]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Determine MY_BSS from descriptor
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Ring handler.
35  */
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37                                      const unsigned int queue)
38 {
39         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
40
41         /*
42          * Check if we are requesting a reqular TX ring,
43          * or if we are requesting a Beacon or Atim ring.
44          * For Atim rings, we should check if it is supported.
45          */
46         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47                 return &rt2x00dev->tx[queue];
48
49         if (!rt2x00dev->bcn || !beacon)
50                 return NULL;
51
52         if (queue == IEEE80211_TX_QUEUE_BEACON)
53                 return &rt2x00dev->bcn[0];
54         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55                 return &rt2x00dev->bcn[1];
56
57         return NULL;
58 }
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
60
61 /*
62  * Link tuning handlers
63  */
64 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
65 {
66         rt2x00dev->link.count = 0;
67         rt2x00dev->link.vgc_level = 0;
68
69         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
70
71         /*
72          * The RX and TX percentage should start at 50%
73          * this will assure we will get at least get some
74          * decent value when the link tuner starts.
75          * The value will be dropped and overwritten with
76          * the correct (measured )value anyway during the
77          * first run of the link tuner.
78          */
79         rt2x00dev->link.qual.rx_percentage = 50;
80         rt2x00dev->link.qual.tx_percentage = 50;
81
82         /*
83          * Reset the link tuner.
84          */
85         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
86
87         queue_delayed_work(rt2x00dev->hw->workqueue,
88                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
89 }
90
91 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
92 {
93         cancel_delayed_work_sync(&rt2x00dev->link.work);
94 }
95
96 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
97 {
98         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
99                 return;
100
101         rt2x00lib_stop_link_tuner(rt2x00dev);
102         rt2x00lib_start_link_tuner(rt2x00dev);
103 }
104
105 /*
106  * Radio control handlers.
107  */
108 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
109 {
110         int status;
111
112         /*
113          * Don't enable the radio twice.
114          * And check if the hardware button has been disabled.
115          */
116         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
117             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
118                 return 0;
119
120         /*
121          * Enable radio.
122          */
123         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
124                                                        STATE_RADIO_ON);
125         if (status)
126                 return status;
127
128         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
129
130         /*
131          * Enable RX.
132          */
133         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
134
135         /*
136          * Start the TX queues.
137          */
138         ieee80211_start_queues(rt2x00dev->hw);
139
140         return 0;
141 }
142
143 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
144 {
145         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
146                 return;
147
148         /*
149          * Stop all scheduled work.
150          */
151         if (work_pending(&rt2x00dev->beacon_work))
152                 cancel_work_sync(&rt2x00dev->beacon_work);
153         if (work_pending(&rt2x00dev->filter_work))
154                 cancel_work_sync(&rt2x00dev->filter_work);
155         if (work_pending(&rt2x00dev->config_work))
156                 cancel_work_sync(&rt2x00dev->config_work);
157
158         /*
159          * Stop the TX queues.
160          */
161         ieee80211_stop_queues(rt2x00dev->hw);
162
163         /*
164          * Disable RX.
165          */
166         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
167
168         /*
169          * Disable radio.
170          */
171         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
172 }
173
174 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
175 {
176         /*
177          * When we are disabling the RX, we should also stop the link tuner.
178          */
179         if (state == STATE_RADIO_RX_OFF)
180                 rt2x00lib_stop_link_tuner(rt2x00dev);
181
182         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
183
184         /*
185          * When we are enabling the RX, we should also start the link tuner.
186          */
187         if (state == STATE_RADIO_RX_ON &&
188             is_interface_present(&rt2x00dev->interface))
189                 rt2x00lib_start_link_tuner(rt2x00dev);
190 }
191
192 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
193 {
194         enum antenna rx = rt2x00dev->link.ant.active.rx;
195         enum antenna tx = rt2x00dev->link.ant.active.tx;
196         int sample_a =
197             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
198         int sample_b =
199             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
200
201         /*
202          * We are done sampling. Now we should evaluate the results.
203          */
204         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
205
206         /*
207          * During the last period we have sampled the RSSI
208          * from both antenna's. It now is time to determine
209          * which antenna demonstrated the best performance.
210          * When we are already on the antenna with the best
211          * performance, then there really is nothing for us
212          * left to do.
213          */
214         if (sample_a == sample_b)
215                 return;
216
217         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) {
218                 if (sample_a > sample_b && rx == ANTENNA_B)
219                         rx = ANTENNA_A;
220                 else if (rx == ANTENNA_A)
221                         rx = ANTENNA_B;
222         }
223
224         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) {
225                 if (sample_a > sample_b && tx == ANTENNA_B)
226                         tx = ANTENNA_A;
227                 else if (tx == ANTENNA_A)
228                         tx = ANTENNA_B;
229         }
230
231         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
232 }
233
234 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
235 {
236         enum antenna rx = rt2x00dev->link.ant.active.rx;
237         enum antenna tx = rt2x00dev->link.ant.active.tx;
238         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
239         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
240
241         /*
242          * Legacy driver indicates that we should swap antenna's
243          * when the difference in RSSI is greater that 5. This
244          * also should be done when the RSSI was actually better
245          * then the previous sample.
246          * When the difference exceeds the threshold we should
247          * sample the rssi from the other antenna to make a valid
248          * comparison between the 2 antennas.
249          */
250         if ((rssi_curr - rssi_old) > -5 || (rssi_curr - rssi_old) < 5)
251                 return;
252
253         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
254
255         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
256                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
257
258         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
259                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
260
261         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
262 }
263
264 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
265 {
266         /*
267          * Determine if software diversity is enabled for
268          * either the TX or RX antenna (or both).
269          * Always perform this check since within the link
270          * tuner interval the configuration might have changed.
271          */
272         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
273         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
274
275         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
276             rt2x00dev->default_ant.rx != ANTENNA_SW_DIVERSITY)
277                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
278         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
279             rt2x00dev->default_ant.tx != ANTENNA_SW_DIVERSITY)
280                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
281
282         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
283             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
284                 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
285                 return;
286         }
287
288         /*
289          * If we have only sampled the data over the last period
290          * we should now harvest the data. Otherwise just evaluate
291          * the data. The latter should only be performed once
292          * every 2 seconds.
293          */
294         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
295                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
296         else if (rt2x00dev->link.count & 1)
297                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
298 }
299
300 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
301 {
302         int avg_rssi = rssi;
303
304         /*
305          * Update global RSSI
306          */
307         if (link->qual.avg_rssi)
308                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
309         link->qual.avg_rssi = avg_rssi;
310
311         /*
312          * Update antenna RSSI
313          */
314         if (link->ant.rssi_ant)
315                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
316         link->ant.rssi_ant = rssi;
317 }
318
319 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
320 {
321         if (qual->rx_failed || qual->rx_success)
322                 qual->rx_percentage =
323                     (qual->rx_success * 100) /
324                     (qual->rx_failed + qual->rx_success);
325         else
326                 qual->rx_percentage = 50;
327
328         if (qual->tx_failed || qual->tx_success)
329                 qual->tx_percentage =
330                     (qual->tx_success * 100) /
331                     (qual->tx_failed + qual->tx_success);
332         else
333                 qual->tx_percentage = 50;
334
335         qual->rx_success = 0;
336         qual->rx_failed = 0;
337         qual->tx_success = 0;
338         qual->tx_failed = 0;
339 }
340
341 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
342                                            int rssi)
343 {
344         int rssi_percentage = 0;
345         int signal;
346
347         /*
348          * We need a positive value for the RSSI.
349          */
350         if (rssi < 0)
351                 rssi += rt2x00dev->rssi_offset;
352
353         /*
354          * Calculate the different percentages,
355          * which will be used for the signal.
356          */
357         if (rt2x00dev->rssi_offset)
358                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
359
360         /*
361          * Add the individual percentages and use the WEIGHT
362          * defines to calculate the current link signal.
363          */
364         signal = ((WEIGHT_RSSI * rssi_percentage) +
365                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
366                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
367
368         return (signal > 100) ? 100 : signal;
369 }
370
371 static void rt2x00lib_link_tuner(struct work_struct *work)
372 {
373         struct rt2x00_dev *rt2x00dev =
374             container_of(work, struct rt2x00_dev, link.work.work);
375
376         /*
377          * When the radio is shutting down we should
378          * immediately cease all link tuning.
379          */
380         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
381                 return;
382
383         /*
384          * Update statistics.
385          */
386         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
387         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
388             rt2x00dev->link.qual.rx_failed;
389
390         /*
391          * Only perform the link tuning when Link tuning
392          * has been enabled (This could have been disabled from the EEPROM).
393          */
394         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
395                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
396
397         /*
398          * Evaluate antenna setup.
399          */
400         rt2x00lib_evaluate_antenna(rt2x00dev);
401
402         /*
403          * Precalculate a portion of the link signal which is
404          * in based on the tx/rx success/failure counters.
405          */
406         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
407
408         /*
409          * Increase tuner counter, and reschedule the next link tuner run.
410          */
411         rt2x00dev->link.count++;
412         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
413                            LINK_TUNE_INTERVAL);
414 }
415
416 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
417 {
418         struct rt2x00_dev *rt2x00dev =
419             container_of(work, struct rt2x00_dev, filter_work);
420         unsigned int filter = rt2x00dev->packet_filter;
421
422         /*
423          * Since we had stored the filter inside interface.filter,
424          * we should now clear that field. Otherwise the driver will
425          * assume nothing has changed (*total_flags will be compared
426          * to interface.filter to determine if any action is required).
427          */
428         rt2x00dev->packet_filter = 0;
429
430         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
431                                              filter, &filter, 0, NULL);
432 }
433
434 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
435 {
436         struct rt2x00_dev *rt2x00dev =
437             container_of(work, struct rt2x00_dev, config_work);
438         int preamble = !test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
439
440         rt2x00mac_erp_ie_changed(rt2x00dev->hw,
441                                  IEEE80211_ERP_CHANGE_PREAMBLE, 0, preamble);
442 }
443
444 /*
445  * Interrupt context handlers.
446  */
447 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
448 {
449         struct rt2x00_dev *rt2x00dev =
450             container_of(work, struct rt2x00_dev, beacon_work);
451         struct data_ring *ring =
452             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
453         struct data_entry *entry = rt2x00_get_data_entry(ring);
454         struct sk_buff *skb;
455
456         skb = ieee80211_beacon_get(rt2x00dev->hw,
457                                    rt2x00dev->interface.id,
458                                    &entry->tx_status.control);
459         if (!skb)
460                 return;
461
462         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
463                                           &entry->tx_status.control);
464
465         dev_kfree_skb(skb);
466 }
467
468 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
469 {
470         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
471                 return;
472
473         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
474 }
475 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
476
477 void rt2x00lib_txdone(struct data_entry *entry,
478                       const int status, const int retry)
479 {
480         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
481         struct ieee80211_tx_status *tx_status = &entry->tx_status;
482         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
483         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
484         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
485                       status == TX_FAIL_OTHER);
486
487         /*
488          * Update TX statistics.
489          */
490         tx_status->flags = 0;
491         tx_status->ack_signal = 0;
492         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
493         tx_status->retry_count = retry;
494         rt2x00dev->link.qual.tx_success += success;
495         rt2x00dev->link.qual.tx_failed += retry + fail;
496
497         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
498                 if (success)
499                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
500                 else
501                         stats->dot11ACKFailureCount++;
502         }
503
504         tx_status->queue_length = entry->ring->stats.limit;
505         tx_status->queue_number = tx_status->control.queue;
506
507         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
508                 if (success)
509                         stats->dot11RTSSuccessCount++;
510                 else
511                         stats->dot11RTSFailureCount++;
512         }
513
514         /*
515          * Send the tx_status to mac80211 & debugfs.
516          * mac80211 will clean up the skb structure.
517          */
518         get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
519         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
520         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
521         entry->skb = NULL;
522 }
523 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
524
525 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
526                       struct rxdata_entry_desc *desc)
527 {
528         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
529         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
530         struct ieee80211_hw_mode *mode;
531         struct ieee80211_rate *rate;
532         struct ieee80211_hdr *hdr;
533         unsigned int i;
534         int val = 0;
535         u16 fc;
536
537         /*
538          * Update RX statistics.
539          */
540         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
541         for (i = 0; i < mode->num_rates; i++) {
542                 rate = &mode->rates[i];
543
544                 /*
545                  * When frame was received with an OFDM bitrate,
546                  * the signal is the PLCP value. If it was received with
547                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
548                  */
549                 if (!desc->ofdm)
550                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
551                 else
552                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
553
554                 if (val == desc->signal) {
555                         val = rate->val;
556                         break;
557                 }
558         }
559
560         /*
561          * Only update link status if this is a beacon frame carrying our bssid.
562          */
563         hdr = (struct ieee80211_hdr*)skb->data;
564         fc = le16_to_cpu(hdr->frame_control);
565         if (is_beacon(fc) && desc->my_bss)
566                 rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
567
568         rt2x00dev->link.qual.rx_success++;
569
570         rx_status->rate = val;
571         rx_status->signal =
572             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
573         rx_status->ssi = desc->rssi;
574         rx_status->flag = desc->flags;
575         rx_status->antenna = rt2x00dev->link.ant.active.rx;
576
577         /*
578          * Send frame to mac80211 & debugfs
579          */
580         get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
581         rt2x00debug_dump_frame(rt2x00dev, skb);
582         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
583 }
584 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
585
586 /*
587  * TX descriptor initializer
588  */
589 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
590                              struct sk_buff *skb,
591                              struct ieee80211_tx_control *control)
592 {
593         struct txdata_entry_desc desc;
594         struct skb_desc *skbdesc = get_skb_desc(skb);
595         struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
596         int tx_rate;
597         int bitrate;
598         int length;
599         int duration;
600         int residual;
601         u16 frame_control;
602         u16 seq_ctrl;
603
604         memset(&desc, 0, sizeof(desc));
605
606         desc.cw_min = skbdesc->ring->tx_params.cw_min;
607         desc.cw_max = skbdesc->ring->tx_params.cw_max;
608         desc.aifs = skbdesc->ring->tx_params.aifs;
609
610         /*
611          * Identify queue
612          */
613         if (control->queue < rt2x00dev->hw->queues)
614                 desc.queue = control->queue;
615         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
616                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
617                 desc.queue = QUEUE_MGMT;
618         else
619                 desc.queue = QUEUE_OTHER;
620
621         /*
622          * Read required fields from ieee80211 header.
623          */
624         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
625         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
626
627         tx_rate = control->tx_rate;
628
629         /*
630          * Check whether this frame is to be acked
631          */
632         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
633                 __set_bit(ENTRY_TXD_ACK, &desc.flags);
634
635         /*
636          * Check if this is a RTS/CTS frame
637          */
638         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
639                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
640                 if (is_rts_frame(frame_control)) {
641                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
642                         __set_bit(ENTRY_TXD_ACK, &desc.flags);
643                 } else
644                         __clear_bit(ENTRY_TXD_ACK, &desc.flags);
645                 if (control->rts_cts_rate)
646                         tx_rate = control->rts_cts_rate;
647         }
648
649         /*
650          * Check for OFDM
651          */
652         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
653                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
654
655         /*
656          * Check if more fragments are pending
657          */
658         if (ieee80211_get_morefrag(ieee80211hdr)) {
659                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
660                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
661         }
662
663         /*
664          * Beacons and probe responses require the tsf timestamp
665          * to be inserted into the frame.
666          */
667         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
668             is_probe_resp(frame_control))
669                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
670
671         /*
672          * Determine with what IFS priority this frame should be send.
673          * Set ifs to IFS_SIFS when the this is not the first fragment,
674          * or this fragment came after RTS/CTS.
675          */
676         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
677             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
678                 desc.ifs = IFS_SIFS;
679         else
680                 desc.ifs = IFS_BACKOFF;
681
682         /*
683          * PLCP setup
684          * Length calculation depends on OFDM/CCK rate.
685          */
686         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
687         desc.service = 0x04;
688
689         length = skbdesc->data_len + FCS_LEN;
690         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
691                 desc.length_high = (length >> 6) & 0x3f;
692                 desc.length_low = length & 0x3f;
693         } else {
694                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
695
696                 /*
697                  * Convert length to microseconds.
698                  */
699                 residual = get_duration_res(length, bitrate);
700                 duration = get_duration(length, bitrate);
701
702                 if (residual != 0) {
703                         duration++;
704
705                         /*
706                          * Check if we need to set the Length Extension
707                          */
708                         if (bitrate == 110 && residual <= 30)
709                                 desc.service |= 0x80;
710                 }
711
712                 desc.length_high = (duration >> 8) & 0xff;
713                 desc.length_low = duration & 0xff;
714
715                 /*
716                  * When preamble is enabled we should set the
717                  * preamble bit for the signal.
718                  */
719                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
720                         desc.signal |= 0x08;
721         }
722
723         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
724
725         /*
726          * Update ring entry.
727          */
728         skbdesc->entry->skb = skb;
729         memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
730
731         /*
732          * The frame has been completely initialized and ready
733          * for sending to the device. The caller will push the
734          * frame to the device, but we are going to push the
735          * frame to debugfs here.
736          */
737         skbdesc->frame_type = DUMP_FRAME_TX;
738         rt2x00debug_dump_frame(rt2x00dev, skb);
739 }
740 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
741
742 /*
743  * Driver initialization handlers.
744  */
745 static void rt2x00lib_channel(struct ieee80211_channel *entry,
746                               const int channel, const int tx_power,
747                               const int value)
748 {
749         entry->chan = channel;
750         if (channel <= 14)
751                 entry->freq = 2407 + (5 * channel);
752         else
753                 entry->freq = 5000 + (5 * channel);
754         entry->val = value;
755         entry->flag =
756             IEEE80211_CHAN_W_IBSS |
757             IEEE80211_CHAN_W_ACTIVE_SCAN |
758             IEEE80211_CHAN_W_SCAN;
759         entry->power_level = tx_power;
760         entry->antenna_max = 0xff;
761 }
762
763 static void rt2x00lib_rate(struct ieee80211_rate *entry,
764                            const int rate, const int mask,
765                            const int plcp, const int flags)
766 {
767         entry->rate = rate;
768         entry->val =
769             DEVICE_SET_RATE_FIELD(rate, RATE) |
770             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
771             DEVICE_SET_RATE_FIELD(plcp, PLCP);
772         entry->flags = flags;
773         entry->val2 = entry->val;
774         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
775                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
776         entry->min_rssi_ack = 0;
777         entry->min_rssi_ack_delta = 0;
778 }
779
780 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
781                                     struct hw_mode_spec *spec)
782 {
783         struct ieee80211_hw *hw = rt2x00dev->hw;
784         struct ieee80211_hw_mode *hwmodes;
785         struct ieee80211_channel *channels;
786         struct ieee80211_rate *rates;
787         unsigned int i;
788         unsigned char tx_power;
789
790         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
791         if (!hwmodes)
792                 goto exit;
793
794         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
795         if (!channels)
796                 goto exit_free_modes;
797
798         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
799         if (!rates)
800                 goto exit_free_channels;
801
802         /*
803          * Initialize Rate list.
804          */
805         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
806                        0x00, IEEE80211_RATE_CCK);
807         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
808                        0x01, IEEE80211_RATE_CCK_2);
809         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
810                        0x02, IEEE80211_RATE_CCK_2);
811         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
812                        0x03, IEEE80211_RATE_CCK_2);
813
814         if (spec->num_rates > 4) {
815                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
816                                0x0b, IEEE80211_RATE_OFDM);
817                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
818                                0x0f, IEEE80211_RATE_OFDM);
819                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
820                                0x0a, IEEE80211_RATE_OFDM);
821                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
822                                0x0e, IEEE80211_RATE_OFDM);
823                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
824                                0x09, IEEE80211_RATE_OFDM);
825                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
826                                0x0d, IEEE80211_RATE_OFDM);
827                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
828                                0x08, IEEE80211_RATE_OFDM);
829                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
830                                0x0c, IEEE80211_RATE_OFDM);
831         }
832
833         /*
834          * Initialize Channel list.
835          */
836         for (i = 0; i < spec->num_channels; i++) {
837                 if (spec->channels[i].channel <= 14)
838                         tx_power = spec->tx_power_bg[i];
839                 else if (spec->tx_power_a)
840                         tx_power = spec->tx_power_a[i];
841                 else
842                         tx_power = spec->tx_power_default;
843
844                 rt2x00lib_channel(&channels[i],
845                                   spec->channels[i].channel, tx_power, i);
846         }
847
848         /*
849          * Intitialize 802.11b
850          * Rates: CCK.
851          * Channels: OFDM.
852          */
853         if (spec->num_modes > HWMODE_B) {
854                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
855                 hwmodes[HWMODE_B].num_channels = 14;
856                 hwmodes[HWMODE_B].num_rates = 4;
857                 hwmodes[HWMODE_B].channels = channels;
858                 hwmodes[HWMODE_B].rates = rates;
859         }
860
861         /*
862          * Intitialize 802.11g
863          * Rates: CCK, OFDM.
864          * Channels: OFDM.
865          */
866         if (spec->num_modes > HWMODE_G) {
867                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
868                 hwmodes[HWMODE_G].num_channels = 14;
869                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
870                 hwmodes[HWMODE_G].channels = channels;
871                 hwmodes[HWMODE_G].rates = rates;
872         }
873
874         /*
875          * Intitialize 802.11a
876          * Rates: OFDM.
877          * Channels: OFDM, UNII, HiperLAN2.
878          */
879         if (spec->num_modes > HWMODE_A) {
880                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
881                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
882                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
883                 hwmodes[HWMODE_A].channels = &channels[14];
884                 hwmodes[HWMODE_A].rates = &rates[4];
885         }
886
887         if (spec->num_modes > HWMODE_G &&
888             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
889                 goto exit_free_rates;
890
891         if (spec->num_modes > HWMODE_B &&
892             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
893                 goto exit_free_rates;
894
895         if (spec->num_modes > HWMODE_A &&
896             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
897                 goto exit_free_rates;
898
899         rt2x00dev->hwmodes = hwmodes;
900
901         return 0;
902
903 exit_free_rates:
904         kfree(rates);
905
906 exit_free_channels:
907         kfree(channels);
908
909 exit_free_modes:
910         kfree(hwmodes);
911
912 exit:
913         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
914         return -ENOMEM;
915 }
916
917 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
918 {
919         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
920                 ieee80211_unregister_hw(rt2x00dev->hw);
921
922         if (likely(rt2x00dev->hwmodes)) {
923                 kfree(rt2x00dev->hwmodes->channels);
924                 kfree(rt2x00dev->hwmodes->rates);
925                 kfree(rt2x00dev->hwmodes);
926                 rt2x00dev->hwmodes = NULL;
927         }
928 }
929
930 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
931 {
932         struct hw_mode_spec *spec = &rt2x00dev->spec;
933         int status;
934
935         /*
936          * Initialize HW modes.
937          */
938         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
939         if (status)
940                 return status;
941
942         /*
943          * Register HW.
944          */
945         status = ieee80211_register_hw(rt2x00dev->hw);
946         if (status) {
947                 rt2x00lib_remove_hw(rt2x00dev);
948                 return status;
949         }
950
951         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
952
953         return 0;
954 }
955
956 /*
957  * Initialization/uninitialization handlers.
958  */
959 static int rt2x00lib_alloc_entries(struct data_ring *ring,
960                                    const u16 max_entries, const u16 data_size,
961                                    const u16 desc_size)
962 {
963         struct data_entry *entry;
964         unsigned int i;
965
966         ring->stats.limit = max_entries;
967         ring->data_size = data_size;
968         ring->desc_size = desc_size;
969
970         /*
971          * Allocate all ring entries.
972          */
973         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
974         if (!entry)
975                 return -ENOMEM;
976
977         for (i = 0; i < ring->stats.limit; i++) {
978                 entry[i].flags = 0;
979                 entry[i].ring = ring;
980                 entry[i].skb = NULL;
981                 entry[i].entry_idx = i;
982         }
983
984         ring->entry = entry;
985
986         return 0;
987 }
988
989 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
990 {
991         struct data_ring *ring;
992
993         /*
994          * Allocate the RX ring.
995          */
996         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
997                                     rt2x00dev->ops->rxd_size))
998                 return -ENOMEM;
999
1000         /*
1001          * First allocate the TX rings.
1002          */
1003         txring_for_each(rt2x00dev, ring) {
1004                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1005                                             rt2x00dev->ops->txd_size))
1006                         return -ENOMEM;
1007         }
1008
1009         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1010                 return 0;
1011
1012         /*
1013          * Allocate the BEACON ring.
1014          */
1015         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1016                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1017                 return -ENOMEM;
1018
1019         /*
1020          * Allocate the Atim ring.
1021          */
1022         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1023                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1024                 return -ENOMEM;
1025
1026         return 0;
1027 }
1028
1029 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1030 {
1031         struct data_ring *ring;
1032
1033         ring_for_each(rt2x00dev, ring) {
1034                 kfree(ring->entry);
1035                 ring->entry = NULL;
1036         }
1037 }
1038
1039 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1040 {
1041         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1042                 return;
1043
1044         /*
1045          * Unregister rfkill.
1046          */
1047         rt2x00rfkill_unregister(rt2x00dev);
1048
1049         /*
1050          * Allow the HW to uninitialize.
1051          */
1052         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1053
1054         /*
1055          * Free allocated ring entries.
1056          */
1057         rt2x00lib_free_ring_entries(rt2x00dev);
1058 }
1059
1060 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1061 {
1062         int status;
1063
1064         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1065                 return 0;
1066
1067         /*
1068          * Allocate all ring entries.
1069          */
1070         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1071         if (status) {
1072                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1073                 return status;
1074         }
1075
1076         /*
1077          * Initialize the device.
1078          */
1079         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1080         if (status)
1081                 goto exit;
1082
1083         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1084
1085         /*
1086          * Register the rfkill handler.
1087          */
1088         status = rt2x00rfkill_register(rt2x00dev);
1089         if (status)
1090                 goto exit_unitialize;
1091
1092         return 0;
1093
1094 exit_unitialize:
1095         rt2x00lib_uninitialize(rt2x00dev);
1096
1097 exit:
1098         rt2x00lib_free_ring_entries(rt2x00dev);
1099
1100         return status;
1101 }
1102
1103 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1104 {
1105         int retval;
1106
1107         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1108                 return 0;
1109
1110         /*
1111          * If this is the first interface which is added,
1112          * we should load the firmware now.
1113          */
1114         if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1115                 retval = rt2x00lib_load_firmware(rt2x00dev);
1116                 if (retval)
1117                         return retval;
1118         }
1119
1120         /*
1121          * Initialize the device.
1122          */
1123         retval = rt2x00lib_initialize(rt2x00dev);
1124         if (retval)
1125                 return retval;
1126
1127         /*
1128          * Enable radio.
1129          */
1130         retval = rt2x00lib_enable_radio(rt2x00dev);
1131         if (retval) {
1132                 rt2x00lib_uninitialize(rt2x00dev);
1133                 return retval;
1134         }
1135
1136         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1137
1138         return 0;
1139 }
1140
1141 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1142 {
1143         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1144                 return;
1145
1146         /*
1147          * Perhaps we can add something smarter here,
1148          * but for now just disabling the radio should do.
1149          */
1150         rt2x00lib_disable_radio(rt2x00dev);
1151
1152         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1153 }
1154
1155 /*
1156  * driver allocation handlers.
1157  */
1158 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1159 {
1160         struct data_ring *ring;
1161         unsigned int index;
1162
1163         /*
1164          * We need the following rings:
1165          * RX: 1
1166          * TX: hw->queues
1167          * Beacon: 1 (if required)
1168          * Atim: 1 (if required)
1169          */
1170         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1171             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1172
1173         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1174         if (!ring) {
1175                 ERROR(rt2x00dev, "Ring allocation failed.\n");
1176                 return -ENOMEM;
1177         }
1178
1179         /*
1180          * Initialize pointers
1181          */
1182         rt2x00dev->rx = ring;
1183         rt2x00dev->tx = &rt2x00dev->rx[1];
1184         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1185                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1186
1187         /*
1188          * Initialize ring parameters.
1189          * cw_min: 2^5 = 32.
1190          * cw_max: 2^10 = 1024.
1191          */
1192         index = 0;
1193         ring_for_each(rt2x00dev, ring) {
1194                 ring->rt2x00dev = rt2x00dev;
1195                 ring->queue_idx = index++;
1196                 ring->tx_params.aifs = 2;
1197                 ring->tx_params.cw_min = 5;
1198                 ring->tx_params.cw_max = 10;
1199         }
1200
1201         return 0;
1202 }
1203
1204 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1205 {
1206         kfree(rt2x00dev->rx);
1207         rt2x00dev->rx = NULL;
1208         rt2x00dev->tx = NULL;
1209         rt2x00dev->bcn = NULL;
1210 }
1211
1212 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1213 {
1214         int retval = -ENOMEM;
1215
1216         /*
1217          * Let the driver probe the device to detect the capabilities.
1218          */
1219         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1220         if (retval) {
1221                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1222                 goto exit;
1223         }
1224
1225         /*
1226          * Initialize configuration work.
1227          */
1228         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1229         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1230         INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1231         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1232
1233         /*
1234          * Reset current working type.
1235          */
1236         rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1237
1238         /*
1239          * Allocate ring array.
1240          */
1241         retval = rt2x00lib_alloc_rings(rt2x00dev);
1242         if (retval)
1243                 goto exit;
1244
1245         /*
1246          * Initialize ieee80211 structure.
1247          */
1248         retval = rt2x00lib_probe_hw(rt2x00dev);
1249         if (retval) {
1250                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1251                 goto exit;
1252         }
1253
1254         /*
1255          * Allocatie rfkill.
1256          */
1257         retval = rt2x00rfkill_allocate(rt2x00dev);
1258         if (retval)
1259                 goto exit;
1260
1261         /*
1262          * Open the debugfs entry.
1263          */
1264         rt2x00debug_register(rt2x00dev);
1265
1266         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1267
1268         return 0;
1269
1270 exit:
1271         rt2x00lib_remove_dev(rt2x00dev);
1272
1273         return retval;
1274 }
1275 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1276
1277 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1278 {
1279         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1280
1281         /*
1282          * Disable radio.
1283          */
1284         rt2x00lib_disable_radio(rt2x00dev);
1285
1286         /*
1287          * Uninitialize device.
1288          */
1289         rt2x00lib_uninitialize(rt2x00dev);
1290
1291         /*
1292          * Close debugfs entry.
1293          */
1294         rt2x00debug_deregister(rt2x00dev);
1295
1296         /*
1297          * Free rfkill
1298          */
1299         rt2x00rfkill_free(rt2x00dev);
1300
1301         /*
1302          * Free ieee80211_hw memory.
1303          */
1304         rt2x00lib_remove_hw(rt2x00dev);
1305
1306         /*
1307          * Free firmware image.
1308          */
1309         rt2x00lib_free_firmware(rt2x00dev);
1310
1311         /*
1312          * Free ring structures.
1313          */
1314         rt2x00lib_free_rings(rt2x00dev);
1315 }
1316 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1317
1318 /*
1319  * Device state handlers
1320  */
1321 #ifdef CONFIG_PM
1322 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1323 {
1324         int retval;
1325
1326         NOTICE(rt2x00dev, "Going to sleep.\n");
1327         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1328
1329         /*
1330          * Only continue if mac80211 has open interfaces.
1331          */
1332         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1333                 goto exit;
1334         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1335
1336         /*
1337          * Disable radio and unitialize all items
1338          * that must be recreated on resume.
1339          */
1340         rt2x00lib_stop(rt2x00dev);
1341         rt2x00lib_uninitialize(rt2x00dev);
1342         rt2x00debug_deregister(rt2x00dev);
1343
1344 exit:
1345         /*
1346          * Set device mode to sleep for power management.
1347          */
1348         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1349         if (retval)
1350                 return retval;
1351
1352         return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1355
1356 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1357 {
1358         struct interface *intf = &rt2x00dev->interface;
1359         int retval;
1360
1361         NOTICE(rt2x00dev, "Waking up.\n");
1362
1363         /*
1364          * Open the debugfs entry.
1365          */
1366         rt2x00debug_register(rt2x00dev);
1367
1368         /*
1369          * Only continue if mac80211 had open interfaces.
1370          */
1371         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1372                 return 0;
1373
1374         /*
1375          * Reinitialize device and all active interfaces.
1376          */
1377         retval = rt2x00lib_start(rt2x00dev);
1378         if (retval)
1379                 goto exit;
1380
1381         /*
1382          * Reconfigure device.
1383          */
1384         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1385         if (!rt2x00dev->hw->conf.radio_enabled)
1386                 rt2x00lib_disable_radio(rt2x00dev);
1387
1388         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1389         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1390         rt2x00lib_config_type(rt2x00dev, intf->type);
1391
1392         /*
1393          * We are ready again to receive requests from mac80211.
1394          */
1395         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1396
1397         /*
1398          * It is possible that during that mac80211 has attempted
1399          * to send frames while we were suspending or resuming.
1400          * In that case we have disabled the TX queue and should
1401          * now enable it again
1402          */
1403         ieee80211_start_queues(rt2x00dev->hw);
1404
1405         /*
1406          * When in Master or Ad-hoc mode,
1407          * restart Beacon transmitting by faking a beacondone event.
1408          */
1409         if (intf->type == IEEE80211_IF_TYPE_AP ||
1410             intf->type == IEEE80211_IF_TYPE_IBSS)
1411                 rt2x00lib_beacondone(rt2x00dev);
1412
1413         return 0;
1414
1415 exit:
1416         rt2x00lib_disable_radio(rt2x00dev);
1417         rt2x00lib_uninitialize(rt2x00dev);
1418         rt2x00debug_deregister(rt2x00dev);
1419
1420         return retval;
1421 }
1422 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1423 #endif /* CONFIG_PM */
1424
1425 /*
1426  * rt2x00lib module information.
1427  */
1428 MODULE_AUTHOR(DRV_PROJECT);
1429 MODULE_VERSION(DRV_VERSION);
1430 MODULE_DESCRIPTION("rt2x00 library");
1431 MODULE_LICENSE("GPL");