]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Don't switch to antenna with low rssi
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Ring handler.
35  */
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37                                      const unsigned int queue)
38 {
39         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
40
41         /*
42          * Check if we are requesting a reqular TX ring,
43          * or if we are requesting a Beacon or Atim ring.
44          * For Atim rings, we should check if it is supported.
45          */
46         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47                 return &rt2x00dev->tx[queue];
48
49         if (!rt2x00dev->bcn || !beacon)
50                 return NULL;
51
52         if (queue == IEEE80211_TX_QUEUE_BEACON)
53                 return &rt2x00dev->bcn[0];
54         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55                 return &rt2x00dev->bcn[1];
56
57         return NULL;
58 }
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
60
61 /*
62  * Link tuning handlers
63  */
64 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
65 {
66         rt2x00dev->link.count = 0;
67         rt2x00dev->link.vgc_level = 0;
68
69         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
70
71         /*
72          * The RX and TX percentage should start at 50%
73          * this will assure we will get at least get some
74          * decent value when the link tuner starts.
75          * The value will be dropped and overwritten with
76          * the correct (measured )value anyway during the
77          * first run of the link tuner.
78          */
79         rt2x00dev->link.qual.rx_percentage = 50;
80         rt2x00dev->link.qual.tx_percentage = 50;
81
82         /*
83          * Reset the link tuner.
84          */
85         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
86
87         queue_delayed_work(rt2x00dev->hw->workqueue,
88                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
89 }
90
91 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
92 {
93         cancel_delayed_work_sync(&rt2x00dev->link.work);
94 }
95
96 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
97 {
98         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
99                 return;
100
101         rt2x00lib_stop_link_tuner(rt2x00dev);
102         rt2x00lib_start_link_tuner(rt2x00dev);
103 }
104
105 /*
106  * Ring initialization
107  */
108 static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
109 {
110         struct data_ring *ring = rt2x00dev->rx;
111         unsigned int i;
112
113         if (!rt2x00dev->ops->lib->init_rxentry)
114                 return;
115
116         if (ring->data_addr)
117                 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
118
119         for (i = 0; i < ring->stats.limit; i++)
120                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
121
122         rt2x00_ring_index_clear(ring);
123 }
124
125 static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
126 {
127         struct data_ring *ring;
128         unsigned int i;
129
130         if (!rt2x00dev->ops->lib->init_txentry)
131                 return;
132
133         txringall_for_each(rt2x00dev, ring) {
134                 if (ring->data_addr)
135                         memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
136
137                 for (i = 0; i < ring->stats.limit; i++)
138                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
139                                                           &ring->entry[i]);
140
141                 rt2x00_ring_index_clear(ring);
142         }
143 }
144
145 /*
146  * Radio control handlers.
147  */
148 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
149 {
150         int status;
151
152         /*
153          * Don't enable the radio twice.
154          * And check if the hardware button has been disabled.
155          */
156         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
157             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
158                 return 0;
159
160         /*
161          * Initialize all data rings.
162          */
163         rt2x00lib_init_rxrings(rt2x00dev);
164         rt2x00lib_init_txrings(rt2x00dev);
165
166         /*
167          * Enable radio.
168          */
169         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
170                                                        STATE_RADIO_ON);
171         if (status)
172                 return status;
173
174         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
175
176         /*
177          * Enable RX.
178          */
179         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
180
181         /*
182          * Start the TX queues.
183          */
184         ieee80211_start_queues(rt2x00dev->hw);
185
186         return 0;
187 }
188
189 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
190 {
191         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
192                 return;
193
194         /*
195          * Stop all scheduled work.
196          */
197         if (work_pending(&rt2x00dev->beacon_work))
198                 cancel_work_sync(&rt2x00dev->beacon_work);
199         if (work_pending(&rt2x00dev->filter_work))
200                 cancel_work_sync(&rt2x00dev->filter_work);
201         if (work_pending(&rt2x00dev->config_work))
202                 cancel_work_sync(&rt2x00dev->config_work);
203
204         /*
205          * Stop the TX queues.
206          */
207         ieee80211_stop_queues(rt2x00dev->hw);
208
209         /*
210          * Disable RX.
211          */
212         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
213
214         /*
215          * Disable radio.
216          */
217         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
218 }
219
220 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
221 {
222         /*
223          * When we are disabling the RX, we should also stop the link tuner.
224          */
225         if (state == STATE_RADIO_RX_OFF)
226                 rt2x00lib_stop_link_tuner(rt2x00dev);
227
228         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
229
230         /*
231          * When we are enabling the RX, we should also start the link tuner.
232          */
233         if (state == STATE_RADIO_RX_ON &&
234             is_interface_present(&rt2x00dev->interface))
235                 rt2x00lib_start_link_tuner(rt2x00dev);
236 }
237
238 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
239 {
240         enum antenna rx = rt2x00dev->link.ant.active.rx;
241         enum antenna tx = rt2x00dev->link.ant.active.tx;
242         int sample_a =
243             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
244         int sample_b =
245             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
246
247         /*
248          * We are done sampling. Now we should evaluate the results.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
251
252         /*
253          * During the last period we have sampled the RSSI
254          * from both antenna's. It now is time to determine
255          * which antenna demonstrated the best performance.
256          * When we are already on the antenna with the best
257          * performance, then there really is nothing for us
258          * left to do.
259          */
260         if (sample_a == sample_b)
261                 return;
262
263         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
264                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
265
266         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
267                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
268
269         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
270 }
271
272 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
273 {
274         enum antenna rx = rt2x00dev->link.ant.active.rx;
275         enum antenna tx = rt2x00dev->link.ant.active.tx;
276         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
277         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
278
279         /*
280          * Legacy driver indicates that we should swap antenna's
281          * when the difference in RSSI is greater that 5. This
282          * also should be done when the RSSI was actually better
283          * then the previous sample.
284          * When the difference exceeds the threshold we should
285          * sample the rssi from the other antenna to make a valid
286          * comparison between the 2 antennas.
287          */
288         if (abs(rssi_curr - rssi_old) < 5)
289                 return;
290
291         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
292
293         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
294                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
295
296         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
297                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
298
299         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
300 }
301
302 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
303 {
304         /*
305          * Determine if software diversity is enabled for
306          * either the TX or RX antenna (or both).
307          * Always perform this check since within the link
308          * tuner interval the configuration might have changed.
309          */
310         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
311         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
312
313         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
314             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
315                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
316         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
317             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
318                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
319
320         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
321             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
322                 rt2x00dev->link.ant.flags = 0;
323                 return;
324         }
325
326         /*
327          * If we have only sampled the data over the last period
328          * we should now harvest the data. Otherwise just evaluate
329          * the data. The latter should only be performed once
330          * every 2 seconds.
331          */
332         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
333                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
334         else if (rt2x00dev->link.count & 1)
335                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
336 }
337
338 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
339 {
340         int avg_rssi = rssi;
341
342         /*
343          * Update global RSSI
344          */
345         if (link->qual.avg_rssi)
346                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
347         link->qual.avg_rssi = avg_rssi;
348
349         /*
350          * Update antenna RSSI
351          */
352         if (link->ant.rssi_ant)
353                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
354         link->ant.rssi_ant = rssi;
355 }
356
357 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
358 {
359         if (qual->rx_failed || qual->rx_success)
360                 qual->rx_percentage =
361                     (qual->rx_success * 100) /
362                     (qual->rx_failed + qual->rx_success);
363         else
364                 qual->rx_percentage = 50;
365
366         if (qual->tx_failed || qual->tx_success)
367                 qual->tx_percentage =
368                     (qual->tx_success * 100) /
369                     (qual->tx_failed + qual->tx_success);
370         else
371                 qual->tx_percentage = 50;
372
373         qual->rx_success = 0;
374         qual->rx_failed = 0;
375         qual->tx_success = 0;
376         qual->tx_failed = 0;
377 }
378
379 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
380                                            int rssi)
381 {
382         int rssi_percentage = 0;
383         int signal;
384
385         /*
386          * We need a positive value for the RSSI.
387          */
388         if (rssi < 0)
389                 rssi += rt2x00dev->rssi_offset;
390
391         /*
392          * Calculate the different percentages,
393          * which will be used for the signal.
394          */
395         if (rt2x00dev->rssi_offset)
396                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
397
398         /*
399          * Add the individual percentages and use the WEIGHT
400          * defines to calculate the current link signal.
401          */
402         signal = ((WEIGHT_RSSI * rssi_percentage) +
403                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
404                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
405
406         return (signal > 100) ? 100 : signal;
407 }
408
409 static void rt2x00lib_link_tuner(struct work_struct *work)
410 {
411         struct rt2x00_dev *rt2x00dev =
412             container_of(work, struct rt2x00_dev, link.work.work);
413
414         /*
415          * When the radio is shutting down we should
416          * immediately cease all link tuning.
417          */
418         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
419                 return;
420
421         /*
422          * Update statistics.
423          */
424         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
425         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
426             rt2x00dev->link.qual.rx_failed;
427
428         /*
429          * Only perform the link tuning when Link tuning
430          * has been enabled (This could have been disabled from the EEPROM).
431          */
432         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
433                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
434
435         /*
436          * Evaluate antenna setup.
437          */
438         rt2x00lib_evaluate_antenna(rt2x00dev);
439
440         /*
441          * Precalculate a portion of the link signal which is
442          * in based on the tx/rx success/failure counters.
443          */
444         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
445
446         /*
447          * Increase tuner counter, and reschedule the next link tuner run.
448          */
449         rt2x00dev->link.count++;
450         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
451                            LINK_TUNE_INTERVAL);
452 }
453
454 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
455 {
456         struct rt2x00_dev *rt2x00dev =
457             container_of(work, struct rt2x00_dev, filter_work);
458         unsigned int filter = rt2x00dev->packet_filter;
459
460         /*
461          * Since we had stored the filter inside interface.filter,
462          * we should now clear that field. Otherwise the driver will
463          * assume nothing has changed (*total_flags will be compared
464          * to interface.filter to determine if any action is required).
465          */
466         rt2x00dev->packet_filter = 0;
467
468         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
469                                              filter, &filter, 0, NULL);
470 }
471
472 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
473 {
474         struct rt2x00_dev *rt2x00dev =
475             container_of(work, struct rt2x00_dev, config_work);
476         struct ieee80211_bss_conf bss_conf;
477
478         bss_conf.use_short_preamble =
479                 test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
480
481         /*
482          * FIXME: shouldn't invoke it this way because all other contents
483          *        of bss_conf is invalid.
484          */
485         rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
486                                    &bss_conf, BSS_CHANGED_ERP_PREAMBLE);
487 }
488
489 /*
490  * Interrupt context handlers.
491  */
492 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
493 {
494         struct rt2x00_dev *rt2x00dev =
495             container_of(work, struct rt2x00_dev, beacon_work);
496         struct data_ring *ring =
497             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
498         struct data_entry *entry = rt2x00_get_data_entry(ring);
499         struct sk_buff *skb;
500
501         skb = ieee80211_beacon_get(rt2x00dev->hw,
502                                    rt2x00dev->interface.id,
503                                    &entry->tx_status.control);
504         if (!skb)
505                 return;
506
507         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
508                                           &entry->tx_status.control);
509
510         dev_kfree_skb(skb);
511 }
512
513 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
514 {
515         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
516                 return;
517
518         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
519 }
520 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
521
522 void rt2x00lib_txdone(struct data_entry *entry,
523                       const int status, const int retry)
524 {
525         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
526         struct ieee80211_tx_status *tx_status = &entry->tx_status;
527         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
528         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
529         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
530                       status == TX_FAIL_OTHER);
531
532         /*
533          * Update TX statistics.
534          */
535         tx_status->flags = 0;
536         tx_status->ack_signal = 0;
537         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
538         tx_status->retry_count = retry;
539         rt2x00dev->link.qual.tx_success += success;
540         rt2x00dev->link.qual.tx_failed += retry + fail;
541
542         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
543                 if (success)
544                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
545                 else
546                         stats->dot11ACKFailureCount++;
547         }
548
549         tx_status->queue_length = entry->ring->stats.limit;
550         tx_status->queue_number = tx_status->control.queue;
551
552         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
553                 if (success)
554                         stats->dot11RTSSuccessCount++;
555                 else
556                         stats->dot11RTSFailureCount++;
557         }
558
559         /*
560          * Send the tx_status to mac80211 & debugfs.
561          * mac80211 will clean up the skb structure.
562          */
563         get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
564         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
565         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
566         entry->skb = NULL;
567 }
568 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
569
570 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
571                       struct rxdata_entry_desc *desc)
572 {
573         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
574         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
575         struct ieee80211_hw_mode *mode;
576         struct ieee80211_rate *rate;
577         struct ieee80211_hdr *hdr;
578         unsigned int i;
579         int val = 0;
580         u16 fc;
581
582         /*
583          * Update RX statistics.
584          */
585         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
586         for (i = 0; i < mode->num_rates; i++) {
587                 rate = &mode->rates[i];
588
589                 /*
590                  * When frame was received with an OFDM bitrate,
591                  * the signal is the PLCP value. If it was received with
592                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
593                  */
594                 if (!desc->ofdm)
595                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
596                 else
597                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
598
599                 if (val == desc->signal) {
600                         val = rate->val;
601                         break;
602                 }
603         }
604
605         /*
606          * Only update link status if this is a beacon frame carrying our bssid.
607          */
608         hdr = (struct ieee80211_hdr*)skb->data;
609         fc = le16_to_cpu(hdr->frame_control);
610         if (is_beacon(fc) && desc->my_bss)
611                 rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
612
613         rt2x00dev->link.qual.rx_success++;
614
615         rx_status->rate = val;
616         rx_status->signal =
617             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
618         rx_status->ssi = desc->rssi;
619         rx_status->flag = desc->flags;
620         rx_status->antenna = rt2x00dev->link.ant.active.rx;
621
622         /*
623          * Send frame to mac80211 & debugfs
624          */
625         get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
626         rt2x00debug_dump_frame(rt2x00dev, skb);
627         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
628 }
629 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
630
631 /*
632  * TX descriptor initializer
633  */
634 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
635                              struct sk_buff *skb,
636                              struct ieee80211_tx_control *control)
637 {
638         struct txdata_entry_desc desc;
639         struct skb_desc *skbdesc = get_skb_desc(skb);
640         struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
641         int tx_rate;
642         int bitrate;
643         int length;
644         int duration;
645         int residual;
646         u16 frame_control;
647         u16 seq_ctrl;
648
649         memset(&desc, 0, sizeof(desc));
650
651         desc.cw_min = skbdesc->ring->tx_params.cw_min;
652         desc.cw_max = skbdesc->ring->tx_params.cw_max;
653         desc.aifs = skbdesc->ring->tx_params.aifs;
654
655         /*
656          * Identify queue
657          */
658         if (control->queue < rt2x00dev->hw->queues)
659                 desc.queue = control->queue;
660         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
661                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
662                 desc.queue = QUEUE_MGMT;
663         else
664                 desc.queue = QUEUE_OTHER;
665
666         /*
667          * Read required fields from ieee80211 header.
668          */
669         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
670         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
671
672         tx_rate = control->tx_rate;
673
674         /*
675          * Check whether this frame is to be acked
676          */
677         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
678                 __set_bit(ENTRY_TXD_ACK, &desc.flags);
679
680         /*
681          * Check if this is a RTS/CTS frame
682          */
683         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
684                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
685                 if (is_rts_frame(frame_control)) {
686                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
687                         __set_bit(ENTRY_TXD_ACK, &desc.flags);
688                 } else
689                         __clear_bit(ENTRY_TXD_ACK, &desc.flags);
690                 if (control->rts_cts_rate)
691                         tx_rate = control->rts_cts_rate;
692         }
693
694         /*
695          * Check for OFDM
696          */
697         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
698                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
699
700         /*
701          * Check if more fragments are pending
702          */
703         if (ieee80211_get_morefrag(ieee80211hdr)) {
704                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
705                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
706         }
707
708         /*
709          * Beacons and probe responses require the tsf timestamp
710          * to be inserted into the frame.
711          */
712         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
713             is_probe_resp(frame_control))
714                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
715
716         /*
717          * Determine with what IFS priority this frame should be send.
718          * Set ifs to IFS_SIFS when the this is not the first fragment,
719          * or this fragment came after RTS/CTS.
720          */
721         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
722             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
723                 desc.ifs = IFS_SIFS;
724         else
725                 desc.ifs = IFS_BACKOFF;
726
727         /*
728          * PLCP setup
729          * Length calculation depends on OFDM/CCK rate.
730          */
731         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
732         desc.service = 0x04;
733
734         length = skbdesc->data_len + FCS_LEN;
735         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
736                 desc.length_high = (length >> 6) & 0x3f;
737                 desc.length_low = length & 0x3f;
738         } else {
739                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
740
741                 /*
742                  * Convert length to microseconds.
743                  */
744                 residual = get_duration_res(length, bitrate);
745                 duration = get_duration(length, bitrate);
746
747                 if (residual != 0) {
748                         duration++;
749
750                         /*
751                          * Check if we need to set the Length Extension
752                          */
753                         if (bitrate == 110 && residual <= 30)
754                                 desc.service |= 0x80;
755                 }
756
757                 desc.length_high = (duration >> 8) & 0xff;
758                 desc.length_low = duration & 0xff;
759
760                 /*
761                  * When preamble is enabled we should set the
762                  * preamble bit for the signal.
763                  */
764                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
765                         desc.signal |= 0x08;
766         }
767
768         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
769
770         /*
771          * Update ring entry.
772          */
773         skbdesc->entry->skb = skb;
774         memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
775
776         /*
777          * The frame has been completely initialized and ready
778          * for sending to the device. The caller will push the
779          * frame to the device, but we are going to push the
780          * frame to debugfs here.
781          */
782         skbdesc->frame_type = DUMP_FRAME_TX;
783         rt2x00debug_dump_frame(rt2x00dev, skb);
784 }
785 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
786
787 /*
788  * Driver initialization handlers.
789  */
790 static void rt2x00lib_channel(struct ieee80211_channel *entry,
791                               const int channel, const int tx_power,
792                               const int value)
793 {
794         entry->chan = channel;
795         if (channel <= 14)
796                 entry->freq = 2407 + (5 * channel);
797         else
798                 entry->freq = 5000 + (5 * channel);
799         entry->val = value;
800         entry->flag =
801             IEEE80211_CHAN_W_IBSS |
802             IEEE80211_CHAN_W_ACTIVE_SCAN |
803             IEEE80211_CHAN_W_SCAN;
804         entry->power_level = tx_power;
805         entry->antenna_max = 0xff;
806 }
807
808 static void rt2x00lib_rate(struct ieee80211_rate *entry,
809                            const int rate, const int mask,
810                            const int plcp, const int flags)
811 {
812         entry->rate = rate;
813         entry->val =
814             DEVICE_SET_RATE_FIELD(rate, RATE) |
815             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
816             DEVICE_SET_RATE_FIELD(plcp, PLCP);
817         entry->flags = flags;
818         entry->val2 = entry->val;
819         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
820                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
821         entry->min_rssi_ack = 0;
822         entry->min_rssi_ack_delta = 0;
823 }
824
825 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
826                                     struct hw_mode_spec *spec)
827 {
828         struct ieee80211_hw *hw = rt2x00dev->hw;
829         struct ieee80211_hw_mode *hwmodes;
830         struct ieee80211_channel *channels;
831         struct ieee80211_rate *rates;
832         unsigned int i;
833         unsigned char tx_power;
834
835         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
836         if (!hwmodes)
837                 goto exit;
838
839         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
840         if (!channels)
841                 goto exit_free_modes;
842
843         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
844         if (!rates)
845                 goto exit_free_channels;
846
847         /*
848          * Initialize Rate list.
849          */
850         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
851                        0x00, IEEE80211_RATE_CCK);
852         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
853                        0x01, IEEE80211_RATE_CCK_2);
854         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
855                        0x02, IEEE80211_RATE_CCK_2);
856         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
857                        0x03, IEEE80211_RATE_CCK_2);
858
859         if (spec->num_rates > 4) {
860                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
861                                0x0b, IEEE80211_RATE_OFDM);
862                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
863                                0x0f, IEEE80211_RATE_OFDM);
864                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
865                                0x0a, IEEE80211_RATE_OFDM);
866                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
867                                0x0e, IEEE80211_RATE_OFDM);
868                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
869                                0x09, IEEE80211_RATE_OFDM);
870                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
871                                0x0d, IEEE80211_RATE_OFDM);
872                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
873                                0x08, IEEE80211_RATE_OFDM);
874                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
875                                0x0c, IEEE80211_RATE_OFDM);
876         }
877
878         /*
879          * Initialize Channel list.
880          */
881         for (i = 0; i < spec->num_channels; i++) {
882                 if (spec->channels[i].channel <= 14)
883                         tx_power = spec->tx_power_bg[i];
884                 else if (spec->tx_power_a)
885                         tx_power = spec->tx_power_a[i];
886                 else
887                         tx_power = spec->tx_power_default;
888
889                 rt2x00lib_channel(&channels[i],
890                                   spec->channels[i].channel, tx_power, i);
891         }
892
893         /*
894          * Intitialize 802.11b
895          * Rates: CCK.
896          * Channels: OFDM.
897          */
898         if (spec->num_modes > HWMODE_B) {
899                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
900                 hwmodes[HWMODE_B].num_channels = 14;
901                 hwmodes[HWMODE_B].num_rates = 4;
902                 hwmodes[HWMODE_B].channels = channels;
903                 hwmodes[HWMODE_B].rates = rates;
904         }
905
906         /*
907          * Intitialize 802.11g
908          * Rates: CCK, OFDM.
909          * Channels: OFDM.
910          */
911         if (spec->num_modes > HWMODE_G) {
912                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
913                 hwmodes[HWMODE_G].num_channels = 14;
914                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
915                 hwmodes[HWMODE_G].channels = channels;
916                 hwmodes[HWMODE_G].rates = rates;
917         }
918
919         /*
920          * Intitialize 802.11a
921          * Rates: OFDM.
922          * Channels: OFDM, UNII, HiperLAN2.
923          */
924         if (spec->num_modes > HWMODE_A) {
925                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
926                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
927                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
928                 hwmodes[HWMODE_A].channels = &channels[14];
929                 hwmodes[HWMODE_A].rates = &rates[4];
930         }
931
932         if (spec->num_modes > HWMODE_G &&
933             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
934                 goto exit_free_rates;
935
936         if (spec->num_modes > HWMODE_B &&
937             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
938                 goto exit_free_rates;
939
940         if (spec->num_modes > HWMODE_A &&
941             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
942                 goto exit_free_rates;
943
944         rt2x00dev->hwmodes = hwmodes;
945
946         return 0;
947
948 exit_free_rates:
949         kfree(rates);
950
951 exit_free_channels:
952         kfree(channels);
953
954 exit_free_modes:
955         kfree(hwmodes);
956
957 exit:
958         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
959         return -ENOMEM;
960 }
961
962 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
963 {
964         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
965                 ieee80211_unregister_hw(rt2x00dev->hw);
966
967         if (likely(rt2x00dev->hwmodes)) {
968                 kfree(rt2x00dev->hwmodes->channels);
969                 kfree(rt2x00dev->hwmodes->rates);
970                 kfree(rt2x00dev->hwmodes);
971                 rt2x00dev->hwmodes = NULL;
972         }
973 }
974
975 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
976 {
977         struct hw_mode_spec *spec = &rt2x00dev->spec;
978         int status;
979
980         /*
981          * Initialize HW modes.
982          */
983         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
984         if (status)
985                 return status;
986
987         /*
988          * Register HW.
989          */
990         status = ieee80211_register_hw(rt2x00dev->hw);
991         if (status) {
992                 rt2x00lib_remove_hw(rt2x00dev);
993                 return status;
994         }
995
996         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
997
998         return 0;
999 }
1000
1001 /*
1002  * Initialization/uninitialization handlers.
1003  */
1004 static int rt2x00lib_alloc_entries(struct data_ring *ring,
1005                                    const u16 max_entries, const u16 data_size,
1006                                    const u16 desc_size)
1007 {
1008         struct data_entry *entry;
1009         unsigned int i;
1010
1011         ring->stats.limit = max_entries;
1012         ring->data_size = data_size;
1013         ring->desc_size = desc_size;
1014
1015         /*
1016          * Allocate all ring entries.
1017          */
1018         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
1019         if (!entry)
1020                 return -ENOMEM;
1021
1022         for (i = 0; i < ring->stats.limit; i++) {
1023                 entry[i].flags = 0;
1024                 entry[i].ring = ring;
1025                 entry[i].skb = NULL;
1026                 entry[i].entry_idx = i;
1027         }
1028
1029         ring->entry = entry;
1030
1031         return 0;
1032 }
1033
1034 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
1035 {
1036         struct data_ring *ring;
1037
1038         /*
1039          * Allocate the RX ring.
1040          */
1041         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1042                                     rt2x00dev->ops->rxd_size))
1043                 return -ENOMEM;
1044
1045         /*
1046          * First allocate the TX rings.
1047          */
1048         txring_for_each(rt2x00dev, ring) {
1049                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1050                                             rt2x00dev->ops->txd_size))
1051                         return -ENOMEM;
1052         }
1053
1054         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1055                 return 0;
1056
1057         /*
1058          * Allocate the BEACON ring.
1059          */
1060         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1061                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1062                 return -ENOMEM;
1063
1064         /*
1065          * Allocate the Atim ring.
1066          */
1067         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1068                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1069                 return -ENOMEM;
1070
1071         return 0;
1072 }
1073
1074 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1075 {
1076         struct data_ring *ring;
1077
1078         ring_for_each(rt2x00dev, ring) {
1079                 kfree(ring->entry);
1080                 ring->entry = NULL;
1081         }
1082 }
1083
1084 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1085 {
1086         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1087                 return;
1088
1089         /*
1090          * Unregister rfkill.
1091          */
1092         rt2x00rfkill_unregister(rt2x00dev);
1093
1094         /*
1095          * Allow the HW to uninitialize.
1096          */
1097         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1098
1099         /*
1100          * Free allocated ring entries.
1101          */
1102         rt2x00lib_free_ring_entries(rt2x00dev);
1103 }
1104
1105 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1106 {
1107         int status;
1108
1109         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1110                 return 0;
1111
1112         /*
1113          * Allocate all ring entries.
1114          */
1115         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1116         if (status) {
1117                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1118                 return status;
1119         }
1120
1121         /*
1122          * Initialize the device.
1123          */
1124         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1125         if (status)
1126                 goto exit;
1127
1128         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1129
1130         /*
1131          * Register the rfkill handler.
1132          */
1133         status = rt2x00rfkill_register(rt2x00dev);
1134         if (status)
1135                 goto exit_unitialize;
1136
1137         return 0;
1138
1139 exit_unitialize:
1140         rt2x00lib_uninitialize(rt2x00dev);
1141
1142 exit:
1143         rt2x00lib_free_ring_entries(rt2x00dev);
1144
1145         return status;
1146 }
1147
1148 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1149 {
1150         int retval;
1151
1152         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1153                 return 0;
1154
1155         /*
1156          * If this is the first interface which is added,
1157          * we should load the firmware now.
1158          */
1159         if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1160                 retval = rt2x00lib_load_firmware(rt2x00dev);
1161                 if (retval)
1162                         return retval;
1163         }
1164
1165         /*
1166          * Initialize the device.
1167          */
1168         retval = rt2x00lib_initialize(rt2x00dev);
1169         if (retval)
1170                 return retval;
1171
1172         /*
1173          * Enable radio.
1174          */
1175         retval = rt2x00lib_enable_radio(rt2x00dev);
1176         if (retval) {
1177                 rt2x00lib_uninitialize(rt2x00dev);
1178                 return retval;
1179         }
1180
1181         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1182
1183         return 0;
1184 }
1185
1186 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1187 {
1188         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1189                 return;
1190
1191         /*
1192          * Perhaps we can add something smarter here,
1193          * but for now just disabling the radio should do.
1194          */
1195         rt2x00lib_disable_radio(rt2x00dev);
1196
1197         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1198 }
1199
1200 /*
1201  * driver allocation handlers.
1202  */
1203 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1204 {
1205         struct data_ring *ring;
1206         unsigned int index;
1207
1208         /*
1209          * We need the following rings:
1210          * RX: 1
1211          * TX: hw->queues
1212          * Beacon: 1 (if required)
1213          * Atim: 1 (if required)
1214          */
1215         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1216             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1217
1218         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1219         if (!ring) {
1220                 ERROR(rt2x00dev, "Ring allocation failed.\n");
1221                 return -ENOMEM;
1222         }
1223
1224         /*
1225          * Initialize pointers
1226          */
1227         rt2x00dev->rx = ring;
1228         rt2x00dev->tx = &rt2x00dev->rx[1];
1229         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1230                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1231
1232         /*
1233          * Initialize ring parameters.
1234          * RX: queue_idx = 0
1235          * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
1236          * TX: cw_min: 2^5 = 32.
1237          * TX: cw_max: 2^10 = 1024.
1238          */
1239         rt2x00dev->rx->rt2x00dev = rt2x00dev;
1240         rt2x00dev->rx->queue_idx = 0;
1241
1242         index = IEEE80211_TX_QUEUE_DATA0;
1243         txring_for_each(rt2x00dev, ring) {
1244                 ring->rt2x00dev = rt2x00dev;
1245                 ring->queue_idx = index++;
1246                 ring->tx_params.aifs = 2;
1247                 ring->tx_params.cw_min = 5;
1248                 ring->tx_params.cw_max = 10;
1249         }
1250
1251         return 0;
1252 }
1253
1254 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1255 {
1256         kfree(rt2x00dev->rx);
1257         rt2x00dev->rx = NULL;
1258         rt2x00dev->tx = NULL;
1259         rt2x00dev->bcn = NULL;
1260 }
1261
1262 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1263 {
1264         int retval = -ENOMEM;
1265
1266         /*
1267          * Let the driver probe the device to detect the capabilities.
1268          */
1269         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1270         if (retval) {
1271                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1272                 goto exit;
1273         }
1274
1275         /*
1276          * Initialize configuration work.
1277          */
1278         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1279         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1280         INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1281         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1282
1283         /*
1284          * Reset current working type.
1285          */
1286         rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1287
1288         /*
1289          * Allocate ring array.
1290          */
1291         retval = rt2x00lib_alloc_rings(rt2x00dev);
1292         if (retval)
1293                 goto exit;
1294
1295         /*
1296          * Initialize ieee80211 structure.
1297          */
1298         retval = rt2x00lib_probe_hw(rt2x00dev);
1299         if (retval) {
1300                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1301                 goto exit;
1302         }
1303
1304         /*
1305          * Allocatie rfkill.
1306          */
1307         retval = rt2x00rfkill_allocate(rt2x00dev);
1308         if (retval)
1309                 goto exit;
1310
1311         /*
1312          * Open the debugfs entry.
1313          */
1314         rt2x00debug_register(rt2x00dev);
1315
1316         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1317
1318         return 0;
1319
1320 exit:
1321         rt2x00lib_remove_dev(rt2x00dev);
1322
1323         return retval;
1324 }
1325 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1326
1327 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1328 {
1329         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1330
1331         /*
1332          * Disable radio.
1333          */
1334         rt2x00lib_disable_radio(rt2x00dev);
1335
1336         /*
1337          * Uninitialize device.
1338          */
1339         rt2x00lib_uninitialize(rt2x00dev);
1340
1341         /*
1342          * Close debugfs entry.
1343          */
1344         rt2x00debug_deregister(rt2x00dev);
1345
1346         /*
1347          * Free rfkill
1348          */
1349         rt2x00rfkill_free(rt2x00dev);
1350
1351         /*
1352          * Free ieee80211_hw memory.
1353          */
1354         rt2x00lib_remove_hw(rt2x00dev);
1355
1356         /*
1357          * Free firmware image.
1358          */
1359         rt2x00lib_free_firmware(rt2x00dev);
1360
1361         /*
1362          * Free ring structures.
1363          */
1364         rt2x00lib_free_rings(rt2x00dev);
1365 }
1366 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1367
1368 /*
1369  * Device state handlers
1370  */
1371 #ifdef CONFIG_PM
1372 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1373 {
1374         int retval;
1375
1376         NOTICE(rt2x00dev, "Going to sleep.\n");
1377         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1378
1379         /*
1380          * Only continue if mac80211 has open interfaces.
1381          */
1382         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1383                 goto exit;
1384         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1385
1386         /*
1387          * Disable radio and unitialize all items
1388          * that must be recreated on resume.
1389          */
1390         rt2x00lib_stop(rt2x00dev);
1391         rt2x00lib_uninitialize(rt2x00dev);
1392         rt2x00debug_deregister(rt2x00dev);
1393
1394 exit:
1395         /*
1396          * Set device mode to sleep for power management.
1397          */
1398         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1399         if (retval)
1400                 return retval;
1401
1402         return 0;
1403 }
1404 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1405
1406 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1407 {
1408         struct interface *intf = &rt2x00dev->interface;
1409         int retval;
1410
1411         NOTICE(rt2x00dev, "Waking up.\n");
1412
1413         /*
1414          * Open the debugfs entry.
1415          */
1416         rt2x00debug_register(rt2x00dev);
1417
1418         /*
1419          * Only continue if mac80211 had open interfaces.
1420          */
1421         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1422                 return 0;
1423
1424         /*
1425          * Reinitialize device and all active interfaces.
1426          */
1427         retval = rt2x00lib_start(rt2x00dev);
1428         if (retval)
1429                 goto exit;
1430
1431         /*
1432          * Reconfigure device.
1433          */
1434         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1435         if (!rt2x00dev->hw->conf.radio_enabled)
1436                 rt2x00lib_disable_radio(rt2x00dev);
1437
1438         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1439         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1440         rt2x00lib_config_type(rt2x00dev, intf->type);
1441
1442         /*
1443          * We are ready again to receive requests from mac80211.
1444          */
1445         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1446
1447         /*
1448          * It is possible that during that mac80211 has attempted
1449          * to send frames while we were suspending or resuming.
1450          * In that case we have disabled the TX queue and should
1451          * now enable it again
1452          */
1453         ieee80211_start_queues(rt2x00dev->hw);
1454
1455         /*
1456          * When in Master or Ad-hoc mode,
1457          * restart Beacon transmitting by faking a beacondone event.
1458          */
1459         if (intf->type == IEEE80211_IF_TYPE_AP ||
1460             intf->type == IEEE80211_IF_TYPE_IBSS)
1461                 rt2x00lib_beacondone(rt2x00dev);
1462
1463         return 0;
1464
1465 exit:
1466         rt2x00lib_disable_radio(rt2x00dev);
1467         rt2x00lib_uninitialize(rt2x00dev);
1468         rt2x00debug_deregister(rt2x00dev);
1469
1470         return retval;
1471 }
1472 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1473 #endif /* CONFIG_PM */
1474
1475 /*
1476  * rt2x00lib module information.
1477  */
1478 MODULE_AUTHOR(DRV_PROJECT);
1479 MODULE_VERSION(DRV_VERSION);
1480 MODULE_DESCRIPTION("rt2x00 library");
1481 MODULE_LICENSE("GPL");