]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/scsi/scsi_lib.c
[SCSI] add retries field to request for REQ_BLOCK_PC use
[linux-2.6-omap-h63xx.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30
31
32 #define SG_MEMPOOL_NR           (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE         32
34
35 struct scsi_host_sg_pool {
36         size_t          size;
37         char            *name; 
38         kmem_cache_t    *slab;
39         mempool_t       *pool;
40 };
41
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45
46 #define SP(x) { x, "sgpool-" #x } 
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48         SP(8),
49         SP(16),
50         SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52         SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54         SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56         SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };      
64 #undef SP
65
66 static void scsi_run_queue(struct request_queue *q);
67
68 /*
69  * Function:    scsi_unprep_request()
70  *
71  * Purpose:     Remove all preparation done for a request, including its
72  *              associated scsi_cmnd, so that it can be requeued.
73  *
74  * Arguments:   req     - request to unprepare
75  *
76  * Lock status: Assumed that no locks are held upon entry.
77  *
78  * Returns:     Nothing.
79  */
80 static void scsi_unprep_request(struct request *req)
81 {
82         struct scsi_cmnd *cmd = req->special;
83
84         req->flags &= ~REQ_DONTPREP;
85         req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
86
87         scsi_put_command(cmd);
88 }
89
90 /*
91  * Function:    scsi_queue_insert()
92  *
93  * Purpose:     Insert a command in the midlevel queue.
94  *
95  * Arguments:   cmd    - command that we are adding to queue.
96  *              reason - why we are inserting command to queue.
97  *
98  * Lock status: Assumed that lock is not held upon entry.
99  *
100  * Returns:     Nothing.
101  *
102  * Notes:       We do this for one of two cases.  Either the host is busy
103  *              and it cannot accept any more commands for the time being,
104  *              or the device returned QUEUE_FULL and can accept no more
105  *              commands.
106  * Notes:       This could be called either from an interrupt context or a
107  *              normal process context.
108  */
109 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
110 {
111         struct Scsi_Host *host = cmd->device->host;
112         struct scsi_device *device = cmd->device;
113         struct request_queue *q = device->request_queue;
114         unsigned long flags;
115
116         SCSI_LOG_MLQUEUE(1,
117                  printk("Inserting command %p into mlqueue\n", cmd));
118
119         /*
120          * Set the appropriate busy bit for the device/host.
121          *
122          * If the host/device isn't busy, assume that something actually
123          * completed, and that we should be able to queue a command now.
124          *
125          * Note that the prior mid-layer assumption that any host could
126          * always queue at least one command is now broken.  The mid-layer
127          * will implement a user specifiable stall (see
128          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
129          * if a command is requeued with no other commands outstanding
130          * either for the device or for the host.
131          */
132         if (reason == SCSI_MLQUEUE_HOST_BUSY)
133                 host->host_blocked = host->max_host_blocked;
134         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
135                 device->device_blocked = device->max_device_blocked;
136
137         /*
138          * Decrement the counters, since these commands are no longer
139          * active on the host/device.
140          */
141         scsi_device_unbusy(device);
142
143         /*
144          * Requeue this command.  It will go before all other commands
145          * that are already in the queue.
146          *
147          * NOTE: there is magic here about the way the queue is plugged if
148          * we have no outstanding commands.
149          * 
150          * Although we *don't* plug the queue, we call the request
151          * function.  The SCSI request function detects the blocked condition
152          * and plugs the queue appropriately.
153          */
154         spin_lock_irqsave(q->queue_lock, flags);
155         blk_requeue_request(q, cmd->request);
156         spin_unlock_irqrestore(q->queue_lock, flags);
157
158         scsi_run_queue(q);
159
160         return 0;
161 }
162
163 /*
164  * Function:    scsi_do_req
165  *
166  * Purpose:     Queue a SCSI request
167  *
168  * Arguments:   sreq      - command descriptor.
169  *              cmnd      - actual SCSI command to be performed.
170  *              buffer    - data buffer.
171  *              bufflen   - size of data buffer.
172  *              done      - completion function to be run.
173  *              timeout   - how long to let it run before timeout.
174  *              retries   - number of retries we allow.
175  *
176  * Lock status: No locks held upon entry.
177  *
178  * Returns:     Nothing.
179  *
180  * Notes:       This function is only used for queueing requests for things
181  *              like ioctls and character device requests - this is because
182  *              we essentially just inject a request into the queue for the
183  *              device.
184  *
185  *              In order to support the scsi_device_quiesce function, we
186  *              now inject requests on the *head* of the device queue
187  *              rather than the tail.
188  */
189 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
190                  void *buffer, unsigned bufflen,
191                  void (*done)(struct scsi_cmnd *),
192                  int timeout, int retries)
193 {
194         /*
195          * If the upper level driver is reusing these things, then
196          * we should release the low-level block now.  Another one will
197          * be allocated later when this request is getting queued.
198          */
199         __scsi_release_request(sreq);
200
201         /*
202          * Our own function scsi_done (which marks the host as not busy,
203          * disables the timeout counter, etc) will be called by us or by the
204          * scsi_hosts[host].queuecommand() function needs to also call
205          * the completion function for the high level driver.
206          */
207         memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
208         sreq->sr_bufflen = bufflen;
209         sreq->sr_buffer = buffer;
210         sreq->sr_allowed = retries;
211         sreq->sr_done = done;
212         sreq->sr_timeout_per_command = timeout;
213
214         if (sreq->sr_cmd_len == 0)
215                 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
216
217         /*
218          * head injection *required* here otherwise quiesce won't work
219          *
220          * Because users of this function are apt to reuse requests with no
221          * modification, we have to sanitise the request flags here
222          */
223         sreq->sr_request->flags &= ~REQ_DONTPREP;
224         blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
225                            1, sreq);
226 }
227 EXPORT_SYMBOL(scsi_do_req);
228
229 /**
230  * scsi_execute - insert request and wait for the result
231  * @sdev:       scsi device
232  * @cmd:        scsi command
233  * @data_direction: data direction
234  * @buffer:     data buffer
235  * @bufflen:    len of buffer
236  * @sense:      optional sense buffer
237  * @timeout:    request timeout in seconds
238  * @retries:    number of times to retry request
239  * @flags:      or into request flags;
240  *
241  * returns the req->errors value which is the the scsi_cmnd result
242  * field.
243  **/
244 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
245                  int data_direction, void *buffer, unsigned bufflen,
246                  unsigned char *sense, int timeout, int retries, int flags)
247 {
248         struct request *req;
249         int write = (data_direction == DMA_TO_DEVICE);
250         int ret = DRIVER_ERROR << 24;
251
252         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
253
254         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
255                                         buffer, bufflen, __GFP_WAIT))
256                 goto out;
257
258         req->cmd_len = COMMAND_SIZE(cmd[0]);
259         memcpy(req->cmd, cmd, req->cmd_len);
260         req->sense = sense;
261         req->sense_len = 0;
262         req->retries = retries;
263         req->timeout = timeout;
264         req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
265
266         /*
267          * head injection *required* here otherwise quiesce won't work
268          */
269         blk_execute_rq(req->q, NULL, req, 1);
270
271         ret = req->errors;
272  out:
273         blk_put_request(req);
274
275         return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279
280 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281                      int data_direction, void *buffer, unsigned bufflen,
282                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
283 {
284         char *sense = NULL;
285         int result;
286         
287         if (sshdr) {
288                 sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289                 if (!sense)
290                         return DRIVER_ERROR << 24;
291                 memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
292         }
293         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294                                   sense, timeout, retries, 0);
295         if (sshdr)
296                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297
298         kfree(sense);
299         return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302
303 struct scsi_io_context {
304         void *data;
305         void (*done)(void *data, char *sense, int result, int resid);
306         char sense[SCSI_SENSE_BUFFERSIZE];
307 };
308
309 static void scsi_end_async(struct request *req)
310 {
311         struct scsi_io_context *sioc = req->end_io_data;
312
313         if (sioc->done)
314                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
315
316         kfree(sioc);
317         __blk_put_request(req->q, req);
318 }
319
320 static int scsi_merge_bio(struct request *rq, struct bio *bio)
321 {
322         struct request_queue *q = rq->q;
323
324         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
325         if (rq_data_dir(rq) == WRITE)
326                 bio->bi_rw |= (1 << BIO_RW);
327         blk_queue_bounce(q, &bio);
328
329         if (!rq->bio)
330                 blk_rq_bio_prep(q, rq, bio);
331         else if (!q->back_merge_fn(q, rq, bio))
332                 return -EINVAL;
333         else {
334                 rq->biotail->bi_next = bio;
335                 rq->biotail = bio;
336                 rq->hard_nr_sectors += bio_sectors(bio);
337                 rq->nr_sectors = rq->hard_nr_sectors;
338         }
339
340         return 0;
341 }
342
343 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
344 {
345         if (bio->bi_size)
346                 return 1;
347
348         bio_put(bio);
349         return 0;
350 }
351
352 /**
353  * scsi_req_map_sg - map a scatterlist into a request
354  * @rq:         request to fill
355  * @sg:         scatterlist
356  * @nsegs:      number of elements
357  * @bufflen:    len of buffer
358  * @gfp:        memory allocation flags
359  *
360  * scsi_req_map_sg maps a scatterlist into a request so that the
361  * request can be sent to the block layer. We do not trust the scatterlist
362  * sent to use, as some ULDs use that struct to only organize the pages.
363  */
364 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
365                            int nsegs, unsigned bufflen, gfp_t gfp)
366 {
367         struct request_queue *q = rq->q;
368         int nr_pages = (bufflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
369         unsigned int data_len = 0, len, bytes, off;
370         struct page *page;
371         struct bio *bio = NULL;
372         int i, err, nr_vecs = 0;
373
374         for (i = 0; i < nsegs; i++) {
375                 page = sgl[i].page;
376                 off = sgl[i].offset;
377                 len = sgl[i].length;
378                 data_len += len;
379
380                 while (len > 0) {
381                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
382
383                         if (!bio) {
384                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
385                                 nr_pages -= nr_vecs;
386
387                                 bio = bio_alloc(gfp, nr_vecs);
388                                 if (!bio) {
389                                         err = -ENOMEM;
390                                         goto free_bios;
391                                 }
392                                 bio->bi_end_io = scsi_bi_endio;
393                         }
394
395                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
396                             bytes) {
397                                 bio_put(bio);
398                                 err = -EINVAL;
399                                 goto free_bios;
400                         }
401
402                         if (bio->bi_vcnt >= nr_vecs) {
403                                 err = scsi_merge_bio(rq, bio);
404                                 if (err) {
405                                         bio_endio(bio, bio->bi_size, 0);
406                                         goto free_bios;
407                                 }
408                                 bio = NULL;
409                         }
410
411                         page++;
412                         len -= bytes;
413                         off = 0;
414                 }
415         }
416
417         rq->buffer = rq->data = NULL;
418         rq->data_len = data_len;
419         return 0;
420
421 free_bios:
422         while ((bio = rq->bio) != NULL) {
423                 rq->bio = bio->bi_next;
424                 /*
425                  * call endio instead of bio_put incase it was bounced
426                  */
427                 bio_endio(bio, bio->bi_size, 0);
428         }
429
430         return err;
431 }
432
433 /**
434  * scsi_execute_async - insert request
435  * @sdev:       scsi device
436  * @cmd:        scsi command
437  * @data_direction: data direction
438  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
439  * @bufflen:    len of buffer
440  * @use_sg:     if buffer is a scatterlist this is the number of elements
441  * @timeout:    request timeout in seconds
442  * @retries:    number of times to retry request
443  * @flags:      or into request flags
444  **/
445 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
446                        int data_direction, void *buffer, unsigned bufflen,
447                        int use_sg, int timeout, int retries, void *privdata,
448                        void (*done)(void *, char *, int, int), gfp_t gfp)
449 {
450         struct request *req;
451         struct scsi_io_context *sioc;
452         int err = 0;
453         int write = (data_direction == DMA_TO_DEVICE);
454
455         sioc = kzalloc(sizeof(*sioc), gfp);
456         if (!sioc)
457                 return DRIVER_ERROR << 24;
458
459         req = blk_get_request(sdev->request_queue, write, gfp);
460         if (!req)
461                 goto free_sense;
462
463         if (use_sg)
464                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
465         else if (bufflen)
466                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
467
468         if (err)
469                 goto free_req;
470
471         req->cmd_len = COMMAND_SIZE(cmd[0]);
472         memcpy(req->cmd, cmd, req->cmd_len);
473         req->sense = sioc->sense;
474         req->sense_len = 0;
475         req->timeout = timeout;
476         req->retries = retries;
477         req->flags |= REQ_BLOCK_PC | REQ_QUIET;
478         req->end_io_data = sioc;
479
480         sioc->data = privdata;
481         sioc->done = done;
482
483         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
484         return 0;
485
486 free_req:
487         blk_put_request(req);
488 free_sense:
489         kfree(sioc);
490         return DRIVER_ERROR << 24;
491 }
492 EXPORT_SYMBOL_GPL(scsi_execute_async);
493
494 /*
495  * Function:    scsi_init_cmd_errh()
496  *
497  * Purpose:     Initialize cmd fields related to error handling.
498  *
499  * Arguments:   cmd     - command that is ready to be queued.
500  *
501  * Returns:     Nothing
502  *
503  * Notes:       This function has the job of initializing a number of
504  *              fields related to error handling.   Typically this will
505  *              be called once for each command, as required.
506  */
507 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
508 {
509         cmd->serial_number = 0;
510
511         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
512
513         if (cmd->cmd_len == 0)
514                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
515
516         /*
517          * We need saved copies of a number of fields - this is because
518          * error handling may need to overwrite these with different values
519          * to run different commands, and once error handling is complete,
520          * we will need to restore these values prior to running the actual
521          * command.
522          */
523         cmd->old_use_sg = cmd->use_sg;
524         cmd->old_cmd_len = cmd->cmd_len;
525         cmd->sc_old_data_direction = cmd->sc_data_direction;
526         cmd->old_underflow = cmd->underflow;
527         memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
528         cmd->buffer = cmd->request_buffer;
529         cmd->bufflen = cmd->request_bufflen;
530
531         return 1;
532 }
533
534 /*
535  * Function:   scsi_setup_cmd_retry()
536  *
537  * Purpose:    Restore the command state for a retry
538  *
539  * Arguments:  cmd      - command to be restored
540  *
541  * Returns:    Nothing
542  *
543  * Notes:      Immediately prior to retrying a command, we need
544  *             to restore certain fields that we saved above.
545  */
546 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
547 {
548         memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
549         cmd->request_buffer = cmd->buffer;
550         cmd->request_bufflen = cmd->bufflen;
551         cmd->use_sg = cmd->old_use_sg;
552         cmd->cmd_len = cmd->old_cmd_len;
553         cmd->sc_data_direction = cmd->sc_old_data_direction;
554         cmd->underflow = cmd->old_underflow;
555 }
556
557 void scsi_device_unbusy(struct scsi_device *sdev)
558 {
559         struct Scsi_Host *shost = sdev->host;
560         unsigned long flags;
561
562         spin_lock_irqsave(shost->host_lock, flags);
563         shost->host_busy--;
564         if (unlikely(scsi_host_in_recovery(shost) &&
565                      shost->host_failed))
566                 scsi_eh_wakeup(shost);
567         spin_unlock(shost->host_lock);
568         spin_lock(sdev->request_queue->queue_lock);
569         sdev->device_busy--;
570         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
571 }
572
573 /*
574  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
575  * and call blk_run_queue for all the scsi_devices on the target -
576  * including current_sdev first.
577  *
578  * Called with *no* scsi locks held.
579  */
580 static void scsi_single_lun_run(struct scsi_device *current_sdev)
581 {
582         struct Scsi_Host *shost = current_sdev->host;
583         struct scsi_device *sdev, *tmp;
584         struct scsi_target *starget = scsi_target(current_sdev);
585         unsigned long flags;
586
587         spin_lock_irqsave(shost->host_lock, flags);
588         starget->starget_sdev_user = NULL;
589         spin_unlock_irqrestore(shost->host_lock, flags);
590
591         /*
592          * Call blk_run_queue for all LUNs on the target, starting with
593          * current_sdev. We race with others (to set starget_sdev_user),
594          * but in most cases, we will be first. Ideally, each LU on the
595          * target would get some limited time or requests on the target.
596          */
597         blk_run_queue(current_sdev->request_queue);
598
599         spin_lock_irqsave(shost->host_lock, flags);
600         if (starget->starget_sdev_user)
601                 goto out;
602         list_for_each_entry_safe(sdev, tmp, &starget->devices,
603                         same_target_siblings) {
604                 if (sdev == current_sdev)
605                         continue;
606                 if (scsi_device_get(sdev))
607                         continue;
608
609                 spin_unlock_irqrestore(shost->host_lock, flags);
610                 blk_run_queue(sdev->request_queue);
611                 spin_lock_irqsave(shost->host_lock, flags);
612         
613                 scsi_device_put(sdev);
614         }
615  out:
616         spin_unlock_irqrestore(shost->host_lock, flags);
617 }
618
619 /*
620  * Function:    scsi_run_queue()
621  *
622  * Purpose:     Select a proper request queue to serve next
623  *
624  * Arguments:   q       - last request's queue
625  *
626  * Returns:     Nothing
627  *
628  * Notes:       The previous command was completely finished, start
629  *              a new one if possible.
630  */
631 static void scsi_run_queue(struct request_queue *q)
632 {
633         struct scsi_device *sdev = q->queuedata;
634         struct Scsi_Host *shost = sdev->host;
635         unsigned long flags;
636
637         if (sdev->single_lun)
638                 scsi_single_lun_run(sdev);
639
640         spin_lock_irqsave(shost->host_lock, flags);
641         while (!list_empty(&shost->starved_list) &&
642                !shost->host_blocked && !shost->host_self_blocked &&
643                 !((shost->can_queue > 0) &&
644                   (shost->host_busy >= shost->can_queue))) {
645                 /*
646                  * As long as shost is accepting commands and we have
647                  * starved queues, call blk_run_queue. scsi_request_fn
648                  * drops the queue_lock and can add us back to the
649                  * starved_list.
650                  *
651                  * host_lock protects the starved_list and starved_entry.
652                  * scsi_request_fn must get the host_lock before checking
653                  * or modifying starved_list or starved_entry.
654                  */
655                 sdev = list_entry(shost->starved_list.next,
656                                           struct scsi_device, starved_entry);
657                 list_del_init(&sdev->starved_entry);
658                 spin_unlock_irqrestore(shost->host_lock, flags);
659
660                 blk_run_queue(sdev->request_queue);
661
662                 spin_lock_irqsave(shost->host_lock, flags);
663                 if (unlikely(!list_empty(&sdev->starved_entry)))
664                         /*
665                          * sdev lost a race, and was put back on the
666                          * starved list. This is unlikely but without this
667                          * in theory we could loop forever.
668                          */
669                         break;
670         }
671         spin_unlock_irqrestore(shost->host_lock, flags);
672
673         blk_run_queue(q);
674 }
675
676 /*
677  * Function:    scsi_requeue_command()
678  *
679  * Purpose:     Handle post-processing of completed commands.
680  *
681  * Arguments:   q       - queue to operate on
682  *              cmd     - command that may need to be requeued.
683  *
684  * Returns:     Nothing
685  *
686  * Notes:       After command completion, there may be blocks left
687  *              over which weren't finished by the previous command
688  *              this can be for a number of reasons - the main one is
689  *              I/O errors in the middle of the request, in which case
690  *              we need to request the blocks that come after the bad
691  *              sector.
692  * Notes:       Upon return, cmd is a stale pointer.
693  */
694 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
695 {
696         struct request *req = cmd->request;
697         unsigned long flags;
698
699         scsi_unprep_request(req);
700         spin_lock_irqsave(q->queue_lock, flags);
701         blk_requeue_request(q, req);
702         spin_unlock_irqrestore(q->queue_lock, flags);
703
704         scsi_run_queue(q);
705 }
706
707 void scsi_next_command(struct scsi_cmnd *cmd)
708 {
709         struct scsi_device *sdev = cmd->device;
710         struct request_queue *q = sdev->request_queue;
711
712         /* need to hold a reference on the device before we let go of the cmd */
713         get_device(&sdev->sdev_gendev);
714
715         scsi_put_command(cmd);
716         scsi_run_queue(q);
717
718         /* ok to remove device now */
719         put_device(&sdev->sdev_gendev);
720 }
721
722 void scsi_run_host_queues(struct Scsi_Host *shost)
723 {
724         struct scsi_device *sdev;
725
726         shost_for_each_device(sdev, shost)
727                 scsi_run_queue(sdev->request_queue);
728 }
729
730 /*
731  * Function:    scsi_end_request()
732  *
733  * Purpose:     Post-processing of completed commands (usually invoked at end
734  *              of upper level post-processing and scsi_io_completion).
735  *
736  * Arguments:   cmd      - command that is complete.
737  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
738  *              bytes    - number of bytes of completed I/O
739  *              requeue  - indicates whether we should requeue leftovers.
740  *
741  * Lock status: Assumed that lock is not held upon entry.
742  *
743  * Returns:     cmd if requeue required, NULL otherwise.
744  *
745  * Notes:       This is called for block device requests in order to
746  *              mark some number of sectors as complete.
747  * 
748  *              We are guaranteeing that the request queue will be goosed
749  *              at some point during this call.
750  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
751  */
752 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
753                                           int bytes, int requeue)
754 {
755         request_queue_t *q = cmd->device->request_queue;
756         struct request *req = cmd->request;
757         unsigned long flags;
758
759         /*
760          * If there are blocks left over at the end, set up the command
761          * to queue the remainder of them.
762          */
763         if (end_that_request_chunk(req, uptodate, bytes)) {
764                 int leftover = (req->hard_nr_sectors << 9);
765
766                 if (blk_pc_request(req))
767                         leftover = req->data_len;
768
769                 /* kill remainder if no retrys */
770                 if (!uptodate && blk_noretry_request(req))
771                         end_that_request_chunk(req, 0, leftover);
772                 else {
773                         if (requeue) {
774                                 /*
775                                  * Bleah.  Leftovers again.  Stick the
776                                  * leftovers in the front of the
777                                  * queue, and goose the queue again.
778                                  */
779                                 scsi_requeue_command(q, cmd);
780                                 cmd = NULL;
781                         }
782                         return cmd;
783                 }
784         }
785
786         add_disk_randomness(req->rq_disk);
787
788         spin_lock_irqsave(q->queue_lock, flags);
789         if (blk_rq_tagged(req))
790                 blk_queue_end_tag(q, req);
791         end_that_request_last(req);
792         spin_unlock_irqrestore(q->queue_lock, flags);
793
794         /*
795          * This will goose the queue request function at the end, so we don't
796          * need to worry about launching another command.
797          */
798         scsi_next_command(cmd);
799         return NULL;
800 }
801
802 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
803 {
804         struct scsi_host_sg_pool *sgp;
805         struct scatterlist *sgl;
806
807         BUG_ON(!cmd->use_sg);
808
809         switch (cmd->use_sg) {
810         case 1 ... 8:
811                 cmd->sglist_len = 0;
812                 break;
813         case 9 ... 16:
814                 cmd->sglist_len = 1;
815                 break;
816         case 17 ... 32:
817                 cmd->sglist_len = 2;
818                 break;
819 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
820         case 33 ... 64:
821                 cmd->sglist_len = 3;
822                 break;
823 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
824         case 65 ... 128:
825                 cmd->sglist_len = 4;
826                 break;
827 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
828         case 129 ... 256:
829                 cmd->sglist_len = 5;
830                 break;
831 #endif
832 #endif
833 #endif
834         default:
835                 return NULL;
836         }
837
838         sgp = scsi_sg_pools + cmd->sglist_len;
839         sgl = mempool_alloc(sgp->pool, gfp_mask);
840         return sgl;
841 }
842
843 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
844 {
845         struct scsi_host_sg_pool *sgp;
846
847         BUG_ON(index >= SG_MEMPOOL_NR);
848
849         sgp = scsi_sg_pools + index;
850         mempool_free(sgl, sgp->pool);
851 }
852
853 /*
854  * Function:    scsi_release_buffers()
855  *
856  * Purpose:     Completion processing for block device I/O requests.
857  *
858  * Arguments:   cmd     - command that we are bailing.
859  *
860  * Lock status: Assumed that no lock is held upon entry.
861  *
862  * Returns:     Nothing
863  *
864  * Notes:       In the event that an upper level driver rejects a
865  *              command, we must release resources allocated during
866  *              the __init_io() function.  Primarily this would involve
867  *              the scatter-gather table, and potentially any bounce
868  *              buffers.
869  */
870 static void scsi_release_buffers(struct scsi_cmnd *cmd)
871 {
872         struct request *req = cmd->request;
873
874         /*
875          * Free up any indirection buffers we allocated for DMA purposes. 
876          */
877         if (cmd->use_sg)
878                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
879         else if (cmd->request_buffer != req->buffer)
880                 kfree(cmd->request_buffer);
881
882         /*
883          * Zero these out.  They now point to freed memory, and it is
884          * dangerous to hang onto the pointers.
885          */
886         cmd->buffer  = NULL;
887         cmd->bufflen = 0;
888         cmd->request_buffer = NULL;
889         cmd->request_bufflen = 0;
890 }
891
892 /*
893  * Function:    scsi_io_completion()
894  *
895  * Purpose:     Completion processing for block device I/O requests.
896  *
897  * Arguments:   cmd   - command that is finished.
898  *
899  * Lock status: Assumed that no lock is held upon entry.
900  *
901  * Returns:     Nothing
902  *
903  * Notes:       This function is matched in terms of capabilities to
904  *              the function that created the scatter-gather list.
905  *              In other words, if there are no bounce buffers
906  *              (the normal case for most drivers), we don't need
907  *              the logic to deal with cleaning up afterwards.
908  *
909  *              We must do one of several things here:
910  *
911  *              a) Call scsi_end_request.  This will finish off the
912  *                 specified number of sectors.  If we are done, the
913  *                 command block will be released, and the queue
914  *                 function will be goosed.  If we are not done, then
915  *                 scsi_end_request will directly goose the queue.
916  *
917  *              b) We can just use scsi_requeue_command() here.  This would
918  *                 be used if we just wanted to retry, for example.
919  */
920 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
921                         unsigned int block_bytes)
922 {
923         int result = cmd->result;
924         int this_count = cmd->bufflen;
925         request_queue_t *q = cmd->device->request_queue;
926         struct request *req = cmd->request;
927         int clear_errors = 1;
928         struct scsi_sense_hdr sshdr;
929         int sense_valid = 0;
930         int sense_deferred = 0;
931
932         if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
933                 return;
934
935         /*
936          * Free up any indirection buffers we allocated for DMA purposes. 
937          * For the case of a READ, we need to copy the data out of the
938          * bounce buffer and into the real buffer.
939          */
940         if (cmd->use_sg)
941                 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
942         else if (cmd->buffer != req->buffer) {
943                 if (rq_data_dir(req) == READ) {
944                         unsigned long flags;
945                         char *to = bio_kmap_irq(req->bio, &flags);
946                         memcpy(to, cmd->buffer, cmd->bufflen);
947                         bio_kunmap_irq(to, &flags);
948                 }
949                 kfree(cmd->buffer);
950         }
951
952         if (result) {
953                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
954                 if (sense_valid)
955                         sense_deferred = scsi_sense_is_deferred(&sshdr);
956         }
957         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
958                 req->errors = result;
959                 if (result) {
960                         clear_errors = 0;
961                         if (sense_valid && req->sense) {
962                                 /*
963                                  * SG_IO wants current and deferred errors
964                                  */
965                                 int len = 8 + cmd->sense_buffer[7];
966
967                                 if (len > SCSI_SENSE_BUFFERSIZE)
968                                         len = SCSI_SENSE_BUFFERSIZE;
969                                 memcpy(req->sense, cmd->sense_buffer,  len);
970                                 req->sense_len = len;
971                         }
972                 } else
973                         req->data_len = cmd->resid;
974         }
975
976         /*
977          * Zero these out.  They now point to freed memory, and it is
978          * dangerous to hang onto the pointers.
979          */
980         cmd->buffer  = NULL;
981         cmd->bufflen = 0;
982         cmd->request_buffer = NULL;
983         cmd->request_bufflen = 0;
984
985         /*
986          * Next deal with any sectors which we were able to correctly
987          * handle.
988          */
989         if (good_bytes >= 0) {
990                 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
991                                               req->nr_sectors, good_bytes));
992                 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
993
994                 if (clear_errors)
995                         req->errors = 0;
996                 /*
997                  * If multiple sectors are requested in one buffer, then
998                  * they will have been finished off by the first command.
999                  * If not, then we have a multi-buffer command.
1000                  *
1001                  * If block_bytes != 0, it means we had a medium error
1002                  * of some sort, and that we want to mark some number of
1003                  * sectors as not uptodate.  Thus we want to inhibit
1004                  * requeueing right here - we will requeue down below
1005                  * when we handle the bad sectors.
1006                  */
1007
1008                 /*
1009                  * If the command completed without error, then either
1010                  * finish off the rest of the command, or start a new one.
1011                  */
1012                 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
1013                         return;
1014         }
1015         /*
1016          * Now, if we were good little boys and girls, Santa left us a request
1017          * sense buffer.  We can extract information from this, so we
1018          * can choose a block to remap, etc.
1019          */
1020         if (sense_valid && !sense_deferred) {
1021                 switch (sshdr.sense_key) {
1022                 case UNIT_ATTENTION:
1023                         if (cmd->device->removable) {
1024                                 /* detected disc change.  set a bit 
1025                                  * and quietly refuse further access.
1026                                  */
1027                                 cmd->device->changed = 1;
1028                                 scsi_end_request(cmd, 0,
1029                                                 this_count, 1);
1030                                 return;
1031                         } else {
1032                                 /*
1033                                 * Must have been a power glitch, or a
1034                                 * bus reset.  Could not have been a
1035                                 * media change, so we just retry the
1036                                 * request and see what happens.  
1037                                 */
1038                                 scsi_requeue_command(q, cmd);
1039                                 return;
1040                         }
1041                         break;
1042                 case ILLEGAL_REQUEST:
1043                         /*
1044                         * If we had an ILLEGAL REQUEST returned, then we may
1045                         * have performed an unsupported command.  The only
1046                         * thing this should be would be a ten byte read where
1047                         * only a six byte read was supported.  Also, on a
1048                         * system where READ CAPACITY failed, we may have read
1049                         * past the end of the disk.
1050                         */
1051                         if ((cmd->device->use_10_for_rw &&
1052                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1053                             (cmd->cmnd[0] == READ_10 ||
1054                              cmd->cmnd[0] == WRITE_10)) {
1055                                 cmd->device->use_10_for_rw = 0;
1056                                 /*
1057                                  * This will cause a retry with a 6-byte
1058                                  * command.
1059                                  */
1060                                 scsi_requeue_command(q, cmd);
1061                                 result = 0;
1062                         } else {
1063                                 scsi_end_request(cmd, 0, this_count, 1);
1064                                 return;
1065                         }
1066                         break;
1067                 case NOT_READY:
1068                         /*
1069                          * If the device is in the process of becoming ready,
1070                          * retry.
1071                          */
1072                         if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
1073                                 scsi_requeue_command(q, cmd);
1074                                 return;
1075                         }
1076                         if (!(req->flags & REQ_QUIET))
1077                                 scmd_printk(KERN_INFO, cmd,
1078                                            "Device not ready.\n");
1079                         scsi_end_request(cmd, 0, this_count, 1);
1080                         return;
1081                 case VOLUME_OVERFLOW:
1082                         if (!(req->flags & REQ_QUIET)) {
1083                                 scmd_printk(KERN_INFO, cmd,
1084                                            "Volume overflow, CDB: ");
1085                                 __scsi_print_command(cmd->data_cmnd);
1086                                 scsi_print_sense("", cmd);
1087                         }
1088                         scsi_end_request(cmd, 0, block_bytes, 1);
1089                         return;
1090                 default:
1091                         break;
1092                 }
1093         }                       /* driver byte != 0 */
1094         if (host_byte(result) == DID_RESET) {
1095                 /*
1096                  * Third party bus reset or reset for error
1097                  * recovery reasons.  Just retry the request
1098                  * and see what happens.  
1099                  */
1100                 scsi_requeue_command(q, cmd);
1101                 return;
1102         }
1103         if (result) {
1104                 if (!(req->flags & REQ_QUIET)) {
1105                         scmd_printk(KERN_INFO, cmd,
1106                                    "SCSI error: return code = 0x%x\n", result);
1107
1108                         if (driver_byte(result) & DRIVER_SENSE)
1109                                 scsi_print_sense("", cmd);
1110                 }
1111                 /*
1112                  * Mark a single buffer as not uptodate.  Queue the remainder.
1113                  * We sometimes get this cruft in the event that a medium error
1114                  * isn't properly reported.
1115                  */
1116                 block_bytes = req->hard_cur_sectors << 9;
1117                 if (!block_bytes)
1118                         block_bytes = req->data_len;
1119                 scsi_end_request(cmd, 0, block_bytes, 1);
1120         }
1121 }
1122 EXPORT_SYMBOL(scsi_io_completion);
1123
1124 /*
1125  * Function:    scsi_init_io()
1126  *
1127  * Purpose:     SCSI I/O initialize function.
1128  *
1129  * Arguments:   cmd   - Command descriptor we wish to initialize
1130  *
1131  * Returns:     0 on success
1132  *              BLKPREP_DEFER if the failure is retryable
1133  *              BLKPREP_KILL if the failure is fatal
1134  */
1135 static int scsi_init_io(struct scsi_cmnd *cmd)
1136 {
1137         struct request     *req = cmd->request;
1138         struct scatterlist *sgpnt;
1139         int                count;
1140
1141         /*
1142          * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1143          */
1144         if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1145                 cmd->request_bufflen = req->data_len;
1146                 cmd->request_buffer = req->data;
1147                 req->buffer = req->data;
1148                 cmd->use_sg = 0;
1149                 return 0;
1150         }
1151
1152         /*
1153          * we used to not use scatter-gather for single segment request,
1154          * but now we do (it makes highmem I/O easier to support without
1155          * kmapping pages)
1156          */
1157         cmd->use_sg = req->nr_phys_segments;
1158
1159         /*
1160          * if sg table allocation fails, requeue request later.
1161          */
1162         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1163         if (unlikely(!sgpnt)) {
1164                 scsi_unprep_request(req);
1165                 return BLKPREP_DEFER;
1166         }
1167
1168         cmd->request_buffer = (char *) sgpnt;
1169         cmd->request_bufflen = req->nr_sectors << 9;
1170         if (blk_pc_request(req))
1171                 cmd->request_bufflen = req->data_len;
1172         req->buffer = NULL;
1173
1174         /* 
1175          * Next, walk the list, and fill in the addresses and sizes of
1176          * each segment.
1177          */
1178         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1179
1180         /*
1181          * mapped well, send it off
1182          */
1183         if (likely(count <= cmd->use_sg)) {
1184                 cmd->use_sg = count;
1185                 return 0;
1186         }
1187
1188         printk(KERN_ERR "Incorrect number of segments after building list\n");
1189         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1190         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1191                         req->current_nr_sectors);
1192
1193         /* release the command and kill it */
1194         scsi_release_buffers(cmd);
1195         scsi_put_command(cmd);
1196         return BLKPREP_KILL;
1197 }
1198
1199 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1200 {
1201         struct scsi_device *sdev = q->queuedata;
1202         struct scsi_driver *drv;
1203
1204         if (sdev->sdev_state == SDEV_RUNNING) {
1205                 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1206
1207                 if (drv->prepare_flush)
1208                         return drv->prepare_flush(q, rq);
1209         }
1210
1211         return 0;
1212 }
1213
1214 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1215 {
1216         struct scsi_device *sdev = q->queuedata;
1217         struct request *flush_rq = rq->end_io_data;
1218         struct scsi_driver *drv;
1219
1220         if (flush_rq->errors) {
1221                 printk("scsi: barrier error, disabling flush support\n");
1222                 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1223         }
1224
1225         if (sdev->sdev_state == SDEV_RUNNING) {
1226                 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1227                 drv->end_flush(q, rq);
1228         }
1229 }
1230
1231 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1232                                sector_t *error_sector)
1233 {
1234         struct scsi_device *sdev = q->queuedata;
1235         struct scsi_driver *drv;
1236
1237         if (sdev->sdev_state != SDEV_RUNNING)
1238                 return -ENXIO;
1239
1240         drv = *(struct scsi_driver **) disk->private_data;
1241         if (drv->issue_flush)
1242                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1243
1244         return -EOPNOTSUPP;
1245 }
1246
1247 static void scsi_generic_done(struct scsi_cmnd *cmd)
1248 {
1249         BUG_ON(!blk_pc_request(cmd->request));
1250         scsi_io_completion(cmd, cmd->result == 0 ? cmd->bufflen : 0, 0);
1251 }
1252
1253 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1254 {
1255         struct scsi_device *sdev = q->queuedata;
1256         struct scsi_cmnd *cmd;
1257         int specials_only = 0;
1258
1259         /*
1260          * Just check to see if the device is online.  If it isn't, we
1261          * refuse to process any commands.  The device must be brought
1262          * online before trying any recovery commands
1263          */
1264         if (unlikely(!scsi_device_online(sdev))) {
1265                 sdev_printk(KERN_ERR, sdev,
1266                             "rejecting I/O to offline device\n");
1267                 goto kill;
1268         }
1269         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1270                 /* OK, we're not in a running state don't prep
1271                  * user commands */
1272                 if (sdev->sdev_state == SDEV_DEL) {
1273                         /* Device is fully deleted, no commands
1274                          * at all allowed down */
1275                         sdev_printk(KERN_ERR, sdev,
1276                                     "rejecting I/O to dead device\n");
1277                         goto kill;
1278                 }
1279                 /* OK, we only allow special commands (i.e. not
1280                  * user initiated ones */
1281                 specials_only = sdev->sdev_state;
1282         }
1283
1284         /*
1285          * Find the actual device driver associated with this command.
1286          * The SPECIAL requests are things like character device or
1287          * ioctls, which did not originate from ll_rw_blk.  Note that
1288          * the special field is also used to indicate the cmd for
1289          * the remainder of a partially fulfilled request that can 
1290          * come up when there is a medium error.  We have to treat
1291          * these two cases differently.  We differentiate by looking
1292          * at request->cmd, as this tells us the real story.
1293          */
1294         if (req->flags & REQ_SPECIAL && req->special) {
1295                 struct scsi_request *sreq = req->special;
1296
1297                 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1298                         cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1299                         if (unlikely(!cmd))
1300                                 goto defer;
1301                         scsi_init_cmd_from_req(cmd, sreq);
1302                 } else
1303                         cmd = req->special;
1304         } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1305
1306                 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1307                         if(specials_only == SDEV_QUIESCE ||
1308                                         specials_only == SDEV_BLOCK)
1309                                 goto defer;
1310                         
1311                         sdev_printk(KERN_ERR, sdev,
1312                                     "rejecting I/O to device being removed\n");
1313                         goto kill;
1314                 }
1315                         
1316                         
1317                 /*
1318                  * Now try and find a command block that we can use.
1319                  */
1320                 if (!req->special) {
1321                         cmd = scsi_get_command(sdev, GFP_ATOMIC);
1322                         if (unlikely(!cmd))
1323                                 goto defer;
1324                 } else
1325                         cmd = req->special;
1326                 
1327                 /* pull a tag out of the request if we have one */
1328                 cmd->tag = req->tag;
1329         } else {
1330                 blk_dump_rq_flags(req, "SCSI bad req");
1331                 goto kill;
1332         }
1333         
1334         /* note the overloading of req->special.  When the tag
1335          * is active it always means cmd.  If the tag goes
1336          * back for re-queueing, it may be reset */
1337         req->special = cmd;
1338         cmd->request = req;
1339         
1340         /*
1341          * FIXME: drop the lock here because the functions below
1342          * expect to be called without the queue lock held.  Also,
1343          * previously, we dequeued the request before dropping the
1344          * lock.  We hope REQ_STARTED prevents anything untoward from
1345          * happening now.
1346          */
1347         if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1348                 struct scsi_driver *drv;
1349                 int ret;
1350
1351                 /*
1352                  * This will do a couple of things:
1353                  *  1) Fill in the actual SCSI command.
1354                  *  2) Fill in any other upper-level specific fields
1355                  * (timeout).
1356                  *
1357                  * If this returns 0, it means that the request failed
1358                  * (reading past end of disk, reading offline device,
1359                  * etc).   This won't actually talk to the device, but
1360                  * some kinds of consistency checking may cause the     
1361                  * request to be rejected immediately.
1362                  */
1363
1364                 /* 
1365                  * This sets up the scatter-gather table (allocating if
1366                  * required).
1367                  */
1368                 ret = scsi_init_io(cmd);
1369                 switch(ret) {
1370                         /* For BLKPREP_KILL/DEFER the cmd was released */
1371                 case BLKPREP_KILL:
1372                         goto kill;
1373                 case BLKPREP_DEFER:
1374                         goto defer;
1375                 }
1376                 
1377                 /*
1378                  * Initialize the actual SCSI command for this request.
1379                  */
1380                 if (req->rq_disk) {
1381                         drv = *(struct scsi_driver **)req->rq_disk->private_data;
1382                         if (unlikely(!drv->init_command(cmd))) {
1383                                 scsi_release_buffers(cmd);
1384                                 scsi_put_command(cmd);
1385                                 goto kill;
1386                         }
1387                 } else {
1388                         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1389                         cmd->cmd_len = req->cmd_len;
1390                         if (rq_data_dir(req) == WRITE)
1391                                 cmd->sc_data_direction = DMA_TO_DEVICE;
1392                         else if (req->data_len)
1393                                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1394                         else
1395                                 cmd->sc_data_direction = DMA_NONE;
1396                         
1397                         cmd->transfersize = req->data_len;
1398                         cmd->allowed = req->retries;
1399                         cmd->timeout_per_command = req->timeout;
1400                         cmd->done = scsi_generic_done;
1401                 }
1402         }
1403
1404         /*
1405          * The request is now prepped, no need to come back here
1406          */
1407         req->flags |= REQ_DONTPREP;
1408         return BLKPREP_OK;
1409
1410  defer:
1411         /* If we defer, the elv_next_request() returns NULL, but the
1412          * queue must be restarted, so we plug here if no returning
1413          * command will automatically do that. */
1414         if (sdev->device_busy == 0)
1415                 blk_plug_device(q);
1416         return BLKPREP_DEFER;
1417  kill:
1418         req->errors = DID_NO_CONNECT << 16;
1419         return BLKPREP_KILL;
1420 }
1421
1422 /*
1423  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1424  * return 0.
1425  *
1426  * Called with the queue_lock held.
1427  */
1428 static inline int scsi_dev_queue_ready(struct request_queue *q,
1429                                   struct scsi_device *sdev)
1430 {
1431         if (sdev->device_busy >= sdev->queue_depth)
1432                 return 0;
1433         if (sdev->device_busy == 0 && sdev->device_blocked) {
1434                 /*
1435                  * unblock after device_blocked iterates to zero
1436                  */
1437                 if (--sdev->device_blocked == 0) {
1438                         SCSI_LOG_MLQUEUE(3,
1439                                    sdev_printk(KERN_INFO, sdev,
1440                                    "unblocking device at zero depth\n"));
1441                 } else {
1442                         blk_plug_device(q);
1443                         return 0;
1444                 }
1445         }
1446         if (sdev->device_blocked)
1447                 return 0;
1448
1449         return 1;
1450 }
1451
1452 /*
1453  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1454  * return 0. We must end up running the queue again whenever 0 is
1455  * returned, else IO can hang.
1456  *
1457  * Called with host_lock held.
1458  */
1459 static inline int scsi_host_queue_ready(struct request_queue *q,
1460                                    struct Scsi_Host *shost,
1461                                    struct scsi_device *sdev)
1462 {
1463         if (scsi_host_in_recovery(shost))
1464                 return 0;
1465         if (shost->host_busy == 0 && shost->host_blocked) {
1466                 /*
1467                  * unblock after host_blocked iterates to zero
1468                  */
1469                 if (--shost->host_blocked == 0) {
1470                         SCSI_LOG_MLQUEUE(3,
1471                                 printk("scsi%d unblocking host at zero depth\n",
1472                                         shost->host_no));
1473                 } else {
1474                         blk_plug_device(q);
1475                         return 0;
1476                 }
1477         }
1478         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1479             shost->host_blocked || shost->host_self_blocked) {
1480                 if (list_empty(&sdev->starved_entry))
1481                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1482                 return 0;
1483         }
1484
1485         /* We're OK to process the command, so we can't be starved */
1486         if (!list_empty(&sdev->starved_entry))
1487                 list_del_init(&sdev->starved_entry);
1488
1489         return 1;
1490 }
1491
1492 /*
1493  * Kill a request for a dead device
1494  */
1495 static void scsi_kill_request(struct request *req, request_queue_t *q)
1496 {
1497         struct scsi_cmnd *cmd = req->special;
1498
1499         blkdev_dequeue_request(req);
1500
1501         if (unlikely(cmd == NULL)) {
1502                 printk(KERN_CRIT "impossible request in %s.\n",
1503                                  __FUNCTION__);
1504                 BUG();
1505         }
1506
1507         scsi_init_cmd_errh(cmd);
1508         cmd->result = DID_NO_CONNECT << 16;
1509         atomic_inc(&cmd->device->iorequest_cnt);
1510         __scsi_done(cmd);
1511 }
1512
1513 /*
1514  * Function:    scsi_request_fn()
1515  *
1516  * Purpose:     Main strategy routine for SCSI.
1517  *
1518  * Arguments:   q       - Pointer to actual queue.
1519  *
1520  * Returns:     Nothing
1521  *
1522  * Lock status: IO request lock assumed to be held when called.
1523  */
1524 static void scsi_request_fn(struct request_queue *q)
1525 {
1526         struct scsi_device *sdev = q->queuedata;
1527         struct Scsi_Host *shost;
1528         struct scsi_cmnd *cmd;
1529         struct request *req;
1530
1531         if (!sdev) {
1532                 printk("scsi: killing requests for dead queue\n");
1533                 while ((req = elv_next_request(q)) != NULL)
1534                         scsi_kill_request(req, q);
1535                 return;
1536         }
1537
1538         if(!get_device(&sdev->sdev_gendev))
1539                 /* We must be tearing the block queue down already */
1540                 return;
1541
1542         /*
1543          * To start with, we keep looping until the queue is empty, or until
1544          * the host is no longer able to accept any more requests.
1545          */
1546         shost = sdev->host;
1547         while (!blk_queue_plugged(q)) {
1548                 int rtn;
1549                 /*
1550                  * get next queueable request.  We do this early to make sure
1551                  * that the request is fully prepared even if we cannot 
1552                  * accept it.
1553                  */
1554                 req = elv_next_request(q);
1555                 if (!req || !scsi_dev_queue_ready(q, sdev))
1556                         break;
1557
1558                 if (unlikely(!scsi_device_online(sdev))) {
1559                         sdev_printk(KERN_ERR, sdev,
1560                                     "rejecting I/O to offline device\n");
1561                         scsi_kill_request(req, q);
1562                         continue;
1563                 }
1564
1565
1566                 /*
1567                  * Remove the request from the request list.
1568                  */
1569                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1570                         blkdev_dequeue_request(req);
1571                 sdev->device_busy++;
1572
1573                 spin_unlock(q->queue_lock);
1574                 cmd = req->special;
1575                 if (unlikely(cmd == NULL)) {
1576                         printk(KERN_CRIT "impossible request in %s.\n"
1577                                          "please mail a stack trace to "
1578                                          "linux-scsi@vger.kernel.org",
1579                                          __FUNCTION__);
1580                         BUG();
1581                 }
1582                 spin_lock(shost->host_lock);
1583
1584                 if (!scsi_host_queue_ready(q, shost, sdev))
1585                         goto not_ready;
1586                 if (sdev->single_lun) {
1587                         if (scsi_target(sdev)->starget_sdev_user &&
1588                             scsi_target(sdev)->starget_sdev_user != sdev)
1589                                 goto not_ready;
1590                         scsi_target(sdev)->starget_sdev_user = sdev;
1591                 }
1592                 shost->host_busy++;
1593
1594                 /*
1595                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1596                  *              take the lock again.
1597                  */
1598                 spin_unlock_irq(shost->host_lock);
1599
1600                 /*
1601                  * Finally, initialize any error handling parameters, and set up
1602                  * the timers for timeouts.
1603                  */
1604                 scsi_init_cmd_errh(cmd);
1605
1606                 /*
1607                  * Dispatch the command to the low-level driver.
1608                  */
1609                 rtn = scsi_dispatch_cmd(cmd);
1610                 spin_lock_irq(q->queue_lock);
1611                 if(rtn) {
1612                         /* we're refusing the command; because of
1613                          * the way locks get dropped, we need to 
1614                          * check here if plugging is required */
1615                         if(sdev->device_busy == 0)
1616                                 blk_plug_device(q);
1617
1618                         break;
1619                 }
1620         }
1621
1622         goto out;
1623
1624  not_ready:
1625         spin_unlock_irq(shost->host_lock);
1626
1627         /*
1628          * lock q, handle tag, requeue req, and decrement device_busy. We
1629          * must return with queue_lock held.
1630          *
1631          * Decrementing device_busy without checking it is OK, as all such
1632          * cases (host limits or settings) should run the queue at some
1633          * later time.
1634          */
1635         spin_lock_irq(q->queue_lock);
1636         blk_requeue_request(q, req);
1637         sdev->device_busy--;
1638         if(sdev->device_busy == 0)
1639                 blk_plug_device(q);
1640  out:
1641         /* must be careful here...if we trigger the ->remove() function
1642          * we cannot be holding the q lock */
1643         spin_unlock_irq(q->queue_lock);
1644         put_device(&sdev->sdev_gendev);
1645         spin_lock_irq(q->queue_lock);
1646 }
1647
1648 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1649 {
1650         struct device *host_dev;
1651         u64 bounce_limit = 0xffffffff;
1652
1653         if (shost->unchecked_isa_dma)
1654                 return BLK_BOUNCE_ISA;
1655         /*
1656          * Platforms with virtual-DMA translation
1657          * hardware have no practical limit.
1658          */
1659         if (!PCI_DMA_BUS_IS_PHYS)
1660                 return BLK_BOUNCE_ANY;
1661
1662         host_dev = scsi_get_device(shost);
1663         if (host_dev && host_dev->dma_mask)
1664                 bounce_limit = *host_dev->dma_mask;
1665
1666         return bounce_limit;
1667 }
1668 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1669
1670 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1671 {
1672         struct Scsi_Host *shost = sdev->host;
1673         struct request_queue *q;
1674
1675         q = blk_init_queue(scsi_request_fn, NULL);
1676         if (!q)
1677                 return NULL;
1678
1679         blk_queue_prep_rq(q, scsi_prep_fn);
1680
1681         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1682         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1683         blk_queue_max_sectors(q, shost->max_sectors);
1684         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1685         blk_queue_segment_boundary(q, shost->dma_boundary);
1686         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1687
1688         /*
1689          * ordered tags are superior to flush ordering
1690          */
1691         if (shost->ordered_tag)
1692                 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1693         else if (shost->ordered_flush) {
1694                 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1695                 q->prepare_flush_fn = scsi_prepare_flush_fn;
1696                 q->end_flush_fn = scsi_end_flush_fn;
1697         }
1698
1699         if (!shost->use_clustering)
1700                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1701         return q;
1702 }
1703
1704 void scsi_free_queue(struct request_queue *q)
1705 {
1706         blk_cleanup_queue(q);
1707 }
1708
1709 /*
1710  * Function:    scsi_block_requests()
1711  *
1712  * Purpose:     Utility function used by low-level drivers to prevent further
1713  *              commands from being queued to the device.
1714  *
1715  * Arguments:   shost       - Host in question
1716  *
1717  * Returns:     Nothing
1718  *
1719  * Lock status: No locks are assumed held.
1720  *
1721  * Notes:       There is no timer nor any other means by which the requests
1722  *              get unblocked other than the low-level driver calling
1723  *              scsi_unblock_requests().
1724  */
1725 void scsi_block_requests(struct Scsi_Host *shost)
1726 {
1727         shost->host_self_blocked = 1;
1728 }
1729 EXPORT_SYMBOL(scsi_block_requests);
1730
1731 /*
1732  * Function:    scsi_unblock_requests()
1733  *
1734  * Purpose:     Utility function used by low-level drivers to allow further
1735  *              commands from being queued to the device.
1736  *
1737  * Arguments:   shost       - Host in question
1738  *
1739  * Returns:     Nothing
1740  *
1741  * Lock status: No locks are assumed held.
1742  *
1743  * Notes:       There is no timer nor any other means by which the requests
1744  *              get unblocked other than the low-level driver calling
1745  *              scsi_unblock_requests().
1746  *
1747  *              This is done as an API function so that changes to the
1748  *              internals of the scsi mid-layer won't require wholesale
1749  *              changes to drivers that use this feature.
1750  */
1751 void scsi_unblock_requests(struct Scsi_Host *shost)
1752 {
1753         shost->host_self_blocked = 0;
1754         scsi_run_host_queues(shost);
1755 }
1756 EXPORT_SYMBOL(scsi_unblock_requests);
1757
1758 int __init scsi_init_queue(void)
1759 {
1760         int i;
1761
1762         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1763                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1764                 int size = sgp->size * sizeof(struct scatterlist);
1765
1766                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1767                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1768                 if (!sgp->slab) {
1769                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1770                                         sgp->name);
1771                 }
1772
1773                 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1774                                 mempool_alloc_slab, mempool_free_slab,
1775                                 sgp->slab);
1776                 if (!sgp->pool) {
1777                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778                                         sgp->name);
1779                 }
1780         }
1781
1782         return 0;
1783 }
1784
1785 void scsi_exit_queue(void)
1786 {
1787         int i;
1788
1789         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1790                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1791                 mempool_destroy(sgp->pool);
1792                 kmem_cache_destroy(sgp->slab);
1793         }
1794 }
1795 /**
1796  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1797  *              six bytes if necessary.
1798  *      @sdev:  SCSI device to be queried
1799  *      @dbd:   set if mode sense will allow block descriptors to be returned
1800  *      @modepage: mode page being requested
1801  *      @buffer: request buffer (may not be smaller than eight bytes)
1802  *      @len:   length of request buffer.
1803  *      @timeout: command timeout
1804  *      @retries: number of retries before failing
1805  *      @data: returns a structure abstracting the mode header data
1806  *      @sense: place to put sense data (or NULL if no sense to be collected).
1807  *              must be SCSI_SENSE_BUFFERSIZE big.
1808  *
1809  *      Returns zero if unsuccessful, or the header offset (either 4
1810  *      or 8 depending on whether a six or ten byte command was
1811  *      issued) if successful.
1812  **/
1813 int
1814 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1815                   unsigned char *buffer, int len, int timeout, int retries,
1816                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1817         unsigned char cmd[12];
1818         int use_10_for_ms;
1819         int header_length;
1820         int result;
1821         struct scsi_sense_hdr my_sshdr;
1822
1823         memset(data, 0, sizeof(*data));
1824         memset(&cmd[0], 0, 12);
1825         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1826         cmd[2] = modepage;
1827
1828         /* caller might not be interested in sense, but we need it */
1829         if (!sshdr)
1830                 sshdr = &my_sshdr;
1831
1832  retry:
1833         use_10_for_ms = sdev->use_10_for_ms;
1834
1835         if (use_10_for_ms) {
1836                 if (len < 8)
1837                         len = 8;
1838
1839                 cmd[0] = MODE_SENSE_10;
1840                 cmd[8] = len;
1841                 header_length = 8;
1842         } else {
1843                 if (len < 4)
1844                         len = 4;
1845
1846                 cmd[0] = MODE_SENSE;
1847                 cmd[4] = len;
1848                 header_length = 4;
1849         }
1850
1851         memset(buffer, 0, len);
1852
1853         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1854                                   sshdr, timeout, retries);
1855
1856         /* This code looks awful: what it's doing is making sure an
1857          * ILLEGAL REQUEST sense return identifies the actual command
1858          * byte as the problem.  MODE_SENSE commands can return
1859          * ILLEGAL REQUEST if the code page isn't supported */
1860
1861         if (use_10_for_ms && !scsi_status_is_good(result) &&
1862             (driver_byte(result) & DRIVER_SENSE)) {
1863                 if (scsi_sense_valid(sshdr)) {
1864                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1865                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1866                                 /* 
1867                                  * Invalid command operation code
1868                                  */
1869                                 sdev->use_10_for_ms = 0;
1870                                 goto retry;
1871                         }
1872                 }
1873         }
1874
1875         if(scsi_status_is_good(result)) {
1876                 data->header_length = header_length;
1877                 if(use_10_for_ms) {
1878                         data->length = buffer[0]*256 + buffer[1] + 2;
1879                         data->medium_type = buffer[2];
1880                         data->device_specific = buffer[3];
1881                         data->longlba = buffer[4] & 0x01;
1882                         data->block_descriptor_length = buffer[6]*256
1883                                 + buffer[7];
1884                 } else {
1885                         data->length = buffer[0] + 1;
1886                         data->medium_type = buffer[1];
1887                         data->device_specific = buffer[2];
1888                         data->block_descriptor_length = buffer[3];
1889                 }
1890         }
1891
1892         return result;
1893 }
1894 EXPORT_SYMBOL(scsi_mode_sense);
1895
1896 int
1897 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1898 {
1899         char cmd[] = {
1900                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1901         };
1902         struct scsi_sense_hdr sshdr;
1903         int result;
1904         
1905         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1906                                   timeout, retries);
1907
1908         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1909
1910                 if ((scsi_sense_valid(&sshdr)) &&
1911                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1912                      (sshdr.sense_key == NOT_READY))) {
1913                         sdev->changed = 1;
1914                         result = 0;
1915                 }
1916         }
1917         return result;
1918 }
1919 EXPORT_SYMBOL(scsi_test_unit_ready);
1920
1921 /**
1922  *      scsi_device_set_state - Take the given device through the device
1923  *              state model.
1924  *      @sdev:  scsi device to change the state of.
1925  *      @state: state to change to.
1926  *
1927  *      Returns zero if unsuccessful or an error if the requested 
1928  *      transition is illegal.
1929  **/
1930 int
1931 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1932 {
1933         enum scsi_device_state oldstate = sdev->sdev_state;
1934
1935         if (state == oldstate)
1936                 return 0;
1937
1938         switch (state) {
1939         case SDEV_CREATED:
1940                 /* There are no legal states that come back to
1941                  * created.  This is the manually initialised start
1942                  * state */
1943                 goto illegal;
1944                         
1945         case SDEV_RUNNING:
1946                 switch (oldstate) {
1947                 case SDEV_CREATED:
1948                 case SDEV_OFFLINE:
1949                 case SDEV_QUIESCE:
1950                 case SDEV_BLOCK:
1951                         break;
1952                 default:
1953                         goto illegal;
1954                 }
1955                 break;
1956
1957         case SDEV_QUIESCE:
1958                 switch (oldstate) {
1959                 case SDEV_RUNNING:
1960                 case SDEV_OFFLINE:
1961                         break;
1962                 default:
1963                         goto illegal;
1964                 }
1965                 break;
1966
1967         case SDEV_OFFLINE:
1968                 switch (oldstate) {
1969                 case SDEV_CREATED:
1970                 case SDEV_RUNNING:
1971                 case SDEV_QUIESCE:
1972                 case SDEV_BLOCK:
1973                         break;
1974                 default:
1975                         goto illegal;
1976                 }
1977                 break;
1978
1979         case SDEV_BLOCK:
1980                 switch (oldstate) {
1981                 case SDEV_CREATED:
1982                 case SDEV_RUNNING:
1983                         break;
1984                 default:
1985                         goto illegal;
1986                 }
1987                 break;
1988
1989         case SDEV_CANCEL:
1990                 switch (oldstate) {
1991                 case SDEV_CREATED:
1992                 case SDEV_RUNNING:
1993                 case SDEV_OFFLINE:
1994                 case SDEV_BLOCK:
1995                         break;
1996                 default:
1997                         goto illegal;
1998                 }
1999                 break;
2000
2001         case SDEV_DEL:
2002                 switch (oldstate) {
2003                 case SDEV_CANCEL:
2004                         break;
2005                 default:
2006                         goto illegal;
2007                 }
2008                 break;
2009
2010         }
2011         sdev->sdev_state = state;
2012         return 0;
2013
2014  illegal:
2015         SCSI_LOG_ERROR_RECOVERY(1, 
2016                                 sdev_printk(KERN_ERR, sdev,
2017                                             "Illegal state transition %s->%s\n",
2018                                             scsi_device_state_name(oldstate),
2019                                             scsi_device_state_name(state))
2020                                 );
2021         return -EINVAL;
2022 }
2023 EXPORT_SYMBOL(scsi_device_set_state);
2024
2025 /**
2026  *      scsi_device_quiesce - Block user issued commands.
2027  *      @sdev:  scsi device to quiesce.
2028  *
2029  *      This works by trying to transition to the SDEV_QUIESCE state
2030  *      (which must be a legal transition).  When the device is in this
2031  *      state, only special requests will be accepted, all others will
2032  *      be deferred.  Since special requests may also be requeued requests,
2033  *      a successful return doesn't guarantee the device will be 
2034  *      totally quiescent.
2035  *
2036  *      Must be called with user context, may sleep.
2037  *
2038  *      Returns zero if unsuccessful or an error if not.
2039  **/
2040 int
2041 scsi_device_quiesce(struct scsi_device *sdev)
2042 {
2043         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2044         if (err)
2045                 return err;
2046
2047         scsi_run_queue(sdev->request_queue);
2048         while (sdev->device_busy) {
2049                 msleep_interruptible(200);
2050                 scsi_run_queue(sdev->request_queue);
2051         }
2052         return 0;
2053 }
2054 EXPORT_SYMBOL(scsi_device_quiesce);
2055
2056 /**
2057  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2058  *      @sdev:  scsi device to resume.
2059  *
2060  *      Moves the device from quiesced back to running and restarts the
2061  *      queues.
2062  *
2063  *      Must be called with user context, may sleep.
2064  **/
2065 void
2066 scsi_device_resume(struct scsi_device *sdev)
2067 {
2068         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2069                 return;
2070         scsi_run_queue(sdev->request_queue);
2071 }
2072 EXPORT_SYMBOL(scsi_device_resume);
2073
2074 static void
2075 device_quiesce_fn(struct scsi_device *sdev, void *data)
2076 {
2077         scsi_device_quiesce(sdev);
2078 }
2079
2080 void
2081 scsi_target_quiesce(struct scsi_target *starget)
2082 {
2083         starget_for_each_device(starget, NULL, device_quiesce_fn);
2084 }
2085 EXPORT_SYMBOL(scsi_target_quiesce);
2086
2087 static void
2088 device_resume_fn(struct scsi_device *sdev, void *data)
2089 {
2090         scsi_device_resume(sdev);
2091 }
2092
2093 void
2094 scsi_target_resume(struct scsi_target *starget)
2095 {
2096         starget_for_each_device(starget, NULL, device_resume_fn);
2097 }
2098 EXPORT_SYMBOL(scsi_target_resume);
2099
2100 /**
2101  * scsi_internal_device_block - internal function to put a device
2102  *                              temporarily into the SDEV_BLOCK state
2103  * @sdev:       device to block
2104  *
2105  * Block request made by scsi lld's to temporarily stop all
2106  * scsi commands on the specified device.  Called from interrupt
2107  * or normal process context.
2108  *
2109  * Returns zero if successful or error if not
2110  *
2111  * Notes:       
2112  *      This routine transitions the device to the SDEV_BLOCK state
2113  *      (which must be a legal transition).  When the device is in this
2114  *      state, all commands are deferred until the scsi lld reenables
2115  *      the device with scsi_device_unblock or device_block_tmo fires.
2116  *      This routine assumes the host_lock is held on entry.
2117  **/
2118 int
2119 scsi_internal_device_block(struct scsi_device *sdev)
2120 {
2121         request_queue_t *q = sdev->request_queue;
2122         unsigned long flags;
2123         int err = 0;
2124
2125         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2126         if (err)
2127                 return err;
2128
2129         /* 
2130          * The device has transitioned to SDEV_BLOCK.  Stop the
2131          * block layer from calling the midlayer with this device's
2132          * request queue. 
2133          */
2134         spin_lock_irqsave(q->queue_lock, flags);
2135         blk_stop_queue(q);
2136         spin_unlock_irqrestore(q->queue_lock, flags);
2137
2138         return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2141  
2142 /**
2143  * scsi_internal_device_unblock - resume a device after a block request
2144  * @sdev:       device to resume
2145  *
2146  * Called by scsi lld's or the midlayer to restart the device queue
2147  * for the previously suspended scsi device.  Called from interrupt or
2148  * normal process context.
2149  *
2150  * Returns zero if successful or error if not.
2151  *
2152  * Notes:       
2153  *      This routine transitions the device to the SDEV_RUNNING state
2154  *      (which must be a legal transition) allowing the midlayer to
2155  *      goose the queue for this device.  This routine assumes the 
2156  *      host_lock is held upon entry.
2157  **/
2158 int
2159 scsi_internal_device_unblock(struct scsi_device *sdev)
2160 {
2161         request_queue_t *q = sdev->request_queue; 
2162         int err;
2163         unsigned long flags;
2164         
2165         /* 
2166          * Try to transition the scsi device to SDEV_RUNNING
2167          * and goose the device queue if successful.  
2168          */
2169         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2170         if (err)
2171                 return err;
2172
2173         spin_lock_irqsave(q->queue_lock, flags);
2174         blk_start_queue(q);
2175         spin_unlock_irqrestore(q->queue_lock, flags);
2176
2177         return 0;
2178 }
2179 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2180
2181 static void
2182 device_block(struct scsi_device *sdev, void *data)
2183 {
2184         scsi_internal_device_block(sdev);
2185 }
2186
2187 static int
2188 target_block(struct device *dev, void *data)
2189 {
2190         if (scsi_is_target_device(dev))
2191                 starget_for_each_device(to_scsi_target(dev), NULL,
2192                                         device_block);
2193         return 0;
2194 }
2195
2196 void
2197 scsi_target_block(struct device *dev)
2198 {
2199         if (scsi_is_target_device(dev))
2200                 starget_for_each_device(to_scsi_target(dev), NULL,
2201                                         device_block);
2202         else
2203                 device_for_each_child(dev, NULL, target_block);
2204 }
2205 EXPORT_SYMBOL_GPL(scsi_target_block);
2206
2207 static void
2208 device_unblock(struct scsi_device *sdev, void *data)
2209 {
2210         scsi_internal_device_unblock(sdev);
2211 }
2212
2213 static int
2214 target_unblock(struct device *dev, void *data)
2215 {
2216         if (scsi_is_target_device(dev))
2217                 starget_for_each_device(to_scsi_target(dev), NULL,
2218                                         device_unblock);
2219         return 0;
2220 }
2221
2222 void
2223 scsi_target_unblock(struct device *dev)
2224 {
2225         if (scsi_is_target_device(dev))
2226                 starget_for_each_device(to_scsi_target(dev), NULL,
2227                                         device_unblock);
2228         else
2229                 device_for_each_child(dev, NULL, target_unblock);
2230 }
2231 EXPORT_SYMBOL_GPL(scsi_target_unblock);