]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/btrfs/ctree.c
Btrfs: split out level field in struct header
[linux-2.6-omap-h63xx.git] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7                       *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9                       *root, struct btrfs_path *path, int data_size);
10 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
11                           *root, struct buffer_head *dst, struct buffer_head
12                           *src);
13 static int balance_node_right(struct btrfs_trans_handle *trans, struct
14                               btrfs_root *root, struct buffer_head *dst_buf,
15                               struct buffer_head *src_buf);
16 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
17                    struct btrfs_path *path, int level, int slot);
18
19 inline void btrfs_init_path(struct btrfs_path *p)
20 {
21         memset(p, 0, sizeof(*p));
22 }
23
24 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
25 {
26         int i;
27         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
28                 if (!p->nodes[i])
29                         break;
30                 btrfs_block_release(root, p->nodes[i]);
31         }
32         memset(p, 0, sizeof(*p));
33 }
34
35 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
36                            *root, struct buffer_head *buf, struct buffer_head
37                            *parent, int parent_slot, struct buffer_head
38                            **cow_ret)
39 {
40         struct buffer_head *cow;
41         struct btrfs_node *cow_node;
42
43         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
44                                     trans->transid) {
45                 *cow_ret = buf;
46                 return 0;
47         }
48         cow = btrfs_alloc_free_block(trans, root);
49         cow_node = btrfs_buffer_node(cow);
50         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
51         btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
52         btrfs_set_header_generation(&cow_node->header, trans->transid);
53         *cow_ret = cow;
54         mark_buffer_dirty(cow);
55         btrfs_inc_ref(trans, root, buf);
56         if (buf == root->node) {
57                 root->node = cow;
58                 get_bh(cow);
59                 if (buf != root->commit_root)
60                         btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
61                 btrfs_block_release(root, buf);
62         } else {
63                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
64                                         cow->b_blocknr);
65                 mark_buffer_dirty(parent);
66                 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
67         }
68         btrfs_block_release(root, buf);
69         return 0;
70 }
71
72 /*
73  * The leaf data grows from end-to-front in the node.
74  * this returns the address of the start of the last item,
75  * which is the stop of the leaf data stack
76  */
77 static inline unsigned int leaf_data_end(struct btrfs_root *root,
78                                          struct btrfs_leaf *leaf)
79 {
80         u32 nr = btrfs_header_nritems(&leaf->header);
81         if (nr == 0)
82                 return BTRFS_LEAF_DATA_SIZE(root);
83         return btrfs_item_offset(leaf->items + nr - 1);
84 }
85
86 /*
87  * The space between the end of the leaf items and
88  * the start of the leaf data.  IOW, how much room
89  * the leaf has left for both items and data
90  */
91 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
92 {
93         int data_end = leaf_data_end(root, leaf);
94         int nritems = btrfs_header_nritems(&leaf->header);
95         char *items_end = (char *)(leaf->items + nritems + 1);
96         return (char *)(btrfs_leaf_data(leaf) + data_end) - (char *)items_end;
97 }
98
99 /*
100  * compare two keys in a memcmp fashion
101  */
102 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
103 {
104         struct btrfs_key k1;
105
106         btrfs_disk_key_to_cpu(&k1, disk);
107
108         if (k1.objectid > k2->objectid)
109                 return 1;
110         if (k1.objectid < k2->objectid)
111                 return -1;
112         if (k1.flags > k2->flags)
113                 return 1;
114         if (k1.flags < k2->flags)
115                 return -1;
116         if (k1.offset > k2->offset)
117                 return 1;
118         if (k1.offset < k2->offset)
119                 return -1;
120         return 0;
121 }
122
123 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
124                       int level)
125 {
126         int i;
127         struct btrfs_node *parent = NULL;
128         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
129         int parent_slot;
130         u32 nritems = btrfs_header_nritems(&node->header);
131
132         if (path->nodes[level + 1])
133                 parent = btrfs_buffer_node(path->nodes[level + 1]);
134         parent_slot = path->slots[level + 1];
135         BUG_ON(nritems == 0);
136         if (parent) {
137                 struct btrfs_disk_key *parent_key;
138                 parent_key = &parent->ptrs[parent_slot].key;
139                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
140                               sizeof(struct btrfs_disk_key)));
141                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
142                        btrfs_header_blocknr(&node->header));
143         }
144         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
145         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
146                 struct btrfs_key cpukey;
147                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
148                 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
149         }
150         return 0;
151 }
152
153 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
154                       int level)
155 {
156         int i;
157         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
158         struct btrfs_node *parent = NULL;
159         int parent_slot;
160         u32 nritems = btrfs_header_nritems(&leaf->header);
161
162         if (path->nodes[level + 1])
163                 parent = btrfs_buffer_node(path->nodes[level + 1]);
164         parent_slot = path->slots[level + 1];
165         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
166
167         if (nritems == 0)
168                 return 0;
169
170         if (parent) {
171                 struct btrfs_disk_key *parent_key;
172                 parent_key = &parent->ptrs[parent_slot].key;
173                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
174                        sizeof(struct btrfs_disk_key)));
175                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
176                        btrfs_header_blocknr(&leaf->header));
177         }
178         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
179                 struct btrfs_key cpukey;
180                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
181                 BUG_ON(comp_keys(&leaf->items[i].key,
182                                  &cpukey) >= 0);
183                 BUG_ON(btrfs_item_offset(leaf->items + i) !=
184                         btrfs_item_end(leaf->items + i + 1));
185                 if (i == 0) {
186                         BUG_ON(btrfs_item_offset(leaf->items + i) +
187                                btrfs_item_size(leaf->items + i) !=
188                                BTRFS_LEAF_DATA_SIZE(root));
189                 }
190         }
191         return 0;
192 }
193
194 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
195                         int level)
196 {
197         if (level == 0)
198                 return check_leaf(root, path, level);
199         return check_node(root, path, level);
200 }
201
202 /*
203  * search for key in the array p.  items p are item_size apart
204  * and there are 'max' items in p
205  * the slot in the array is returned via slot, and it points to
206  * the place where you would insert key if it is not found in
207  * the array.
208  *
209  * slot may point to max if the key is bigger than all of the keys
210  */
211 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
212                        int max, int *slot)
213 {
214         int low = 0;
215         int high = max;
216         int mid;
217         int ret;
218         struct btrfs_disk_key *tmp;
219
220         while(low < high) {
221                 mid = (low + high) / 2;
222                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
223                 ret = comp_keys(tmp, key);
224
225                 if (ret < 0)
226                         low = mid + 1;
227                 else if (ret > 0)
228                         high = mid;
229                 else {
230                         *slot = mid;
231                         return 0;
232                 }
233         }
234         *slot = low;
235         return 1;
236 }
237
238 /*
239  * simple bin_search frontend that does the right thing for
240  * leaves vs nodes
241  */
242 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
243 {
244         if (btrfs_is_leaf(c)) {
245                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
246                 return generic_bin_search((void *)l->items,
247                                           sizeof(struct btrfs_item),
248                                           key, btrfs_header_nritems(&c->header),
249                                           slot);
250         } else {
251                 return generic_bin_search((void *)c->ptrs,
252                                           sizeof(struct btrfs_key_ptr),
253                                           key, btrfs_header_nritems(&c->header),
254                                           slot);
255         }
256         return -1;
257 }
258
259 static struct buffer_head *read_node_slot(struct btrfs_root *root,
260                                    struct buffer_head *parent_buf,
261                                    int slot)
262 {
263         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
264         if (slot < 0)
265                 return NULL;
266         if (slot >= btrfs_header_nritems(&node->header))
267                 return NULL;
268         return read_tree_block(root, btrfs_node_blockptr(node, slot));
269 }
270
271 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
272                          *root, struct btrfs_path *path, int level)
273 {
274         struct buffer_head *right_buf;
275         struct buffer_head *mid_buf;
276         struct buffer_head *left_buf;
277         struct buffer_head *parent_buf = NULL;
278         struct btrfs_node *right = NULL;
279         struct btrfs_node *mid;
280         struct btrfs_node *left = NULL;
281         struct btrfs_node *parent = NULL;
282         int ret = 0;
283         int wret;
284         int pslot;
285         int orig_slot = path->slots[level];
286         u64 orig_ptr;
287
288         if (level == 0)
289                 return 0;
290
291         mid_buf = path->nodes[level];
292         mid = btrfs_buffer_node(mid_buf);
293         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
294
295         if (level < BTRFS_MAX_LEVEL - 1)
296                 parent_buf = path->nodes[level + 1];
297         pslot = path->slots[level + 1];
298
299         /*
300          * deal with the case where there is only one pointer in the root
301          * by promoting the node below to a root
302          */
303         if (!parent_buf) {
304                 struct buffer_head *child;
305                 u64 blocknr = mid_buf->b_blocknr;
306
307                 if (btrfs_header_nritems(&mid->header) != 1)
308                         return 0;
309
310                 /* promote the child to a root */
311                 child = read_node_slot(root, mid_buf, 0);
312                 BUG_ON(!child);
313                 root->node = child;
314                 path->nodes[level] = NULL;
315                 /* once for the path */
316                 btrfs_block_release(root, mid_buf);
317                 /* once for the root ptr */
318                 btrfs_block_release(root, mid_buf);
319                 clean_tree_block(trans, root, mid_buf);
320                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
321         }
322         parent = btrfs_buffer_node(parent_buf);
323
324         if (btrfs_header_nritems(&mid->header) >
325             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
326                 return 0;
327
328         left_buf = read_node_slot(root, parent_buf, pslot - 1);
329         right_buf = read_node_slot(root, parent_buf, pslot + 1);
330
331         /* first, try to make some room in the middle buffer */
332         if (left_buf) {
333                 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
334                                 &left_buf);
335                 left = btrfs_buffer_node(left_buf);
336                 orig_slot += btrfs_header_nritems(&left->header);
337                 wret = push_node_left(trans, root, left_buf, mid_buf);
338                 if (wret < 0)
339                         ret = wret;
340         }
341
342         /*
343          * then try to empty the right most buffer into the middle
344          */
345         if (right_buf) {
346                 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
347                                 &right_buf);
348                 right = btrfs_buffer_node(right_buf);
349                 wret = push_node_left(trans, root, mid_buf, right_buf);
350                 if (wret < 0)
351                         ret = wret;
352                 if (btrfs_header_nritems(&right->header) == 0) {
353                         u64 blocknr = right_buf->b_blocknr;
354                         btrfs_block_release(root, right_buf);
355                         clean_tree_block(trans, root, right_buf);
356                         right_buf = NULL;
357                         right = NULL;
358                         wret = del_ptr(trans, root, path, level + 1, pslot +
359                                        1);
360                         if (wret)
361                                 ret = wret;
362                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
363                         if (wret)
364                                 ret = wret;
365                 } else {
366                         memcpy(&parent->ptrs[pslot + 1].key,
367                                 &right->ptrs[0].key,
368                                 sizeof(struct btrfs_disk_key));
369                         mark_buffer_dirty(parent_buf);
370                 }
371         }
372         if (btrfs_header_nritems(&mid->header) == 1) {
373                 /*
374                  * we're not allowed to leave a node with one item in the
375                  * tree during a delete.  A deletion from lower in the tree
376                  * could try to delete the only pointer in this node.
377                  * So, pull some keys from the left.
378                  * There has to be a left pointer at this point because
379                  * otherwise we would have pulled some pointers from the
380                  * right
381                  */
382                 BUG_ON(!left_buf);
383                 wret = balance_node_right(trans, root, mid_buf, left_buf);
384                 if (wret < 0)
385                         ret = wret;
386                 BUG_ON(wret == 1);
387         }
388         if (btrfs_header_nritems(&mid->header) == 0) {
389                 /* we've managed to empty the middle node, drop it */
390                 u64 blocknr = mid_buf->b_blocknr;
391                 btrfs_block_release(root, mid_buf);
392                 clean_tree_block(trans, root, mid_buf);
393                 mid_buf = NULL;
394                 mid = NULL;
395                 wret = del_ptr(trans, root, path, level + 1, pslot);
396                 if (wret)
397                         ret = wret;
398                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
399                 if (wret)
400                         ret = wret;
401         } else {
402                 /* update the parent key to reflect our changes */
403                 memcpy(&parent->ptrs[pslot].key, &mid->ptrs[0].key,
404                        sizeof(struct btrfs_disk_key));
405                 mark_buffer_dirty(parent_buf);
406         }
407
408         /* update the path */
409         if (left_buf) {
410                 if (btrfs_header_nritems(&left->header) > orig_slot) {
411                         get_bh(left_buf);
412                         path->nodes[level] = left_buf;
413                         path->slots[level + 1] -= 1;
414                         path->slots[level] = orig_slot;
415                         if (mid_buf)
416                                 btrfs_block_release(root, mid_buf);
417                 } else {
418                         orig_slot -= btrfs_header_nritems(&left->header);
419                         path->slots[level] = orig_slot;
420                 }
421         }
422         /* double check we haven't messed things up */
423         check_block(root, path, level);
424         if (orig_ptr !=
425             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
426                                 path->slots[level]))
427                 BUG();
428
429         if (right_buf)
430                 btrfs_block_release(root, right_buf);
431         if (left_buf)
432                 btrfs_block_release(root, left_buf);
433         return ret;
434 }
435
436 /*
437  * look for key in the tree.  path is filled in with nodes along the way
438  * if key is found, we return zero and you can find the item in the leaf
439  * level of the path (level 0)
440  *
441  * If the key isn't found, the path points to the slot where it should
442  * be inserted, and 1 is returned.  If there are other errors during the
443  * search a negative error number is returned.
444  *
445  * if ins_len > 0, nodes and leaves will be split as we walk down the
446  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
447  * possible)
448  */
449 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
450                       *root, struct btrfs_key *key, struct btrfs_path *p, int
451                       ins_len, int cow)
452 {
453         struct buffer_head *b;
454         struct buffer_head *cow_buf;
455         struct btrfs_node *c;
456         int slot;
457         int ret;
458         int level;
459
460 again:
461         b = root->node;
462         get_bh(b);
463         while (b) {
464                 c = btrfs_buffer_node(b);
465                 level = btrfs_header_level(&c->header);
466                 if (cow) {
467                         int wret;
468                         wret = btrfs_cow_block(trans, root, b,
469                                                p->nodes[level + 1],
470                                                p->slots[level + 1],
471                                                &cow_buf);
472                         b = cow_buf;
473                 }
474                 BUG_ON(!cow && ins_len);
475                 c = btrfs_buffer_node(b);
476                 p->nodes[level] = b;
477                 ret = check_block(root, p, level);
478                 if (ret)
479                         return -1;
480                 ret = bin_search(c, key, &slot);
481                 if (!btrfs_is_leaf(c)) {
482                         if (ret && slot > 0)
483                                 slot -= 1;
484                         p->slots[level] = slot;
485                         if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
486                             BTRFS_NODEPTRS_PER_BLOCK(root)) {
487                                 int sret = split_node(trans, root, p, level);
488                                 BUG_ON(sret > 0);
489                                 if (sret)
490                                         return sret;
491                                 b = p->nodes[level];
492                                 c = btrfs_buffer_node(b);
493                                 slot = p->slots[level];
494                         } else if (ins_len < 0) {
495                                 int sret = balance_level(trans, root, p,
496                                                          level);
497                                 if (sret)
498                                         return sret;
499                                 b = p->nodes[level];
500                                 if (!b)
501                                         goto again;
502                                 c = btrfs_buffer_node(b);
503                                 slot = p->slots[level];
504                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
505                         }
506                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
507                 } else {
508                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
509                         p->slots[level] = slot;
510                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
511                             sizeof(struct btrfs_item) + ins_len) {
512                                 int sret = split_leaf(trans, root, p, ins_len);
513                                 BUG_ON(sret > 0);
514                                 if (sret)
515                                         return sret;
516                         }
517                         return ret;
518                 }
519         }
520         return 1;
521 }
522
523 /*
524  * adjust the pointers going up the tree, starting at level
525  * making sure the right key of each node is points to 'key'.
526  * This is used after shifting pointers to the left, so it stops
527  * fixing up pointers when a given leaf/node is not in slot 0 of the
528  * higher levels
529  *
530  * If this fails to write a tree block, it returns -1, but continues
531  * fixing up the blocks in ram so the tree is consistent.
532  */
533 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
534                           *root, struct btrfs_path *path, struct btrfs_disk_key
535                           *key, int level)
536 {
537         int i;
538         int ret = 0;
539         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
540                 struct btrfs_node *t;
541                 int tslot = path->slots[i];
542                 if (!path->nodes[i])
543                         break;
544                 t = btrfs_buffer_node(path->nodes[i]);
545                 memcpy(&t->ptrs[tslot].key, key, sizeof(*key));
546                 mark_buffer_dirty(path->nodes[i]);
547                 if (tslot != 0)
548                         break;
549         }
550         return ret;
551 }
552
553 /*
554  * try to push data from one node into the next node left in the
555  * tree.
556  *
557  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
558  * error, and > 0 if there was no room in the left hand block.
559  */
560 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
561                           *root, struct buffer_head *dst_buf, struct
562                           buffer_head *src_buf)
563 {
564         struct btrfs_node *src = btrfs_buffer_node(src_buf);
565         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
566         int push_items = 0;
567         int src_nritems;
568         int dst_nritems;
569         int ret = 0;
570
571         src_nritems = btrfs_header_nritems(&src->header);
572         dst_nritems = btrfs_header_nritems(&dst->header);
573         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
574         if (push_items <= 0) {
575                 return 1;
576         }
577
578         if (src_nritems < push_items)
579                 push_items = src_nritems;
580
581         memcpy(dst->ptrs + dst_nritems, src->ptrs,
582                 push_items * sizeof(struct btrfs_key_ptr));
583         if (push_items < src_nritems) {
584                 memmove(src->ptrs, src->ptrs + push_items,
585                         (src_nritems - push_items) *
586                         sizeof(struct btrfs_key_ptr));
587         }
588         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
589         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
590         mark_buffer_dirty(src_buf);
591         mark_buffer_dirty(dst_buf);
592         return ret;
593 }
594
595 /*
596  * try to push data from one node into the next node right in the
597  * tree.
598  *
599  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
600  * error, and > 0 if there was no room in the right hand block.
601  *
602  * this will  only push up to 1/2 the contents of the left node over
603  */
604 static int balance_node_right(struct btrfs_trans_handle *trans, struct
605                               btrfs_root *root, struct buffer_head *dst_buf,
606                               struct buffer_head *src_buf)
607 {
608         struct btrfs_node *src = btrfs_buffer_node(src_buf);
609         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
610         int push_items = 0;
611         int max_push;
612         int src_nritems;
613         int dst_nritems;
614         int ret = 0;
615
616         src_nritems = btrfs_header_nritems(&src->header);
617         dst_nritems = btrfs_header_nritems(&dst->header);
618         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
619         if (push_items <= 0) {
620                 return 1;
621         }
622
623         max_push = src_nritems / 2 + 1;
624         /* don't try to empty the node */
625         if (max_push > src_nritems)
626                 return 1;
627         if (max_push < push_items)
628                 push_items = max_push;
629
630         memmove(dst->ptrs + push_items, dst->ptrs,
631                 dst_nritems * sizeof(struct btrfs_key_ptr));
632         memcpy(dst->ptrs, src->ptrs + src_nritems - push_items,
633                 push_items * sizeof(struct btrfs_key_ptr));
634
635         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
636         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
637
638         mark_buffer_dirty(src_buf);
639         mark_buffer_dirty(dst_buf);
640         return ret;
641 }
642
643 /*
644  * helper function to insert a new root level in the tree.
645  * A new node is allocated, and a single item is inserted to
646  * point to the existing root
647  *
648  * returns zero on success or < 0 on failure.
649  */
650 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
651                            *root, struct btrfs_path *path, int level)
652 {
653         struct buffer_head *t;
654         struct btrfs_node *lower;
655         struct btrfs_node *c;
656         struct btrfs_disk_key *lower_key;
657
658         BUG_ON(path->nodes[level]);
659         BUG_ON(path->nodes[level-1] != root->node);
660
661         t = btrfs_alloc_free_block(trans, root);
662         c = btrfs_buffer_node(t);
663         memset(c, 0, root->blocksize);
664         btrfs_set_header_nritems(&c->header, 1);
665         btrfs_set_header_level(&c->header, level);
666         btrfs_set_header_blocknr(&c->header, t->b_blocknr);
667         btrfs_set_header_generation(&c->header, trans->transid);
668         btrfs_set_header_parentid(&c->header,
669               btrfs_header_parentid(btrfs_buffer_header(root->node)));
670         lower = btrfs_buffer_node(path->nodes[level-1]);
671         if (btrfs_is_leaf(lower))
672                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
673         else
674                 lower_key = &lower->ptrs[0].key;
675         memcpy(&c->ptrs[0].key, lower_key, sizeof(struct btrfs_disk_key));
676         btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
677
678         mark_buffer_dirty(t);
679
680         /* the super has an extra ref to root->node */
681         btrfs_block_release(root, root->node);
682         root->node = t;
683         get_bh(t);
684         path->nodes[level] = t;
685         path->slots[level] = 0;
686         return 0;
687 }
688
689 /*
690  * worker function to insert a single pointer in a node.
691  * the node should have enough room for the pointer already
692  *
693  * slot and level indicate where you want the key to go, and
694  * blocknr is the block the key points to.
695  *
696  * returns zero on success and < 0 on any error
697  */
698 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
699                       *root, struct btrfs_path *path, struct btrfs_disk_key
700                       *key, u64 blocknr, int slot, int level)
701 {
702         struct btrfs_node *lower;
703         int nritems;
704
705         BUG_ON(!path->nodes[level]);
706         lower = btrfs_buffer_node(path->nodes[level]);
707         nritems = btrfs_header_nritems(&lower->header);
708         if (slot > nritems)
709                 BUG();
710         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
711                 BUG();
712         if (slot != nritems) {
713                 memmove(lower->ptrs + slot + 1, lower->ptrs + slot,
714                         (nritems - slot) * sizeof(struct btrfs_key_ptr));
715         }
716         memcpy(&lower->ptrs[slot].key, key, sizeof(struct btrfs_disk_key));
717         btrfs_set_node_blockptr(lower, slot, blocknr);
718         btrfs_set_header_nritems(&lower->header, nritems + 1);
719         mark_buffer_dirty(path->nodes[level]);
720         return 0;
721 }
722
723 /*
724  * split the node at the specified level in path in two.
725  * The path is corrected to point to the appropriate node after the split
726  *
727  * Before splitting this tries to make some room in the node by pushing
728  * left and right, if either one works, it returns right away.
729  *
730  * returns 0 on success and < 0 on failure
731  */
732 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
733                       *root, struct btrfs_path *path, int level)
734 {
735         struct buffer_head *t;
736         struct btrfs_node *c;
737         struct buffer_head *split_buffer;
738         struct btrfs_node *split;
739         int mid;
740         int ret;
741         int wret;
742         u32 c_nritems;
743
744         t = path->nodes[level];
745         c = btrfs_buffer_node(t);
746         if (t == root->node) {
747                 /* trying to split the root, lets make a new one */
748                 ret = insert_new_root(trans, root, path, level + 1);
749                 if (ret)
750                         return ret;
751         }
752         c_nritems = btrfs_header_nritems(&c->header);
753         split_buffer = btrfs_alloc_free_block(trans, root);
754         split = btrfs_buffer_node(split_buffer);
755         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
756         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
757         btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
758         btrfs_set_header_generation(&split->header, trans->transid);
759         btrfs_set_header_parentid(&split->header,
760               btrfs_header_parentid(btrfs_buffer_header(root->node)));
761         mid = (c_nritems + 1) / 2;
762         memcpy(split->ptrs, c->ptrs + mid,
763                 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
764         btrfs_set_header_nritems(&split->header, c_nritems - mid);
765         btrfs_set_header_nritems(&c->header, mid);
766         ret = 0;
767
768         mark_buffer_dirty(t);
769         mark_buffer_dirty(split_buffer);
770         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
771                           split_buffer->b_blocknr, path->slots[level + 1] + 1,
772                           level + 1);
773         if (wret)
774                 ret = wret;
775
776         if (path->slots[level] >= mid) {
777                 path->slots[level] -= mid;
778                 btrfs_block_release(root, t);
779                 path->nodes[level] = split_buffer;
780                 path->slots[level + 1] += 1;
781         } else {
782                 btrfs_block_release(root, split_buffer);
783         }
784         return ret;
785 }
786
787 /*
788  * how many bytes are required to store the items in a leaf.  start
789  * and nr indicate which items in the leaf to check.  This totals up the
790  * space used both by the item structs and the item data
791  */
792 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
793 {
794         int data_len;
795         int end = start + nr - 1;
796
797         if (!nr)
798                 return 0;
799         data_len = btrfs_item_end(l->items + start);
800         data_len = data_len - btrfs_item_offset(l->items + end);
801         data_len += sizeof(struct btrfs_item) * nr;
802         return data_len;
803 }
804
805 /*
806  * push some data in the path leaf to the right, trying to free up at
807  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
808  *
809  * returns 1 if the push failed because the other node didn't have enough
810  * room, 0 if everything worked out and < 0 if there were major errors.
811  */
812 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
813                            *root, struct btrfs_path *path, int data_size)
814 {
815         struct buffer_head *left_buf = path->nodes[0];
816         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
817         struct btrfs_leaf *right;
818         struct buffer_head *right_buf;
819         struct buffer_head *upper;
820         struct btrfs_node *upper_node;
821         int slot;
822         int i;
823         int free_space;
824         int push_space = 0;
825         int push_items = 0;
826         struct btrfs_item *item;
827         u32 left_nritems;
828         u32 right_nritems;
829
830         slot = path->slots[1];
831         if (!path->nodes[1]) {
832                 return 1;
833         }
834         upper = path->nodes[1];
835         upper_node = btrfs_buffer_node(upper);
836         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
837                 return 1;
838         }
839         right_buf = read_tree_block(root,
840                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
841         right = btrfs_buffer_leaf(right_buf);
842         free_space = btrfs_leaf_free_space(root, right);
843         if (free_space < data_size + sizeof(struct btrfs_item)) {
844                 btrfs_block_release(root, right_buf);
845                 return 1;
846         }
847         /* cow and double check */
848         btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
849         right = btrfs_buffer_leaf(right_buf);
850         free_space = btrfs_leaf_free_space(root, right);
851         if (free_space < data_size + sizeof(struct btrfs_item)) {
852                 btrfs_block_release(root, right_buf);
853                 return 1;
854         }
855
856         left_nritems = btrfs_header_nritems(&left->header);
857         for (i = left_nritems - 1; i >= 0; i--) {
858                 item = left->items + i;
859                 if (path->slots[0] == i)
860                         push_space += data_size + sizeof(*item);
861                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
862                     free_space)
863                         break;
864                 push_items++;
865                 push_space += btrfs_item_size(item) + sizeof(*item);
866         }
867         if (push_items == 0) {
868                 btrfs_block_release(root, right_buf);
869                 return 1;
870         }
871         right_nritems = btrfs_header_nritems(&right->header);
872         /* push left to right */
873         push_space = btrfs_item_end(left->items + left_nritems - push_items);
874         push_space -= leaf_data_end(root, left);
875         /* make room in the right data area */
876         memmove(btrfs_leaf_data(right) + leaf_data_end(root, right) -
877                 push_space, btrfs_leaf_data(right) + leaf_data_end(root, right),
878                 BTRFS_LEAF_DATA_SIZE(root) - leaf_data_end(root, right));
879         /* copy from the left data area */
880         memcpy(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - push_space,
881                 btrfs_leaf_data(left) + leaf_data_end(root, left), push_space);
882         memmove(right->items + push_items, right->items,
883                 right_nritems * sizeof(struct btrfs_item));
884         /* copy the items from left to right */
885         memcpy(right->items, left->items + left_nritems - push_items,
886                 push_items * sizeof(struct btrfs_item));
887
888         /* update the item pointers */
889         right_nritems += push_items;
890         btrfs_set_header_nritems(&right->header, right_nritems);
891         push_space = BTRFS_LEAF_DATA_SIZE(root);
892         for (i = 0; i < right_nritems; i++) {
893                 btrfs_set_item_offset(right->items + i, push_space -
894                                       btrfs_item_size(right->items + i));
895                 push_space = btrfs_item_offset(right->items + i);
896         }
897         left_nritems -= push_items;
898         btrfs_set_header_nritems(&left->header, left_nritems);
899
900         mark_buffer_dirty(left_buf);
901         mark_buffer_dirty(right_buf);
902         memcpy(&upper_node->ptrs[slot + 1].key,
903                 &right->items[0].key, sizeof(struct btrfs_disk_key));
904         mark_buffer_dirty(upper);
905
906         /* then fixup the leaf pointer in the path */
907         if (path->slots[0] >= left_nritems) {
908                 path->slots[0] -= left_nritems;
909                 btrfs_block_release(root, path->nodes[0]);
910                 path->nodes[0] = right_buf;
911                 path->slots[1] += 1;
912         } else {
913                 btrfs_block_release(root, right_buf);
914         }
915         return 0;
916 }
917 /*
918  * push some data in the path leaf to the left, trying to free up at
919  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
920  */
921 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
922                           *root, struct btrfs_path *path, int data_size)
923 {
924         struct buffer_head *right_buf = path->nodes[0];
925         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
926         struct buffer_head *t;
927         struct btrfs_leaf *left;
928         int slot;
929         int i;
930         int free_space;
931         int push_space = 0;
932         int push_items = 0;
933         struct btrfs_item *item;
934         u32 old_left_nritems;
935         int ret = 0;
936         int wret;
937
938         slot = path->slots[1];
939         if (slot == 0) {
940                 return 1;
941         }
942         if (!path->nodes[1]) {
943                 return 1;
944         }
945         t = read_tree_block(root,
946             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
947         left = btrfs_buffer_leaf(t);
948         free_space = btrfs_leaf_free_space(root, left);
949         if (free_space < data_size + sizeof(struct btrfs_item)) {
950                 btrfs_block_release(root, t);
951                 return 1;
952         }
953
954         /* cow and double check */
955         btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
956         left = btrfs_buffer_leaf(t);
957         free_space = btrfs_leaf_free_space(root, left);
958         if (free_space < data_size + sizeof(struct btrfs_item)) {
959                 btrfs_block_release(root, t);
960                 return 1;
961         }
962
963         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
964                 item = right->items + i;
965                 if (path->slots[0] == i)
966                         push_space += data_size + sizeof(*item);
967                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
968                     free_space)
969                         break;
970                 push_items++;
971                 push_space += btrfs_item_size(item) + sizeof(*item);
972         }
973         if (push_items == 0) {
974                 btrfs_block_release(root, t);
975                 return 1;
976         }
977         /* push data from right to left */
978         memcpy(left->items + btrfs_header_nritems(&left->header),
979                 right->items, push_items * sizeof(struct btrfs_item));
980         push_space = BTRFS_LEAF_DATA_SIZE(root) -
981                      btrfs_item_offset(right->items + push_items -1);
982         memcpy(btrfs_leaf_data(left) + leaf_data_end(root, left) - push_space,
983                 btrfs_leaf_data(right) +
984                 btrfs_item_offset(right->items + push_items - 1),
985                 push_space);
986         old_left_nritems = btrfs_header_nritems(&left->header);
987         BUG_ON(old_left_nritems < 0);
988
989         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
990                 u32 ioff = btrfs_item_offset(left->items + i);
991                 btrfs_set_item_offset(left->items + i, ioff -
992                                      (BTRFS_LEAF_DATA_SIZE(root) -
993                                       btrfs_item_offset(left->items +
994                                                         old_left_nritems - 1)));
995         }
996         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
997
998         /* fixup right node */
999         push_space = btrfs_item_offset(right->items + push_items - 1) -
1000                      leaf_data_end(root, right);
1001         memmove(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1002                 push_space, btrfs_leaf_data(right) +
1003                 leaf_data_end(root, right), push_space);
1004         memmove(right->items, right->items + push_items,
1005                 (btrfs_header_nritems(&right->header) - push_items) *
1006                 sizeof(struct btrfs_item));
1007         btrfs_set_header_nritems(&right->header,
1008                                  btrfs_header_nritems(&right->header) -
1009                                  push_items);
1010         push_space = BTRFS_LEAF_DATA_SIZE(root);
1011
1012         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1013                 btrfs_set_item_offset(right->items + i, push_space -
1014                                       btrfs_item_size(right->items + i));
1015                 push_space = btrfs_item_offset(right->items + i);
1016         }
1017
1018         mark_buffer_dirty(t);
1019         mark_buffer_dirty(right_buf);
1020
1021         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1022         if (wret)
1023                 ret = wret;
1024
1025         /* then fixup the leaf pointer in the path */
1026         if (path->slots[0] < push_items) {
1027                 path->slots[0] += old_left_nritems;
1028                 btrfs_block_release(root, path->nodes[0]);
1029                 path->nodes[0] = t;
1030                 path->slots[1] -= 1;
1031         } else {
1032                 btrfs_block_release(root, t);
1033                 path->slots[0] -= push_items;
1034         }
1035         BUG_ON(path->slots[0] < 0);
1036         return ret;
1037 }
1038
1039 /*
1040  * split the path's leaf in two, making sure there is at least data_size
1041  * available for the resulting leaf level of the path.
1042  *
1043  * returns 0 if all went well and < 0 on failure.
1044  */
1045 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1046                       *root, struct btrfs_path *path, int data_size)
1047 {
1048         struct buffer_head *l_buf;
1049         struct btrfs_leaf *l;
1050         u32 nritems;
1051         int mid;
1052         int slot;
1053         struct btrfs_leaf *right;
1054         struct buffer_head *right_buffer;
1055         int space_needed = data_size + sizeof(struct btrfs_item);
1056         int data_copy_size;
1057         int rt_data_off;
1058         int i;
1059         int ret;
1060         int wret;
1061
1062         /* first try to make some room by pushing left and right */
1063         wret = push_leaf_left(trans, root, path, data_size);
1064         if (wret < 0)
1065                 return wret;
1066         if (wret) {
1067                 wret = push_leaf_right(trans, root, path, data_size);
1068                 if (wret < 0)
1069                         return wret;
1070         }
1071         l_buf = path->nodes[0];
1072         l = btrfs_buffer_leaf(l_buf);
1073
1074         /* did the pushes work? */
1075         if (btrfs_leaf_free_space(root, l) >=
1076             sizeof(struct btrfs_item) + data_size)
1077                 return 0;
1078
1079         if (!path->nodes[1]) {
1080                 ret = insert_new_root(trans, root, path, 1);
1081                 if (ret)
1082                         return ret;
1083         }
1084         slot = path->slots[0];
1085         nritems = btrfs_header_nritems(&l->header);
1086         mid = (nritems + 1)/ 2;
1087         right_buffer = btrfs_alloc_free_block(trans, root);
1088         BUG_ON(!right_buffer);
1089         BUG_ON(mid == nritems);
1090         right = btrfs_buffer_leaf(right_buffer);
1091         memset(&right->header, 0, sizeof(right->header));
1092         if (mid <= slot) {
1093                 /* FIXME, just alloc a new leaf here */
1094                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1095                         BTRFS_LEAF_DATA_SIZE(root))
1096                         BUG();
1097         } else {
1098                 /* FIXME, just alloc a new leaf here */
1099                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1100                         BTRFS_LEAF_DATA_SIZE(root))
1101                         BUG();
1102         }
1103         btrfs_set_header_nritems(&right->header, nritems - mid);
1104         btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
1105         btrfs_set_header_generation(&right->header, trans->transid);
1106         btrfs_set_header_level(&right->header, 0);
1107         btrfs_set_header_parentid(&right->header,
1108               btrfs_header_parentid(btrfs_buffer_header(root->node)));
1109         data_copy_size = btrfs_item_end(l->items + mid) -
1110                          leaf_data_end(root, l);
1111         memcpy(right->items, l->items + mid,
1112                (nritems - mid) * sizeof(struct btrfs_item));
1113         memcpy(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1114                 data_copy_size, btrfs_leaf_data(l) +
1115                 leaf_data_end(root, l), data_copy_size);
1116         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1117                       btrfs_item_end(l->items + mid);
1118
1119         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1120                 u32 ioff = btrfs_item_offset(right->items + i);
1121                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1122         }
1123
1124         btrfs_set_header_nritems(&l->header, mid);
1125         ret = 0;
1126         wret = insert_ptr(trans, root, path, &right->items[0].key,
1127                           right_buffer->b_blocknr, path->slots[1] + 1, 1);
1128         if (wret)
1129                 ret = wret;
1130         mark_buffer_dirty(right_buffer);
1131         mark_buffer_dirty(l_buf);
1132         BUG_ON(path->slots[0] != slot);
1133         if (mid <= slot) {
1134                 btrfs_block_release(root, path->nodes[0]);
1135                 path->nodes[0] = right_buffer;
1136                 path->slots[0] -= mid;
1137                 path->slots[1] += 1;
1138         } else
1139                 btrfs_block_release(root, right_buffer);
1140         BUG_ON(path->slots[0] < 0);
1141         return ret;
1142 }
1143
1144 /*
1145  * Given a key and some data, insert an item into the tree.
1146  * This does all the path init required, making room in the tree if needed.
1147  */
1148 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1149                             *root, struct btrfs_path *path, struct btrfs_key
1150                             *cpu_key, u32 data_size)
1151 {
1152         int ret = 0;
1153         int slot;
1154         int slot_orig;
1155         struct btrfs_leaf *leaf;
1156         struct buffer_head *leaf_buf;
1157         u32 nritems;
1158         unsigned int data_end;
1159         struct btrfs_disk_key disk_key;
1160
1161         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1162
1163         /* create a root if there isn't one */
1164         if (!root->node)
1165                 BUG();
1166         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1167         if (ret == 0) {
1168                 btrfs_release_path(root, path);
1169                 return -EEXIST;
1170         }
1171         if (ret < 0)
1172                 goto out;
1173
1174         slot_orig = path->slots[0];
1175         leaf_buf = path->nodes[0];
1176         leaf = btrfs_buffer_leaf(leaf_buf);
1177
1178         nritems = btrfs_header_nritems(&leaf->header);
1179         data_end = leaf_data_end(root, leaf);
1180
1181         if (btrfs_leaf_free_space(root, leaf) <
1182             sizeof(struct btrfs_item) + data_size)
1183                 BUG();
1184
1185         slot = path->slots[0];
1186         BUG_ON(slot < 0);
1187         if (slot != nritems) {
1188                 int i;
1189                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1190
1191                 /*
1192                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1193                  */
1194                 /* first correct the data pointers */
1195                 for (i = slot; i < nritems; i++) {
1196                         u32 ioff = btrfs_item_offset(leaf->items + i);
1197                         btrfs_set_item_offset(leaf->items + i,
1198                                               ioff - data_size);
1199                 }
1200
1201                 /* shift the items */
1202                 memmove(leaf->items + slot + 1, leaf->items + slot,
1203                         (nritems - slot) * sizeof(struct btrfs_item));
1204
1205                 /* shift the data */
1206                 memmove(btrfs_leaf_data(leaf) + data_end - data_size,
1207                         btrfs_leaf_data(leaf) +
1208                         data_end, old_data - data_end);
1209                 data_end = old_data;
1210         }
1211         /* setup the item for the new data */
1212         memcpy(&leaf->items[slot].key, &disk_key,
1213                 sizeof(struct btrfs_disk_key));
1214         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1215         btrfs_set_item_size(leaf->items + slot, data_size);
1216         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1217         mark_buffer_dirty(leaf_buf);
1218
1219         ret = 0;
1220         if (slot == 0)
1221                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1222
1223         if (btrfs_leaf_free_space(root, leaf) < 0)
1224                 BUG();
1225         check_leaf(root, path, 0);
1226 out:
1227         return ret;
1228 }
1229
1230 /*
1231  * Given a key and some data, insert an item into the tree.
1232  * This does all the path init required, making room in the tree if needed.
1233  */
1234 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1235                       *root, struct btrfs_key *cpu_key, void *data, u32
1236                       data_size)
1237 {
1238         int ret = 0;
1239         struct btrfs_path path;
1240         u8 *ptr;
1241
1242         btrfs_init_path(&path);
1243         ret = btrfs_insert_empty_item(trans, root, &path, cpu_key, data_size);
1244         if (!ret) {
1245                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path.nodes[0]),
1246                                      path.slots[0], u8);
1247                 memcpy(ptr, data, data_size);
1248                 mark_buffer_dirty(path.nodes[0]);
1249         }
1250         btrfs_release_path(root, &path);
1251         return ret;
1252 }
1253
1254 /*
1255  * delete the pointer from a given node.
1256  *
1257  * If the delete empties a node, the node is removed from the tree,
1258  * continuing all the way the root if required.  The root is converted into
1259  * a leaf if all the nodes are emptied.
1260  */
1261 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1262                    struct btrfs_path *path, int level, int slot)
1263 {
1264         struct btrfs_node *node;
1265         struct buffer_head *parent = path->nodes[level];
1266         u32 nritems;
1267         int ret = 0;
1268         int wret;
1269
1270         node = btrfs_buffer_node(parent);
1271         nritems = btrfs_header_nritems(&node->header);
1272         if (slot != nritems -1) {
1273                 memmove(node->ptrs + slot, node->ptrs + slot + 1,
1274                         sizeof(struct btrfs_key_ptr) * (nritems - slot - 1));
1275         }
1276         nritems--;
1277         btrfs_set_header_nritems(&node->header, nritems);
1278         if (nritems == 0 && parent == root->node) {
1279                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1280                 BUG_ON(btrfs_header_level(header) != 1);
1281                 /* just turn the root into a leaf and break */
1282                 btrfs_set_header_level(header, 0);
1283         } else if (slot == 0) {
1284                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1285                                       level + 1);
1286                 if (wret)
1287                         ret = wret;
1288         }
1289         mark_buffer_dirty(parent);
1290         return ret;
1291 }
1292
1293 /*
1294  * delete the item at the leaf level in path.  If that empties
1295  * the leaf, remove it from the tree
1296  */
1297 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1298                    struct btrfs_path *path)
1299 {
1300         int slot;
1301         struct btrfs_leaf *leaf;
1302         struct buffer_head *leaf_buf;
1303         int doff;
1304         int dsize;
1305         int ret = 0;
1306         int wret;
1307         u32 nritems;
1308
1309         leaf_buf = path->nodes[0];
1310         leaf = btrfs_buffer_leaf(leaf_buf);
1311         slot = path->slots[0];
1312         doff = btrfs_item_offset(leaf->items + slot);
1313         dsize = btrfs_item_size(leaf->items + slot);
1314         nritems = btrfs_header_nritems(&leaf->header);
1315
1316         if (slot != nritems - 1) {
1317                 int i;
1318                 int data_end = leaf_data_end(root, leaf);
1319                 memmove(btrfs_leaf_data(leaf) + data_end + dsize,
1320                         btrfs_leaf_data(leaf) + data_end,
1321                         doff - data_end);
1322                 for (i = slot + 1; i < nritems; i++) {
1323                         u32 ioff = btrfs_item_offset(leaf->items + i);
1324                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1325                 }
1326                 memmove(leaf->items + slot, leaf->items + slot + 1,
1327                         sizeof(struct btrfs_item) *
1328                         (nritems - slot - 1));
1329         }
1330         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1331         nritems--;
1332         /* delete the leaf if we've emptied it */
1333         if (nritems == 0) {
1334                 if (leaf_buf == root->node) {
1335                         btrfs_set_header_level(&leaf->header, 0);
1336                 } else {
1337                         clean_tree_block(trans, root, leaf_buf);
1338                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
1339                         if (wret)
1340                                 ret = wret;
1341                         wret = btrfs_free_extent(trans, root,
1342                                                  leaf_buf->b_blocknr, 1, 1);
1343                         if (wret)
1344                                 ret = wret;
1345                 }
1346         } else {
1347                 int used = leaf_space_used(leaf, 0, nritems);
1348                 if (slot == 0) {
1349                         wret = fixup_low_keys(trans, root, path,
1350                                               &leaf->items[0].key, 1);
1351                         if (wret)
1352                                 ret = wret;
1353                 }
1354
1355                 /* delete the leaf if it is mostly empty */
1356                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1357                         /* push_leaf_left fixes the path.
1358                          * make sure the path still points to our leaf
1359                          * for possible call to del_ptr below
1360                          */
1361                         slot = path->slots[1];
1362                         get_bh(leaf_buf);
1363                         wret = push_leaf_left(trans, root, path, 1);
1364                         if (wret < 0)
1365                                 ret = wret;
1366                         if (path->nodes[0] == leaf_buf &&
1367                             btrfs_header_nritems(&leaf->header)) {
1368                                 wret = push_leaf_right(trans, root, path, 1);
1369                                 if (wret < 0)
1370                                         ret = wret;
1371                         }
1372                         if (btrfs_header_nritems(&leaf->header) == 0) {
1373                                 u64 blocknr = leaf_buf->b_blocknr;
1374                                 clean_tree_block(trans, root, leaf_buf);
1375                                 wret = del_ptr(trans, root, path, 1, slot);
1376                                 if (wret)
1377                                         ret = wret;
1378                                 btrfs_block_release(root, leaf_buf);
1379                                 wret = btrfs_free_extent(trans, root, blocknr,
1380                                                          1, 1);
1381                                 if (wret)
1382                                         ret = wret;
1383                         } else {
1384                                 mark_buffer_dirty(leaf_buf);
1385                                 btrfs_block_release(root, leaf_buf);
1386                         }
1387                 } else {
1388                         mark_buffer_dirty(leaf_buf);
1389                 }
1390         }
1391         return ret;
1392 }
1393
1394 /*
1395  * walk up the tree as far as required to find the next leaf.
1396  * returns 0 if it found something or 1 if there are no greater leaves.
1397  * returns < 0 on io errors.
1398  */
1399 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1400 {
1401         int slot;
1402         int level = 1;
1403         u64 blocknr;
1404         struct buffer_head *c;
1405         struct btrfs_node *c_node;
1406         struct buffer_head *next = NULL;
1407
1408         while(level < BTRFS_MAX_LEVEL) {
1409                 if (!path->nodes[level])
1410                         return 1;
1411                 slot = path->slots[level] + 1;
1412                 c = path->nodes[level];
1413                 c_node = btrfs_buffer_node(c);
1414                 if (slot >= btrfs_header_nritems(&c_node->header)) {
1415                         level++;
1416                         continue;
1417                 }
1418                 blocknr = btrfs_node_blockptr(c_node, slot);
1419                 if (next)
1420                         btrfs_block_release(root, next);
1421                 next = read_tree_block(root, blocknr);
1422                 break;
1423         }
1424         path->slots[level] = slot;
1425         while(1) {
1426                 level--;
1427                 c = path->nodes[level];
1428                 btrfs_block_release(root, c);
1429                 path->nodes[level] = next;
1430                 path->slots[level] = 0;
1431                 if (!level)
1432                         break;
1433                 next = read_tree_block(root,
1434                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1435         }
1436         return 0;
1437 }