]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
[PATCH] rt2x00: Fix panic on rmmod with rfkill enabled
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 /*
27  * Set enviroment defines for rt2x00.h
28  */
29 #define DRV_NAME "rt2x00lib"
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00lib.h"
36
37 /*
38  * Ring handler.
39  */
40 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
41                                      const unsigned int queue)
42 {
43         int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
44
45         /*
46          * Check if we are requesting a reqular TX ring,
47          * or if we are requesting a Beacon or Atim ring.
48          * For Atim rings, we should check if it is supported.
49          */
50         if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
51                 return &rt2x00dev->tx[queue];
52
53         if (!rt2x00dev->bcn || !beacon)
54                 return NULL;
55
56         if (queue == IEEE80211_TX_QUEUE_BEACON)
57                 return &rt2x00dev->bcn[0];
58         else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
59                 return &rt2x00dev->bcn[1];
60
61         return NULL;
62 }
63 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
64
65 /*
66  * Link tuning handlers
67  */
68 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
69 {
70         rt2x00_clear_link(&rt2x00dev->link);
71
72         /*
73          * Reset the link tuner.
74          */
75         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
87 {
88         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
89                 return;
90
91         rt2x00lib_stop_link_tuner(rt2x00dev);
92         rt2x00lib_start_link_tuner(rt2x00dev);
93 }
94
95 /*
96  * Radio control handlers.
97  */
98 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
99 {
100         int status;
101
102         /*
103          * Don't enable the radio twice.
104          * And check if the hardware button has been disabled.
105          */
106         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
107             (test_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags) &&
108              !test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags)))
109                 return 0;
110
111         /*
112          * Enable radio.
113          */
114         status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
115                                                        STATE_RADIO_ON);
116         if (status)
117                 return status;
118
119         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
120
121         /*
122          * Enable RX.
123          */
124         rt2x00lib_toggle_rx(rt2x00dev, 1);
125
126         /*
127          * Start the TX queues.
128          */
129         ieee80211_start_queues(rt2x00dev->hw);
130
131         return 0;
132 }
133
134 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
135 {
136         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
137                 return;
138
139         /*
140          * Stop all scheduled work.
141          */
142         if (work_pending(&rt2x00dev->beacon_work))
143                 cancel_work_sync(&rt2x00dev->beacon_work);
144         if (work_pending(&rt2x00dev->filter_work))
145                 cancel_work_sync(&rt2x00dev->filter_work);
146
147         /*
148          * Stop the TX queues.
149          */
150         ieee80211_stop_queues(rt2x00dev->hw);
151
152         /*
153          * Disable RX.
154          */
155         rt2x00lib_toggle_rx(rt2x00dev, 0);
156
157         /*
158          * Disable radio.
159          */
160         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
161 }
162
163 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable)
164 {
165         enum dev_state state = enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF;
166
167         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
168                 return;
169
170         /*
171          * When we are disabling the RX, we should also stop the link tuner.
172          */
173         if (!enable)
174                 rt2x00lib_stop_link_tuner(rt2x00dev);
175
176         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
177
178         /*
179          * When we are enabling the RX, we should also start the link tuner.
180          */
181         if (enable && is_interface_present(&rt2x00dev->interface))
182                 rt2x00lib_start_link_tuner(rt2x00dev);
183 }
184
185 static void rt2x00lib_precalculate_link_signal(struct link *link)
186 {
187         if (link->rx_failed || link->rx_success)
188                 link->rx_percentage =
189                     (link->rx_success * 100) /
190                     (link->rx_failed + link->rx_success);
191         else
192                 link->rx_percentage = 50;
193
194         if (link->tx_failed || link->tx_success)
195                 link->tx_percentage =
196                     (link->tx_success * 100) /
197                     (link->tx_failed + link->tx_success);
198         else
199                 link->tx_percentage = 50;
200
201         link->rx_success = 0;
202         link->rx_failed = 0;
203         link->tx_success = 0;
204         link->tx_failed = 0;
205 }
206
207 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
208                                            int rssi)
209 {
210         int rssi_percentage = 0;
211         int signal;
212
213         /*
214          * We need a positive value for the RSSI.
215          */
216         if (rssi < 0)
217                 rssi += rt2x00dev->rssi_offset;
218
219         /*
220          * Calculate the different percentages,
221          * which will be used for the signal.
222          */
223         if (rt2x00dev->rssi_offset)
224                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
225
226         /*
227          * Add the individual percentages and use the WEIGHT
228          * defines to calculate the current link signal.
229          */
230         signal = ((WEIGHT_RSSI * rssi_percentage) +
231                   (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
232                   (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;
233
234         return (signal > 100) ? 100 : signal;
235 }
236
237 static void rt2x00lib_link_tuner(struct work_struct *work)
238 {
239         struct rt2x00_dev *rt2x00dev =
240             container_of(work, struct rt2x00_dev, link.work.work);
241
242         /*
243          * When the radio is shutting down we should
244          * immediately cease all link tuning.
245          */
246         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
247                 return;
248
249         /*
250          * Update statistics.
251          */
252         rt2x00dev->ops->lib->link_stats(rt2x00dev);
253
254         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
255             rt2x00dev->link.rx_failed;
256
257         /*
258          * Only perform the link tuning when Link tuning
259          * has been enabled (This could have been disabled from the EEPROM).
260          */
261         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
262                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
263
264         /*
265          * Precalculate a portion of the link signal which is
266          * in based on the tx/rx success/failure counters.
267          */
268         rt2x00lib_precalculate_link_signal(&rt2x00dev->link);
269
270         /*
271          * Increase tuner counter, and reschedule the next link tuner run.
272          */
273         rt2x00dev->link.count++;
274         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
275                            LINK_TUNE_INTERVAL);
276 }
277
278 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
279 {
280         struct rt2x00_dev *rt2x00dev =
281             container_of(work, struct rt2x00_dev, filter_work);
282
283         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
284                                              rt2x00dev->interface.filter,
285                                              &rt2x00dev->interface.filter,
286                                              0, NULL);
287 }
288
289 /*
290  * Interrupt context handlers.
291  */
292 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
293 {
294         struct rt2x00_dev *rt2x00dev =
295             container_of(work, struct rt2x00_dev, beacon_work);
296         struct data_ring *ring =
297             rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
298         struct data_entry *entry = rt2x00_get_data_entry(ring);
299         struct sk_buff *skb;
300
301         skb = ieee80211_beacon_get(rt2x00dev->hw,
302                                    rt2x00dev->interface.id,
303                                    &entry->tx_status.control);
304         if (!skb)
305                 return;
306
307         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
308                                           &entry->tx_status.control);
309
310         dev_kfree_skb(skb);
311 }
312
313 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
314 {
315         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
316                 return;
317
318         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
319 }
320 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
321
322 void rt2x00lib_txdone(struct data_entry *entry,
323                       const int status, const int retry)
324 {
325         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
326         struct ieee80211_tx_status *tx_status = &entry->tx_status;
327         struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
328         int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
329         int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
330                       status == TX_FAIL_OTHER);
331
332         /*
333          * Update TX statistics.
334          */
335         tx_status->flags = 0;
336         tx_status->ack_signal = 0;
337         tx_status->excessive_retries = (status == TX_FAIL_RETRY);
338         tx_status->retry_count = retry;
339         rt2x00dev->link.tx_success += success;
340         rt2x00dev->link.tx_failed += retry + fail;
341
342         if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
343                 if (success)
344                         tx_status->flags |= IEEE80211_TX_STATUS_ACK;
345                 else
346                         stats->dot11ACKFailureCount++;
347         }
348
349         tx_status->queue_length = entry->ring->stats.limit;
350         tx_status->queue_number = tx_status->control.queue;
351
352         if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
353                 if (success)
354                         stats->dot11RTSSuccessCount++;
355                 else
356                         stats->dot11RTSFailureCount++;
357         }
358
359         /*
360          * Send the tx_status to mac80211,
361          * that method also cleans up the skb structure.
362          */
363         ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
364         entry->skb = NULL;
365 }
366 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
367
368 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
369                       struct rxdata_entry_desc *desc)
370 {
371         struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
372         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
373         struct ieee80211_hw_mode *mode;
374         struct ieee80211_rate *rate;
375         unsigned int i;
376         int val = 0;
377
378         /*
379          * Update RX statistics.
380          */
381         mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
382         for (i = 0; i < mode->num_rates; i++) {
383                 rate = &mode->rates[i];
384
385                 /*
386                  * When frame was received with an OFDM bitrate,
387                  * the signal is the PLCP value. If it was received with
388                  * a CCK bitrate the signal is the rate in 0.5kbit/s.
389                  */
390                 if (!desc->ofdm)
391                         val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
392                 else
393                         val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
394
395                 if (val == desc->signal) {
396                         val = rate->val;
397                         break;
398                 }
399         }
400
401         rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
402         rt2x00dev->link.rx_success++;
403         rx_status->rate = val;
404         rx_status->signal =
405             rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
406         rx_status->ssi = desc->rssi;
407         rx_status->flag = desc->flags;
408
409         /*
410          * Send frame to mac80211
411          */
412         ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
413 }
414 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
415
416 /*
417  * TX descriptor initializer
418  */
419 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
420                              struct data_desc *txd,
421                              struct ieee80211_hdr *ieee80211hdr,
422                              unsigned int length,
423                              struct ieee80211_tx_control *control)
424 {
425         struct txdata_entry_desc desc;
426         struct data_ring *ring;
427         int tx_rate;
428         int bitrate;
429         int duration;
430         int residual;
431         u16 frame_control;
432         u16 seq_ctrl;
433
434         /*
435          * Make sure the descriptor is properly cleared.
436          */
437         memset(&desc, 0x00, sizeof(desc));
438
439         /*
440          * Get ring pointer, if we fail to obtain the
441          * correct ring, then use the first TX ring.
442          */
443         ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
444         if (!ring)
445                 ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
446
447         desc.cw_min = ring->tx_params.cw_min;
448         desc.cw_max = ring->tx_params.cw_max;
449         desc.aifs = ring->tx_params.aifs;
450
451         /*
452          * Identify queue
453          */
454         if (control->queue < rt2x00dev->hw->queues)
455                 desc.queue = control->queue;
456         else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
457                  control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
458                 desc.queue = QUEUE_MGMT;
459         else
460                 desc.queue = QUEUE_OTHER;
461
462         /*
463          * Read required fields from ieee80211 header.
464          */
465         frame_control = le16_to_cpu(ieee80211hdr->frame_control);
466         seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
467
468         tx_rate = control->tx_rate;
469
470         /*
471          * Check if this is a RTS/CTS frame
472          */
473         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
474                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
475                 if (is_rts_frame(frame_control))
476                         __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
477                 if (control->rts_cts_rate)
478                         tx_rate = control->rts_cts_rate;
479         }
480
481         /*
482          * Check for OFDM
483          */
484         if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
485                 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
486
487         /*
488          * Check if more fragments are pending
489          */
490         if (ieee80211_get_morefrag(ieee80211hdr)) {
491                 __set_bit(ENTRY_TXD_BURST, &desc.flags);
492                 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
493         }
494
495         /*
496          * Beacons and probe responses require the tsf timestamp
497          * to be inserted into the frame.
498          */
499         if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
500             is_probe_resp(frame_control))
501                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
502
503         /*
504          * Determine with what IFS priority this frame should be send.
505          * Set ifs to IFS_SIFS when the this is not the first fragment,
506          * or this fragment came after RTS/CTS.
507          */
508         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
509             test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
510                 desc.ifs = IFS_SIFS;
511         else
512                 desc.ifs = IFS_BACKOFF;
513
514         /*
515          * PLCP setup
516          * Length calculation depends on OFDM/CCK rate.
517          */
518         desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
519         desc.service = 0x04;
520
521         if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
522                 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
523                 desc.length_low = ((length + FCS_LEN) & 0x3f);
524         } else {
525                 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
526
527                 /*
528                  * Convert length to microseconds.
529                  */
530                 residual = get_duration_res(length + FCS_LEN, bitrate);
531                 duration = get_duration(length + FCS_LEN, bitrate);
532
533                 if (residual != 0) {
534                         duration++;
535
536                         /*
537                          * Check if we need to set the Length Extension
538                          */
539                         if (bitrate == 110 && residual <= 3)
540                                 desc.service |= 0x80;
541                 }
542
543                 desc.length_high = (duration >> 8) & 0xff;
544                 desc.length_low = duration & 0xff;
545
546                 /*
547                  * When preamble is enabled we should set the
548                  * preamble bit for the signal.
549                  */
550                 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
551                         desc.signal |= 0x08;
552         }
553
554         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
555                                            ieee80211hdr, length, control);
556 }
557 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
558
559 /*
560  * Driver initialization handlers.
561  */
562 static void rt2x00lib_channel(struct ieee80211_channel *entry,
563                               const int channel, const int tx_power,
564                               const int value)
565 {
566         entry->chan = channel;
567         if (channel <= 14)
568                 entry->freq = 2407 + (5 * channel);
569         else
570                 entry->freq = 5000 + (5 * channel);
571         entry->val = value;
572         entry->flag =
573             IEEE80211_CHAN_W_IBSS |
574             IEEE80211_CHAN_W_ACTIVE_SCAN |
575             IEEE80211_CHAN_W_SCAN;
576         entry->power_level = tx_power;
577         entry->antenna_max = 0xff;
578 }
579
580 static void rt2x00lib_rate(struct ieee80211_rate *entry,
581                            const int rate, const int mask,
582                            const int plcp, const int flags)
583 {
584         entry->rate = rate;
585         entry->val =
586             DEVICE_SET_RATE_FIELD(rate, RATE) |
587             DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
588             DEVICE_SET_RATE_FIELD(plcp, PLCP);
589         entry->flags = flags;
590         entry->val2 = entry->val;
591         if (entry->flags & IEEE80211_RATE_PREAMBLE2)
592                 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
593         entry->min_rssi_ack = 0;
594         entry->min_rssi_ack_delta = 0;
595 }
596
597 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
598                                     struct hw_mode_spec *spec)
599 {
600         struct ieee80211_hw *hw = rt2x00dev->hw;
601         struct ieee80211_hw_mode *hwmodes;
602         struct ieee80211_channel *channels;
603         struct ieee80211_rate *rates;
604         unsigned int i;
605         unsigned char tx_power;
606
607         hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
608         if (!hwmodes)
609                 goto exit;
610
611         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
612         if (!channels)
613                 goto exit_free_modes;
614
615         rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
616         if (!rates)
617                 goto exit_free_channels;
618
619         /*
620          * Initialize Rate list.
621          */
622         rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
623                        0x00, IEEE80211_RATE_CCK);
624         rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
625                        0x01, IEEE80211_RATE_CCK_2);
626         rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
627                        0x02, IEEE80211_RATE_CCK_2);
628         rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
629                        0x03, IEEE80211_RATE_CCK_2);
630
631         if (spec->num_rates > 4) {
632                 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
633                                0x0b, IEEE80211_RATE_OFDM);
634                 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
635                                0x0f, IEEE80211_RATE_OFDM);
636                 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
637                                0x0a, IEEE80211_RATE_OFDM);
638                 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
639                                0x0e, IEEE80211_RATE_OFDM);
640                 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
641                                0x09, IEEE80211_RATE_OFDM);
642                 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
643                                0x0d, IEEE80211_RATE_OFDM);
644                 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
645                                0x08, IEEE80211_RATE_OFDM);
646                 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
647                                0x0c, IEEE80211_RATE_OFDM);
648         }
649
650         /*
651          * Initialize Channel list.
652          */
653         for (i = 0; i < spec->num_channels; i++) {
654                 if (spec->channels[i].channel <= 14)
655                         tx_power = spec->tx_power_bg[i];
656                 else if (spec->tx_power_a)
657                         tx_power = spec->tx_power_a[i];
658                 else
659                         tx_power = spec->tx_power_default;
660
661                 rt2x00lib_channel(&channels[i],
662                                   spec->channels[i].channel, tx_power, i);
663         }
664
665         /*
666          * Intitialize 802.11b
667          * Rates: CCK.
668          * Channels: OFDM.
669          */
670         if (spec->num_modes > HWMODE_B) {
671                 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
672                 hwmodes[HWMODE_B].num_channels = 14;
673                 hwmodes[HWMODE_B].num_rates = 4;
674                 hwmodes[HWMODE_B].channels = channels;
675                 hwmodes[HWMODE_B].rates = rates;
676         }
677
678         /*
679          * Intitialize 802.11g
680          * Rates: CCK, OFDM.
681          * Channels: OFDM.
682          */
683         if (spec->num_modes > HWMODE_G) {
684                 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
685                 hwmodes[HWMODE_G].num_channels = 14;
686                 hwmodes[HWMODE_G].num_rates = spec->num_rates;
687                 hwmodes[HWMODE_G].channels = channels;
688                 hwmodes[HWMODE_G].rates = rates;
689         }
690
691         /*
692          * Intitialize 802.11a
693          * Rates: OFDM.
694          * Channels: OFDM, UNII, HiperLAN2.
695          */
696         if (spec->num_modes > HWMODE_A) {
697                 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
698                 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
699                 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
700                 hwmodes[HWMODE_A].channels = &channels[14];
701                 hwmodes[HWMODE_A].rates = &rates[4];
702         }
703
704         if (spec->num_modes > HWMODE_G &&
705             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
706                 goto exit_free_rates;
707
708         if (spec->num_modes > HWMODE_B &&
709             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
710                 goto exit_free_rates;
711
712         if (spec->num_modes > HWMODE_A &&
713             ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
714                 goto exit_free_rates;
715
716         rt2x00dev->hwmodes = hwmodes;
717
718         return 0;
719
720 exit_free_rates:
721         kfree(rates);
722
723 exit_free_channels:
724         kfree(channels);
725
726 exit_free_modes:
727         kfree(hwmodes);
728
729 exit:
730         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
731         return -ENOMEM;
732 }
733
734 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
735 {
736         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
737                 ieee80211_unregister_hw(rt2x00dev->hw);
738
739         if (likely(rt2x00dev->hwmodes)) {
740                 kfree(rt2x00dev->hwmodes->channels);
741                 kfree(rt2x00dev->hwmodes->rates);
742                 kfree(rt2x00dev->hwmodes);
743                 rt2x00dev->hwmodes = NULL;
744         }
745 }
746
747 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
748 {
749         struct hw_mode_spec *spec = &rt2x00dev->spec;
750         int status;
751
752         /*
753          * Initialize HW modes.
754          */
755         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
756         if (status)
757                 return status;
758
759         /*
760          * Register HW.
761          */
762         status = ieee80211_register_hw(rt2x00dev->hw);
763         if (status) {
764                 rt2x00lib_remove_hw(rt2x00dev);
765                 return status;
766         }
767
768         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
769
770         return 0;
771 }
772
773 /*
774  * Initialization/uninitialization handlers.
775  */
776 static int rt2x00lib_alloc_entries(struct data_ring *ring,
777                                    const u16 max_entries, const u16 data_size,
778                                    const u16 desc_size)
779 {
780         struct data_entry *entry;
781         unsigned int i;
782
783         ring->stats.limit = max_entries;
784         ring->data_size = data_size;
785         ring->desc_size = desc_size;
786
787         /*
788          * Allocate all ring entries.
789          */
790         entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
791         if (!entry)
792                 return -ENOMEM;
793
794         for (i = 0; i < ring->stats.limit; i++) {
795                 entry[i].flags = 0;
796                 entry[i].ring = ring;
797                 entry[i].skb = NULL;
798         }
799
800         ring->entry = entry;
801
802         return 0;
803 }
804
805 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
806 {
807         struct data_ring *ring;
808
809         /*
810          * Allocate the RX ring.
811          */
812         if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
813                                     rt2x00dev->ops->rxd_size))
814                 return -ENOMEM;
815
816         /*
817          * First allocate the TX rings.
818          */
819         txring_for_each(rt2x00dev, ring) {
820                 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
821                                             rt2x00dev->ops->txd_size))
822                         return -ENOMEM;
823         }
824
825         if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
826                 return 0;
827
828         /*
829          * Allocate the BEACON ring.
830          */
831         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
832                                     MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
833                 return -ENOMEM;
834
835         /*
836          * Allocate the Atim ring.
837          */
838         if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
839                                     DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
840                 return -ENOMEM;
841
842         return 0;
843 }
844
845 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
846 {
847         struct data_ring *ring;
848
849         ring_for_each(rt2x00dev, ring) {
850                 kfree(ring->entry);
851                 ring->entry = NULL;
852         }
853 }
854
855 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
856 {
857         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
858                 return;
859
860         /*
861          * Unregister rfkill.
862          */
863         rt2x00rfkill_unregister(rt2x00dev);
864
865         /*
866          * Allow the HW to uninitialize.
867          */
868         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
869
870         /*
871          * Free allocated ring entries.
872          */
873         rt2x00lib_free_ring_entries(rt2x00dev);
874 }
875
876 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
877 {
878         int status;
879
880         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
881                 return 0;
882
883         /*
884          * Allocate all ring entries.
885          */
886         status = rt2x00lib_alloc_ring_entries(rt2x00dev);
887         if (status) {
888                 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
889                 return status;
890         }
891
892         /*
893          * Initialize the device.
894          */
895         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
896         if (status)
897                 goto exit;
898
899         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
900
901         /*
902          * Register the rfkill handler.
903          */
904         status = rt2x00rfkill_register(rt2x00dev);
905         if (status)
906                 goto exit_unitialize;
907
908         return 0;
909
910 exit_unitialize:
911         rt2x00lib_uninitialize(rt2x00dev);
912
913 exit:
914         rt2x00lib_free_ring_entries(rt2x00dev);
915
916         return status;
917 }
918
919 /*
920  * driver allocation handlers.
921  */
922 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
923 {
924         struct data_ring *ring;
925
926         /*
927          * We need the following rings:
928          * RX: 1
929          * TX: hw->queues
930          * Beacon: 1 (if required)
931          * Atim: 1 (if required)
932          */
933         rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
934             (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
935
936         ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
937         if (!ring) {
938                 ERROR(rt2x00dev, "Ring allocation failed.\n");
939                 return -ENOMEM;
940         }
941
942         /*
943          * Initialize pointers
944          */
945         rt2x00dev->rx = ring;
946         rt2x00dev->tx = &rt2x00dev->rx[1];
947         if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
948                 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
949
950         /*
951          * Initialize ring parameters.
952          * cw_min: 2^5 = 32.
953          * cw_max: 2^10 = 1024.
954          */
955         ring_for_each(rt2x00dev, ring) {
956                 ring->rt2x00dev = rt2x00dev;
957                 ring->tx_params.aifs = 2;
958                 ring->tx_params.cw_min = 5;
959                 ring->tx_params.cw_max = 10;
960         }
961
962         return 0;
963 }
964
965 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
966 {
967         kfree(rt2x00dev->rx);
968         rt2x00dev->rx = NULL;
969         rt2x00dev->tx = NULL;
970         rt2x00dev->bcn = NULL;
971 }
972
973 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
974 {
975         int retval = -ENOMEM;
976
977         /*
978          * Let the driver probe the device to detect the capabilities.
979          */
980         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
981         if (retval) {
982                 ERROR(rt2x00dev, "Failed to allocate device.\n");
983                 goto exit;
984         }
985
986         /*
987          * Initialize configuration work.
988          */
989         INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
990         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
991         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
992
993         /*
994          * Reset current working type.
995          */
996         rt2x00dev->interface.type = INVALID_INTERFACE;
997
998         /*
999          * Allocate ring array.
1000          */
1001         retval = rt2x00lib_alloc_rings(rt2x00dev);
1002         if (retval)
1003                 goto exit;
1004
1005         /*
1006          * Initialize ieee80211 structure.
1007          */
1008         retval = rt2x00lib_probe_hw(rt2x00dev);
1009         if (retval) {
1010                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1011                 goto exit;
1012         }
1013
1014         /*
1015          * Allocatie rfkill.
1016          */
1017         retval = rt2x00rfkill_allocate(rt2x00dev);
1018         if (retval)
1019                 goto exit;
1020
1021         /*
1022          * Open the debugfs entry.
1023          */
1024         rt2x00debug_register(rt2x00dev);
1025
1026         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1027
1028         return 0;
1029
1030 exit:
1031         rt2x00lib_remove_dev(rt2x00dev);
1032
1033         return retval;
1034 }
1035 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1036
1037 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1038 {
1039         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1040
1041         /*
1042          * Disable radio.
1043          */
1044         rt2x00lib_disable_radio(rt2x00dev);
1045
1046         /*
1047          * Uninitialize device.
1048          */
1049         rt2x00lib_uninitialize(rt2x00dev);
1050
1051         /*
1052          * Close debugfs entry.
1053          */
1054         rt2x00debug_deregister(rt2x00dev);
1055
1056         /*
1057          * Free rfkill
1058          */
1059         rt2x00rfkill_free(rt2x00dev);
1060
1061         /*
1062          * Free ieee80211_hw memory.
1063          */
1064         rt2x00lib_remove_hw(rt2x00dev);
1065
1066         /*
1067          * Free firmware image.
1068          */
1069         rt2x00lib_free_firmware(rt2x00dev);
1070
1071         /*
1072          * Free ring structures.
1073          */
1074         rt2x00lib_free_rings(rt2x00dev);
1075 }
1076 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1077
1078 /*
1079  * Device state handlers
1080  */
1081 #ifdef CONFIG_PM
1082 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1083 {
1084         int retval;
1085
1086         NOTICE(rt2x00dev, "Going to sleep.\n");
1087         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1088
1089         /*
1090          * Only continue if mac80211 has open interfaces.
1091          */
1092         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1093                 goto exit;
1094
1095         /*
1096          * Disable radio and unitialize all items
1097          * that must be recreated on resume.
1098          */
1099         rt2x00lib_disable_radio(rt2x00dev);
1100         rt2x00lib_uninitialize(rt2x00dev);
1101         rt2x00debug_deregister(rt2x00dev);
1102
1103 exit:
1104         /*
1105          * Set device mode to sleep for power management.
1106          */
1107         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1108         if (retval)
1109                 return retval;
1110
1111         return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1114
1115 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1116 {
1117         struct interface *intf = &rt2x00dev->interface;
1118         int retval;
1119
1120         NOTICE(rt2x00dev, "Waking up.\n");
1121         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1122
1123         /*
1124          * Open the debugfs entry.
1125          */
1126         rt2x00debug_register(rt2x00dev);
1127
1128         /*
1129          * Only continue if mac80211 has open interfaces.
1130          */
1131         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1132                 return 0;
1133
1134         /*
1135          * Reinitialize device and all active interfaces.
1136          */
1137         retval = rt2x00mac_start(rt2x00dev->hw);
1138         if (retval)
1139                 goto exit;
1140
1141         /*
1142          * Reconfigure device.
1143          */
1144         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1145         if (!rt2x00dev->hw->conf.radio_enabled)
1146                 rt2x00lib_disable_radio(rt2x00dev);
1147
1148         rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1149         rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1150         rt2x00lib_config_type(rt2x00dev, intf->type);
1151
1152         /*
1153          * It is possible that during that mac80211 has attempted
1154          * to send frames while we were suspending or resuming.
1155          * In that case we have disabled the TX queue and should
1156          * now enable it again
1157          */
1158         ieee80211_start_queues(rt2x00dev->hw);
1159
1160         /*
1161          * When in Master or Ad-hoc mode,
1162          * restart Beacon transmitting by faking a beacondone event.
1163          */
1164         if (intf->type == IEEE80211_IF_TYPE_AP ||
1165             intf->type == IEEE80211_IF_TYPE_IBSS)
1166                 rt2x00lib_beacondone(rt2x00dev);
1167
1168         return 0;
1169
1170 exit:
1171         rt2x00lib_disable_radio(rt2x00dev);
1172         rt2x00lib_uninitialize(rt2x00dev);
1173         rt2x00debug_deregister(rt2x00dev);
1174
1175         return retval;
1176 }
1177 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1178 #endif /* CONFIG_PM */
1179
1180 /*
1181  * rt2x00lib module information.
1182  */
1183 MODULE_AUTHOR(DRV_PROJECT);
1184 MODULE_VERSION(DRV_VERSION);
1185 MODULE_DESCRIPTION("rt2x00 library");
1186 MODULE_LICENSE("GPL");