)
1025                 goto exit;
1026
1027         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1028
1029         /*
1030          * Register the rfkill handler.
1031          */
1032         status = rt2x00rfkill_register(rt2x00dev);
1033         if (status)
1034                 goto exit;
1035
1036         return 0;
1037
1038 exit:
1039         rt2x00lib_uninitialize(rt2x00dev);
1040
1041         return status;
1042 }
1043
1044 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1045 {
1046         int retval;
1047
1048         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1049                 return 0;
1050
1051         /*
1052          * If this is the first interface which is added,
1053          * we should load the firmware now.
1054          */
1055         retval = rt2x00lib_load_firmware(rt2x00dev);
1056         if (retval)
1057                 return retval;
1058
1059         /*
1060          * Initialize the device.
1061          */
1062         retval = rt2x00lib_initialize(rt2x00dev);
1063         if (retval)
1064                 return retval;
1065
1066         /*
1067          * Enable radio.
1068          */
1069         retval = rt2x00lib_enable_radio(rt2x00dev);
1070         if (retval) {
1071                 rt2x00lib_uninitialize(rt2x00dev);
1072                 return retval;
1073         }
1074
1075         rt2x00dev->intf_ap_count = 0;
1076         rt2x00dev->intf_sta_count = 0;
1077         rt2x00dev->intf_associated = 0;
1078
1079         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1080
1081         return 0;
1082 }
1083
1084 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1085 {
1086         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1087                 return;
1088
1089         /*
1090          * Perhaps we can add something smarter here,
1091          * but for now just disabling the radio should do.
1092          */
1093         rt2x00lib_disable_radio(rt2x00dev);
1094
1095         rt2x00dev->intf_ap_count = 0;
1096         rt2x00dev->intf_sta_count = 0;
1097         rt2x00dev->intf_associated = 0;
1098
1099         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1100 }
1101
1102 /*
1103  * driver allocation handlers.
1104  */
1105 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1106 {
1107         int retval = -ENOMEM;
1108
1109         /*
1110          * Make room for rt2x00_intf inside the per-interface
1111          * structure ieee80211_vif.
1112          */
1113         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1114
1115         /*
1116          * Let the driver probe the device to detect the capabilities.
1117          */
1118         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1119         if (retval) {
1120                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1121                 goto exit;
1122         }
1123
1124         /*
1125          * Initialize configuration work.
1126          */
1127         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1128         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1129         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1130
1131         /*
1132          * Allocate queue array.
1133          */
1134         retval = rt2x00queue_allocate(rt2x00dev);
1135         if (retval)
1136                 goto exit;
1137
1138         /*
1139          * Initialize ieee80211 structure.
1140          */
1141         retval = rt2x00lib_probe_hw(rt2x00dev);
1142         if (retval) {
1143                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1144                 goto exit;
1145         }
1146
1147         /*
1148          * Register LED.
1149          */
1150         rt2x00leds_register(rt2x00dev);
1151
1152         /*
1153          * Allocatie rfkill.
1154          */
1155         retval = rt2x00rfkill_allocate(rt2x00dev);
1156         if (retval)
1157                 goto exit;
1158
1159         /*
1160          * Open the debugfs entry.
1161          */
1162         rt2x00debug_register(rt2x00dev);
1163
1164         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1165
1166         return 0;
1167
1168 exit:
1169         rt2x00lib_remove_dev(rt2x00dev);
1170
1171         return retval;
1172 }
1173 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1174
1175 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1176 {
1177         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1178
1179         /*
1180          * Disable radio.
1181          */
1182         rt2x00lib_disable_radio(rt2x00dev);
1183
1184         /*
1185          * Uninitialize device.
1186          */
1187         rt2x00lib_uninitialize(rt2x00dev);
1188
1189         /*
1190          * Close debugfs entry.
1191          */
1192         rt2x00debug_deregister(rt2x00dev);
1193
1194         /*
1195          * Free rfkill
1196          */
1197         rt2x00rfkill_free(rt2x00dev);
1198
1199         /*
1200          * Free LED.
1201          */
1202         rt2x00leds_unregister(rt2x00dev);
1203
1204         /*
1205          * Free ieee80211_hw memory.
1206          */
1207         rt2x00lib_remove_hw(rt2x00dev);
1208
1209         /*
1210          * Free firmware image.
1211          */
1212         rt2x00lib_free_firmware(rt2x00dev);
1213
1214         /*
1215          * Free queue structures.
1216          */
1217         rt2x00queue_free(rt2x00dev);
1218 }
1219 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1220
1221 /*
1222  * Device state handlers
1223  */
1224 #ifdef CONFIG_PM
1225 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1226 {
1227         int retval;
1228
1229         NOTICE(rt2x00dev, "Going to sleep.\n");
1230         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1231
1232         /*
1233          * Only continue if mac80211 has open interfaces.
1234          */
1235         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1236                 goto exit;
1237         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1238
1239         /*
1240          * Disable radio and unitialize all items
1241          * that must be recreated on resume.
1242          */
1243         rt2x00lib_stop(rt2x00dev);
1244         rt2x00lib_uninitialize(rt2x00dev);
1245         rt2x00leds_suspend(rt2x00dev);
1246         rt2x00debug_deregister(rt2x00dev);
1247
1248 exit:
1249         /*
1250          * Set device mode to sleep for power management.
1251          */
1252         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1253         if (retval)
1254                 return retval;
1255
1256         return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1259
1260 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1261                                   struct ieee80211_vif *vif)
1262 {
1263         struct rt2x00_dev *rt2x00dev = data;
1264         struct rt2x00_intf *intf = vif_to_intf(vif);
1265
1266         spin_lock(&intf->lock);
1267
1268         rt2x00lib_config_intf(rt2x00dev, intf,
1269                               vif->type, intf->mac, intf->bssid);
1270
1271
1272         /*
1273          * Master or Ad-hoc mode require a new beacon update.
1274          */
1275         if (vif->type == IEEE80211_IF_TYPE_AP ||
1276             vif->type == IEEE80211_IF_TYPE_IBSS)
1277                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1278
1279         spin_unlock(&intf->lock);
1280 }
1281
1282 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1283 {
1284         int retval;
1285
1286         NOTICE(rt2x00dev, "Waking up.\n");
1287
1288         /*
1289          * Open the debugfs entry and restore led handling.
1290          */
1291         rt2x00debug_register(rt2x00dev);
1292         rt2x00leds_resume(rt2x00dev);
1293
1294         /*
1295          * Only continue if mac80211 had open interfaces.
1296          */
1297         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1298                 return 0;
1299
1300         /*
1301          * Reinitialize device and all active interfaces.
1302          */
1303         retval = rt2x00lib_start(rt2x00dev);
1304         if (retval)
1305                 goto exit;
1306
1307         /*
1308          * Reconfigure device.
1309          */
1310         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1311         if (!rt2x00dev->hw->conf.radio_enabled)
1312                 rt2x00lib_disable_radio(rt2x00dev);
1313
1314         /*
1315          * Iterator over each active interface to
1316          * reconfigure the hardware.
1317          */
1318         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1319                                             rt2x00lib_resume_intf, rt2x00dev);
1320
1321         /*
1322          * We are ready again to receive requests from mac80211.
1323          */
1324         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1325
1326         /*
1327          * It is possible that during that mac80211 has attempted
1328          * to send frames while we were suspending or resuming.
1329          * In that case we have disabled the TX queue and should
1330          * now enable it again
1331          */
1332         ieee80211_start_queues(rt2x00dev->hw);
1333
1334         /*
1335          * During interface iteration we might have changed the
1336          * delayed_flags, time to handles the event by calling
1337          * the work handler directly.
1338          */
1339         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1340
1341         return 0;
1342
1343 exit:
1344         rt2x00lib_disable_radio(rt2x00dev);
1345         rt2x00lib_uninitialize(rt2x00dev);
1346         rt2x00debug_deregister(rt2x00dev);
1347
1348         return retval;
1349 }
1350 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1351 #endif /* CONFIG_PM */
1352
1353 /*
1354  * rt2x00lib module information.
1355  */
1356 MODULE_AUTHOR(DRV_PROJECT);
1357 MODULE_VERSION(DRV_VERSION);
1358 MODULE_DESCRIPTION("rt2x00 library");
1359 MODULE_LICENSE("GPL");