2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root, struct inode *inode,
53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54 struct btrfs_root *root,
55 struct btrfs_path *path, u64 objectid);
58 * tree logging is a special write ahead log used to make sure that
59 * fsyncs and O_SYNCs can happen without doing full tree commits.
61 * Full tree commits are expensive because they require commonly
62 * modified blocks to be recowed, creating many dirty pages in the
63 * extent tree an 4x-6x higher write load than ext3.
65 * Instead of doing a tree commit on every fsync, we use the
66 * key ranges and transaction ids to find items for a given file or directory
67 * that have changed in this transaction. Those items are copied into
68 * a special tree (one per subvolume root), that tree is written to disk
69 * and then the fsync is considered complete.
71 * After a crash, items are copied out of the log-tree back into the
72 * subvolume tree. Any file data extents found are recorded in the extent
73 * allocation tree, and the log-tree freed.
75 * The log tree is read three times, once to pin down all the extents it is
76 * using in ram and once, once to create all the inodes logged in the tree
77 * and once to do all the other items.
81 * btrfs_add_log_tree adds a new per-subvolume log tree into the
82 * tree of log tree roots. This must be called with a tree log transaction
83 * running (see start_log_trans).
85 static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
86 struct btrfs_root *root)
89 struct btrfs_root_item root_item;
90 struct btrfs_inode_item *inode_item;
91 struct extent_buffer *leaf;
92 struct btrfs_root *new_root = root;
94 u64 objectid = root->root_key.objectid;
96 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
97 BTRFS_TREE_LOG_OBJECTID,
98 trans->transid, 0, 0, 0);
104 btrfs_set_header_nritems(leaf, 0);
105 btrfs_set_header_level(leaf, 0);
106 btrfs_set_header_bytenr(leaf, leaf->start);
107 btrfs_set_header_generation(leaf, trans->transid);
108 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
110 write_extent_buffer(leaf, root->fs_info->fsid,
111 (unsigned long)btrfs_header_fsid(leaf),
113 btrfs_mark_buffer_dirty(leaf);
115 inode_item = &root_item.inode;
116 memset(inode_item, 0, sizeof(*inode_item));
117 inode_item->generation = cpu_to_le64(1);
118 inode_item->size = cpu_to_le64(3);
119 inode_item->nlink = cpu_to_le32(1);
120 inode_item->nbytes = cpu_to_le64(root->leafsize);
121 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
123 btrfs_set_root_bytenr(&root_item, leaf->start);
124 btrfs_set_root_generation(&root_item, trans->transid);
125 btrfs_set_root_level(&root_item, 0);
126 btrfs_set_root_refs(&root_item, 0);
127 btrfs_set_root_used(&root_item, 0);
129 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
130 root_item.drop_level = 0;
132 btrfs_tree_unlock(leaf);
133 free_extent_buffer(leaf);
136 btrfs_set_root_dirid(&root_item, 0);
138 key.objectid = BTRFS_TREE_LOG_OBJECTID;
139 key.offset = objectid;
140 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
141 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
146 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
150 WARN_ON(root->log_root);
151 root->log_root = new_root;
154 * log trees do not get reference counted because they go away
155 * before a real commit is actually done. They do store pointers
156 * to file data extents, and those reference counts still get
157 * updated (along with back refs to the log tree).
159 new_root->ref_cows = 0;
160 new_root->last_trans = trans->transid;
163 * we need to make sure the root block for this new tree
164 * is marked as dirty in the dirty_log_pages tree. This
165 * is how it gets flushed down to disk at tree log commit time.
167 * the tree logging mutex keeps others from coming in and changing
168 * the new_root->node, so we can safely access it here
170 set_extent_dirty(&new_root->dirty_log_pages, new_root->node->start,
171 new_root->node->start + new_root->node->len - 1,
179 * start a sub transaction and setup the log tree
180 * this increments the log tree writer count to make the people
181 * syncing the tree wait for us to finish
183 static int start_log_trans(struct btrfs_trans_handle *trans,
184 struct btrfs_root *root)
187 mutex_lock(&root->fs_info->tree_log_mutex);
188 if (!root->fs_info->log_root_tree) {
189 ret = btrfs_init_log_root_tree(trans, root->fs_info);
192 if (!root->log_root) {
193 ret = btrfs_add_log_tree(trans, root);
196 atomic_inc(&root->fs_info->tree_log_writers);
197 root->fs_info->tree_log_batch++;
198 mutex_unlock(&root->fs_info->tree_log_mutex);
203 * returns 0 if there was a log transaction running and we were able
204 * to join, or returns -ENOENT if there were not transactions
207 static int join_running_log_trans(struct btrfs_root *root)
215 mutex_lock(&root->fs_info->tree_log_mutex);
216 if (root->log_root) {
218 atomic_inc(&root->fs_info->tree_log_writers);
219 root->fs_info->tree_log_batch++;
221 mutex_unlock(&root->fs_info->tree_log_mutex);
226 * indicate we're done making changes to the log tree
227 * and wake up anyone waiting to do a sync
229 static int end_log_trans(struct btrfs_root *root)
231 atomic_dec(&root->fs_info->tree_log_writers);
233 if (waitqueue_active(&root->fs_info->tree_log_wait))
234 wake_up(&root->fs_info->tree_log_wait);
240 * the walk control struct is used to pass state down the chain when
241 * processing the log tree. The stage field tells us which part
242 * of the log tree processing we are currently doing. The others
243 * are state fields used for that specific part
245 struct walk_control {
246 /* should we free the extent on disk when done? This is used
247 * at transaction commit time while freeing a log tree
251 /* should we write out the extent buffer? This is used
252 * while flushing the log tree to disk during a sync
256 /* should we wait for the extent buffer io to finish? Also used
257 * while flushing the log tree to disk for a sync
261 /* pin only walk, we record which extents on disk belong to the
266 /* what stage of the replay code we're currently in */
269 /* the root we are currently replaying */
270 struct btrfs_root *replay_dest;
272 /* the trans handle for the current replay */
273 struct btrfs_trans_handle *trans;
275 /* the function that gets used to process blocks we find in the
276 * tree. Note the extent_buffer might not be up to date when it is
277 * passed in, and it must be checked or read if you need the data
280 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
281 struct walk_control *wc, u64 gen);
285 * process_func used to pin down extents, write them or wait on them
287 static int process_one_buffer(struct btrfs_root *log,
288 struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen)
292 mutex_lock(&log->fs_info->pinned_mutex);
293 btrfs_update_pinned_extents(log->fs_info->extent_root,
294 eb->start, eb->len, 1);
295 mutex_unlock(&log->fs_info->pinned_mutex);
298 if (btrfs_buffer_uptodate(eb, gen)) {
300 btrfs_write_tree_block(eb);
302 btrfs_wait_tree_block_writeback(eb);
308 * Item overwrite used by replay and tree logging. eb, slot and key all refer
309 * to the src data we are copying out.
311 * root is the tree we are copying into, and path is a scratch
312 * path for use in this function (it should be released on entry and
313 * will be released on exit).
315 * If the key is already in the destination tree the existing item is
316 * overwritten. If the existing item isn't big enough, it is extended.
317 * If it is too large, it is truncated.
319 * If the key isn't in the destination yet, a new item is inserted.
321 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
322 struct btrfs_root *root,
323 struct btrfs_path *path,
324 struct extent_buffer *eb, int slot,
325 struct btrfs_key *key)
329 u64 saved_i_size = 0;
330 int save_old_i_size = 0;
331 unsigned long src_ptr;
332 unsigned long dst_ptr;
333 int overwrite_root = 0;
335 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 item_size = btrfs_item_size_nr(eb, slot);
339 src_ptr = btrfs_item_ptr_offset(eb, slot);
341 /* look for the key in the destination tree */
342 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
346 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
348 if (dst_size != item_size)
351 if (item_size == 0) {
352 btrfs_release_path(root, path);
355 dst_copy = kmalloc(item_size, GFP_NOFS);
356 src_copy = kmalloc(item_size, GFP_NOFS);
358 read_extent_buffer(eb, src_copy, src_ptr, item_size);
360 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
361 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
363 ret = memcmp(dst_copy, src_copy, item_size);
368 * they have the same contents, just return, this saves
369 * us from cowing blocks in the destination tree and doing
370 * extra writes that may not have been done by a previous
374 btrfs_release_path(root, path);
380 btrfs_release_path(root, path);
381 /* try to insert the key into the destination tree */
382 ret = btrfs_insert_empty_item(trans, root, path,
385 /* make sure any existing item is the correct size */
386 if (ret == -EEXIST) {
388 found_size = btrfs_item_size_nr(path->nodes[0],
390 if (found_size > item_size) {
391 btrfs_truncate_item(trans, root, path, item_size, 1);
392 } else if (found_size < item_size) {
393 ret = btrfs_extend_item(trans, root, path,
394 item_size - found_size);
400 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
403 /* don't overwrite an existing inode if the generation number
404 * was logged as zero. This is done when the tree logging code
405 * is just logging an inode to make sure it exists after recovery.
407 * Also, don't overwrite i_size on directories during replay.
408 * log replay inserts and removes directory items based on the
409 * state of the tree found in the subvolume, and i_size is modified
412 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
413 struct btrfs_inode_item *src_item;
414 struct btrfs_inode_item *dst_item;
416 src_item = (struct btrfs_inode_item *)src_ptr;
417 dst_item = (struct btrfs_inode_item *)dst_ptr;
419 if (btrfs_inode_generation(eb, src_item) == 0)
422 if (overwrite_root &&
423 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
424 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
426 saved_i_size = btrfs_inode_size(path->nodes[0],
431 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
434 if (save_old_i_size) {
435 struct btrfs_inode_item *dst_item;
436 dst_item = (struct btrfs_inode_item *)dst_ptr;
437 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
440 /* make sure the generation is filled in */
441 if (key->type == BTRFS_INODE_ITEM_KEY) {
442 struct btrfs_inode_item *dst_item;
443 dst_item = (struct btrfs_inode_item *)dst_ptr;
444 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
445 btrfs_set_inode_generation(path->nodes[0], dst_item,
450 btrfs_mark_buffer_dirty(path->nodes[0]);
451 btrfs_release_path(root, path);
456 * simple helper to read an inode off the disk from a given root
457 * This can only be called for subvolume roots and not for the log
459 static noinline struct inode *read_one_inode(struct btrfs_root *root,
463 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
464 if (inode->i_state & I_NEW) {
465 BTRFS_I(inode)->root = root;
466 BTRFS_I(inode)->location.objectid = objectid;
467 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
468 BTRFS_I(inode)->location.offset = 0;
469 btrfs_read_locked_inode(inode);
470 unlock_new_inode(inode);
473 if (is_bad_inode(inode)) {
480 /* replays a single extent in 'eb' at 'slot' with 'key' into the
481 * subvolume 'root'. path is released on entry and should be released
484 * extents in the log tree have not been allocated out of the extent
485 * tree yet. So, this completes the allocation, taking a reference
486 * as required if the extent already exists or creating a new extent
487 * if it isn't in the extent allocation tree yet.
489 * The extent is inserted into the file, dropping any existing extents
490 * from the file that overlap the new one.
492 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
493 struct btrfs_root *root,
494 struct btrfs_path *path,
495 struct extent_buffer *eb, int slot,
496 struct btrfs_key *key)
499 u64 mask = root->sectorsize - 1;
502 u64 start = key->offset;
504 struct btrfs_file_extent_item *item;
505 struct inode *inode = NULL;
509 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
510 found_type = btrfs_file_extent_type(eb, item);
512 if (found_type == BTRFS_FILE_EXTENT_REG ||
513 found_type == BTRFS_FILE_EXTENT_PREALLOC)
514 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
515 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
516 size = btrfs_file_extent_inline_len(eb, item);
517 extent_end = (start + size + mask) & ~mask;
523 inode = read_one_inode(root, key->objectid);
530 * first check to see if we already have this extent in the
531 * file. This must be done before the btrfs_drop_extents run
532 * so we don't try to drop this extent.
534 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
538 (found_type == BTRFS_FILE_EXTENT_REG ||
539 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
540 struct btrfs_file_extent_item cmp1;
541 struct btrfs_file_extent_item cmp2;
542 struct btrfs_file_extent_item *existing;
543 struct extent_buffer *leaf;
545 leaf = path->nodes[0];
546 existing = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_file_extent_item);
549 read_extent_buffer(eb, &cmp1, (unsigned long)item,
551 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
555 * we already have a pointer to this exact extent,
556 * we don't have to do anything
558 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
559 btrfs_release_path(root, path);
563 btrfs_release_path(root, path);
565 saved_nbytes = inode_get_bytes(inode);
566 /* drop any overlapping extents */
567 ret = btrfs_drop_extents(trans, root, inode,
568 start, extent_end, start, &alloc_hint);
571 if (found_type == BTRFS_FILE_EXTENT_REG ||
572 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
573 unsigned long dest_offset;
574 struct btrfs_key ins;
576 ret = btrfs_insert_empty_item(trans, root, path, key,
579 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
581 copy_extent_buffer(path->nodes[0], eb, dest_offset,
582 (unsigned long)item, sizeof(*item));
584 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
585 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
586 ins.type = BTRFS_EXTENT_ITEM_KEY;
588 if (ins.objectid > 0) {
591 LIST_HEAD(ordered_sums);
593 * is this extent already allocated in the extent
594 * allocation tree? If so, just add a reference
596 ret = btrfs_lookup_extent(root, ins.objectid,
599 ret = btrfs_inc_extent_ref(trans, root,
600 ins.objectid, ins.offset,
601 path->nodes[0]->start,
602 root->root_key.objectid,
603 trans->transid, key->objectid);
606 * insert the extent pointer in the extent
609 ret = btrfs_alloc_logged_extent(trans, root,
610 path->nodes[0]->start,
611 root->root_key.objectid,
612 trans->transid, key->objectid,
616 btrfs_release_path(root, path);
618 if (btrfs_file_extent_compression(eb, item)) {
619 csum_start = ins.objectid;
620 csum_end = csum_start + ins.offset;
622 csum_start = ins.objectid +
623 btrfs_file_extent_offset(eb, item);
624 csum_end = csum_start +
625 btrfs_file_extent_num_bytes(eb, item);
628 ret = btrfs_lookup_csums_range(root->log_root,
629 csum_start, csum_end - 1,
632 while (!list_empty(&ordered_sums)) {
633 struct btrfs_ordered_sum *sums;
634 sums = list_entry(ordered_sums.next,
635 struct btrfs_ordered_sum,
637 ret = btrfs_csum_file_blocks(trans,
638 root->fs_info->csum_root,
641 list_del(&sums->list);
645 btrfs_release_path(root, path);
647 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
648 /* inline extents are easy, we just overwrite them */
649 ret = overwrite_item(trans, root, path, eb, slot, key);
653 inode_set_bytes(inode, saved_nbytes);
654 btrfs_update_inode(trans, root, inode);
662 * when cleaning up conflicts between the directory names in the
663 * subvolume, directory names in the log and directory names in the
664 * inode back references, we may have to unlink inodes from directories.
666 * This is a helper function to do the unlink of a specific directory
669 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root,
671 struct btrfs_path *path,
673 struct btrfs_dir_item *di)
678 struct extent_buffer *leaf;
679 struct btrfs_key location;
682 leaf = path->nodes[0];
684 btrfs_dir_item_key_to_cpu(leaf, di, &location);
685 name_len = btrfs_dir_name_len(leaf, di);
686 name = kmalloc(name_len, GFP_NOFS);
687 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
688 btrfs_release_path(root, path);
690 inode = read_one_inode(root, location.objectid);
693 ret = link_to_fixup_dir(trans, root, path, location.objectid);
695 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
704 * helper function to see if a given name and sequence number found
705 * in an inode back reference are already in a directory and correctly
706 * point to this inode
708 static noinline int inode_in_dir(struct btrfs_root *root,
709 struct btrfs_path *path,
710 u64 dirid, u64 objectid, u64 index,
711 const char *name, int name_len)
713 struct btrfs_dir_item *di;
714 struct btrfs_key location;
717 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
718 index, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
725 btrfs_release_path(root, path);
727 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
728 if (di && !IS_ERR(di)) {
729 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
730 if (location.objectid != objectid)
736 btrfs_release_path(root, path);
741 * helper function to check a log tree for a named back reference in
742 * an inode. This is used to decide if a back reference that is
743 * found in the subvolume conflicts with what we find in the log.
745 * inode backreferences may have multiple refs in a single item,
746 * during replay we process one reference at a time, and we don't
747 * want to delete valid links to a file from the subvolume if that
748 * link is also in the log.
750 static noinline int backref_in_log(struct btrfs_root *log,
751 struct btrfs_key *key,
752 char *name, int namelen)
754 struct btrfs_path *path;
755 struct btrfs_inode_ref *ref;
757 unsigned long ptr_end;
758 unsigned long name_ptr;
764 path = btrfs_alloc_path();
765 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
769 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
770 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
771 ptr_end = ptr + item_size;
772 while (ptr < ptr_end) {
773 ref = (struct btrfs_inode_ref *)ptr;
774 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
775 if (found_name_len == namelen) {
776 name_ptr = (unsigned long)(ref + 1);
777 ret = memcmp_extent_buffer(path->nodes[0], name,
784 ptr = (unsigned long)(ref + 1) + found_name_len;
787 btrfs_free_path(path);
793 * replay one inode back reference item found in the log tree.
794 * eb, slot and key refer to the buffer and key found in the log tree.
795 * root is the destination we are replaying into, and path is for temp
796 * use by this function. (it should be released on return).
798 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
799 struct btrfs_root *root,
800 struct btrfs_root *log,
801 struct btrfs_path *path,
802 struct extent_buffer *eb, int slot,
803 struct btrfs_key *key)
807 struct btrfs_key location;
808 struct btrfs_inode_ref *ref;
809 struct btrfs_dir_item *di;
813 unsigned long ref_ptr;
814 unsigned long ref_end;
816 location.objectid = key->objectid;
817 location.type = BTRFS_INODE_ITEM_KEY;
821 * it is possible that we didn't log all the parent directories
822 * for a given inode. If we don't find the dir, just don't
823 * copy the back ref in. The link count fixup code will take
826 dir = read_one_inode(root, key->offset);
830 inode = read_one_inode(root, key->objectid);
833 ref_ptr = btrfs_item_ptr_offset(eb, slot);
834 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
837 ref = (struct btrfs_inode_ref *)ref_ptr;
839 namelen = btrfs_inode_ref_name_len(eb, ref);
840 name = kmalloc(namelen, GFP_NOFS);
843 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
845 /* if we already have a perfect match, we're done */
846 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
847 btrfs_inode_ref_index(eb, ref),
853 * look for a conflicting back reference in the metadata.
854 * if we find one we have to unlink that name of the file
855 * before we add our new link. Later on, we overwrite any
856 * existing back reference, and we don't want to create
857 * dangling pointers in the directory.
860 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
864 struct btrfs_inode_ref *victim_ref;
866 unsigned long ptr_end;
867 struct extent_buffer *leaf = path->nodes[0];
869 /* are we trying to overwrite a back ref for the root directory
870 * if so, just jump out, we're done
872 if (key->objectid == key->offset)
875 /* check all the names in this back reference to see
876 * if they are in the log. if so, we allow them to stay
877 * otherwise they must be unlinked as a conflict
879 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
880 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
881 while (ptr < ptr_end) {
882 victim_ref = (struct btrfs_inode_ref *)ptr;
883 victim_name_len = btrfs_inode_ref_name_len(leaf,
885 victim_name = kmalloc(victim_name_len, GFP_NOFS);
886 BUG_ON(!victim_name);
888 read_extent_buffer(leaf, victim_name,
889 (unsigned long)(victim_ref + 1),
892 if (!backref_in_log(log, key, victim_name,
894 btrfs_inc_nlink(inode);
895 btrfs_release_path(root, path);
896 ret = btrfs_unlink_inode(trans, root, dir,
900 btrfs_release_path(root, path);
904 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
908 btrfs_release_path(root, path);
910 /* look for a conflicting sequence number */
911 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
912 btrfs_inode_ref_index(eb, ref),
914 if (di && !IS_ERR(di)) {
915 ret = drop_one_dir_item(trans, root, path, dir, di);
918 btrfs_release_path(root, path);
921 /* look for a conflicting name */
922 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
924 if (di && !IS_ERR(di)) {
925 ret = drop_one_dir_item(trans, root, path, dir, di);
928 btrfs_release_path(root, path);
930 /* insert our name */
931 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
932 btrfs_inode_ref_index(eb, ref));
935 btrfs_update_inode(trans, root, inode);
938 ref_ptr = (unsigned long)(ref + 1) + namelen;
940 if (ref_ptr < ref_end)
943 /* finally write the back reference in the inode */
944 ret = overwrite_item(trans, root, path, eb, slot, key);
948 btrfs_release_path(root, path);
955 * There are a few corners where the link count of the file can't
956 * be properly maintained during replay. So, instead of adding
957 * lots of complexity to the log code, we just scan the backrefs
958 * for any file that has been through replay.
960 * The scan will update the link count on the inode to reflect the
961 * number of back refs found. If it goes down to zero, the iput
962 * will free the inode.
964 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
965 struct btrfs_root *root,
968 struct btrfs_path *path;
970 struct btrfs_key key;
973 unsigned long ptr_end;
976 key.objectid = inode->i_ino;
977 key.type = BTRFS_INODE_REF_KEY;
978 key.offset = (u64)-1;
980 path = btrfs_alloc_path();
983 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
987 if (path->slots[0] == 0)
991 btrfs_item_key_to_cpu(path->nodes[0], &key,
993 if (key.objectid != inode->i_ino ||
994 key.type != BTRFS_INODE_REF_KEY)
996 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
997 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
999 while (ptr < ptr_end) {
1000 struct btrfs_inode_ref *ref;
1002 ref = (struct btrfs_inode_ref *)ptr;
1003 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1005 ptr = (unsigned long)(ref + 1) + name_len;
1009 if (key.offset == 0)
1012 btrfs_release_path(root, path);
1014 btrfs_free_path(path);
1015 if (nlink != inode->i_nlink) {
1016 inode->i_nlink = nlink;
1017 btrfs_update_inode(trans, root, inode);
1019 BTRFS_I(inode)->index_cnt = (u64)-1;
1024 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1025 struct btrfs_root *root,
1026 struct btrfs_path *path)
1029 struct btrfs_key key;
1030 struct inode *inode;
1032 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1033 key.type = BTRFS_ORPHAN_ITEM_KEY;
1034 key.offset = (u64)-1;
1036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041 if (path->slots[0] == 0)
1046 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1048 key.type != BTRFS_ORPHAN_ITEM_KEY)
1051 ret = btrfs_del_item(trans, root, path);
1054 btrfs_release_path(root, path);
1055 inode = read_one_inode(root, key.offset);
1058 ret = fixup_inode_link_count(trans, root, inode);
1063 if (key.offset == 0)
1067 btrfs_release_path(root, path);
1073 * record a given inode in the fixup dir so we can check its link
1074 * count when replay is done. The link count is incremented here
1075 * so the inode won't go away until we check it
1077 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1078 struct btrfs_root *root,
1079 struct btrfs_path *path,
1082 struct btrfs_key key;
1084 struct inode *inode;
1086 inode = read_one_inode(root, objectid);
1089 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1090 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1091 key.offset = objectid;
1093 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1095 btrfs_release_path(root, path);
1097 btrfs_inc_nlink(inode);
1098 btrfs_update_inode(trans, root, inode);
1099 } else if (ret == -EEXIST) {
1110 * when replaying the log for a directory, we only insert names
1111 * for inodes that actually exist. This means an fsync on a directory
1112 * does not implicitly fsync all the new files in it
1114 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1115 struct btrfs_root *root,
1116 struct btrfs_path *path,
1117 u64 dirid, u64 index,
1118 char *name, int name_len, u8 type,
1119 struct btrfs_key *location)
1121 struct inode *inode;
1125 inode = read_one_inode(root, location->objectid);
1129 dir = read_one_inode(root, dirid);
1134 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1136 /* FIXME, put inode into FIXUP list */
1144 * take a single entry in a log directory item and replay it into
1147 * if a conflicting item exists in the subdirectory already,
1148 * the inode it points to is unlinked and put into the link count
1151 * If a name from the log points to a file or directory that does
1152 * not exist in the FS, it is skipped. fsyncs on directories
1153 * do not force down inodes inside that directory, just changes to the
1154 * names or unlinks in a directory.
1156 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1157 struct btrfs_root *root,
1158 struct btrfs_path *path,
1159 struct extent_buffer *eb,
1160 struct btrfs_dir_item *di,
1161 struct btrfs_key *key)
1165 struct btrfs_dir_item *dst_di;
1166 struct btrfs_key found_key;
1167 struct btrfs_key log_key;
1173 dir = read_one_inode(root, key->objectid);
1176 name_len = btrfs_dir_name_len(eb, di);
1177 name = kmalloc(name_len, GFP_NOFS);
1178 log_type = btrfs_dir_type(eb, di);
1179 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1182 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1183 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1188 btrfs_release_path(root, path);
1190 if (key->type == BTRFS_DIR_ITEM_KEY) {
1191 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1193 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1194 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1201 if (!dst_di || IS_ERR(dst_di)) {
1202 /* we need a sequence number to insert, so we only
1203 * do inserts for the BTRFS_DIR_INDEX_KEY types
1205 if (key->type != BTRFS_DIR_INDEX_KEY)
1210 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1211 /* the existing item matches the logged item */
1212 if (found_key.objectid == log_key.objectid &&
1213 found_key.type == log_key.type &&
1214 found_key.offset == log_key.offset &&
1215 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1220 * don't drop the conflicting directory entry if the inode
1221 * for the new entry doesn't exist
1226 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1229 if (key->type == BTRFS_DIR_INDEX_KEY)
1232 btrfs_release_path(root, path);
1238 btrfs_release_path(root, path);
1239 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1240 name, name_len, log_type, &log_key);
1242 if (ret && ret != -ENOENT)
1248 * find all the names in a directory item and reconcile them into
1249 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1250 * one name in a directory item, but the same code gets used for
1251 * both directory index types
1253 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1254 struct btrfs_root *root,
1255 struct btrfs_path *path,
1256 struct extent_buffer *eb, int slot,
1257 struct btrfs_key *key)
1260 u32 item_size = btrfs_item_size_nr(eb, slot);
1261 struct btrfs_dir_item *di;
1264 unsigned long ptr_end;
1266 ptr = btrfs_item_ptr_offset(eb, slot);
1267 ptr_end = ptr + item_size;
1268 while (ptr < ptr_end) {
1269 di = (struct btrfs_dir_item *)ptr;
1270 name_len = btrfs_dir_name_len(eb, di);
1271 ret = replay_one_name(trans, root, path, eb, di, key);
1273 ptr = (unsigned long)(di + 1);
1280 * directory replay has two parts. There are the standard directory
1281 * items in the log copied from the subvolume, and range items
1282 * created in the log while the subvolume was logged.
1284 * The range items tell us which parts of the key space the log
1285 * is authoritative for. During replay, if a key in the subvolume
1286 * directory is in a logged range item, but not actually in the log
1287 * that means it was deleted from the directory before the fsync
1288 * and should be removed.
1290 static noinline int find_dir_range(struct btrfs_root *root,
1291 struct btrfs_path *path,
1292 u64 dirid, int key_type,
1293 u64 *start_ret, u64 *end_ret)
1295 struct btrfs_key key;
1297 struct btrfs_dir_log_item *item;
1301 if (*start_ret == (u64)-1)
1304 key.objectid = dirid;
1305 key.type = key_type;
1306 key.offset = *start_ret;
1308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1312 if (path->slots[0] == 0)
1317 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1319 if (key.type != key_type || key.objectid != dirid) {
1323 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1324 struct btrfs_dir_log_item);
1325 found_end = btrfs_dir_log_end(path->nodes[0], item);
1327 if (*start_ret >= key.offset && *start_ret <= found_end) {
1329 *start_ret = key.offset;
1330 *end_ret = found_end;
1335 /* check the next slot in the tree to see if it is a valid item */
1336 nritems = btrfs_header_nritems(path->nodes[0]);
1337 if (path->slots[0] >= nritems) {
1338 ret = btrfs_next_leaf(root, path);
1345 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1347 if (key.type != key_type || key.objectid != dirid) {
1351 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1352 struct btrfs_dir_log_item);
1353 found_end = btrfs_dir_log_end(path->nodes[0], item);
1354 *start_ret = key.offset;
1355 *end_ret = found_end;
1358 btrfs_release_path(root, path);
1363 * this looks for a given directory item in the log. If the directory
1364 * item is not in the log, the item is removed and the inode it points
1367 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1368 struct btrfs_root *root,
1369 struct btrfs_root *log,
1370 struct btrfs_path *path,
1371 struct btrfs_path *log_path,
1373 struct btrfs_key *dir_key)
1376 struct extent_buffer *eb;
1379 struct btrfs_dir_item *di;
1380 struct btrfs_dir_item *log_di;
1383 unsigned long ptr_end;
1385 struct inode *inode;
1386 struct btrfs_key location;
1389 eb = path->nodes[0];
1390 slot = path->slots[0];
1391 item_size = btrfs_item_size_nr(eb, slot);
1392 ptr = btrfs_item_ptr_offset(eb, slot);
1393 ptr_end = ptr + item_size;
1394 while (ptr < ptr_end) {
1395 di = (struct btrfs_dir_item *)ptr;
1396 name_len = btrfs_dir_name_len(eb, di);
1397 name = kmalloc(name_len, GFP_NOFS);
1402 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1405 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1406 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1409 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1410 log_di = btrfs_lookup_dir_index_item(trans, log,
1416 if (!log_di || IS_ERR(log_di)) {
1417 btrfs_dir_item_key_to_cpu(eb, di, &location);
1418 btrfs_release_path(root, path);
1419 btrfs_release_path(log, log_path);
1420 inode = read_one_inode(root, location.objectid);
1423 ret = link_to_fixup_dir(trans, root,
1424 path, location.objectid);
1426 btrfs_inc_nlink(inode);
1427 ret = btrfs_unlink_inode(trans, root, dir, inode,
1433 /* there might still be more names under this key
1434 * check and repeat if required
1436 ret = btrfs_search_slot(NULL, root, dir_key, path,
1443 btrfs_release_path(log, log_path);
1446 ptr = (unsigned long)(di + 1);
1451 btrfs_release_path(root, path);
1452 btrfs_release_path(log, log_path);
1457 * deletion replay happens before we copy any new directory items
1458 * out of the log or out of backreferences from inodes. It
1459 * scans the log to find ranges of keys that log is authoritative for,
1460 * and then scans the directory to find items in those ranges that are
1461 * not present in the log.
1463 * Anything we don't find in the log is unlinked and removed from the
1466 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1467 struct btrfs_root *root,
1468 struct btrfs_root *log,
1469 struct btrfs_path *path,
1474 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1476 struct btrfs_key dir_key;
1477 struct btrfs_key found_key;
1478 struct btrfs_path *log_path;
1481 dir_key.objectid = dirid;
1482 dir_key.type = BTRFS_DIR_ITEM_KEY;
1483 log_path = btrfs_alloc_path();
1487 dir = read_one_inode(root, dirid);
1488 /* it isn't an error if the inode isn't there, that can happen
1489 * because we replay the deletes before we copy in the inode item
1493 btrfs_free_path(log_path);
1500 ret = find_dir_range(log, path, dirid, key_type,
1501 &range_start, &range_end);
1505 dir_key.offset = range_start;
1508 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1513 nritems = btrfs_header_nritems(path->nodes[0]);
1514 if (path->slots[0] >= nritems) {
1515 ret = btrfs_next_leaf(root, path);
1519 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1521 if (found_key.objectid != dirid ||
1522 found_key.type != dir_key.type)
1525 if (found_key.offset > range_end)
1528 ret = check_item_in_log(trans, root, log, path,
1529 log_path, dir, &found_key);
1531 if (found_key.offset == (u64)-1)
1533 dir_key.offset = found_key.offset + 1;
1535 btrfs_release_path(root, path);
1536 if (range_end == (u64)-1)
1538 range_start = range_end + 1;
1543 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1544 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1545 dir_key.type = BTRFS_DIR_INDEX_KEY;
1546 btrfs_release_path(root, path);
1550 btrfs_release_path(root, path);
1551 btrfs_free_path(log_path);
1557 * the process_func used to replay items from the log tree. This
1558 * gets called in two different stages. The first stage just looks
1559 * for inodes and makes sure they are all copied into the subvolume.
1561 * The second stage copies all the other item types from the log into
1562 * the subvolume. The two stage approach is slower, but gets rid of
1563 * lots of complexity around inodes referencing other inodes that exist
1564 * only in the log (references come from either directory items or inode
1567 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1568 struct walk_control *wc, u64 gen)
1571 struct btrfs_path *path;
1572 struct btrfs_root *root = wc->replay_dest;
1573 struct btrfs_key key;
1579 btrfs_read_buffer(eb, gen);
1581 level = btrfs_header_level(eb);
1586 path = btrfs_alloc_path();
1589 nritems = btrfs_header_nritems(eb);
1590 for (i = 0; i < nritems; i++) {
1591 btrfs_item_key_to_cpu(eb, &key, i);
1592 item_size = btrfs_item_size_nr(eb, i);
1594 /* inode keys are done during the first stage */
1595 if (key.type == BTRFS_INODE_ITEM_KEY &&
1596 wc->stage == LOG_WALK_REPLAY_INODES) {
1597 struct inode *inode;
1598 struct btrfs_inode_item *inode_item;
1601 inode_item = btrfs_item_ptr(eb, i,
1602 struct btrfs_inode_item);
1603 mode = btrfs_inode_mode(eb, inode_item);
1604 if (S_ISDIR(mode)) {
1605 ret = replay_dir_deletes(wc->trans,
1606 root, log, path, key.objectid);
1609 ret = overwrite_item(wc->trans, root, path,
1613 /* for regular files, truncate away
1614 * extents past the new EOF
1616 if (S_ISREG(mode)) {
1617 inode = read_one_inode(root,
1621 ret = btrfs_truncate_inode_items(wc->trans,
1622 root, inode, inode->i_size,
1623 BTRFS_EXTENT_DATA_KEY);
1627 ret = link_to_fixup_dir(wc->trans, root,
1628 path, key.objectid);
1631 if (wc->stage < LOG_WALK_REPLAY_ALL)
1634 /* these keys are simply copied */
1635 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1636 ret = overwrite_item(wc->trans, root, path,
1639 } else if (key.type == BTRFS_INODE_REF_KEY) {
1640 ret = add_inode_ref(wc->trans, root, log, path,
1642 BUG_ON(ret && ret != -ENOENT);
1643 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1644 ret = replay_one_extent(wc->trans, root, path,
1647 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1648 key.type == BTRFS_DIR_INDEX_KEY) {
1649 ret = replay_one_dir_item(wc->trans, root, path,
1654 btrfs_free_path(path);
1658 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1659 struct btrfs_root *root,
1660 struct btrfs_path *path, int *level,
1661 struct walk_control *wc)
1667 struct extent_buffer *next;
1668 struct extent_buffer *cur;
1669 struct extent_buffer *parent;
1673 WARN_ON(*level < 0);
1674 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1676 while (*level > 0) {
1677 WARN_ON(*level < 0);
1678 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1679 cur = path->nodes[*level];
1681 if (btrfs_header_level(cur) != *level)
1684 if (path->slots[*level] >=
1685 btrfs_header_nritems(cur))
1688 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1689 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1690 blocksize = btrfs_level_size(root, *level - 1);
1692 parent = path->nodes[*level];
1693 root_owner = btrfs_header_owner(parent);
1694 root_gen = btrfs_header_generation(parent);
1696 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1698 wc->process_func(root, next, wc, ptr_gen);
1701 path->slots[*level]++;
1703 btrfs_read_buffer(next, ptr_gen);
1705 btrfs_tree_lock(next);
1706 clean_tree_block(trans, root, next);
1707 btrfs_wait_tree_block_writeback(next);
1708 btrfs_tree_unlock(next);
1710 ret = btrfs_drop_leaf_ref(trans, root, next);
1713 WARN_ON(root_owner !=
1714 BTRFS_TREE_LOG_OBJECTID);
1715 ret = btrfs_free_reserved_extent(root,
1719 free_extent_buffer(next);
1722 btrfs_read_buffer(next, ptr_gen);
1724 WARN_ON(*level <= 0);
1725 if (path->nodes[*level-1])
1726 free_extent_buffer(path->nodes[*level-1]);
1727 path->nodes[*level-1] = next;
1728 *level = btrfs_header_level(next);
1729 path->slots[*level] = 0;
1732 WARN_ON(*level < 0);
1733 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1735 if (path->nodes[*level] == root->node)
1736 parent = path->nodes[*level];
1738 parent = path->nodes[*level + 1];
1740 bytenr = path->nodes[*level]->start;
1742 blocksize = btrfs_level_size(root, *level);
1743 root_owner = btrfs_header_owner(parent);
1744 root_gen = btrfs_header_generation(parent);
1746 wc->process_func(root, path->nodes[*level], wc,
1747 btrfs_header_generation(path->nodes[*level]));
1750 next = path->nodes[*level];
1751 btrfs_tree_lock(next);
1752 clean_tree_block(trans, root, next);
1753 btrfs_wait_tree_block_writeback(next);
1754 btrfs_tree_unlock(next);
1757 ret = btrfs_drop_leaf_ref(trans, root, next);
1760 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1761 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1764 free_extent_buffer(path->nodes[*level]);
1765 path->nodes[*level] = NULL;
1772 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1773 struct btrfs_root *root,
1774 struct btrfs_path *path, int *level,
1775 struct walk_control *wc)
1783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1784 slot = path->slots[i];
1785 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1786 struct extent_buffer *node;
1787 node = path->nodes[i];
1790 WARN_ON(*level == 0);
1793 struct extent_buffer *parent;
1794 if (path->nodes[*level] == root->node)
1795 parent = path->nodes[*level];
1797 parent = path->nodes[*level + 1];
1799 root_owner = btrfs_header_owner(parent);
1800 root_gen = btrfs_header_generation(parent);
1801 wc->process_func(root, path->nodes[*level], wc,
1802 btrfs_header_generation(path->nodes[*level]));
1804 struct extent_buffer *next;
1806 next = path->nodes[*level];
1808 btrfs_tree_lock(next);
1809 clean_tree_block(trans, root, next);
1810 btrfs_wait_tree_block_writeback(next);
1811 btrfs_tree_unlock(next);
1814 ret = btrfs_drop_leaf_ref(trans, root,
1819 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1820 ret = btrfs_free_reserved_extent(root,
1821 path->nodes[*level]->start,
1822 path->nodes[*level]->len);
1825 free_extent_buffer(path->nodes[*level]);
1826 path->nodes[*level] = NULL;
1834 * drop the reference count on the tree rooted at 'snap'. This traverses
1835 * the tree freeing any blocks that have a ref count of zero after being
1838 static int walk_log_tree(struct btrfs_trans_handle *trans,
1839 struct btrfs_root *log, struct walk_control *wc)
1844 struct btrfs_path *path;
1848 path = btrfs_alloc_path();
1851 level = btrfs_header_level(log->node);
1853 path->nodes[level] = log->node;
1854 extent_buffer_get(log->node);
1855 path->slots[level] = 0;
1858 wret = walk_down_log_tree(trans, log, path, &level, wc);
1864 wret = walk_up_log_tree(trans, log, path, &level, wc);
1871 /* was the root node processed? if not, catch it here */
1872 if (path->nodes[orig_level]) {
1873 wc->process_func(log, path->nodes[orig_level], wc,
1874 btrfs_header_generation(path->nodes[orig_level]));
1876 struct extent_buffer *next;
1878 next = path->nodes[orig_level];
1880 btrfs_tree_lock(next);
1881 clean_tree_block(trans, log, next);
1882 btrfs_wait_tree_block_writeback(next);
1883 btrfs_tree_unlock(next);
1885 if (orig_level == 0) {
1886 ret = btrfs_drop_leaf_ref(trans, log,
1890 WARN_ON(log->root_key.objectid !=
1891 BTRFS_TREE_LOG_OBJECTID);
1892 ret = btrfs_free_reserved_extent(log, next->start,
1898 for (i = 0; i <= orig_level; i++) {
1899 if (path->nodes[i]) {
1900 free_extent_buffer(path->nodes[i]);
1901 path->nodes[i] = NULL;
1904 btrfs_free_path(path);
1906 free_extent_buffer(log->node);
1910 static int wait_log_commit(struct btrfs_root *log)
1913 u64 transid = log->fs_info->tree_log_transid;
1916 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1917 TASK_UNINTERRUPTIBLE);
1918 mutex_unlock(&log->fs_info->tree_log_mutex);
1919 if (atomic_read(&log->fs_info->tree_log_commit))
1921 finish_wait(&log->fs_info->tree_log_wait, &wait);
1922 mutex_lock(&log->fs_info->tree_log_mutex);
1923 } while (transid == log->fs_info->tree_log_transid &&
1924 atomic_read(&log->fs_info->tree_log_commit));
1929 * btrfs_sync_log does sends a given tree log down to the disk and
1930 * updates the super blocks to record it. When this call is done,
1931 * you know that any inodes previously logged are safely on disk
1933 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root)
1937 unsigned long batch;
1938 struct btrfs_root *log = root->log_root;
1940 mutex_lock(&log->fs_info->tree_log_mutex);
1941 if (atomic_read(&log->fs_info->tree_log_commit)) {
1942 wait_log_commit(log);
1945 atomic_set(&log->fs_info->tree_log_commit, 1);
1948 batch = log->fs_info->tree_log_batch;
1949 mutex_unlock(&log->fs_info->tree_log_mutex);
1950 schedule_timeout_uninterruptible(1);
1951 mutex_lock(&log->fs_info->tree_log_mutex);
1953 while (atomic_read(&log->fs_info->tree_log_writers)) {
1955 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1956 TASK_UNINTERRUPTIBLE);
1957 mutex_unlock(&log->fs_info->tree_log_mutex);
1958 if (atomic_read(&log->fs_info->tree_log_writers))
1960 mutex_lock(&log->fs_info->tree_log_mutex);
1961 finish_wait(&log->fs_info->tree_log_wait, &wait);
1963 if (batch == log->fs_info->tree_log_batch)
1967 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1969 ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1970 &root->fs_info->log_root_tree->dirty_log_pages);
1973 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1974 log->fs_info->log_root_tree->node->start);
1975 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1976 btrfs_header_level(log->fs_info->log_root_tree->node));
1978 write_ctree_super(trans, log->fs_info->tree_root, 2);
1979 log->fs_info->tree_log_transid++;
1980 log->fs_info->tree_log_batch = 0;
1981 atomic_set(&log->fs_info->tree_log_commit, 0);
1983 if (waitqueue_active(&log->fs_info->tree_log_wait))
1984 wake_up(&log->fs_info->tree_log_wait);
1986 mutex_unlock(&log->fs_info->tree_log_mutex);
1990 /* * free all the extents used by the tree log. This should be called
1991 * at commit time of the full transaction
1993 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
1996 struct btrfs_root *log;
2000 struct walk_control wc = {
2002 .process_func = process_one_buffer
2005 if (!root->log_root || root->fs_info->log_root_recovering)
2008 log = root->log_root;
2009 ret = walk_log_tree(trans, log, &wc);
2013 ret = find_first_extent_bit(&log->dirty_log_pages,
2014 0, &start, &end, EXTENT_DIRTY);
2018 clear_extent_dirty(&log->dirty_log_pages,
2019 start, end, GFP_NOFS);
2022 log = root->log_root;
2023 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2026 root->log_root = NULL;
2027 kfree(root->log_root);
2032 * helper function to update the item for a given subvolumes log root
2033 * in the tree of log roots
2035 static int update_log_root(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *log)
2038 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2041 if (log->node->start == bytenr)
2044 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2045 btrfs_set_root_generation(&log->root_item, trans->transid);
2046 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2047 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2048 &log->root_key, &log->root_item);
2054 * If both a file and directory are logged, and unlinks or renames are
2055 * mixed in, we have a few interesting corners:
2057 * create file X in dir Y
2058 * link file X to X.link in dir Y
2060 * unlink file X but leave X.link
2063 * After a crash we would expect only X.link to exist. But file X
2064 * didn't get fsync'd again so the log has back refs for X and X.link.
2066 * We solve this by removing directory entries and inode backrefs from the
2067 * log when a file that was logged in the current transaction is
2068 * unlinked. Any later fsync will include the updated log entries, and
2069 * we'll be able to reconstruct the proper directory items from backrefs.
2071 * This optimizations allows us to avoid relogging the entire inode
2072 * or the entire directory.
2074 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2075 struct btrfs_root *root,
2076 const char *name, int name_len,
2077 struct inode *dir, u64 index)
2079 struct btrfs_root *log;
2080 struct btrfs_dir_item *di;
2081 struct btrfs_path *path;
2085 if (BTRFS_I(dir)->logged_trans < trans->transid)
2088 ret = join_running_log_trans(root);
2092 mutex_lock(&BTRFS_I(dir)->log_mutex);
2094 log = root->log_root;
2095 path = btrfs_alloc_path();
2096 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2097 name, name_len, -1);
2098 if (di && !IS_ERR(di)) {
2099 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2100 bytes_del += name_len;
2103 btrfs_release_path(log, path);
2104 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2105 index, name, name_len, -1);
2106 if (di && !IS_ERR(di)) {
2107 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2108 bytes_del += name_len;
2112 /* update the directory size in the log to reflect the names
2116 struct btrfs_key key;
2118 key.objectid = dir->i_ino;
2120 key.type = BTRFS_INODE_ITEM_KEY;
2121 btrfs_release_path(log, path);
2123 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2125 struct btrfs_inode_item *item;
2128 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2129 struct btrfs_inode_item);
2130 i_size = btrfs_inode_size(path->nodes[0], item);
2131 if (i_size > bytes_del)
2132 i_size -= bytes_del;
2135 btrfs_set_inode_size(path->nodes[0], item, i_size);
2136 btrfs_mark_buffer_dirty(path->nodes[0]);
2139 btrfs_release_path(log, path);
2142 btrfs_free_path(path);
2143 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2144 end_log_trans(root);
2149 /* see comments for btrfs_del_dir_entries_in_log */
2150 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2151 struct btrfs_root *root,
2152 const char *name, int name_len,
2153 struct inode *inode, u64 dirid)
2155 struct btrfs_root *log;
2159 if (BTRFS_I(inode)->logged_trans < trans->transid)
2162 ret = join_running_log_trans(root);
2165 log = root->log_root;
2166 mutex_lock(&BTRFS_I(inode)->log_mutex);
2168 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2170 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2171 end_log_trans(root);
2177 * creates a range item in the log for 'dirid'. first_offset and
2178 * last_offset tell us which parts of the key space the log should
2179 * be considered authoritative for.
2181 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 int key_type, u64 dirid,
2185 u64 first_offset, u64 last_offset)
2188 struct btrfs_key key;
2189 struct btrfs_dir_log_item *item;
2191 key.objectid = dirid;
2192 key.offset = first_offset;
2193 if (key_type == BTRFS_DIR_ITEM_KEY)
2194 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2196 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2197 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2200 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2201 struct btrfs_dir_log_item);
2202 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2203 btrfs_mark_buffer_dirty(path->nodes[0]);
2204 btrfs_release_path(log, path);
2209 * log all the items included in the current transaction for a given
2210 * directory. This also creates the range items in the log tree required
2211 * to replay anything deleted before the fsync
2213 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2214 struct btrfs_root *root, struct inode *inode,
2215 struct btrfs_path *path,
2216 struct btrfs_path *dst_path, int key_type,
2217 u64 min_offset, u64 *last_offset_ret)
2219 struct btrfs_key min_key;
2220 struct btrfs_key max_key;
2221 struct btrfs_root *log = root->log_root;
2222 struct extent_buffer *src;
2226 u64 first_offset = min_offset;
2227 u64 last_offset = (u64)-1;
2229 log = root->log_root;
2230 max_key.objectid = inode->i_ino;
2231 max_key.offset = (u64)-1;
2232 max_key.type = key_type;
2234 min_key.objectid = inode->i_ino;
2235 min_key.type = key_type;
2236 min_key.offset = min_offset;
2238 path->keep_locks = 1;
2240 ret = btrfs_search_forward(root, &min_key, &max_key,
2241 path, 0, trans->transid);
2244 * we didn't find anything from this transaction, see if there
2245 * is anything at all
2247 if (ret != 0 || min_key.objectid != inode->i_ino ||
2248 min_key.type != key_type) {
2249 min_key.objectid = inode->i_ino;
2250 min_key.type = key_type;
2251 min_key.offset = (u64)-1;
2252 btrfs_release_path(root, path);
2253 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2255 btrfs_release_path(root, path);
2258 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2260 /* if ret == 0 there are items for this type,
2261 * create a range to tell us the last key of this type.
2262 * otherwise, there are no items in this directory after
2263 * *min_offset, and we create a range to indicate that.
2266 struct btrfs_key tmp;
2267 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2269 if (key_type == tmp.type)
2270 first_offset = max(min_offset, tmp.offset) + 1;
2275 /* go backward to find any previous key */
2276 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2278 struct btrfs_key tmp;
2279 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2280 if (key_type == tmp.type) {
2281 first_offset = tmp.offset;
2282 ret = overwrite_item(trans, log, dst_path,
2283 path->nodes[0], path->slots[0],
2287 btrfs_release_path(root, path);
2289 /* find the first key from this transaction again */
2290 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2297 * we have a block from this transaction, log every item in it
2298 * from our directory
2301 struct btrfs_key tmp;
2302 src = path->nodes[0];
2303 nritems = btrfs_header_nritems(src);
2304 for (i = path->slots[0]; i < nritems; i++) {
2305 btrfs_item_key_to_cpu(src, &min_key, i);
2307 if (min_key.objectid != inode->i_ino ||
2308 min_key.type != key_type)
2310 ret = overwrite_item(trans, log, dst_path, src, i,
2314 path->slots[0] = nritems;
2317 * look ahead to the next item and see if it is also
2318 * from this directory and from this transaction
2320 ret = btrfs_next_leaf(root, path);
2322 last_offset = (u64)-1;
2325 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2326 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2327 last_offset = (u64)-1;
2330 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2331 ret = overwrite_item(trans, log, dst_path,
2332 path->nodes[0], path->slots[0],
2336 last_offset = tmp.offset;
2341 *last_offset_ret = last_offset;
2342 btrfs_release_path(root, path);
2343 btrfs_release_path(log, dst_path);
2345 /* insert the log range keys to indicate where the log is valid */
2346 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2347 first_offset, last_offset);
2353 * logging directories is very similar to logging inodes, We find all the items
2354 * from the current transaction and write them to the log.
2356 * The recovery code scans the directory in the subvolume, and if it finds a
2357 * key in the range logged that is not present in the log tree, then it means
2358 * that dir entry was unlinked during the transaction.
2360 * In order for that scan to work, we must include one key smaller than
2361 * the smallest logged by this transaction and one key larger than the largest
2362 * key logged by this transaction.
2364 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2365 struct btrfs_root *root, struct inode *inode,
2366 struct btrfs_path *path,
2367 struct btrfs_path *dst_path)
2372 int key_type = BTRFS_DIR_ITEM_KEY;
2378 ret = log_dir_items(trans, root, inode, path,
2379 dst_path, key_type, min_key,
2382 if (max_key == (u64)-1)
2384 min_key = max_key + 1;
2387 if (key_type == BTRFS_DIR_ITEM_KEY) {
2388 key_type = BTRFS_DIR_INDEX_KEY;
2395 * a helper function to drop items from the log before we relog an
2396 * inode. max_key_type indicates the highest item type to remove.
2397 * This cannot be run for file data extents because it does not
2398 * free the extents they point to.
2400 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2401 struct btrfs_root *log,
2402 struct btrfs_path *path,
2403 u64 objectid, int max_key_type)
2406 struct btrfs_key key;
2407 struct btrfs_key found_key;
2409 key.objectid = objectid;
2410 key.type = max_key_type;
2411 key.offset = (u64)-1;
2414 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2419 if (path->slots[0] == 0)
2423 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2426 if (found_key.objectid != objectid)
2429 ret = btrfs_del_item(trans, log, path);
2431 btrfs_release_path(log, path);
2433 btrfs_release_path(log, path);
2437 static noinline int copy_items(struct btrfs_trans_handle *trans,
2438 struct btrfs_root *log,
2439 struct btrfs_path *dst_path,
2440 struct extent_buffer *src,
2441 int start_slot, int nr, int inode_only)
2443 unsigned long src_offset;
2444 unsigned long dst_offset;
2445 struct btrfs_file_extent_item *extent;
2446 struct btrfs_inode_item *inode_item;
2448 struct btrfs_key *ins_keys;
2452 struct list_head ordered_sums;
2454 INIT_LIST_HEAD(&ordered_sums);
2456 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2457 nr * sizeof(u32), GFP_NOFS);
2458 ins_sizes = (u32 *)ins_data;
2459 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2461 for (i = 0; i < nr; i++) {
2462 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2463 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2465 ret = btrfs_insert_empty_items(trans, log, dst_path,
2466 ins_keys, ins_sizes, nr);
2469 for (i = 0; i < nr; i++) {
2470 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2471 dst_path->slots[0]);
2473 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2475 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2476 src_offset, ins_sizes[i]);
2478 if (inode_only == LOG_INODE_EXISTS &&
2479 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2480 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2482 struct btrfs_inode_item);
2483 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2485 /* set the generation to zero so the recover code
2486 * can tell the difference between an logging
2487 * just to say 'this inode exists' and a logging
2488 * to say 'update this inode with these values'
2490 btrfs_set_inode_generation(dst_path->nodes[0],
2493 /* take a reference on file data extents so that truncates
2494 * or deletes of this inode don't have to relog the inode
2497 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2499 extent = btrfs_item_ptr(src, start_slot + i,
2500 struct btrfs_file_extent_item);
2502 found_type = btrfs_file_extent_type(src, extent);
2503 if (found_type == BTRFS_FILE_EXTENT_REG ||
2504 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2505 u64 ds = btrfs_file_extent_disk_bytenr(src,
2507 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2509 u64 cs = btrfs_file_extent_offset(src, extent);
2510 u64 cl = btrfs_file_extent_num_bytes(src,
2512 if (btrfs_file_extent_compression(src,
2517 /* ds == 0 is a hole */
2519 ret = btrfs_inc_extent_ref(trans, log,
2521 dst_path->nodes[0]->start,
2522 BTRFS_TREE_LOG_OBJECTID,
2524 ins_keys[i].objectid);
2526 ret = btrfs_lookup_csums_range(
2527 log->fs_info->csum_root,
2528 ds + cs, ds + cs + cl - 1,
2534 dst_path->slots[0]++;
2537 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2538 btrfs_release_path(log, dst_path);
2542 * we have to do this after the loop above to avoid changing the
2543 * log tree while trying to change the log tree.
2545 while (!list_empty(&ordered_sums)) {
2546 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2547 struct btrfs_ordered_sum,
2549 ret = btrfs_csum_file_blocks(trans, log, sums);
2551 list_del(&sums->list);
2557 /* log a single inode in the tree log.
2558 * At least one parent directory for this inode must exist in the tree
2559 * or be logged already.
2561 * Any items from this inode changed by the current transaction are copied
2562 * to the log tree. An extra reference is taken on any extents in this
2563 * file, allowing us to avoid a whole pile of corner cases around logging
2564 * blocks that have been removed from the tree.
2566 * See LOG_INODE_ALL and related defines for a description of what inode_only
2569 * This handles both files and directories.
2571 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2572 struct btrfs_root *root, struct inode *inode,
2575 struct btrfs_path *path;
2576 struct btrfs_path *dst_path;
2577 struct btrfs_key min_key;
2578 struct btrfs_key max_key;
2579 struct btrfs_root *log = root->log_root;
2580 struct extent_buffer *src = NULL;
2584 int ins_start_slot = 0;
2587 log = root->log_root;
2589 path = btrfs_alloc_path();
2590 dst_path = btrfs_alloc_path();
2592 min_key.objectid = inode->i_ino;
2593 min_key.type = BTRFS_INODE_ITEM_KEY;
2596 max_key.objectid = inode->i_ino;
2597 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2598 max_key.type = BTRFS_XATTR_ITEM_KEY;
2600 max_key.type = (u8)-1;
2601 max_key.offset = (u64)-1;
2604 * if this inode has already been logged and we're in inode_only
2605 * mode, we don't want to delete the things that have already
2606 * been written to the log.
2608 * But, if the inode has been through an inode_only log,
2609 * the logged_trans field is not set. This allows us to catch
2610 * any new names for this inode in the backrefs by logging it
2613 if (inode_only == LOG_INODE_EXISTS &&
2614 BTRFS_I(inode)->logged_trans == trans->transid) {
2615 btrfs_free_path(path);
2616 btrfs_free_path(dst_path);
2619 mutex_lock(&BTRFS_I(inode)->log_mutex);
2622 * a brute force approach to making sure we get the most uptodate
2623 * copies of everything.
2625 if (S_ISDIR(inode->i_mode)) {
2626 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2628 if (inode_only == LOG_INODE_EXISTS)
2629 max_key_type = BTRFS_XATTR_ITEM_KEY;
2630 ret = drop_objectid_items(trans, log, path,
2631 inode->i_ino, max_key_type);
2633 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2636 path->keep_locks = 1;
2640 ret = btrfs_search_forward(root, &min_key, &max_key,
2641 path, 0, trans->transid);
2645 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2646 if (min_key.objectid != inode->i_ino)
2648 if (min_key.type > max_key.type)
2651 src = path->nodes[0];
2652 size = btrfs_item_size_nr(src, path->slots[0]);
2653 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2656 } else if (!ins_nr) {
2657 ins_start_slot = path->slots[0];
2662 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2663 ins_nr, inode_only);
2666 ins_start_slot = path->slots[0];
2669 nritems = btrfs_header_nritems(path->nodes[0]);
2671 if (path->slots[0] < nritems) {
2672 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2677 ret = copy_items(trans, log, dst_path, src,
2679 ins_nr, inode_only);
2683 btrfs_release_path(root, path);
2685 if (min_key.offset < (u64)-1)
2687 else if (min_key.type < (u8)-1)
2689 else if (min_key.objectid < (u64)-1)
2695 ret = copy_items(trans, log, dst_path, src,
2697 ins_nr, inode_only);
2702 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2703 btrfs_release_path(root, path);
2704 btrfs_release_path(log, dst_path);
2705 BTRFS_I(inode)->log_dirty_trans = 0;
2706 ret = log_directory_changes(trans, root, inode, path, dst_path);
2709 BTRFS_I(inode)->logged_trans = trans->transid;
2710 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2712 btrfs_free_path(path);
2713 btrfs_free_path(dst_path);
2715 mutex_lock(&root->fs_info->tree_log_mutex);
2716 ret = update_log_root(trans, log);
2718 mutex_unlock(&root->fs_info->tree_log_mutex);
2723 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2724 struct btrfs_root *root, struct inode *inode,
2729 start_log_trans(trans, root);
2730 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2731 end_log_trans(root);
2736 * helper function around btrfs_log_inode to make sure newly created
2737 * parent directories also end up in the log. A minimal inode and backref
2738 * only logging is done of any parent directories that are older than
2739 * the last committed transaction
2741 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2742 struct btrfs_root *root, struct dentry *dentry)
2744 int inode_only = LOG_INODE_ALL;
2745 struct super_block *sb;
2748 start_log_trans(trans, root);
2749 sb = dentry->d_inode->i_sb;
2751 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2754 inode_only = LOG_INODE_EXISTS;
2756 dentry = dentry->d_parent;
2757 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2760 if (BTRFS_I(dentry->d_inode)->generation <=
2761 root->fs_info->last_trans_committed)
2764 end_log_trans(root);
2769 * it is not safe to log dentry if the chunk root has added new
2770 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2771 * If this returns 1, you must commit the transaction to safely get your
2774 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2775 struct btrfs_root *root, struct dentry *dentry)
2778 gen = root->fs_info->last_trans_new_blockgroup;
2779 if (gen > root->fs_info->last_trans_committed)
2782 return btrfs_log_dentry(trans, root, dentry);
2786 * should be called during mount to recover any replay any log trees
2789 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2792 struct btrfs_path *path;
2793 struct btrfs_trans_handle *trans;
2794 struct btrfs_key key;
2795 struct btrfs_key found_key;
2796 struct btrfs_key tmp_key;
2797 struct btrfs_root *log;
2798 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2800 struct walk_control wc = {
2801 .process_func = process_one_buffer,
2805 fs_info->log_root_recovering = 1;
2806 path = btrfs_alloc_path();
2809 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2814 walk_log_tree(trans, log_root_tree, &wc);
2817 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2818 key.offset = (u64)-1;
2819 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2822 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2826 if (path->slots[0] == 0)
2830 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2832 btrfs_release_path(log_root_tree, path);
2833 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2836 log = btrfs_read_fs_root_no_radix(log_root_tree,
2841 tmp_key.objectid = found_key.offset;
2842 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2843 tmp_key.offset = (u64)-1;
2845 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2846 BUG_ON(!wc.replay_dest);
2848 wc.replay_dest->log_root = log;
2849 btrfs_record_root_in_trans(wc.replay_dest);
2850 ret = walk_log_tree(trans, log, &wc);
2853 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2854 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2858 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2860 wc.replay_dest->highest_inode = highest_inode;
2861 wc.replay_dest->last_inode_alloc = highest_inode;
2864 key.offset = found_key.offset - 1;
2865 wc.replay_dest->log_root = NULL;
2866 free_extent_buffer(log->node);
2869 if (found_key.offset == 0)
2872 btrfs_release_path(log_root_tree, path);
2874 /* step one is to pin it all, step two is to replay just inodes */
2877 wc.process_func = replay_one_buffer;
2878 wc.stage = LOG_WALK_REPLAY_INODES;
2881 /* step three is to replay everything */
2882 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2887 btrfs_free_path(path);
2889 free_extent_buffer(log_root_tree->node);
2890 log_root_tree->log_root = NULL;
2891 fs_info->log_root_recovering = 0;
2893 /* step 4: commit the transaction, which also unpins the blocks */
2894 btrfs_commit_transaction(trans, fs_info->tree_root);
2896 kfree(log_root_tree);