]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ext4/inode.c
ext4: Fix lack of credits BUG() when deleting a badly fragmented inode
[linux-2.6-omap-h63xx.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45                                               loff_t new_size)
46 {
47         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48                                                    new_size);
49 }
50
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
53 /*
54  * Test whether an inode is a fast symlink.
55  */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58         int ea_blocks = EXT4_I(inode)->i_file_acl ?
59                 (inode->i_sb->s_blocksize >> 9) : 0;
60
61         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63
64 /*
65  * The ext4 forget function must perform a revoke if we are freeing data
66  * which has been journaled.  Metadata (eg. indirect blocks) must be
67  * revoked in all cases.
68  *
69  * "bh" may be NULL: a metadata block may have been freed from memory
70  * but there may still be a record of it in the journal, and that record
71  * still needs to be revoked.
72  */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74                         struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76         int err;
77
78         might_sleep();
79
80         BUFFER_TRACE(bh, "enter");
81
82         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83                   "data mode %lx\n",
84                   bh, is_metadata, inode->i_mode,
85                   test_opt(inode->i_sb, DATA_FLAGS));
86
87         /* Never use the revoke function if we are doing full data
88          * journaling: there is no need to, and a V1 superblock won't
89          * support it.  Otherwise, only skip the revoke on un-journaled
90          * data blocks. */
91
92         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93             (!is_metadata && !ext4_should_journal_data(inode))) {
94                 if (bh) {
95                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
96                         return ext4_journal_forget(handle, bh);
97                 }
98                 return 0;
99         }
100
101         /*
102          * data!=journal && (is_metadata || should_journal_data(inode))
103          */
104         BUFFER_TRACE(bh, "call ext4_journal_revoke");
105         err = ext4_journal_revoke(handle, blocknr, bh);
106         if (err)
107                 ext4_abort(inode->i_sb, __func__,
108                            "error %d when attempting revoke", err);
109         BUFFER_TRACE(bh, "exit");
110         return err;
111 }
112
113 /*
114  * Work out how many blocks we need to proceed with the next chunk of a
115  * truncate transaction.
116  */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119         ext4_lblk_t needed;
120
121         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123         /* Give ourselves just enough room to cope with inodes in which
124          * i_blocks is corrupt: we've seen disk corruptions in the past
125          * which resulted in random data in an inode which looked enough
126          * like a regular file for ext4 to try to delete it.  Things
127          * will go a bit crazy if that happens, but at least we should
128          * try not to panic the whole kernel. */
129         if (needed < 2)
130                 needed = 2;
131
132         /* But we need to bound the transaction so we don't overflow the
133          * journal. */
134         if (needed > EXT4_MAX_TRANS_DATA)
135                 needed = EXT4_MAX_TRANS_DATA;
136
137         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139
140 /*
141  * Truncate transactions can be complex and absolutely huge.  So we need to
142  * be able to restart the transaction at a conventient checkpoint to make
143  * sure we don't overflow the journal.
144  *
145  * start_transaction gets us a new handle for a truncate transaction,
146  * and extend_transaction tries to extend the existing one a bit.  If
147  * extend fails, we need to propagate the failure up and restart the
148  * transaction in the top-level truncate loop. --sct
149  */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152         handle_t *result;
153
154         result = ext4_journal_start(inode, blocks_for_truncate(inode));
155         if (!IS_ERR(result))
156                 return result;
157
158         ext4_std_error(inode->i_sb, PTR_ERR(result));
159         return result;
160 }
161
162 /*
163  * Try to extend this transaction for the purposes of truncation.
164  *
165  * Returns 0 if we managed to create more room.  If we can't create more
166  * room, and the transaction must be restarted we return 1.
167  */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171                 return 0;
172         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173                 return 0;
174         return 1;
175 }
176
177 /*
178  * Restart the transaction associated with *handle.  This does a commit,
179  * so before we call here everything must be consistently dirtied against
180  * this transaction.
181  */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184         jbd_debug(2, "restarting handle %p\n", handle);
185         return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187
188 /*
189  * Called at the last iput() if i_nlink is zero.
190  */
191 void ext4_delete_inode (struct inode * inode)
192 {
193         handle_t *handle;
194         int err;
195
196         if (ext4_should_order_data(inode))
197                 ext4_begin_ordered_truncate(inode, 0);
198         truncate_inode_pages(&inode->i_data, 0);
199
200         if (is_bad_inode(inode))
201                 goto no_delete;
202
203         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
204         if (IS_ERR(handle)) {
205                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
206                 /*
207                  * If we're going to skip the normal cleanup, we still need to
208                  * make sure that the in-core orphan linked list is properly
209                  * cleaned up.
210                  */
211                 ext4_orphan_del(NULL, inode);
212                 goto no_delete;
213         }
214
215         if (IS_SYNC(inode))
216                 handle->h_sync = 1;
217         inode->i_size = 0;
218         err = ext4_mark_inode_dirty(handle, inode);
219         if (err) {
220                 ext4_warning(inode->i_sb, __func__,
221                              "couldn't mark inode dirty (err %d)", err);
222                 goto stop_handle;
223         }
224         if (inode->i_blocks)
225                 ext4_truncate(inode);
226
227         /*
228          * ext4_ext_truncate() doesn't reserve any slop when it
229          * restarts journal transactions; therefore there may not be
230          * enough credits left in the handle to remove the inode from
231          * the orphan list and set the dtime field.
232          */
233         if (handle->h_buffer_credits < 3) {
234                 err = ext4_journal_extend(handle, 3);
235                 if (err > 0)
236                         err = ext4_journal_restart(handle, 3);
237                 if (err != 0) {
238                         ext4_warning(inode->i_sb, __func__,
239                                      "couldn't extend journal (err %d)", err);
240                 stop_handle:
241                         ext4_journal_stop(handle);
242                         goto no_delete;
243                 }
244         }
245
246         /*
247          * Kill off the orphan record which ext4_truncate created.
248          * AKPM: I think this can be inside the above `if'.
249          * Note that ext4_orphan_del() has to be able to cope with the
250          * deletion of a non-existent orphan - this is because we don't
251          * know if ext4_truncate() actually created an orphan record.
252          * (Well, we could do this if we need to, but heck - it works)
253          */
254         ext4_orphan_del(handle, inode);
255         EXT4_I(inode)->i_dtime  = get_seconds();
256
257         /*
258          * One subtle ordering requirement: if anything has gone wrong
259          * (transaction abort, IO errors, whatever), then we can still
260          * do these next steps (the fs will already have been marked as
261          * having errors), but we can't free the inode if the mark_dirty
262          * fails.
263          */
264         if (ext4_mark_inode_dirty(handle, inode))
265                 /* If that failed, just do the required in-core inode clear. */
266                 clear_inode(inode);
267         else
268                 ext4_free_inode(handle, inode);
269         ext4_journal_stop(handle);
270         return;
271 no_delete:
272         clear_inode(inode);     /* We must guarantee clearing of inode... */
273 }
274
275 typedef struct {
276         __le32  *p;
277         __le32  key;
278         struct buffer_head *bh;
279 } Indirect;
280
281 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282 {
283         p->key = *(p->p = v);
284         p->bh = bh;
285 }
286
287 /**
288  *      ext4_block_to_path - parse the block number into array of offsets
289  *      @inode: inode in question (we are only interested in its superblock)
290  *      @i_block: block number to be parsed
291  *      @offsets: array to store the offsets in
292  *      @boundary: set this non-zero if the referred-to block is likely to be
293  *             followed (on disk) by an indirect block.
294  *
295  *      To store the locations of file's data ext4 uses a data structure common
296  *      for UNIX filesystems - tree of pointers anchored in the inode, with
297  *      data blocks at leaves and indirect blocks in intermediate nodes.
298  *      This function translates the block number into path in that tree -
299  *      return value is the path length and @offsets[n] is the offset of
300  *      pointer to (n+1)th node in the nth one. If @block is out of range
301  *      (negative or too large) warning is printed and zero returned.
302  *
303  *      Note: function doesn't find node addresses, so no IO is needed. All
304  *      we need to know is the capacity of indirect blocks (taken from the
305  *      inode->i_sb).
306  */
307
308 /*
309  * Portability note: the last comparison (check that we fit into triple
310  * indirect block) is spelled differently, because otherwise on an
311  * architecture with 32-bit longs and 8Kb pages we might get into trouble
312  * if our filesystem had 8Kb blocks. We might use long long, but that would
313  * kill us on x86. Oh, well, at least the sign propagation does not matter -
314  * i_block would have to be negative in the very beginning, so we would not
315  * get there at all.
316  */
317
318 static int ext4_block_to_path(struct inode *inode,
319                         ext4_lblk_t i_block,
320                         ext4_lblk_t offsets[4], int *boundary)
321 {
322         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324         const long direct_blocks = EXT4_NDIR_BLOCKS,
325                 indirect_blocks = ptrs,
326                 double_blocks = (1 << (ptrs_bits * 2));
327         int n = 0;
328         int final = 0;
329
330         if (i_block < 0) {
331                 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
332         } else if (i_block < direct_blocks) {
333                 offsets[n++] = i_block;
334                 final = direct_blocks;
335         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336                 offsets[n++] = EXT4_IND_BLOCK;
337                 offsets[n++] = i_block;
338                 final = ptrs;
339         } else if ((i_block -= indirect_blocks) < double_blocks) {
340                 offsets[n++] = EXT4_DIND_BLOCK;
341                 offsets[n++] = i_block >> ptrs_bits;
342                 offsets[n++] = i_block & (ptrs - 1);
343                 final = ptrs;
344         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345                 offsets[n++] = EXT4_TIND_BLOCK;
346                 offsets[n++] = i_block >> (ptrs_bits * 2);
347                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348                 offsets[n++] = i_block & (ptrs - 1);
349                 final = ptrs;
350         } else {
351                 ext4_warning(inode->i_sb, "ext4_block_to_path",
352                                 "block %lu > max",
353                                 i_block + direct_blocks +
354                                 indirect_blocks + double_blocks);
355         }
356         if (boundary)
357                 *boundary = final - 1 - (i_block & (ptrs - 1));
358         return n;
359 }
360
361 /**
362  *      ext4_get_branch - read the chain of indirect blocks leading to data
363  *      @inode: inode in question
364  *      @depth: depth of the chain (1 - direct pointer, etc.)
365  *      @offsets: offsets of pointers in inode/indirect blocks
366  *      @chain: place to store the result
367  *      @err: here we store the error value
368  *
369  *      Function fills the array of triples <key, p, bh> and returns %NULL
370  *      if everything went OK or the pointer to the last filled triple
371  *      (incomplete one) otherwise. Upon the return chain[i].key contains
372  *      the number of (i+1)-th block in the chain (as it is stored in memory,
373  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
374  *      number (it points into struct inode for i==0 and into the bh->b_data
375  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376  *      block for i>0 and NULL for i==0. In other words, it holds the block
377  *      numbers of the chain, addresses they were taken from (and where we can
378  *      verify that chain did not change) and buffer_heads hosting these
379  *      numbers.
380  *
381  *      Function stops when it stumbles upon zero pointer (absent block)
382  *              (pointer to last triple returned, *@err == 0)
383  *      or when it gets an IO error reading an indirect block
384  *              (ditto, *@err == -EIO)
385  *      or when it reads all @depth-1 indirect blocks successfully and finds
386  *      the whole chain, all way to the data (returns %NULL, *err == 0).
387  *
388  *      Need to be called with
389  *      down_read(&EXT4_I(inode)->i_data_sem)
390  */
391 static Indirect *ext4_get_branch(struct inode *inode, int depth,
392                                  ext4_lblk_t  *offsets,
393                                  Indirect chain[4], int *err)
394 {
395         struct super_block *sb = inode->i_sb;
396         Indirect *p = chain;
397         struct buffer_head *bh;
398
399         *err = 0;
400         /* i_data is not going away, no lock needed */
401         add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
402         if (!p->key)
403                 goto no_block;
404         while (--depth) {
405                 bh = sb_bread(sb, le32_to_cpu(p->key));
406                 if (!bh)
407                         goto failure;
408                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409                 /* Reader: end */
410                 if (!p->key)
411                         goto no_block;
412         }
413         return NULL;
414
415 failure:
416         *err = -EIO;
417 no_block:
418         return p;
419 }
420
421 /**
422  *      ext4_find_near - find a place for allocation with sufficient locality
423  *      @inode: owner
424  *      @ind: descriptor of indirect block.
425  *
426  *      This function returns the preferred place for block allocation.
427  *      It is used when heuristic for sequential allocation fails.
428  *      Rules are:
429  *        + if there is a block to the left of our position - allocate near it.
430  *        + if pointer will live in indirect block - allocate near that block.
431  *        + if pointer will live in inode - allocate in the same
432  *          cylinder group.
433  *
434  * In the latter case we colour the starting block by the callers PID to
435  * prevent it from clashing with concurrent allocations for a different inode
436  * in the same block group.   The PID is used here so that functionally related
437  * files will be close-by on-disk.
438  *
439  *      Caller must make sure that @ind is valid and will stay that way.
440  */
441 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
442 {
443         struct ext4_inode_info *ei = EXT4_I(inode);
444         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445         __le32 *p;
446         ext4_fsblk_t bg_start;
447         ext4_fsblk_t last_block;
448         ext4_grpblk_t colour;
449
450         /* Try to find previous block */
451         for (p = ind->p - 1; p >= start; p--) {
452                 if (*p)
453                         return le32_to_cpu(*p);
454         }
455
456         /* No such thing, so let's try location of indirect block */
457         if (ind->bh)
458                 return ind->bh->b_blocknr;
459
460         /*
461          * It is going to be referred to from the inode itself? OK, just put it
462          * into the same cylinder group then.
463          */
464         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
465         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466
467         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468                 colour = (current->pid % 16) *
469                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
470         else
471                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
472         return bg_start + colour;
473 }
474
475 /**
476  *      ext4_find_goal - find a preferred place for allocation.
477  *      @inode: owner
478  *      @block:  block we want
479  *      @partial: pointer to the last triple within a chain
480  *
481  *      Normally this function find the preferred place for block allocation,
482  *      returns it.
483  */
484 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
485                 Indirect *partial)
486 {
487         struct ext4_block_alloc_info *block_i;
488
489         block_i =  EXT4_I(inode)->i_block_alloc_info;
490
491         /*
492          * try the heuristic for sequential allocation,
493          * failing that at least try to get decent locality.
494          */
495         if (block_i && (block == block_i->last_alloc_logical_block + 1)
496                 && (block_i->last_alloc_physical_block != 0)) {
497                 return block_i->last_alloc_physical_block + 1;
498         }
499
500         return ext4_find_near(inode, partial);
501 }
502
503 /**
504  *      ext4_blks_to_allocate: Look up the block map and count the number
505  *      of direct blocks need to be allocated for the given branch.
506  *
507  *      @branch: chain of indirect blocks
508  *      @k: number of blocks need for indirect blocks
509  *      @blks: number of data blocks to be mapped.
510  *      @blocks_to_boundary:  the offset in the indirect block
511  *
512  *      return the total number of blocks to be allocate, including the
513  *      direct and indirect blocks.
514  */
515 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
516                 int blocks_to_boundary)
517 {
518         unsigned long count = 0;
519
520         /*
521          * Simple case, [t,d]Indirect block(s) has not allocated yet
522          * then it's clear blocks on that path have not allocated
523          */
524         if (k > 0) {
525                 /* right now we don't handle cross boundary allocation */
526                 if (blks < blocks_to_boundary + 1)
527                         count += blks;
528                 else
529                         count += blocks_to_boundary + 1;
530                 return count;
531         }
532
533         count++;
534         while (count < blks && count <= blocks_to_boundary &&
535                 le32_to_cpu(*(branch[0].p + count)) == 0) {
536                 count++;
537         }
538         return count;
539 }
540
541 /**
542  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
543  *      @indirect_blks: the number of blocks need to allocate for indirect
544  *                      blocks
545  *
546  *      @new_blocks: on return it will store the new block numbers for
547  *      the indirect blocks(if needed) and the first direct block,
548  *      @blks:  on return it will store the total number of allocated
549  *              direct blocks
550  */
551 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
552                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
553                                 int indirect_blks, int blks,
554                                 ext4_fsblk_t new_blocks[4], int *err)
555 {
556         int target, i;
557         unsigned long count = 0, blk_allocated = 0;
558         int index = 0;
559         ext4_fsblk_t current_block = 0;
560         int ret = 0;
561
562         /*
563          * Here we try to allocate the requested multiple blocks at once,
564          * on a best-effort basis.
565          * To build a branch, we should allocate blocks for
566          * the indirect blocks(if not allocated yet), and at least
567          * the first direct block of this branch.  That's the
568          * minimum number of blocks need to allocate(required)
569          */
570         /* first we try to allocate the indirect blocks */
571         target = indirect_blks;
572         while (target > 0) {
573                 count = target;
574                 /* allocating blocks for indirect blocks and direct blocks */
575                 current_block = ext4_new_meta_blocks(handle, inode,
576                                                         goal, &count, err);
577                 if (*err)
578                         goto failed_out;
579
580                 target -= count;
581                 /* allocate blocks for indirect blocks */
582                 while (index < indirect_blks && count) {
583                         new_blocks[index++] = current_block++;
584                         count--;
585                 }
586                 if (count > 0) {
587                         /*
588                          * save the new block number
589                          * for the first direct block
590                          */
591                         new_blocks[index] = current_block;
592                         printk(KERN_INFO "%s returned more blocks than "
593                                                 "requested\n", __func__);
594                         WARN_ON(1);
595                         break;
596                 }
597         }
598
599         target = blks - count ;
600         blk_allocated = count;
601         if (!target)
602                 goto allocated;
603         /* Now allocate data blocks */
604         count = target;
605         /* allocating blocks for data blocks */
606         current_block = ext4_new_blocks(handle, inode, iblock,
607                                                 goal, &count, err);
608         if (*err && (target == blks)) {
609                 /*
610                  * if the allocation failed and we didn't allocate
611                  * any blocks before
612                  */
613                 goto failed_out;
614         }
615         if (!*err) {
616                 if (target == blks) {
617                 /*
618                  * save the new block number
619                  * for the first direct block
620                  */
621                         new_blocks[index] = current_block;
622                 }
623                 blk_allocated += count;
624         }
625 allocated:
626         /* total number of blocks allocated for direct blocks */
627         ret = blk_allocated;
628         *err = 0;
629         return ret;
630 failed_out:
631         for (i = 0; i <index; i++)
632                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
633         return ret;
634 }
635
636 /**
637  *      ext4_alloc_branch - allocate and set up a chain of blocks.
638  *      @inode: owner
639  *      @indirect_blks: number of allocated indirect blocks
640  *      @blks: number of allocated direct blocks
641  *      @offsets: offsets (in the blocks) to store the pointers to next.
642  *      @branch: place to store the chain in.
643  *
644  *      This function allocates blocks, zeroes out all but the last one,
645  *      links them into chain and (if we are synchronous) writes them to disk.
646  *      In other words, it prepares a branch that can be spliced onto the
647  *      inode. It stores the information about that chain in the branch[], in
648  *      the same format as ext4_get_branch() would do. We are calling it after
649  *      we had read the existing part of chain and partial points to the last
650  *      triple of that (one with zero ->key). Upon the exit we have the same
651  *      picture as after the successful ext4_get_block(), except that in one
652  *      place chain is disconnected - *branch->p is still zero (we did not
653  *      set the last link), but branch->key contains the number that should
654  *      be placed into *branch->p to fill that gap.
655  *
656  *      If allocation fails we free all blocks we've allocated (and forget
657  *      their buffer_heads) and return the error value the from failed
658  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
659  *      as described above and return 0.
660  */
661 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
662                                 ext4_lblk_t iblock, int indirect_blks,
663                                 int *blks, ext4_fsblk_t goal,
664                                 ext4_lblk_t *offsets, Indirect *branch)
665 {
666         int blocksize = inode->i_sb->s_blocksize;
667         int i, n = 0;
668         int err = 0;
669         struct buffer_head *bh;
670         int num;
671         ext4_fsblk_t new_blocks[4];
672         ext4_fsblk_t current_block;
673
674         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
675                                 *blks, new_blocks, &err);
676         if (err)
677                 return err;
678
679         branch[0].key = cpu_to_le32(new_blocks[0]);
680         /*
681          * metadata blocks and data blocks are allocated.
682          */
683         for (n = 1; n <= indirect_blks;  n++) {
684                 /*
685                  * Get buffer_head for parent block, zero it out
686                  * and set the pointer to new one, then send
687                  * parent to disk.
688                  */
689                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690                 branch[n].bh = bh;
691                 lock_buffer(bh);
692                 BUFFER_TRACE(bh, "call get_create_access");
693                 err = ext4_journal_get_create_access(handle, bh);
694                 if (err) {
695                         unlock_buffer(bh);
696                         brelse(bh);
697                         goto failed;
698                 }
699
700                 memset(bh->b_data, 0, blocksize);
701                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702                 branch[n].key = cpu_to_le32(new_blocks[n]);
703                 *branch[n].p = branch[n].key;
704                 if ( n == indirect_blks) {
705                         current_block = new_blocks[n];
706                         /*
707                          * End of chain, update the last new metablock of
708                          * the chain to point to the new allocated
709                          * data blocks numbers
710                          */
711                         for (i=1; i < num; i++)
712                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
713                 }
714                 BUFFER_TRACE(bh, "marking uptodate");
715                 set_buffer_uptodate(bh);
716                 unlock_buffer(bh);
717
718                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719                 err = ext4_journal_dirty_metadata(handle, bh);
720                 if (err)
721                         goto failed;
722         }
723         *blks = num;
724         return err;
725 failed:
726         /* Allocation failed, free what we already allocated */
727         for (i = 1; i <= n ; i++) {
728                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
729                 ext4_journal_forget(handle, branch[i].bh);
730         }
731         for (i = 0; i <indirect_blks; i++)
732                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
733
734         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
735
736         return err;
737 }
738
739 /**
740  * ext4_splice_branch - splice the allocated branch onto inode.
741  * @inode: owner
742  * @block: (logical) number of block we are adding
743  * @chain: chain of indirect blocks (with a missing link - see
744  *      ext4_alloc_branch)
745  * @where: location of missing link
746  * @num:   number of indirect blocks we are adding
747  * @blks:  number of direct blocks we are adding
748  *
749  * This function fills the missing link and does all housekeeping needed in
750  * inode (->i_blocks, etc.). In case of success we end up with the full
751  * chain to new block and return 0.
752  */
753 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
754                         ext4_lblk_t block, Indirect *where, int num, int blks)
755 {
756         int i;
757         int err = 0;
758         struct ext4_block_alloc_info *block_i;
759         ext4_fsblk_t current_block;
760
761         block_i = EXT4_I(inode)->i_block_alloc_info;
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext4_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i ) = cpu_to_le32(current_block++);
785         }
786
787         /*
788          * update the most recently allocated logical & physical block
789          * in i_block_alloc_info, to assist find the proper goal block for next
790          * allocation
791          */
792         if (block_i) {
793                 block_i->last_alloc_logical_block = block + blks - 1;
794                 block_i->last_alloc_physical_block =
795                                 le32_to_cpu(where[num].key) + blks - 1;
796         }
797
798         /* We are done with atomic stuff, now do the rest of housekeeping */
799
800         inode->i_ctime = ext4_current_time(inode);
801         ext4_mark_inode_dirty(handle, inode);
802
803         /* had we spliced it onto indirect block? */
804         if (where->bh) {
805                 /*
806                  * If we spliced it onto an indirect block, we haven't
807                  * altered the inode.  Note however that if it is being spliced
808                  * onto an indirect block at the very end of the file (the
809                  * file is growing) then we *will* alter the inode to reflect
810                  * the new i_size.  But that is not done here - it is done in
811                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
812                  */
813                 jbd_debug(5, "splicing indirect only\n");
814                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815                 err = ext4_journal_dirty_metadata(handle, where->bh);
816                 if (err)
817                         goto err_out;
818         } else {
819                 /*
820                  * OK, we spliced it into the inode itself on a direct block.
821                  * Inode was dirtied above.
822                  */
823                 jbd_debug(5, "splicing direct\n");
824         }
825         return err;
826
827 err_out:
828         for (i = 1; i <= num; i++) {
829                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
830                 ext4_journal_forget(handle, where[i].bh);
831                 ext4_free_blocks(handle, inode,
832                                         le32_to_cpu(where[i-1].key), 1, 0);
833         }
834         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
835
836         return err;
837 }
838
839 /*
840  * Allocation strategy is simple: if we have to allocate something, we will
841  * have to go the whole way to leaf. So let's do it before attaching anything
842  * to tree, set linkage between the newborn blocks, write them if sync is
843  * required, recheck the path, free and repeat if check fails, otherwise
844  * set the last missing link (that will protect us from any truncate-generated
845  * removals - all blocks on the path are immune now) and possibly force the
846  * write on the parent block.
847  * That has a nice additional property: no special recovery from the failed
848  * allocations is needed - we simply release blocks and do not touch anything
849  * reachable from inode.
850  *
851  * `handle' can be NULL if create == 0.
852  *
853  * return > 0, # of blocks mapped or allocated.
854  * return = 0, if plain lookup failed.
855  * return < 0, error case.
856  *
857  *
858  * Need to be called with
859  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
861  */
862 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
863                 ext4_lblk_t iblock, unsigned long maxblocks,
864                 struct buffer_head *bh_result,
865                 int create, int extend_disksize)
866 {
867         int err = -EIO;
868         ext4_lblk_t offsets[4];
869         Indirect chain[4];
870         Indirect *partial;
871         ext4_fsblk_t goal;
872         int indirect_blks;
873         int blocks_to_boundary = 0;
874         int depth;
875         struct ext4_inode_info *ei = EXT4_I(inode);
876         int count = 0;
877         ext4_fsblk_t first_block = 0;
878         loff_t disksize;
879
880
881         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
882         J_ASSERT(handle != NULL || create == 0);
883         depth = ext4_block_to_path(inode, iblock, offsets,
884                                         &blocks_to_boundary);
885
886         if (depth == 0)
887                 goto out;
888
889         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
890
891         /* Simplest case - block found, no allocation needed */
892         if (!partial) {
893                 first_block = le32_to_cpu(chain[depth - 1].key);
894                 clear_buffer_new(bh_result);
895                 count++;
896                 /*map more blocks*/
897                 while (count < maxblocks && count <= blocks_to_boundary) {
898                         ext4_fsblk_t blk;
899
900                         blk = le32_to_cpu(*(chain[depth-1].p + count));
901
902                         if (blk == first_block + count)
903                                 count++;
904                         else
905                                 break;
906                 }
907                 goto got_it;
908         }
909
910         /* Next simple case - plain lookup or failed read of indirect block */
911         if (!create || err == -EIO)
912                 goto cleanup;
913
914         /*
915          * Okay, we need to do block allocation.  Lazily initialize the block
916          * allocation info here if necessary
917         */
918         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919                 ext4_init_block_alloc_info(inode);
920
921         goal = ext4_find_goal(inode, iblock, partial);
922
923         /* the number of blocks need to allocate for [d,t]indirect blocks */
924         indirect_blks = (chain + depth) - partial - 1;
925
926         /*
927          * Next look up the indirect map to count the totoal number of
928          * direct blocks to allocate for this branch.
929          */
930         count = ext4_blks_to_allocate(partial, indirect_blks,
931                                         maxblocks, blocks_to_boundary);
932         /*
933          * Block out ext4_truncate while we alter the tree
934          */
935         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936                                         &count, goal,
937                                         offsets + (partial - chain), partial);
938
939         /*
940          * The ext4_splice_branch call will free and forget any buffers
941          * on the new chain if there is a failure, but that risks using
942          * up transaction credits, especially for bitmaps where the
943          * credits cannot be returned.  Can we handle this somehow?  We
944          * may need to return -EAGAIN upwards in the worst case.  --sct
945          */
946         if (!err)
947                 err = ext4_splice_branch(handle, inode, iblock,
948                                         partial, indirect_blks, count);
949         /*
950          * i_disksize growing is protected by i_data_sem.  Don't forget to
951          * protect it if you're about to implement concurrent
952          * ext4_get_block() -bzzz
953         */
954         if (!err && extend_disksize) {
955                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956                 if (disksize > i_size_read(inode))
957                         disksize = i_size_read(inode);
958                 if (disksize > ei->i_disksize)
959                         ei->i_disksize = disksize;
960         }
961         if (err)
962                 goto cleanup;
963
964         set_buffer_new(bh_result);
965 got_it:
966         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967         if (count > blocks_to_boundary)
968                 set_buffer_boundary(bh_result);
969         err = count;
970         /* Clean up and exit */
971         partial = chain + depth - 1;    /* the whole chain */
972 cleanup:
973         while (partial > chain) {
974                 BUFFER_TRACE(partial->bh, "call brelse");
975                 brelse(partial->bh);
976                 partial--;
977         }
978         BUFFER_TRACE(bh_result, "returned");
979 out:
980         return err;
981 }
982
983 /* Maximum number of blocks we map for direct IO at once. */
984 #define DIO_MAX_BLOCKS 4096
985 /*
986  * Number of credits we need for writing DIO_MAX_BLOCKS:
987  * We need sb + group descriptor + bitmap + inode -> 4
988  * For B blocks with A block pointers per block we need:
989  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
990  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
991  */
992 #define DIO_CREDITS 25
993
994
995 /*
996  *
997  *
998  * ext4_ext4 get_block() wrapper function
999  * It will do a look up first, and returns if the blocks already mapped.
1000  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1001  * and store the allocated blocks in the result buffer head and mark it
1002  * mapped.
1003  *
1004  * If file type is extents based, it will call ext4_ext_get_blocks(),
1005  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1006  * based files
1007  *
1008  * On success, it returns the number of blocks being mapped or allocate.
1009  * if create==0 and the blocks are pre-allocated and uninitialized block,
1010  * the result buffer head is unmapped. If the create ==1, it will make sure
1011  * the buffer head is mapped.
1012  *
1013  * It returns 0 if plain look up failed (blocks have not been allocated), in
1014  * that casem, buffer head is unmapped
1015  *
1016  * It returns the error in case of allocation failure.
1017  */
1018 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1019                         unsigned long max_blocks, struct buffer_head *bh,
1020                         int create, int extend_disksize, int flag)
1021 {
1022         int retval;
1023
1024         clear_buffer_mapped(bh);
1025
1026         /*
1027          * Try to see if we can get  the block without requesting
1028          * for new file system block.
1029          */
1030         down_read((&EXT4_I(inode)->i_data_sem));
1031         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1032                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1033                                 bh, 0, 0);
1034         } else {
1035                 retval = ext4_get_blocks_handle(handle,
1036                                 inode, block, max_blocks, bh, 0, 0);
1037         }
1038         up_read((&EXT4_I(inode)->i_data_sem));
1039
1040         /* If it is only a block(s) look up */
1041         if (!create)
1042                 return retval;
1043
1044         /*
1045          * Returns if the blocks have already allocated
1046          *
1047          * Note that if blocks have been preallocated
1048          * ext4_ext_get_block() returns th create = 0
1049          * with buffer head unmapped.
1050          */
1051         if (retval > 0 && buffer_mapped(bh))
1052                 return retval;
1053
1054         /*
1055          * New blocks allocate and/or writing to uninitialized extent
1056          * will possibly result in updating i_data, so we take
1057          * the write lock of i_data_sem, and call get_blocks()
1058          * with create == 1 flag.
1059          */
1060         down_write((&EXT4_I(inode)->i_data_sem));
1061
1062         /*
1063          * if the caller is from delayed allocation writeout path
1064          * we have already reserved fs blocks for allocation
1065          * let the underlying get_block() function know to
1066          * avoid double accounting
1067          */
1068         if (flag)
1069                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1070         /*
1071          * We need to check for EXT4 here because migrate
1072          * could have changed the inode type in between
1073          */
1074         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1075                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1076                                 bh, create, extend_disksize);
1077         } else {
1078                 retval = ext4_get_blocks_handle(handle, inode, block,
1079                                 max_blocks, bh, create, extend_disksize);
1080
1081                 if (retval > 0 && buffer_new(bh)) {
1082                         /*
1083                          * We allocated new blocks which will result in
1084                          * i_data's format changing.  Force the migrate
1085                          * to fail by clearing migrate flags
1086                          */
1087                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1088                                                         ~EXT4_EXT_MIGRATE;
1089                 }
1090         }
1091
1092         if (flag) {
1093                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1094                 /*
1095                  * Update reserved blocks/metadata blocks
1096                  * after successful block allocation
1097                  * which were deferred till now
1098                  */
1099                 if ((retval > 0) && buffer_delay(bh))
1100                         ext4_da_release_space(inode, retval, 0);
1101         }
1102
1103         up_write((&EXT4_I(inode)->i_data_sem));
1104         return retval;
1105 }
1106
1107 static int ext4_get_block(struct inode *inode, sector_t iblock,
1108                         struct buffer_head *bh_result, int create)
1109 {
1110         handle_t *handle = ext4_journal_current_handle();
1111         int ret = 0, started = 0;
1112         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1113
1114         if (create && !handle) {
1115                 /* Direct IO write... */
1116                 if (max_blocks > DIO_MAX_BLOCKS)
1117                         max_blocks = DIO_MAX_BLOCKS;
1118                 handle = ext4_journal_start(inode, DIO_CREDITS +
1119                               2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1120                 if (IS_ERR(handle)) {
1121                         ret = PTR_ERR(handle);
1122                         goto out;
1123                 }
1124                 started = 1;
1125         }
1126
1127         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1128                                         max_blocks, bh_result, create, 0, 0);
1129         if (ret > 0) {
1130                 bh_result->b_size = (ret << inode->i_blkbits);
1131                 ret = 0;
1132         }
1133         if (started)
1134                 ext4_journal_stop(handle);
1135 out:
1136         return ret;
1137 }
1138
1139 /*
1140  * `handle' can be NULL if create is zero
1141  */
1142 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1143                                 ext4_lblk_t block, int create, int *errp)
1144 {
1145         struct buffer_head dummy;
1146         int fatal = 0, err;
1147
1148         J_ASSERT(handle != NULL || create == 0);
1149
1150         dummy.b_state = 0;
1151         dummy.b_blocknr = -1000;
1152         buffer_trace_init(&dummy.b_history);
1153         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1154                                         &dummy, create, 1, 0);
1155         /*
1156          * ext4_get_blocks_handle() returns number of blocks
1157          * mapped. 0 in case of a HOLE.
1158          */
1159         if (err > 0) {
1160                 if (err > 1)
1161                         WARN_ON(1);
1162                 err = 0;
1163         }
1164         *errp = err;
1165         if (!err && buffer_mapped(&dummy)) {
1166                 struct buffer_head *bh;
1167                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1168                 if (!bh) {
1169                         *errp = -EIO;
1170                         goto err;
1171                 }
1172                 if (buffer_new(&dummy)) {
1173                         J_ASSERT(create != 0);
1174                         J_ASSERT(handle != NULL);
1175
1176                         /*
1177                          * Now that we do not always journal data, we should
1178                          * keep in mind whether this should always journal the
1179                          * new buffer as metadata.  For now, regular file
1180                          * writes use ext4_get_block instead, so it's not a
1181                          * problem.
1182                          */
1183                         lock_buffer(bh);
1184                         BUFFER_TRACE(bh, "call get_create_access");
1185                         fatal = ext4_journal_get_create_access(handle, bh);
1186                         if (!fatal && !buffer_uptodate(bh)) {
1187                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1188                                 set_buffer_uptodate(bh);
1189                         }
1190                         unlock_buffer(bh);
1191                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1192                         err = ext4_journal_dirty_metadata(handle, bh);
1193                         if (!fatal)
1194                                 fatal = err;
1195                 } else {
1196                         BUFFER_TRACE(bh, "not a new buffer");
1197                 }
1198                 if (fatal) {
1199                         *errp = fatal;
1200                         brelse(bh);
1201                         bh = NULL;
1202                 }
1203                 return bh;
1204         }
1205 err:
1206         return NULL;
1207 }
1208
1209 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1210                                ext4_lblk_t block, int create, int *err)
1211 {
1212         struct buffer_head * bh;
1213
1214         bh = ext4_getblk(handle, inode, block, create, err);
1215         if (!bh)
1216                 return bh;
1217         if (buffer_uptodate(bh))
1218                 return bh;
1219         ll_rw_block(READ_META, 1, &bh);
1220         wait_on_buffer(bh);
1221         if (buffer_uptodate(bh))
1222                 return bh;
1223         put_bh(bh);
1224         *err = -EIO;
1225         return NULL;
1226 }
1227
1228 static int walk_page_buffers(   handle_t *handle,
1229                                 struct buffer_head *head,
1230                                 unsigned from,
1231                                 unsigned to,
1232                                 int *partial,
1233                                 int (*fn)(      handle_t *handle,
1234                                                 struct buffer_head *bh))
1235 {
1236         struct buffer_head *bh;
1237         unsigned block_start, block_end;
1238         unsigned blocksize = head->b_size;
1239         int err, ret = 0;
1240         struct buffer_head *next;
1241
1242         for (   bh = head, block_start = 0;
1243                 ret == 0 && (bh != head || !block_start);
1244                 block_start = block_end, bh = next)
1245         {
1246                 next = bh->b_this_page;
1247                 block_end = block_start + blocksize;
1248                 if (block_end <= from || block_start >= to) {
1249                         if (partial && !buffer_uptodate(bh))
1250                                 *partial = 1;
1251                         continue;
1252                 }
1253                 err = (*fn)(handle, bh);
1254                 if (!ret)
1255                         ret = err;
1256         }
1257         return ret;
1258 }
1259
1260 /*
1261  * To preserve ordering, it is essential that the hole instantiation and
1262  * the data write be encapsulated in a single transaction.  We cannot
1263  * close off a transaction and start a new one between the ext4_get_block()
1264  * and the commit_write().  So doing the jbd2_journal_start at the start of
1265  * prepare_write() is the right place.
1266  *
1267  * Also, this function can nest inside ext4_writepage() ->
1268  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1269  * has generated enough buffer credits to do the whole page.  So we won't
1270  * block on the journal in that case, which is good, because the caller may
1271  * be PF_MEMALLOC.
1272  *
1273  * By accident, ext4 can be reentered when a transaction is open via
1274  * quota file writes.  If we were to commit the transaction while thus
1275  * reentered, there can be a deadlock - we would be holding a quota
1276  * lock, and the commit would never complete if another thread had a
1277  * transaction open and was blocking on the quota lock - a ranking
1278  * violation.
1279  *
1280  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1281  * will _not_ run commit under these circumstances because handle->h_ref
1282  * is elevated.  We'll still have enough credits for the tiny quotafile
1283  * write.
1284  */
1285 static int do_journal_get_write_access(handle_t *handle,
1286                                         struct buffer_head *bh)
1287 {
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         return ext4_journal_get_write_access(handle, bh);
1291 }
1292
1293 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1294                                 loff_t pos, unsigned len, unsigned flags,
1295                                 struct page **pagep, void **fsdata)
1296 {
1297         struct inode *inode = mapping->host;
1298         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1299         handle_t *handle;
1300         int retries = 0;
1301         struct page *page;
1302         pgoff_t index;
1303         unsigned from, to;
1304
1305         index = pos >> PAGE_CACHE_SHIFT;
1306         from = pos & (PAGE_CACHE_SIZE - 1);
1307         to = from + len;
1308
1309 retry:
1310         handle = ext4_journal_start(inode, needed_blocks);
1311         if (IS_ERR(handle)) {
1312                 ret = PTR_ERR(handle);
1313                 goto out;
1314         }
1315
1316         page = __grab_cache_page(mapping, index);
1317         if (!page) {
1318                 ext4_journal_stop(handle);
1319                 ret = -ENOMEM;
1320                 goto out;
1321         }
1322         *pagep = page;
1323
1324         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1325                                                         ext4_get_block);
1326
1327         if (!ret && ext4_should_journal_data(inode)) {
1328                 ret = walk_page_buffers(handle, page_buffers(page),
1329                                 from, to, NULL, do_journal_get_write_access);
1330         }
1331
1332         if (ret) {
1333                 unlock_page(page);
1334                 ext4_journal_stop(handle);
1335                 page_cache_release(page);
1336         }
1337
1338         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1339                 goto retry;
1340 out:
1341         return ret;
1342 }
1343
1344 /* For write_end() in data=journal mode */
1345 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1346 {
1347         if (!buffer_mapped(bh) || buffer_freed(bh))
1348                 return 0;
1349         set_buffer_uptodate(bh);
1350         return ext4_journal_dirty_metadata(handle, bh);
1351 }
1352
1353 /*
1354  * We need to pick up the new inode size which generic_commit_write gave us
1355  * `file' can be NULL - eg, when called from page_symlink().
1356  *
1357  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1358  * buffers are managed internally.
1359  */
1360 static int ext4_ordered_write_end(struct file *file,
1361                                 struct address_space *mapping,
1362                                 loff_t pos, unsigned len, unsigned copied,
1363                                 struct page *page, void *fsdata)
1364 {
1365         handle_t *handle = ext4_journal_current_handle();
1366         struct inode *inode = mapping->host;
1367         unsigned from, to;
1368         int ret = 0, ret2;
1369
1370         from = pos & (PAGE_CACHE_SIZE - 1);
1371         to = from + len;
1372
1373         ret = ext4_jbd2_file_inode(handle, inode);
1374
1375         if (ret == 0) {
1376                 /*
1377                  * generic_write_end() will run mark_inode_dirty() if i_size
1378                  * changes.  So let's piggyback the i_disksize mark_inode_dirty
1379                  * into that.
1380                  */
1381                 loff_t new_i_size;
1382
1383                 new_i_size = pos + copied;
1384                 if (new_i_size > EXT4_I(inode)->i_disksize)
1385                         EXT4_I(inode)->i_disksize = new_i_size;
1386                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1387                                                         page, fsdata);
1388                 copied = ret2;
1389                 if (ret2 < 0)
1390                         ret = ret2;
1391         }
1392         ret2 = ext4_journal_stop(handle);
1393         if (!ret)
1394                 ret = ret2;
1395
1396         return ret ? ret : copied;
1397 }
1398
1399 static int ext4_writeback_write_end(struct file *file,
1400                                 struct address_space *mapping,
1401                                 loff_t pos, unsigned len, unsigned copied,
1402                                 struct page *page, void *fsdata)
1403 {
1404         handle_t *handle = ext4_journal_current_handle();
1405         struct inode *inode = mapping->host;
1406         int ret = 0, ret2;
1407         loff_t new_i_size;
1408
1409         new_i_size = pos + copied;
1410         if (new_i_size > EXT4_I(inode)->i_disksize)
1411                 EXT4_I(inode)->i_disksize = new_i_size;
1412
1413         ret2 = generic_write_end(file, mapping, pos, len, copied,
1414                                                         page, fsdata);
1415         copied = ret2;
1416         if (ret2 < 0)
1417                 ret = ret2;
1418
1419         ret2 = ext4_journal_stop(handle);
1420         if (!ret)
1421                 ret = ret2;
1422
1423         return ret ? ret : copied;
1424 }
1425
1426 static int ext4_journalled_write_end(struct file *file,
1427                                 struct address_space *mapping,
1428                                 loff_t pos, unsigned len, unsigned copied,
1429                                 struct page *page, void *fsdata)
1430 {
1431         handle_t *handle = ext4_journal_current_handle();
1432         struct inode *inode = mapping->host;
1433         int ret = 0, ret2;
1434         int partial = 0;
1435         unsigned from, to;
1436
1437         from = pos & (PAGE_CACHE_SIZE - 1);
1438         to = from + len;
1439
1440         if (copied < len) {
1441                 if (!PageUptodate(page))
1442                         copied = 0;
1443                 page_zero_new_buffers(page, from+copied, to);
1444         }
1445
1446         ret = walk_page_buffers(handle, page_buffers(page), from,
1447                                 to, &partial, write_end_fn);
1448         if (!partial)
1449                 SetPageUptodate(page);
1450         if (pos+copied > inode->i_size)
1451                 i_size_write(inode, pos+copied);
1452         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1453         if (inode->i_size > EXT4_I(inode)->i_disksize) {
1454                 EXT4_I(inode)->i_disksize = inode->i_size;
1455                 ret2 = ext4_mark_inode_dirty(handle, inode);
1456                 if (!ret)
1457                         ret = ret2;
1458         }
1459
1460         unlock_page(page);
1461         ret2 = ext4_journal_stop(handle);
1462         if (!ret)
1463                 ret = ret2;
1464         page_cache_release(page);
1465
1466         return ret ? ret : copied;
1467 }
1468 /*
1469  * Calculate the number of metadata blocks need to reserve
1470  * to allocate @blocks for non extent file based file
1471  */
1472 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1473 {
1474         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1475         int ind_blks, dind_blks, tind_blks;
1476
1477         /* number of new indirect blocks needed */
1478         ind_blks = (blocks + icap - 1) / icap;
1479
1480         dind_blks = (ind_blks + icap - 1) / icap;
1481
1482         tind_blks = 1;
1483
1484         return ind_blks + dind_blks + tind_blks;
1485 }
1486
1487 /*
1488  * Calculate the number of metadata blocks need to reserve
1489  * to allocate given number of blocks
1490  */
1491 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1492 {
1493         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1494                 return ext4_ext_calc_metadata_amount(inode, blocks);
1495
1496         return ext4_indirect_calc_metadata_amount(inode, blocks);
1497 }
1498
1499 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1500 {
1501        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502        unsigned long md_needed, mdblocks, total = 0;
1503
1504         /*
1505          * recalculate the amount of metadata blocks to reserve
1506          * in order to allocate nrblocks
1507          * worse case is one extent per block
1508          */
1509         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1511         mdblocks = ext4_calc_metadata_amount(inode, total);
1512         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1513
1514         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1515         total = md_needed + nrblocks;
1516
1517         if (ext4_has_free_blocks(sbi, total) < total) {
1518                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1519                 return -ENOSPC;
1520         }
1521
1522         /* reduce fs free blocks counter */
1523         percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1524
1525         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1526         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1527
1528         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1529         return 0;       /* success */
1530 }
1531
1532 void ext4_da_release_space(struct inode *inode, int used, int to_free)
1533 {
1534         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535         int total, mdb, mdb_free, release;
1536
1537         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1538         /* recalculate the number of metablocks still need to be reserved */
1539         total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
1540         mdb = ext4_calc_metadata_amount(inode, total);
1541
1542         /* figure out how many metablocks to release */
1543         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1544         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1545
1546         /* Account for allocated meta_blocks */
1547         mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1548
1549         release = to_free + mdb_free;
1550
1551         /* update fs free blocks counter for truncate case */
1552         percpu_counter_add(&sbi->s_freeblocks_counter, release);
1553
1554         /* update per-inode reservations */
1555         BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
1556         EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);
1557
1558         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1559         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1560         EXT4_I(inode)->i_allocated_meta_blocks = 0;
1561         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1562 }
1563
1564 static void ext4_da_page_release_reservation(struct page *page,
1565                                                 unsigned long offset)
1566 {
1567         int to_release = 0;
1568         struct buffer_head *head, *bh;
1569         unsigned int curr_off = 0;
1570
1571         head = page_buffers(page);
1572         bh = head;
1573         do {
1574                 unsigned int next_off = curr_off + bh->b_size;
1575
1576                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1577                         to_release++;
1578                         clear_buffer_delay(bh);
1579                 }
1580                 curr_off = next_off;
1581         } while ((bh = bh->b_this_page) != head);
1582         ext4_da_release_space(page->mapping->host, 0, to_release);
1583 }
1584
1585 /*
1586  * Delayed allocation stuff
1587  */
1588
1589 struct mpage_da_data {
1590         struct inode *inode;
1591         struct buffer_head lbh;                 /* extent of blocks */
1592         unsigned long first_page, next_page;    /* extent of pages */
1593         get_block_t *get_block;
1594         struct writeback_control *wbc;
1595 };
1596
1597 /*
1598  * mpage_da_submit_io - walks through extent of pages and try to write
1599  * them with __mpage_writepage()
1600  *
1601  * @mpd->inode: inode
1602  * @mpd->first_page: first page of the extent
1603  * @mpd->next_page: page after the last page of the extent
1604  * @mpd->get_block: the filesystem's block mapper function
1605  *
1606  * By the time mpage_da_submit_io() is called we expect all blocks
1607  * to be allocated. this may be wrong if allocation failed.
1608  *
1609  * As pages are already locked by write_cache_pages(), we can't use it
1610  */
1611 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1612 {
1613         struct address_space *mapping = mpd->inode->i_mapping;
1614         struct mpage_data mpd_pp = {
1615                 .bio = NULL,
1616                 .last_block_in_bio = 0,
1617                 .get_block = mpd->get_block,
1618                 .use_writepage = 1,
1619         };
1620         int ret = 0, err, nr_pages, i;
1621         unsigned long index, end;
1622         struct pagevec pvec;
1623
1624         BUG_ON(mpd->next_page <= mpd->first_page);
1625
1626         pagevec_init(&pvec, 0);
1627         index = mpd->first_page;
1628         end = mpd->next_page - 1;
1629
1630         while (index <= end) {
1631                 /* XXX: optimize tail */
1632                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1633                 if (nr_pages == 0)
1634                         break;
1635                 for (i = 0; i < nr_pages; i++) {
1636                         struct page *page = pvec.pages[i];
1637
1638                         index = page->index;
1639                         if (index > end)
1640                                 break;
1641                         index++;
1642
1643                         err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1644
1645                         /*
1646                          * In error case, we have to continue because
1647                          * remaining pages are still locked
1648                          * XXX: unlock and re-dirty them?
1649                          */
1650                         if (ret == 0)
1651                                 ret = err;
1652                 }
1653                 pagevec_release(&pvec);
1654         }
1655         if (mpd_pp.bio)
1656                 mpage_bio_submit(WRITE, mpd_pp.bio);
1657
1658         return ret;
1659 }
1660
1661 /*
1662  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1663  *
1664  * @mpd->inode - inode to walk through
1665  * @exbh->b_blocknr - first block on a disk
1666  * @exbh->b_size - amount of space in bytes
1667  * @logical - first logical block to start assignment with
1668  *
1669  * the function goes through all passed space and put actual disk
1670  * block numbers into buffer heads, dropping BH_Delay
1671  */
1672 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1673                                  struct buffer_head *exbh)
1674 {
1675         struct inode *inode = mpd->inode;
1676         struct address_space *mapping = inode->i_mapping;
1677         int blocks = exbh->b_size >> inode->i_blkbits;
1678         sector_t pblock = exbh->b_blocknr, cur_logical;
1679         struct buffer_head *head, *bh;
1680         unsigned long index, end;
1681         struct pagevec pvec;
1682         int nr_pages, i;
1683
1684         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1685         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1686         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1687
1688         pagevec_init(&pvec, 0);
1689
1690         while (index <= end) {
1691                 /* XXX: optimize tail */
1692                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1693                 if (nr_pages == 0)
1694                         break;
1695                 for (i = 0; i < nr_pages; i++) {
1696                         struct page *page = pvec.pages[i];
1697
1698                         index = page->index;
1699                         if (index > end)
1700                                 break;
1701                         index++;
1702
1703                         BUG_ON(!PageLocked(page));
1704                         BUG_ON(PageWriteback(page));
1705                         BUG_ON(!page_has_buffers(page));
1706
1707                         bh = page_buffers(page);
1708                         head = bh;
1709
1710                         /* skip blocks out of the range */
1711                         do {
1712                                 if (cur_logical >= logical)
1713                                         break;
1714                                 cur_logical++;
1715                         } while ((bh = bh->b_this_page) != head);
1716
1717                         do {
1718                                 if (cur_logical >= logical + blocks)
1719                                         break;
1720                                 if (buffer_delay(bh)) {
1721                                         bh->b_blocknr = pblock;
1722                                         clear_buffer_delay(bh);
1723                                 } else if (buffer_mapped(bh))
1724                                         BUG_ON(bh->b_blocknr != pblock);
1725
1726                                 cur_logical++;
1727                                 pblock++;
1728                         } while ((bh = bh->b_this_page) != head);
1729                 }
1730                 pagevec_release(&pvec);
1731         }
1732 }
1733
1734
1735 /*
1736  * __unmap_underlying_blocks - just a helper function to unmap
1737  * set of blocks described by @bh
1738  */
1739 static inline void __unmap_underlying_blocks(struct inode *inode,
1740                                              struct buffer_head *bh)
1741 {
1742         struct block_device *bdev = inode->i_sb->s_bdev;
1743         int blocks, i;
1744
1745         blocks = bh->b_size >> inode->i_blkbits;
1746         for (i = 0; i < blocks; i++)
1747                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1748 }
1749
1750 /*
1751  * mpage_da_map_blocks - go through given space
1752  *
1753  * @mpd->lbh - bh describing space
1754  * @mpd->get_block - the filesystem's block mapper function
1755  *
1756  * The function skips space we know is already mapped to disk blocks.
1757  *
1758  * The function ignores errors ->get_block() returns, thus real
1759  * error handling is postponed to __mpage_writepage()
1760  */
1761 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1762 {
1763         struct buffer_head *lbh = &mpd->lbh;
1764         int err = 0, remain = lbh->b_size;
1765         sector_t next = lbh->b_blocknr;
1766         struct buffer_head new;
1767
1768         /*
1769          * We consider only non-mapped and non-allocated blocks
1770          */
1771         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1772                 return;
1773
1774         while (remain) {
1775                 new.b_state = lbh->b_state;
1776                 new.b_blocknr = 0;
1777                 new.b_size = remain;
1778                 err = mpd->get_block(mpd->inode, next, &new, 1);
1779                 if (err) {
1780                         /*
1781                          * Rather than implement own error handling
1782                          * here, we just leave remaining blocks
1783                          * unallocated and try again with ->writepage()
1784                          */
1785                         break;
1786                 }
1787                 BUG_ON(new.b_size == 0);
1788
1789                 if (buffer_new(&new))
1790                         __unmap_underlying_blocks(mpd->inode, &new);
1791
1792                 /*
1793                  * If blocks are delayed marked, we need to
1794                  * put actual blocknr and drop delayed bit
1795                  */
1796                 if (buffer_delay(lbh))
1797                         mpage_put_bnr_to_bhs(mpd, next, &new);
1798
1799                 /* go for the remaining blocks */
1800                 next += new.b_size >> mpd->inode->i_blkbits;
1801                 remain -= new.b_size;
1802         }
1803 }
1804
1805 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1806
1807 /*
1808  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1809  *
1810  * @mpd->lbh - extent of blocks
1811  * @logical - logical number of the block in the file
1812  * @bh - bh of the block (used to access block's state)
1813  *
1814  * the function is used to collect contig. blocks in same state
1815  */
1816 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1817                                    sector_t logical, struct buffer_head *bh)
1818 {
1819         struct buffer_head *lbh = &mpd->lbh;
1820         sector_t next;
1821
1822         next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1823
1824         /*
1825          * First block in the extent
1826          */
1827         if (lbh->b_size == 0) {
1828                 lbh->b_blocknr = logical;
1829                 lbh->b_size = bh->b_size;
1830                 lbh->b_state = bh->b_state & BH_FLAGS;
1831                 return;
1832         }
1833
1834         /*
1835          * Can we merge the block to our big extent?
1836          */
1837         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1838                 lbh->b_size += bh->b_size;
1839                 return;
1840         }
1841
1842         /*
1843          * We couldn't merge the block to our extent, so we
1844          * need to flush current  extent and start new one
1845          */
1846         mpage_da_map_blocks(mpd);
1847
1848         /*
1849          * Now start a new extent
1850          */
1851         lbh->b_size = bh->b_size;
1852         lbh->b_state = bh->b_state & BH_FLAGS;
1853         lbh->b_blocknr = logical;
1854 }
1855
1856 /*
1857  * __mpage_da_writepage - finds extent of pages and blocks
1858  *
1859  * @page: page to consider
1860  * @wbc: not used, we just follow rules
1861  * @data: context
1862  *
1863  * The function finds extents of pages and scan them for all blocks.
1864  */
1865 static int __mpage_da_writepage(struct page *page,
1866                                 struct writeback_control *wbc, void *data)
1867 {
1868         struct mpage_da_data *mpd = data;
1869         struct inode *inode = mpd->inode;
1870         struct buffer_head *bh, *head, fake;
1871         sector_t logical;
1872
1873         /*
1874          * Can we merge this page to current extent?
1875          */
1876         if (mpd->next_page != page->index) {
1877                 /*
1878                  * Nope, we can't. So, we map non-allocated blocks
1879                  * and start IO on them using __mpage_writepage()
1880                  */
1881                 if (mpd->next_page != mpd->first_page) {
1882                         mpage_da_map_blocks(mpd);
1883                         mpage_da_submit_io(mpd);
1884                 }
1885
1886                 /*
1887                  * Start next extent of pages ...
1888                  */
1889                 mpd->first_page = page->index;
1890
1891                 /*
1892                  * ... and blocks
1893                  */
1894                 mpd->lbh.b_size = 0;
1895                 mpd->lbh.b_state = 0;
1896                 mpd->lbh.b_blocknr = 0;
1897         }
1898
1899         mpd->next_page = page->index + 1;
1900         logical = (sector_t) page->index <<
1901                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
1902
1903         if (!page_has_buffers(page)) {
1904                 /*
1905                  * There is no attached buffer heads yet (mmap?)
1906                  * we treat the page asfull of dirty blocks
1907                  */
1908                 bh = &fake;
1909                 bh->b_size = PAGE_CACHE_SIZE;
1910                 bh->b_state = 0;
1911                 set_buffer_dirty(bh);
1912                 set_buffer_uptodate(bh);
1913                 mpage_add_bh_to_extent(mpd, logical, bh);
1914         } else {
1915                 /*
1916                  * Page with regular buffer heads, just add all dirty ones
1917                  */
1918                 head = page_buffers(page);
1919                 bh = head;
1920                 do {
1921                         BUG_ON(buffer_locked(bh));
1922                         if (buffer_dirty(bh))
1923                                 mpage_add_bh_to_extent(mpd, logical, bh);
1924                         logical++;
1925                 } while ((bh = bh->b_this_page) != head);
1926         }
1927
1928         return 0;
1929 }
1930
1931 /*
1932  * mpage_da_writepages - walk the list of dirty pages of the given
1933  * address space, allocates non-allocated blocks, maps newly-allocated
1934  * blocks to existing bhs and issue IO them
1935  *
1936  * @mapping: address space structure to write
1937  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1938  * @get_block: the filesystem's block mapper function.
1939  *
1940  * This is a library function, which implements the writepages()
1941  * address_space_operation.
1942  *
1943  * In order to avoid duplication of logic that deals with partial pages,
1944  * multiple bio per page, etc, we find non-allocated blocks, allocate
1945  * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1946  *
1947  * It's important that we call __mpage_writepage() only once for each
1948  * involved page, otherwise we'd have to implement more complicated logic
1949  * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1950  *
1951  * See comments to mpage_writepages()
1952  */
1953 static int mpage_da_writepages(struct address_space *mapping,
1954                                struct writeback_control *wbc,
1955                                get_block_t get_block)
1956 {
1957         struct mpage_da_data mpd;
1958         int ret;
1959
1960         if (!get_block)
1961                 return generic_writepages(mapping, wbc);
1962
1963         mpd.wbc = wbc;
1964         mpd.inode = mapping->host;
1965         mpd.lbh.b_size = 0;
1966         mpd.lbh.b_state = 0;
1967         mpd.lbh.b_blocknr = 0;
1968         mpd.first_page = 0;
1969         mpd.next_page = 0;
1970         mpd.get_block = get_block;
1971
1972         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1973
1974         /*
1975          * Handle last extent of pages
1976          */
1977         if (mpd.next_page != mpd.first_page) {
1978                 mpage_da_map_blocks(&mpd);
1979                 mpage_da_submit_io(&mpd);
1980         }
1981
1982         return ret;
1983 }
1984
1985 /*
1986  * this is a special callback for ->write_begin() only
1987  * it's intention is to return mapped block or reserve space
1988  */
1989 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1990                                   struct buffer_head *bh_result, int create)
1991 {
1992         int ret = 0;
1993
1994         BUG_ON(create == 0);
1995         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1996
1997         /*
1998          * first, we need to know whether the block is allocated already
1999          * preallocated blocks are unmapped but should treated
2000          * the same as allocated blocks.
2001          */
2002         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2003         if ((ret == 0) && !buffer_delay(bh_result)) {
2004                 /* the block isn't (pre)allocated yet, let's reserve space */
2005                 /*
2006                  * XXX: __block_prepare_write() unmaps passed block,
2007                  * is it OK?
2008                  */
2009                 ret = ext4_da_reserve_space(inode, 1);
2010                 if (ret)
2011                         /* not enough space to reserve */
2012                         return ret;
2013
2014                 map_bh(bh_result, inode->i_sb, 0);
2015                 set_buffer_new(bh_result);
2016                 set_buffer_delay(bh_result);
2017         } else if (ret > 0) {
2018                 bh_result->b_size = (ret << inode->i_blkbits);
2019                 ret = 0;
2020         }
2021
2022         return ret;
2023 }
2024 #define         EXT4_DELALLOC_RSVED     1
2025 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2026                                    struct buffer_head *bh_result, int create)
2027 {
2028         int ret;
2029         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2030         loff_t disksize = EXT4_I(inode)->i_disksize;
2031         handle_t *handle = NULL;
2032
2033         handle = ext4_journal_current_handle();
2034         if (!handle) {
2035                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2036                                    bh_result, 0, 0, 0);
2037                 BUG_ON(!ret);
2038         } else {
2039                 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2040                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
2041         }
2042
2043         if (ret > 0) {
2044                 bh_result->b_size = (ret << inode->i_blkbits);
2045
2046                 /*
2047                  * Update on-disk size along with block allocation
2048                  * we don't use 'extend_disksize' as size may change
2049                  * within already allocated block -bzzz
2050                  */
2051                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2052                 if (disksize > i_size_read(inode))
2053                         disksize = i_size_read(inode);
2054                 if (disksize > EXT4_I(inode)->i_disksize) {
2055                         /*
2056                          * XXX: replace with spinlock if seen contended -bzzz
2057                          */
2058                         down_write(&EXT4_I(inode)->i_data_sem);
2059                         if (disksize > EXT4_I(inode)->i_disksize)
2060                                 EXT4_I(inode)->i_disksize = disksize;
2061                         up_write(&EXT4_I(inode)->i_data_sem);
2062
2063                         if (EXT4_I(inode)->i_disksize == disksize) {
2064                                 ret = ext4_mark_inode_dirty(handle, inode);
2065                                 return ret;
2066                         }
2067                 }
2068                 ret = 0;
2069         }
2070         return ret;
2071 }
2072
2073 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2074 {
2075         /*
2076          * unmapped buffer is possible for holes.
2077          * delay buffer is possible with delayed allocation
2078          */
2079         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2080 }
2081
2082 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2083                                    struct buffer_head *bh_result, int create)
2084 {
2085         int ret = 0;
2086         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2087
2088         /*
2089          * we don't want to do block allocation in writepage
2090          * so call get_block_wrap with create = 0
2091          */
2092         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2093                                    bh_result, 0, 0, 0);
2094         if (ret > 0) {
2095                 bh_result->b_size = (ret << inode->i_blkbits);
2096                 ret = 0;
2097         }
2098         return ret;
2099 }
2100
2101 /*
2102  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2103  * get called via journal_submit_inode_data_buffers (no journal handle)
2104  * get called via shrink_page_list via pdflush (no journal handle)
2105  * or grab_page_cache when doing write_begin (have journal handle)
2106  */
2107 static int ext4_da_writepage(struct page *page,
2108                                 struct writeback_control *wbc)
2109 {
2110         int ret = 0;
2111         loff_t size;
2112         unsigned long len;
2113         struct buffer_head *page_bufs;
2114         struct inode *inode = page->mapping->host;
2115
2116         size = i_size_read(inode);
2117         if (page->index == size >> PAGE_CACHE_SHIFT)
2118                 len = size & ~PAGE_CACHE_MASK;
2119         else
2120                 len = PAGE_CACHE_SIZE;
2121
2122         if (page_has_buffers(page)) {
2123                 page_bufs = page_buffers(page);
2124                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2125                                         ext4_bh_unmapped_or_delay)) {
2126                         /*
2127                          * We don't want to do  block allocation
2128                          * So redirty the page and return
2129                          * We may reach here when we do a journal commit
2130                          * via journal_submit_inode_data_buffers.
2131                          * If we don't have mapping block we just ignore
2132                          * them. We can also reach here via shrink_page_list
2133                          */
2134                         redirty_page_for_writepage(wbc, page);
2135                         unlock_page(page);
2136                         return 0;
2137                 }
2138         } else {
2139                 /*
2140                  * The test for page_has_buffers() is subtle:
2141                  * We know the page is dirty but it lost buffers. That means
2142                  * that at some moment in time after write_begin()/write_end()
2143                  * has been called all buffers have been clean and thus they
2144                  * must have been written at least once. So they are all
2145                  * mapped and we can happily proceed with mapping them
2146                  * and writing the page.
2147                  *
2148                  * Try to initialize the buffer_heads and check whether
2149                  * all are mapped and non delay. We don't want to
2150                  * do block allocation here.
2151                  */
2152                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2153                                                 ext4_normal_get_block_write);
2154                 if (!ret) {
2155                         page_bufs = page_buffers(page);
2156                         /* check whether all are mapped and non delay */
2157                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2158                                                 ext4_bh_unmapped_or_delay)) {
2159                                 redirty_page_for_writepage(wbc, page);
2160                                 unlock_page(page);
2161                                 return 0;
2162                         }
2163                 } else {
2164                         /*
2165                          * We can't do block allocation here
2166                          * so just redity the page and unlock
2167                          * and return
2168                          */
2169                         redirty_page_for_writepage(wbc, page);
2170                         unlock_page(page);
2171                         return 0;
2172                 }
2173         }
2174
2175         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2176                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2177         else
2178                 ret = block_write_full_page(page,
2179                                                 ext4_normal_get_block_write,
2180                                                 wbc);
2181
2182         return ret;
2183 }
2184
2185 /*
2186  * For now just follow the DIO way to estimate the max credits
2187  * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2188  * todo: need to calculate the max credits need for
2189  * extent based files, currently the DIO credits is based on
2190  * indirect-blocks mapping way.
2191  *
2192  * Probably should have a generic way to calculate credits
2193  * for DIO, writepages, and truncate
2194  */
2195 #define EXT4_MAX_WRITEBACK_PAGES      DIO_MAX_BLOCKS
2196 #define EXT4_MAX_WRITEBACK_CREDITS    DIO_CREDITS
2197
2198 static int ext4_da_writepages(struct address_space *mapping,
2199                                 struct writeback_control *wbc)
2200 {
2201         struct inode *inode = mapping->host;
2202         handle_t *handle = NULL;
2203         int needed_blocks;
2204         int ret = 0;
2205         long to_write;
2206         loff_t range_start = 0;
2207
2208         /*
2209          * No pages to write? This is mainly a kludge to avoid starting
2210          * a transaction for special inodes like journal inode on last iput()
2211          * because that could violate lock ordering on umount
2212          */
2213         if (!mapping->nrpages)
2214                 return 0;
2215
2216         /*
2217          * Estimate the worse case needed credits to write out
2218          * EXT4_MAX_BUF_BLOCKS pages
2219          */
2220         needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2221
2222         to_write = wbc->nr_to_write;
2223         if (!wbc->range_cyclic) {
2224                 /*
2225                  * If range_cyclic is not set force range_cont
2226                  * and save the old writeback_index
2227                  */
2228                 wbc->range_cont = 1;
2229                 range_start =  wbc->range_start;
2230         }
2231
2232         while (!ret && to_write) {
2233                 /* start a new transaction*/
2234                 handle = ext4_journal_start(inode, needed_blocks);
2235                 if (IS_ERR(handle)) {
2236                         ret = PTR_ERR(handle);
2237                         goto out_writepages;
2238                 }
2239                 if (ext4_should_order_data(inode)) {
2240                         /*
2241                          * With ordered mode we need to add
2242                          * the inode to the journal handle
2243                          * when we do block allocation.
2244                          */
2245                         ret = ext4_jbd2_file_inode(handle, inode);
2246                         if (ret) {
2247                                 ext4_journal_stop(handle);
2248                                 goto out_writepages;
2249                         }
2250
2251                 }
2252                 /*
2253                  * set the max dirty pages could be write at a time
2254                  * to fit into the reserved transaction credits
2255                  */
2256                 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2257                         wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2258
2259                 to_write -= wbc->nr_to_write;
2260                 ret = mpage_da_writepages(mapping, wbc,
2261                                                 ext4_da_get_block_write);
2262                 ext4_journal_stop(handle);
2263                 if (wbc->nr_to_write) {
2264                         /*
2265                          * There is no more writeout needed
2266                          * or we requested for a noblocking writeout
2267                          * and we found the device congested
2268                          */
2269                         to_write += wbc->nr_to_write;
2270                         break;
2271                 }
2272                 wbc->nr_to_write = to_write;
2273         }
2274
2275 out_writepages:
2276         wbc->nr_to_write = to_write;
2277         if (range_start)
2278                 wbc->range_start = range_start;
2279         return ret;
2280 }
2281
2282 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2283                                 loff_t pos, unsigned len, unsigned flags,
2284                                 struct page **pagep, void **fsdata)
2285 {
2286         int ret, retries = 0;
2287         struct page *page;
2288         pgoff_t index;
2289         unsigned from, to;
2290         struct inode *inode = mapping->host;
2291         handle_t *handle;
2292
2293         index = pos >> PAGE_CACHE_SHIFT;
2294         from = pos & (PAGE_CACHE_SIZE - 1);
2295         to = from + len;
2296
2297 retry:
2298         /*
2299          * With delayed allocation, we don't log the i_disksize update
2300          * if there is delayed block allocation. But we still need
2301          * to journalling the i_disksize update if writes to the end
2302          * of file which has an already mapped buffer.
2303          */
2304         handle = ext4_journal_start(inode, 1);
2305         if (IS_ERR(handle)) {
2306                 ret = PTR_ERR(handle);
2307                 goto out;
2308         }
2309
2310         page = __grab_cache_page(mapping, index);
2311         if (!page) {
2312                 ext4_journal_stop(handle);
2313                 ret = -ENOMEM;
2314                 goto out;
2315         }
2316         *pagep = page;
2317
2318         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2319                                                         ext4_da_get_block_prep);
2320         if (ret < 0) {
2321                 unlock_page(page);
2322                 ext4_journal_stop(handle);
2323                 page_cache_release(page);
2324         }
2325
2326         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2327                 goto retry;
2328 out:
2329         return ret;
2330 }
2331
2332 /*
2333  * Check if we should update i_disksize
2334  * when write to the end of file but not require block allocation
2335  */
2336 static int ext4_da_should_update_i_disksize(struct page *page,
2337                                          unsigned long offset)
2338 {
2339         struct buffer_head *bh;
2340         struct inode *inode = page->mapping->host;
2341         unsigned int idx;
2342         int i;
2343
2344         bh = page_buffers(page);
2345         idx = offset >> inode->i_blkbits;
2346
2347         for (i=0; i < idx; i++)
2348                 bh = bh->b_this_page;
2349
2350         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2351                 return 0;
2352         return 1;
2353 }
2354
2355 static int ext4_da_write_end(struct file *file,
2356                                 struct address_space *mapping,
2357                                 loff_t pos, unsigned len, unsigned copied,
2358                                 struct page *page, void *fsdata)
2359 {
2360         struct inode *inode = mapping->host;
2361         int ret = 0, ret2;
2362         handle_t *handle = ext4_journal_current_handle();
2363         loff_t new_i_size;
2364         unsigned long start, end;
2365
2366         start = pos & (PAGE_CACHE_SIZE - 1);
2367         end = start + copied -1;
2368
2369         /*
2370          * generic_write_end() will run mark_inode_dirty() if i_size
2371          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2372          * into that.
2373          */
2374
2375         new_i_size = pos + copied;
2376         if (new_i_size > EXT4_I(inode)->i_disksize) {
2377                 if (ext4_da_should_update_i_disksize(page, end)) {
2378                         down_write(&EXT4_I(inode)->i_data_sem);
2379                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2380                                 /*
2381                                  * Updating i_disksize when extending file
2382                                  * without needing block allocation
2383                                  */
2384                                 if (ext4_should_order_data(inode))
2385                                         ret = ext4_jbd2_file_inode(handle,
2386                                                                    inode);
2387
2388                                 EXT4_I(inode)->i_disksize = new_i_size;
2389                         }
2390                         up_write(&EXT4_I(inode)->i_data_sem);
2391                 }
2392         }
2393         ret2 = generic_write_end(file, mapping, pos, len, copied,
2394                                                         page, fsdata);
2395         copied = ret2;
2396         if (ret2 < 0)
2397                 ret = ret2;
2398         ret2 = ext4_journal_stop(handle);
2399         if (!ret)
2400                 ret = ret2;
2401
2402         return ret ? ret : copied;
2403 }
2404
2405 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2406 {
2407         /*
2408          * Drop reserved blocks
2409          */
2410         BUG_ON(!PageLocked(page));
2411         if (!page_has_buffers(page))
2412                 goto out;
2413
2414         ext4_da_page_release_reservation(page, offset);
2415
2416 out:
2417         ext4_invalidatepage(page, offset);
2418
2419         return;
2420 }
2421
2422
2423 /*
2424  * bmap() is special.  It gets used by applications such as lilo and by
2425  * the swapper to find the on-disk block of a specific piece of data.
2426  *
2427  * Naturally, this is dangerous if the block concerned is still in the
2428  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2429  * filesystem and enables swap, then they may get a nasty shock when the
2430  * data getting swapped to that swapfile suddenly gets overwritten by
2431  * the original zero's written out previously to the journal and
2432  * awaiting writeback in the kernel's buffer cache.
2433  *
2434  * So, if we see any bmap calls here on a modified, data-journaled file,
2435  * take extra steps to flush any blocks which might be in the cache.
2436  */
2437 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2438 {
2439         struct inode *inode = mapping->host;
2440         journal_t *journal;
2441         int err;
2442
2443         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2444                         test_opt(inode->i_sb, DELALLOC)) {
2445                 /*
2446                  * With delalloc we want to sync the file
2447                  * so that we can make sure we allocate
2448                  * blocks for file
2449                  */
2450                 filemap_write_and_wait(mapping);
2451         }
2452
2453         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2454                 /*
2455                  * This is a REALLY heavyweight approach, but the use of
2456                  * bmap on dirty files is expected to be extremely rare:
2457                  * only if we run lilo or swapon on a freshly made file
2458                  * do we expect this to happen.
2459                  *
2460                  * (bmap requires CAP_SYS_RAWIO so this does not
2461                  * represent an unprivileged user DOS attack --- we'd be
2462                  * in trouble if mortal users could trigger this path at
2463                  * will.)
2464                  *
2465                  * NB. EXT4_STATE_JDATA is not set on files other than
2466                  * regular files.  If somebody wants to bmap a directory
2467                  * or symlink and gets confused because the buffer
2468                  * hasn't yet been flushed to disk, they deserve
2469                  * everything they get.
2470                  */
2471
2472                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2473                 journal = EXT4_JOURNAL(inode);
2474                 jbd2_journal_lock_updates(journal);
2475                 err = jbd2_journal_flush(journal);
2476                 jbd2_journal_unlock_updates(journal);
2477
2478                 if (err)
2479                         return 0;
2480         }
2481
2482         return generic_block_bmap(mapping,block,ext4_get_block);
2483 }
2484
2485 static int bget_one(handle_t *handle, struct buffer_head *bh)
2486 {
2487         get_bh(bh);
2488         return 0;
2489 }
2490
2491 static int bput_one(handle_t *handle, struct buffer_head *bh)
2492 {
2493         put_bh(bh);
2494         return 0;
2495 }
2496
2497 /*
2498  * Note that we don't need to start a transaction unless we're journaling data
2499  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2500  * need to file the inode to the transaction's list in ordered mode because if
2501  * we are writing back data added by write(), the inode is already there and if
2502  * we are writing back data modified via mmap(), noone guarantees in which
2503  * transaction the data will hit the disk. In case we are journaling data, we
2504  * cannot start transaction directly because transaction start ranks above page
2505  * lock so we have to do some magic.
2506  *
2507  * In all journaling modes block_write_full_page() will start the I/O.
2508  *
2509  * Problem:
2510  *
2511  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2512  *              ext4_writepage()
2513  *
2514  * Similar for:
2515  *
2516  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2517  *
2518  * Same applies to ext4_get_block().  We will deadlock on various things like
2519  * lock_journal and i_data_sem
2520  *
2521  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2522  * allocations fail.
2523  *
2524  * 16May01: If we're reentered then journal_current_handle() will be
2525  *          non-zero. We simply *return*.
2526  *
2527  * 1 July 2001: @@@ FIXME:
2528  *   In journalled data mode, a data buffer may be metadata against the
2529  *   current transaction.  But the same file is part of a shared mapping
2530  *   and someone does a writepage() on it.
2531  *
2532  *   We will move the buffer onto the async_data list, but *after* it has
2533  *   been dirtied. So there's a small window where we have dirty data on
2534  *   BJ_Metadata.
2535  *
2536  *   Note that this only applies to the last partial page in the file.  The
2537  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2538  *   broken code anyway: it's wrong for msync()).
2539  *
2540  *   It's a rare case: affects the final partial page, for journalled data
2541  *   where the file is subject to bith write() and writepage() in the same
2542  *   transction.  To fix it we'll need a custom block_write_full_page().
2543  *   We'll probably need that anyway for journalling writepage() output.
2544  *
2545  * We don't honour synchronous mounts for writepage().  That would be
2546  * disastrous.  Any write() or metadata operation will sync the fs for
2547  * us.
2548  *
2549  */
2550 static int __ext4_normal_writepage(struct page *page,
2551                                 struct writeback_control *wbc)
2552 {
2553         struct inode *inode = page->mapping->host;
2554
2555         if (test_opt(inode->i_sb, NOBH))
2556                 return nobh_writepage(page,
2557                                         ext4_normal_get_block_write, wbc);
2558         else
2559                 return block_write_full_page(page,
2560                                                 ext4_normal_get_block_write,
2561                                                 wbc);
2562 }
2563
2564 static int ext4_normal_writepage(struct page *page,
2565                                 struct writeback_control *wbc)
2566 {
2567         struct inode *inode = page->mapping->host;
2568         loff_t size = i_size_read(inode);
2569         loff_t len;
2570
2571         J_ASSERT(PageLocked(page));
2572         if (page->index == size >> PAGE_CACHE_SHIFT)
2573                 len = size & ~PAGE_CACHE_MASK;
2574         else
2575                 len = PAGE_CACHE_SIZE;
2576
2577         if (page_has_buffers(page)) {
2578                 /* if page has buffers it should all be mapped
2579                  * and allocated. If there are not buffers attached
2580                  * to the page we know the page is dirty but it lost
2581                  * buffers. That means that at some moment in time
2582                  * after write_begin() / write_end() has been called
2583                  * all buffers have been clean and thus they must have been
2584                  * written at least once. So they are all mapped and we can
2585                  * happily proceed with mapping them and writing the page.
2586                  */
2587                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2588                                         ext4_bh_unmapped_or_delay));
2589         }
2590
2591         if (!ext4_journal_current_handle())
2592                 return __ext4_normal_writepage(page, wbc);
2593
2594         redirty_page_for_writepage(wbc, page);
2595         unlock_page(page);
2596         return 0;
2597 }
2598
2599 static int __ext4_journalled_writepage(struct page *page,
2600                                 struct writeback_control *wbc)
2601 {
2602         struct address_space *mapping = page->mapping;
2603         struct inode *inode = mapping->host;
2604         struct buffer_head *page_bufs;
2605         handle_t *handle = NULL;
2606         int ret = 0;
2607         int err;
2608
2609         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2610                                         ext4_normal_get_block_write);
2611         if (ret != 0)
2612                 goto out_unlock;
2613
2614         page_bufs = page_buffers(page);
2615         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2616                                                                 bget_one);
2617         /* As soon as we unlock the page, it can go away, but we have
2618          * references to buffers so we are safe */
2619         unlock_page(page);
2620
2621         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2622         if (IS_ERR(handle)) {
2623                 ret = PTR_ERR(handle);
2624                 goto out;
2625         }
2626
2627         ret = walk_page_buffers(handle, page_bufs, 0,
2628                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2629
2630         err = walk_page_buffers(handle, page_bufs, 0,
2631                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2632         if (ret == 0)
2633                 ret = err;
2634         err = ext4_journal_stop(handle);
2635         if (!ret)
2636                 ret = err;
2637
2638         walk_page_buffers(handle, page_bufs, 0,
2639                                 PAGE_CACHE_SIZE, NULL, bput_one);
2640         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2641         goto out;
2642
2643 out_unlock:
2644         unlock_page(page);
2645 out:
2646         return ret;
2647 }
2648
2649 static int ext4_journalled_writepage(struct page *page,
2650                                 struct writeback_control *wbc)
2651 {
2652         struct inode *inode = page->mapping->host;
2653         loff_t size = i_size_read(inode);
2654         loff_t len;
2655
2656         J_ASSERT(PageLocked(page));
2657         if (page->index == size >> PAGE_CACHE_SHIFT)
2658                 len = size & ~PAGE_CACHE_MASK;
2659         else
2660                 len = PAGE_CACHE_SIZE;
2661
2662         if (page_has_buffers(page)) {
2663                 /* if page has buffers it should all be mapped
2664                  * and allocated. If there are not buffers attached
2665                  * to the page we know the page is dirty but it lost
2666                  * buffers. That means that at some moment in time
2667                  * after write_begin() / write_end() has been called
2668                  * all buffers have been clean and thus they must have been
2669                  * written at least once. So they are all mapped and we can
2670                  * happily proceed with mapping them and writing the page.
2671                  */
2672                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2673                                         ext4_bh_unmapped_or_delay));
2674         }
2675
2676         if (ext4_journal_current_handle())
2677                 goto no_write;
2678
2679         if (PageChecked(page)) {
2680                 /*
2681                  * It's mmapped pagecache.  Add buffers and journal it.  There
2682                  * doesn't seem much point in redirtying the page here.
2683                  */
2684                 ClearPageChecked(page);
2685                 return __ext4_journalled_writepage(page, wbc);
2686         } else {
2687                 /*
2688                  * It may be a page full of checkpoint-mode buffers.  We don't
2689                  * really know unless we go poke around in the buffer_heads.
2690                  * But block_write_full_page will do the right thing.
2691                  */
2692                 return block_write_full_page(page,
2693                                                 ext4_normal_get_block_write,
2694                                                 wbc);
2695         }
2696 no_write:
2697         redirty_page_for_writepage(wbc, page);
2698         unlock_page(page);
2699         return 0;
2700 }
2701
2702 static int ext4_readpage(struct file *file, struct page *page)
2703 {
2704         return mpage_readpage(page, ext4_get_block);
2705 }
2706
2707 static int
2708 ext4_readpages(struct file *file, struct address_space *mapping,
2709                 struct list_head *pages, unsigned nr_pages)
2710 {
2711         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2712 }
2713
2714 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2715 {
2716         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2717
2718         /*
2719          * If it's a full truncate we just forget about the pending dirtying
2720          */
2721         if (offset == 0)
2722                 ClearPageChecked(page);
2723
2724         jbd2_journal_invalidatepage(journal, page, offset);
2725 }
2726
2727 static int ext4_releasepage(struct page *page, gfp_t wait)
2728 {
2729         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2730
2731         WARN_ON(PageChecked(page));
2732         if (!page_has_buffers(page))
2733                 return 0;
2734         return jbd2_journal_try_to_free_buffers(journal, page, wait);
2735 }
2736
2737 /*
2738  * If the O_DIRECT write will extend the file then add this inode to the
2739  * orphan list.  So recovery will truncate it back to the original size
2740  * if the machine crashes during the write.
2741  *
2742  * If the O_DIRECT write is intantiating holes inside i_size and the machine
2743  * crashes then stale disk data _may_ be exposed inside the file. But current
2744  * VFS code falls back into buffered path in that case so we are safe.
2745  */
2746 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2747                         const struct iovec *iov, loff_t offset,
2748                         unsigned long nr_segs)
2749 {
2750         struct file *file = iocb->ki_filp;
2751         struct inode *inode = file->f_mapping->host;
2752         struct ext4_inode_info *ei = EXT4_I(inode);
2753         handle_t *handle;
2754         ssize_t ret;
2755         int orphan = 0;
2756         size_t count = iov_length(iov, nr_segs);
2757
2758         if (rw == WRITE) {
2759                 loff_t final_size = offset + count;
2760
2761                 if (final_size > inode->i_size) {
2762                         /* Credits for sb + inode write */
2763                         handle = ext4_journal_start(inode, 2);
2764                         if (IS_ERR(handle)) {
2765                                 ret = PTR_ERR(handle);
2766                                 goto out;
2767                         }
2768                         ret = ext4_orphan_add(handle, inode);
2769                         if (ret) {
2770                                 ext4_journal_stop(handle);
2771                                 goto out;
2772                         }
2773                         orphan = 1;
2774                         ei->i_disksize = inode->i_size;
2775                         ext4_journal_stop(handle);
2776                 }
2777         }
2778
2779         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2780                                  offset, nr_segs,
2781                                  ext4_get_block, NULL);
2782
2783         if (orphan) {
2784                 int err;
2785
2786                 /* Credits for sb + inode write */
2787                 handle = ext4_journal_start(inode, 2);
2788                 if (IS_ERR(handle)) {
2789                         /* This is really bad luck. We've written the data
2790                          * but cannot extend i_size. Bail out and pretend
2791                          * the write failed... */
2792                         ret = PTR_ERR(handle);
2793                         goto out;
2794                 }
2795                 if (inode->i_nlink)
2796                         ext4_orphan_del(handle, inode);
2797                 if (ret > 0) {
2798                         loff_t end = offset + ret;
2799                         if (end > inode->i_size) {
2800                                 ei->i_disksize = end;
2801                                 i_size_write(inode, end);
2802                                 /*
2803                                  * We're going to return a positive `ret'
2804                                  * here due to non-zero-length I/O, so there's
2805                                  * no way of reporting error returns from
2806                                  * ext4_mark_inode_dirty() to userspace.  So
2807                                  * ignore it.
2808                                  */
2809                                 ext4_mark_inode_dirty(handle, inode);
2810                         }
2811                 }
2812                 err = ext4_journal_stop(handle);
2813                 if (ret == 0)
2814                         ret = err;
2815         }
2816 out:
2817         return ret;
2818 }
2819
2820 /*
2821  * Pages can be marked dirty completely asynchronously from ext4's journalling
2822  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
2823  * much here because ->set_page_dirty is called under VFS locks.  The page is
2824  * not necessarily locked.
2825  *
2826  * We cannot just dirty the page and leave attached buffers clean, because the
2827  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
2828  * or jbddirty because all the journalling code will explode.
2829  *
2830  * So what we do is to mark the page "pending dirty" and next time writepage
2831  * is called, propagate that into the buffers appropriately.
2832  */
2833 static int ext4_journalled_set_page_dirty(struct page *page)
2834 {
2835         SetPageChecked(page);
2836         return __set_page_dirty_nobuffers(page);
2837 }
2838
2839 static const struct address_space_operations ext4_ordered_aops = {
2840         .readpage               = ext4_readpage,
2841         .readpages              = ext4_readpages,
2842         .writepage              = ext4_normal_writepage,
2843         .sync_page              = block_sync_page,
2844         .write_begin            = ext4_write_begin,
2845         .write_end              = ext4_ordered_write_end,
2846         .bmap                   = ext4_bmap,
2847         .invalidatepage         = ext4_invalidatepage,
2848         .releasepage            = ext4_releasepage,
2849         .direct_IO              = ext4_direct_IO,
2850         .migratepage            = buffer_migrate_page,
2851         .is_partially_uptodate  = block_is_partially_uptodate,
2852 };
2853
2854 static const struct address_space_operations ext4_writeback_aops = {
2855         .readpage               = ext4_readpage,
2856         .readpages              = ext4_readpages,
2857         .writepage              = ext4_normal_writepage,
2858         .sync_page              = block_sync_page,
2859         .write_begin            = ext4_write_begin,
2860         .write_end              = ext4_writeback_write_end,
2861         .bmap                   = ext4_bmap,
2862         .invalidatepage         = ext4_invalidatepage,
2863         .releasepage            = ext4_releasepage,
2864         .direct_IO              = ext4_direct_IO,
2865         .migratepage            = buffer_migrate_page,
2866         .is_partially_uptodate  = block_is_partially_uptodate,
2867 };
2868
2869 static const struct address_space_operations ext4_journalled_aops = {
2870         .readpage               = ext4_readpage,
2871         .readpages              = ext4_readpages,
2872         .writepage              = ext4_journalled_writepage,
2873         .sync_page              = block_sync_page,
2874         .write_begin            = ext4_write_begin,
2875         .write_end              = ext4_journalled_write_end,
2876         .set_page_dirty         = ext4_journalled_set_page_dirty,
2877         .bmap                   = ext4_bmap,
2878         .invalidatepage         = ext4_invalidatepage,
2879         .releasepage            = ext4_releasepage,
2880         .is_partially_uptodate  = block_is_partially_uptodate,
2881 };
2882
2883 static const struct address_space_operations ext4_da_aops = {
2884         .readpage               = ext4_readpage,
2885         .readpages              = ext4_readpages,
2886         .writepage              = ext4_da_writepage,
2887         .writepages             = ext4_da_writepages,
2888         .sync_page              = block_sync_page,
2889         .write_begin            = ext4_da_write_begin,
2890         .write_end              = ext4_da_write_end,
2891         .bmap                   = ext4_bmap,
2892         .invalidatepage         = ext4_da_invalidatepage,
2893         .releasepage            = ext4_releasepage,
2894         .direct_IO              = ext4_direct_IO,
2895         .migratepage            = buffer_migrate_page,
2896         .is_partially_uptodate  = block_is_partially_uptodate,
2897 };
2898
2899 void ext4_set_aops(struct inode *inode)
2900 {
2901         if (ext4_should_order_data(inode) &&
2902                 test_opt(inode->i_sb, DELALLOC))
2903                 inode->i_mapping->a_ops = &ext4_da_aops;
2904         else if (ext4_should_order_data(inode))
2905                 inode->i_mapping->a_ops = &ext4_ordered_aops;
2906         else if (ext4_should_writeback_data(inode) &&
2907                  test_opt(inode->i_sb, DELALLOC))
2908                 inode->i_mapping->a_ops = &ext4_da_aops;
2909         else if (ext4_should_writeback_data(inode))
2910                 inode->i_mapping->a_ops = &ext4_writeback_aops;
2911         else
2912                 inode->i_mapping->a_ops = &ext4_journalled_aops;
2913 }
2914
2915 /*
2916  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2917  * up to the end of the block which corresponds to `from'.
2918  * This required during truncate. We need to physically zero the tail end
2919  * of that block so it doesn't yield old data if the file is later grown.
2920  */
2921 int ext4_block_truncate_page(handle_t *handle,
2922                 struct address_space *mapping, loff_t from)
2923 {
2924         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2925         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2926         unsigned blocksize, length, pos;
2927         ext4_lblk_t iblock;
2928         struct inode *inode = mapping->host;
2929         struct buffer_head *bh;
2930         struct page *page;
2931         int err = 0;
2932
2933         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2934         if (!page)
2935                 return -EINVAL;
2936
2937         blocksize = inode->i_sb->s_blocksize;
2938         length = blocksize - (offset & (blocksize - 1));
2939         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2940
2941         /*
2942          * For "nobh" option,  we can only work if we don't need to
2943          * read-in the page - otherwise we create buffers to do the IO.
2944          */
2945         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2946              ext4_should_writeback_data(inode) && PageUptodate(page)) {
2947                 zero_user(page, offset, length);
2948                 set_page_dirty(page);
2949                 goto unlock;
2950         }
2951
2952         if (!page_has_buffers(page))
2953                 create_empty_buffers(page, blocksize, 0);
2954
2955         /* Find the buffer that contains "offset" */
2956         bh = page_buffers(page);
2957         pos = blocksize;
2958         while (offset >= pos) {
2959                 bh = bh->b_this_page;
2960                 iblock++;
2961                 pos += blocksize;
2962         }
2963
2964         err = 0;
2965         if (buffer_freed(bh)) {
2966                 BUFFER_TRACE(bh, "freed: skip");
2967                 goto unlock;
2968         }
2969
2970         if (!buffer_mapped(bh)) {
2971                 BUFFER_TRACE(bh, "unmapped");
2972                 ext4_get_block(inode, iblock, bh, 0);
2973                 /* unmapped? It's a hole - nothing to do */
2974                 if (!buffer_mapped(bh)) {
2975                         BUFFER_TRACE(bh, "still unmapped");
2976                         goto unlock;
2977                 }
2978         }
2979
2980         /* Ok, it's mapped. Make sure it's up-to-date */
2981         if (PageUptodate(page))
2982                 set_buffer_uptodate(bh);
2983
2984         if (!buffer_uptodate(bh)) {
2985                 err = -EIO;
2986                 ll_rw_block(READ, 1, &bh);
2987                 wait_on_buffer(bh);
2988                 /* Uhhuh. Read error. Complain and punt. */
2989                 if (!buffer_uptodate(bh))
2990                         goto unlock;
2991         }
2992
2993         if (ext4_should_journal_data(inode)) {
2994                 BUFFER_TRACE(bh, "get write access");
2995                 err = ext4_journal_get_write_access(handle, bh);
2996                 if (err)
2997                         goto unlock;
2998         }
2999
3000         zero_user(page, offset, length);
3001
3002         BUFFER_TRACE(bh, "zeroed end of block");
3003
3004         err = 0;
3005         if (ext4_should_journal_data(inode)) {
3006                 err = ext4_journal_dirty_metadata(handle, bh);
3007         } else {
3008                 if (ext4_should_order_data(inode))
3009                         err = ext4_jbd2_file_inode(handle, inode);
3010                 mark_buffer_dirty(bh);
3011         }
3012
3013 unlock:
3014         unlock_page(page);
3015         page_cache_release(page);
3016         return err;
3017 }
3018
3019 /*
3020  * Probably it should be a library function... search for first non-zero word
3021  * or memcmp with zero_page, whatever is better for particular architecture.
3022  * Linus?
3023  */
3024 static inline int all_zeroes(__le32 *p, __le32 *q)
3025 {
3026         while (p < q)
3027                 if (*p++)
3028                         return 0;
3029         return 1;
3030 }
3031
3032 /**
3033  *      ext4_find_shared - find the indirect blocks for partial truncation.
3034  *      @inode:   inode in question
3035  *      @depth:   depth of the affected branch
3036  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3037  *      @chain:   place to store the pointers to partial indirect blocks
3038  *      @top:     place to the (detached) top of branch
3039  *
3040  *      This is a helper function used by ext4_truncate().
3041  *
3042  *      When we do truncate() we may have to clean the ends of several
3043  *      indirect blocks but leave the blocks themselves alive. Block is
3044  *      partially truncated if some data below the new i_size is refered
3045  *      from it (and it is on the path to the first completely truncated
3046  *      data block, indeed).  We have to free the top of that path along
3047  *      with everything to the right of the path. Since no allocation
3048  *      past the truncation point is possible until ext4_truncate()
3049  *      finishes, we may safely do the latter, but top of branch may
3050  *      require special attention - pageout below the truncation point
3051  *      might try to populate it.
3052  *
3053  *      We atomically detach the top of branch from the tree, store the
3054  *      block number of its root in *@top, pointers to buffer_heads of
3055  *      partially truncated blocks - in @chain[].bh and pointers to
3056  *      their last elements that should not be removed - in
3057  *      @chain[].p. Return value is the pointer to last filled element
3058  *      of @chain.
3059  *
3060  *      The work left to caller to do the actual freeing of subtrees:
3061  *              a) free the subtree starting from *@top
3062  *              b) free the subtrees whose roots are stored in
3063  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3064  *              c) free the subtrees growing from the inode past the @chain[0].
3065  *                      (no partially truncated stuff there).  */
3066
3067 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3068                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3069 {
3070         Indirect *partial, *p;
3071         int k, err;
3072
3073         *top = 0;
3074         /* Make k index the deepest non-null offest + 1 */
3075         for (k = depth; k > 1 && !offsets[k-1]; k--)
3076                 ;
3077         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3078         /* Writer: pointers */
3079         if (!partial)
3080                 partial = chain + k-1;
3081         /*
3082          * If the branch acquired continuation since we've looked at it -
3083          * fine, it should all survive and (new) top doesn't belong to us.
3084          */
3085         if (!partial->key && *partial->p)
3086                 /* Writer: end */
3087                 goto no_top;
3088         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3089                 ;
3090         /*
3091          * OK, we've found the last block that must survive. The rest of our
3092          * branch should be detached before unlocking. However, if that rest
3093          * of branch is all ours and does not grow immediately from the inode
3094          * it's easier to cheat and just decrement partial->p.
3095          */
3096         if (p == chain + k - 1 && p > chain) {
3097                 p->p--;
3098         } else {
3099                 *top = *p->p;
3100                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3101 #if 0
3102                 *p->p = 0;
3103 #endif
3104         }
3105         /* Writer: end */
3106
3107         while(partial > p) {
3108                 brelse(partial->bh);
3109                 partial--;
3110         }
3111 no_top:
3112         return partial;
3113 }
3114
3115 /*
3116  * Zero a number of block pointers in either an inode or an indirect block.
3117  * If we restart the transaction we must again get write access to the
3118  * indirect block for further modification.
3119  *
3120  * We release `count' blocks on disk, but (last - first) may be greater
3121  * than `count' because there can be holes in there.
3122  */
3123 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3124                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3125                 unsigned long count, __le32 *first, __le32 *last)
3126 {
3127         __le32 *p;
3128         if (try_to_extend_transaction(handle, inode)) {
3129                 if (bh) {
3130                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3131                         ext4_journal_dirty_metadata(handle, bh);
3132                 }
3133                 ext4_mark_inode_dirty(handle, inode);
3134                 ext4_journal_test_restart(handle, inode);
3135                 if (bh) {
3136                         BUFFER_TRACE(bh, "retaking write access");
3137                         ext4_journal_get_write_access(handle, bh);
3138                 }
3139         }
3140
3141         /*
3142          * Any buffers which are on the journal will be in memory. We find
3143          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3144          * on them.  We've already detached each block from the file, so
3145          * bforget() in jbd2_journal_forget() should be safe.
3146          *
3147          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3148          */
3149         for (p = first; p < last; p++) {
3150                 u32 nr = le32_to_cpu(*p);
3151                 if (nr) {
3152                         struct buffer_head *tbh;
3153
3154                         *p = 0;
3155                         tbh = sb_find_get_block(inode->i_sb, nr);
3156                         ext4_forget(handle, 0, inode, tbh, nr);
3157                 }
3158         }
3159
3160         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3161 }
3162
3163 /**
3164  * ext4_free_data - free a list of data blocks
3165  * @handle:     handle for this transaction
3166  * @inode:      inode we are dealing with
3167  * @this_bh:    indirect buffer_head which contains *@first and *@last
3168  * @first:      array of block numbers
3169  * @last:       points immediately past the end of array
3170  *
3171  * We are freeing all blocks refered from that array (numbers are stored as
3172  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3173  *
3174  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3175  * blocks are contiguous then releasing them at one time will only affect one
3176  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3177  * actually use a lot of journal space.
3178  *
3179  * @this_bh will be %NULL if @first and @last point into the inode's direct
3180  * block pointers.
3181  */
3182 static void ext4_free_data(handle_t *handle, struct inode *inode,
3183                            struct buffer_head *this_bh,
3184                            __le32 *first, __le32 *last)
3185 {
3186         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3187         unsigned long count = 0;            /* Number of blocks in the run */
3188         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3189                                                corresponding to
3190                                                block_to_free */
3191         ext4_fsblk_t nr;                    /* Current block # */
3192         __le32 *p;                          /* Pointer into inode/ind
3193                                                for current block */
3194         int err;
3195
3196         if (this_bh) {                          /* For indirect block */
3197                 BUFFER_TRACE(this_bh, "get_write_access");
3198                 err = ext4_journal_get_write_access(handle, this_bh);
3199                 /* Important: if we can't update the indirect pointers
3200                  * to the blocks, we can't free them. */
3201                 if (err)
3202                         return;
3203         }
3204
3205         for (p = first; p < last; p++) {
3206                 nr = le32_to_cpu(*p);
3207                 if (nr) {
3208                         /* accumulate blocks to free if they're contiguous */
3209                         if (count == 0) {
3210                                 block_to_free = nr;
3211                                 block_to_free_p = p;
3212                                 count = 1;
3213                         } else if (nr == block_to_free + count) {
3214                                 count++;
3215                         } else {
3216                                 ext4_clear_blocks(handle, inode, this_bh,
3217                                                   block_to_free,
3218                                                   count, block_to_free_p, p);
3219                                 block_to_free = nr;
3220                                 block_to_free_p = p;
3221                                 count = 1;
3222                         }
3223                 }
3224         }
3225
3226         if (count > 0)
3227                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3228                                   count, block_to_free_p, p);
3229
3230         if (this_bh) {
3231                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3232
3233                 /*
3234                  * The buffer head should have an attached journal head at this
3235                  * point. However, if the data is corrupted and an indirect
3236                  * block pointed to itself, it would have been detached when
3237                  * the block was cleared. Check for this instead of OOPSing.
3238                  */
3239                 if (bh2jh(this_bh))
3240                         ext4_journal_dirty_metadata(handle, this_bh);
3241                 else
3242                         ext4_error(inode->i_sb, __func__,
3243                                    "circular indirect block detected, "
3244                                    "inode=%lu, block=%llu",
3245                                    inode->i_ino,
3246                                    (unsigned long long) this_bh->b_blocknr);
3247         }
3248 }
3249
3250 /**
3251  *      ext4_free_branches - free an array of branches
3252  *      @handle: JBD handle for this transaction
3253  *      @inode: inode we are dealing with
3254  *      @parent_bh: the buffer_head which contains *@first and *@last
3255  *      @first: array of block numbers
3256  *      @last:  pointer immediately past the end of array
3257  *      @depth: depth of the branches to free
3258  *
3259  *      We are freeing all blocks refered from these branches (numbers are
3260  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3261  *      appropriately.
3262  */
3263 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3264                                struct buffer_head *parent_bh,
3265                                __le32 *first, __le32 *last, int depth)
3266 {
3267         ext4_fsblk_t nr;
3268         __le32 *p;
3269
3270         if (is_handle_aborted(handle))
3271                 return;
3272
3273         if (depth--) {
3274                 struct buffer_head *bh;
3275                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3276                 p = last;
3277                 while (--p >= first) {
3278                         nr = le32_to_cpu(*p);
3279                         if (!nr)
3280                                 continue;               /* A hole */
3281
3282                         /* Go read the buffer for the next level down */
3283                         bh = sb_bread(inode->i_sb, nr);
3284
3285                         /*
3286                          * A read failure? Report error and clear slot
3287                          * (should be rare).
3288                          */
3289                         if (!bh) {
3290                                 ext4_error(inode->i_sb, "ext4_free_branches",
3291                                            "Read failure, inode=%lu, block=%llu",
3292                                            inode->i_ino, nr);
3293                                 continue;
3294                         }
3295
3296                         /* This zaps the entire block.  Bottom up. */
3297                         BUFFER_TRACE(bh, "free child branches");
3298                         ext4_free_branches(handle, inode, bh,
3299                                            (__le32*)bh->b_data,
3300                                            (__le32*)bh->b_data + addr_per_block,
3301                                            depth);
3302
3303                         /*
3304                          * We've probably journalled the indirect block several
3305                          * times during the truncate.  But it's no longer
3306                          * needed and we now drop it from the transaction via
3307                          * jbd2_journal_revoke().
3308                          *
3309                          * That's easy if it's exclusively part of this
3310                          * transaction.  But if it's part of the committing
3311                          * transaction then jbd2_journal_forget() will simply
3312                          * brelse() it.  That means that if the underlying
3313                          * block is reallocated in ext4_get_block(),
3314                          * unmap_underlying_metadata() will find this block
3315                          * and will try to get rid of it.  damn, damn.
3316                          *
3317                          * If this block has already been committed to the
3318                          * journal, a revoke record will be written.  And
3319                          * revoke records must be emitted *before* clearing
3320                          * this block's bit in the bitmaps.
3321                          */
3322                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3323
3324                         /*
3325                          * Everything below this this pointer has been
3326                          * released.  Now let this top-of-subtree go.
3327                          *
3328                          * We want the freeing of this indirect block to be
3329                          * atomic in the journal with the updating of the
3330                          * bitmap block which owns it.  So make some room in
3331                          * the journal.
3332                          *
3333                          * We zero the parent pointer *after* freeing its
3334                          * pointee in the bitmaps, so if extend_transaction()
3335                          * for some reason fails to put the bitmap changes and
3336                          * the release into the same transaction, recovery
3337                          * will merely complain about releasing a free block,
3338                          * rather than leaking blocks.
3339                          */
3340                         if (is_handle_aborted(handle))
3341                                 return;
3342                         if (try_to_extend_transaction(handle, inode)) {
3343                                 ext4_mark_inode_dirty(handle, inode);
3344                                 ext4_journal_test_restart(handle, inode);
3345                         }
3346
3347                         ext4_free_blocks(handle, inode, nr, 1, 1);
3348
3349                         if (parent_bh) {
3350                                 /*
3351                                  * The block which we have just freed is
3352                                  * pointed to by an indirect block: journal it
3353                                  */
3354                                 BUFFER_TRACE(parent_bh, "get_write_access");
3355                                 if (!ext4_journal_get_write_access(handle,
3356                                                                    parent_bh)){
3357                                         *p = 0;
3358                                         BUFFER_TRACE(parent_bh,
3359                                         "call ext4_journal_dirty_metadata");
3360                                         ext4_journal_dirty_metadata(handle,
3361                                                                     parent_bh);
3362                                 }
3363                         }
3364                 }
3365         } else {
3366                 /* We have reached the bottom of the tree. */
3367                 BUFFER_TRACE(parent_bh, "free data blocks");
3368                 ext4_free_data(handle, inode, parent_bh, first, last);
3369         }
3370 }
3371
3372 int ext4_can_truncate(struct inode *inode)
3373 {
3374         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3375                 return 0;
3376         if (S_ISREG(inode->i_mode))
3377                 return 1;
3378         if (S_ISDIR(inode->i_mode))
3379                 return 1;
3380         if (S_ISLNK(inode->i_mode))
3381                 return !ext4_inode_is_fast_symlink(inode);
3382         return 0;
3383 }
3384
3385 /*
3386  * ext4_truncate()
3387  *
3388  * We block out ext4_get_block() block instantiations across the entire
3389  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3390  * simultaneously on behalf of the same inode.
3391  *
3392  * As we work through the truncate and commmit bits of it to the journal there
3393  * is one core, guiding principle: the file's tree must always be consistent on
3394  * disk.  We must be able to restart the truncate after a crash.
3395  *
3396  * The file's tree may be transiently inconsistent in memory (although it
3397  * probably isn't), but whenever we close off and commit a journal transaction,
3398  * the contents of (the filesystem + the journal) must be consistent and
3399  * restartable.  It's pretty simple, really: bottom up, right to left (although
3400  * left-to-right works OK too).
3401  *
3402  * Note that at recovery time, journal replay occurs *before* the restart of
3403  * truncate against the orphan inode list.
3404  *
3405  * The committed inode has the new, desired i_size (which is the same as
3406  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3407  * that this inode's truncate did not complete and it will again call
3408  * ext4_truncate() to have another go.  So there will be instantiated blocks
3409  * to the right of the truncation point in a crashed ext4 filesystem.  But
3410  * that's fine - as long as they are linked from the inode, the post-crash
3411  * ext4_truncate() run will find them and release them.
3412  */
3413 void ext4_truncate(struct inode *inode)
3414 {
3415         handle_t *handle;
3416         struct ext4_inode_info *ei = EXT4_I(inode);
3417         __le32 *i_data = ei->i_data;
3418         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3419         struct address_space *mapping = inode->i_mapping;
3420         ext4_lblk_t offsets[4];
3421         Indirect chain[4];
3422         Indirect *partial;
3423         __le32 nr = 0;
3424         int n;
3425         ext4_lblk_t last_block;
3426         unsigned blocksize = inode->i_sb->s_blocksize;
3427
3428         if (!ext4_can_truncate(inode))
3429                 return;
3430
3431         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3432                 ext4_ext_truncate(inode);
3433                 return;
3434         }
3435
3436         handle = start_transaction(inode);
3437         if (IS_ERR(handle))
3438                 return;         /* AKPM: return what? */
3439
3440         last_block = (inode->i_size + blocksize-1)
3441                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3442
3443         if (inode->i_size & (blocksize - 1))
3444                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3445                         goto out_stop;
3446
3447         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3448         if (n == 0)
3449                 goto out_stop;  /* error */
3450
3451         /*
3452          * OK.  This truncate is going to happen.  We add the inode to the
3453          * orphan list, so that if this truncate spans multiple transactions,
3454          * and we crash, we will resume the truncate when the filesystem
3455          * recovers.  It also marks the inode dirty, to catch the new size.
3456          *
3457          * Implication: the file must always be in a sane, consistent
3458          * truncatable state while each transaction commits.
3459          */
3460         if (ext4_orphan_add(handle, inode))
3461                 goto out_stop;
3462
3463         /*
3464          * From here we block out all ext4_get_block() callers who want to
3465          * modify the block allocation tree.
3466          */
3467         down_write(&ei->i_data_sem);
3468         /*
3469          * The orphan list entry will now protect us from any crash which
3470          * occurs before the truncate completes, so it is now safe to propagate
3471          * the new, shorter inode size (held for now in i_size) into the
3472          * on-disk inode. We do this via i_disksize, which is the value which
3473          * ext4 *really* writes onto the disk inode.
3474          */
3475         ei->i_disksize = inode->i_size;
3476
3477         if (n == 1) {           /* direct blocks */
3478                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3479                                i_data + EXT4_NDIR_BLOCKS);
3480                 goto do_indirects;
3481         }
3482
3483         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3484         /* Kill the top of shared branch (not detached) */
3485         if (nr) {
3486                 if (partial == chain) {
3487                         /* Shared branch grows from the inode */
3488                         ext4_free_branches(handle, inode, NULL,
3489                                            &nr, &nr+1, (chain+n-1) - partial);
3490                         *partial->p = 0;
3491                         /*
3492                          * We mark the inode dirty prior to restart,
3493                          * and prior to stop.  No need for it here.
3494                          */
3495                 } else {
3496                         /* Shared branch grows from an indirect block */
3497                         BUFFER_TRACE(partial->bh, "get_write_access");
3498                         ext4_free_branches(handle, inode, partial->bh,
3499                                         partial->p,
3500                                         partial->p+1, (chain+n-1) - partial);
3501                 }
3502         }
3503         /* Clear the ends of indirect blocks on the shared branch */
3504         while (partial > chain) {
3505                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3506                                    (__le32*)partial->bh->b_data+addr_per_block,
3507                                    (chain+n-1) - partial);
3508                 BUFFER_TRACE(partial->bh, "call brelse");
3509                 brelse (partial->bh);
3510                 partial--;
3511         }
3512 do_indirects:
3513         /* Kill the remaining (whole) subtrees */
3514         switch (offsets[0]) {
3515         default:
3516                 nr = i_data[EXT4_IND_BLOCK];
3517                 if (nr) {
3518                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3519                         i_data[EXT4_IND_BLOCK] = 0;
3520                 }
3521         case EXT4_IND_BLOCK:
3522                 nr = i_data[EXT4_DIND_BLOCK];
3523                 if (nr) {
3524                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3525                         i_data[EXT4_DIND_BLOCK] = 0;
3526                 }
3527         case EXT4_DIND_BLOCK:
3528                 nr = i_data[EXT4_TIND_BLOCK];
3529                 if (nr) {
3530                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3531                         i_data[EXT4_TIND_BLOCK] = 0;
3532                 }
3533         case EXT4_TIND_BLOCK:
3534                 ;
3535         }
3536
3537         ext4_discard_reservation(inode);
3538
3539         up_write(&ei->i_data_sem);
3540         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3541         ext4_mark_inode_dirty(handle, inode);
3542
3543         /*
3544          * In a multi-transaction truncate, we only make the final transaction
3545          * synchronous
3546          */
3547         if (IS_SYNC(inode))
3548                 handle->h_sync = 1;
3549 out_stop:
3550         /*
3551          * If this was a simple ftruncate(), and the file will remain alive
3552          * then we need to clear up the orphan record which we created above.
3553          * However, if this was a real unlink then we were called by
3554          * ext4_delete_inode(), and we allow that function to clean up the
3555          * orphan info for us.
3556          */
3557         if (inode->i_nlink)
3558                 ext4_orphan_del(handle, inode);
3559
3560         ext4_journal_stop(handle);
3561 }
3562
3563 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3564                 unsigned long ino, struct ext4_iloc *iloc)
3565 {
3566         ext4_group_t block_group;
3567         unsigned long offset;
3568         ext4_fsblk_t block;
3569         struct ext4_group_desc *gdp;
3570
3571         if (!ext4_valid_inum(sb, ino)) {
3572                 /*
3573                  * This error is already checked for in namei.c unless we are
3574                  * looking at an NFS filehandle, in which case no error
3575                  * report is needed
3576                  */
3577                 return 0;
3578         }
3579
3580         block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3581         gdp = ext4_get_group_desc(sb, block_group, NULL);
3582         if (!gdp)
3583                 return 0;
3584
3585         /*
3586          * Figure out the offset within the block group inode table
3587          */
3588         offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3589                 EXT4_INODE_SIZE(sb);
3590         block = ext4_inode_table(sb, gdp) +
3591                 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3592
3593         iloc->block_group = block_group;
3594         iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3595         return block;
3596 }
3597
3598 /*
3599  * ext4_get_inode_loc returns with an extra refcount against the inode's
3600  * underlying buffer_head on success. If 'in_mem' is true, we have all
3601  * data in memory that is needed to recreate the on-disk version of this
3602  * inode.
3603  */
3604 static int __ext4_get_inode_loc(struct inode *inode,
3605                                 struct ext4_iloc *iloc, int in_mem)
3606 {
3607         ext4_fsblk_t block;
3608         struct buffer_head *bh;
3609
3610         block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3611         if (!block)
3612                 return -EIO;
3613
3614         bh = sb_getblk(inode->i_sb, block);
3615         if (!bh) {
3616                 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3617                                 "unable to read inode block - "
3618                                 "inode=%lu, block=%llu",
3619                                  inode->i_ino, block);
3620                 return -EIO;
3621         }
3622         if (!buffer_uptodate(bh)) {
3623                 lock_buffer(bh);
3624
3625                 /*
3626                  * If the buffer has the write error flag, we have failed
3627                  * to write out another inode in the same block.  In this
3628                  * case, we don't have to read the block because we may
3629                  * read the old inode data successfully.
3630                  */
3631                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3632                         set_buffer_uptodate(bh);
3633
3634                 if (buffer_uptodate(bh)) {
3635                         /* someone brought it uptodate while we waited */
3636                         unlock_buffer(bh);
3637                         goto has_buffer;
3638                 }
3639
3640                 /*
3641                  * If we have all information of the inode in memory and this
3642                  * is the only valid inode in the block, we need not read the
3643                  * block.
3644                  */
3645                 if (in_mem) {
3646                         struct buffer_head *bitmap_bh;
3647                         struct ext4_group_desc *desc;
3648                         int inodes_per_buffer;
3649                         int inode_offset, i;
3650                         ext4_group_t block_group;
3651                         int start;
3652
3653                         block_group = (inode->i_ino - 1) /
3654                                         EXT4_INODES_PER_GROUP(inode->i_sb);
3655                         inodes_per_buffer = bh->b_size /
3656                                 EXT4_INODE_SIZE(inode->i_sb);
3657                         inode_offset = ((inode->i_ino - 1) %
3658                                         EXT4_INODES_PER_GROUP(inode->i_sb));
3659                         start = inode_offset & ~(inodes_per_buffer - 1);
3660
3661                         /* Is the inode bitmap in cache? */
3662                         desc = ext4_get_group_desc(inode->i_sb,
3663                                                 block_group, NULL);
3664                         if (!desc)
3665                                 goto make_io;
3666
3667                         bitmap_bh = sb_getblk(inode->i_sb,
3668                                 ext4_inode_bitmap(inode->i_sb, desc));
3669                         if (!bitmap_bh)
3670                                 goto make_io;
3671
3672                         /*
3673                          * If the inode bitmap isn't in cache then the
3674                          * optimisation may end up performing two reads instead
3675                          * of one, so skip it.
3676                          */
3677                         if (!buffer_uptodate(bitmap_bh)) {
3678                                 brelse(bitmap_bh);
3679                                 goto make_io;
3680                         }
3681                         for (i = start; i < start + inodes_per_buffer; i++) {
3682                                 if (i == inode_offset)
3683                                         continue;
3684                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3685                                         break;
3686                         }
3687                         brelse(bitmap_bh);
3688                         if (i == start + inodes_per_buffer) {
3689                                 /* all other inodes are free, so skip I/O */
3690                                 memset(bh->b_data, 0, bh->b_size);
3691                                 set_buffer_uptodate(bh);
3692                                 unlock_buffer(bh);
3693                                 goto has_buffer;
3694                         }
3695                 }
3696
3697 make_io:
3698                 /*
3699                  * There are other valid inodes in the buffer, this inode
3700                  * has in-inode xattrs, or we don't have this inode in memory.
3701                  * Read the block from disk.
3702                  */
3703                 get_bh(bh);
3704                 bh->b_end_io = end_buffer_read_sync;
3705                 submit_bh(READ_META, bh);
3706                 wait_on_buffer(bh);
3707                 if (!buffer_uptodate(bh)) {
3708                         ext4_error(inode->i_sb, "ext4_get_inode_loc",
3709                                         "unable to read inode block - "
3710                                         "inode=%lu, block=%llu",
3711                                         inode->i_ino, block);
3712                         brelse(bh);
3713                         return -EIO;
3714                 }
3715         }
3716 has_buffer:
3717         iloc->bh = bh;
3718         return 0;
3719 }
3720
3721 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3722 {
3723         /* We have all inode data except xattrs in memory here. */
3724         return __ext4_get_inode_loc(inode, iloc,
3725                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3726 }
3727
3728 void ext4_set_inode_flags(struct inode *inode)
3729 {
3730         unsigned int flags = EXT4_I(inode)->i_flags;
3731
3732         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3733         if (flags & EXT4_SYNC_FL)
3734                 inode->i_flags |= S_SYNC;
3735         if (flags & EXT4_APPEND_FL)
3736                 inode->i_flags |= S_APPEND;
3737         if (flags & EXT4_IMMUTABLE_FL)
3738                 inode->i_flags |= S_IMMUTABLE;
3739         if (flags & EXT4_NOATIME_FL)
3740                 inode->i_flags |= S_NOATIME;
3741         if (flags & EXT4_DIRSYNC_FL)
3742                 inode->i_flags |= S_DIRSYNC;
3743 }
3744
3745 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3746 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3747 {
3748         unsigned int flags = ei->vfs_inode.i_flags;
3749
3750         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3751                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3752         if (flags & S_SYNC)
3753                 ei->i_flags |= EXT4_SYNC_FL;
3754         if (flags & S_APPEND)
3755                 ei->i_flags |= EXT4_APPEND_FL;
3756         if (flags & S_IMMUTABLE)
3757                 ei->i_flags |= EXT4_IMMUTABLE_FL;
3758         if (flags & S_NOATIME)
3759                 ei->i_flags |= EXT4_NOATIME_FL;
3760         if (flags & S_DIRSYNC)
3761                 ei->i_flags |= EXT4_DIRSYNC_FL;
3762 }
3763 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3764                                         struct ext4_inode_info *ei)
3765 {
3766         blkcnt_t i_blocks ;
3767         struct inode *inode = &(ei->vfs_inode);
3768         struct super_block *sb = inode->i_sb;
3769
3770         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3771                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3772                 /* we are using combined 48 bit field */
3773                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3774                                         le32_to_cpu(raw_inode->i_blocks_lo);
3775                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3776                         /* i_blocks represent file system block size */
3777                         return i_blocks  << (inode->i_blkbits - 9);
3778                 } else {
3779                         return i_blocks;
3780                 }
3781         } else {
3782                 return le32_to_cpu(raw_inode->i_blocks_lo);
3783         }
3784 }
3785
3786 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3787 {
3788         struct ext4_iloc iloc;
3789         struct ext4_inode *raw_inode;
3790         struct ext4_inode_info *ei;
3791         struct buffer_head *bh;
3792         struct inode *inode;
3793         long ret;
3794         int block;
3795
3796         inode = iget_locked(sb, ino);
3797         if (!inode)
3798                 return ERR_PTR(-ENOMEM);
3799         if (!(inode->i_state & I_NEW))
3800                 return inode;
3801
3802         ei = EXT4_I(inode);
3803 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3804         ei->i_acl = EXT4_ACL_NOT_CACHED;
3805         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3806 #endif
3807         ei->i_block_alloc_info = NULL;
3808
3809         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3810         if (ret < 0)
3811                 goto bad_inode;
3812         bh = iloc.bh;
3813         raw_inode = ext4_raw_inode(&iloc);
3814         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3815         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3816         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3817         if(!(test_opt (inode->i_sb, NO_UID32))) {
3818                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3819                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3820         }
3821         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3822
3823         ei->i_state = 0;
3824         ei->i_dir_start_lookup = 0;
3825         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3826         /* We now have enough fields to check if the inode was active or not.
3827          * This is needed because nfsd might try to access dead inodes
3828          * the test is that same one that e2fsck uses
3829          * NeilBrown 1999oct15
3830          */
3831         if (inode->i_nlink == 0) {
3832                 if (inode->i_mode == 0 ||
3833                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3834                         /* this inode is deleted */
3835                         brelse (bh);
3836                         ret = -ESTALE;
3837                         goto bad_inode;
3838                 }
3839                 /* The only unlinked inodes we let through here have
3840                  * valid i_mode and are being read by the orphan
3841                  * recovery code: that's fine, we're about to complete
3842                  * the process of deleting those. */
3843         }
3844         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3845         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3846         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3847         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3848             cpu_to_le32(EXT4_OS_HURD)) {
3849                 ei->i_file_acl |=
3850                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3851         }
3852         inode->i_size = ext4_isize(raw_inode);
3853         ei->i_disksize = inode->i_size;
3854         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3855         ei->i_block_group = iloc.block_group;
3856         /*
3857          * NOTE! The in-memory inode i_data array is in little-endian order
3858          * even on big-endian machines: we do NOT byteswap the block numbers!
3859          */
3860         for (block = 0; block < EXT4_N_BLOCKS; block++)
3861                 ei->i_data[block] = raw_inode->i_block[block];
3862         INIT_LIST_HEAD(&ei->i_orphan);
3863
3864         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3865                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3866                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3867                     EXT4_INODE_SIZE(inode->i_sb)) {
3868                         brelse (bh);
3869                         ret = -EIO;
3870                         goto bad_inode;
3871                 }
3872                 if (ei->i_extra_isize == 0) {
3873                         /* The extra space is currently unused. Use it. */
3874                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3875                                             EXT4_GOOD_OLD_INODE_SIZE;
3876                 } else {
3877                         __le32 *magic = (void *)raw_inode +
3878                                         EXT4_GOOD_OLD_INODE_SIZE +
3879                                         ei->i_extra_isize;
3880                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3881                                  ei->i_state |= EXT4_STATE_XATTR;
3882                 }
3883         } else
3884                 ei->i_extra_isize = 0;
3885
3886         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3887         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3888         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3889         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3890
3891         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3892         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3894                         inode->i_version |=
3895                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3896         }
3897
3898         if (S_ISREG(inode->i_mode)) {
3899                 inode->i_op = &ext4_file_inode_operations;
3900                 inode->i_fop = &ext4_file_operations;
3901                 ext4_set_aops(inode);
3902         } else if (S_ISDIR(inode->i_mode)) {
3903                 inode->i_op = &ext4_dir_inode_operations;
3904                 inode->i_fop = &ext4_dir_operations;
3905         } else if (S_ISLNK(inode->i_mode)) {
3906                 if (ext4_inode_is_fast_symlink(inode))
3907                         inode->i_op = &ext4_fast_symlink_inode_operations;
3908                 else {
3909                         inode->i_op = &ext4_symlink_inode_operations;
3910                         ext4_set_aops(inode);
3911                 }
3912         } else {
3913                 inode->i_op = &ext4_special_inode_operations;
3914                 if (raw_inode->i_block[0])
3915                         init_special_inode(inode, inode->i_mode,
3916                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3917                 else
3918                         init_special_inode(inode, inode->i_mode,
3919                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3920         }
3921         brelse (iloc.bh);
3922         ext4_set_inode_flags(inode);
3923         unlock_new_inode(inode);
3924         return inode;
3925
3926 bad_inode:
3927         iget_failed(inode);
3928         return ERR_PTR(ret);
3929 }
3930
3931 static int ext4_inode_blocks_set(handle_t *handle,
3932                                 struct ext4_inode *raw_inode,
3933                                 struct ext4_inode_info *ei)
3934 {
3935         struct inode *inode = &(ei->vfs_inode);
3936         u64 i_blocks = inode->i_blocks;
3937         struct super_block *sb = inode->i_sb;
3938         int err = 0;
3939
3940         if (i_blocks <= ~0U) {
3941                 /*
3942                  * i_blocks can be represnted in a 32 bit variable
3943                  * as multiple of 512 bytes
3944                  */
3945                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3946                 raw_inode->i_blocks_high = 0;
3947                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3948         } else if (i_blocks <= 0xffffffffffffULL) {
3949                 /*
3950                  * i_blocks can be represented in a 48 bit variable
3951                  * as multiple of 512 bytes
3952                  */
3953                 err = ext4_update_rocompat_feature(handle, sb,
3954                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3955                 if (err)
3956                         goto  err_out;
3957                 /* i_block is stored in the split  48 bit fields */
3958                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3959                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3960                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3961         } else {
3962                 /*
3963                  * i_blocks should be represented in a 48 bit variable
3964                  * as multiple of  file system block size
3965                  */
3966                 err = ext4_update_rocompat_feature(handle, sb,
3967                                             EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3968                 if (err)
3969                         goto  err_out;
3970                 ei->i_flags |= EXT4_HUGE_FILE_FL;
3971                 /* i_block is stored in file system block size */
3972                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3973                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3974                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3975         }
3976 err_out:
3977         return err;
3978 }
3979
3980 /*
3981  * Post the struct inode info into an on-disk inode location in the
3982  * buffer-cache.  This gobbles the caller's reference to the
3983  * buffer_head in the inode location struct.
3984  *
3985  * The caller must have write access to iloc->bh.
3986  */
3987 static int ext4_do_update_inode(handle_t *handle,
3988                                 struct inode *inode,
3989                                 struct ext4_iloc *iloc)
3990 {
3991         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3992         struct ext4_inode_info *ei = EXT4_I(inode);
3993         struct buffer_head *bh = iloc->bh;
3994         int err = 0, rc, block;
3995
3996         /* For fields not not tracking in the in-memory inode,
3997          * initialise them to zero for new inodes. */
3998         if (ei->i_state & EXT4_STATE_NEW)
3999                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4000
4001         ext4_get_inode_flags(ei);
4002         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4003         if(!(test_opt(inode->i_sb, NO_UID32))) {
4004                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4005                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4006 /*
4007  * Fix up interoperability with old kernels. Otherwise, old inodes get
4008  * re-used with the upper 16 bits of the uid/gid intact
4009  */
4010                 if(!ei->i_dtime) {
4011                         raw_inode->i_uid_high =
4012                                 cpu_to_le16(high_16_bits(inode->i_uid));
4013                         raw_inode->i_gid_high =
4014                                 cpu_to_le16(high_16_bits(inode->i_gid));
4015                 } else {
4016                         raw_inode->i_uid_high = 0;
4017                         raw_inode->i_gid_high = 0;
4018                 }
4019         } else {
4020                 raw_inode->i_uid_low =
4021                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4022                 raw_inode->i_gid_low =
4023                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4024                 raw_inode->i_uid_high = 0;
4025                 raw_inode->i_gid_high = 0;
4026         }
4027         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4028
4029         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4030         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4031         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4032         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4033
4034         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4035                 goto out_brelse;
4036         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4037         /* clear the migrate flag in the raw_inode */
4038         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4039         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4040             cpu_to_le32(EXT4_OS_HURD))
4041                 raw_inode->i_file_acl_high =
4042                         cpu_to_le16(ei->i_file_acl >> 32);
4043         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4044         ext4_isize_set(raw_inode, ei->i_disksize);
4045         if (ei->i_disksize > 0x7fffffffULL) {
4046                 struct super_block *sb = inode->i_sb;
4047                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4048                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4049                                 EXT4_SB(sb)->s_es->s_rev_level ==
4050                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4051                         /* If this is the first large file
4052                          * created, add a flag to the superblock.
4053                          */
4054                         err = ext4_journal_get_write_access(handle,
4055                                         EXT4_SB(sb)->s_sbh);
4056                         if (err)
4057                                 goto out_brelse;
4058                         ext4_update_dynamic_rev(sb);
4059                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4060                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4061                         sb->s_dirt = 1;
4062                         handle->h_sync = 1;
4063                         err = ext4_journal_dirty_metadata(handle,
4064                                         EXT4_SB(sb)->s_sbh);
4065                 }
4066         }
4067         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4068         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4069                 if (old_valid_dev(inode->i_rdev)) {
4070                         raw_inode->i_block[0] =
4071                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4072                         raw_inode->i_block[1] = 0;
4073                 } else {
4074                         raw_inode->i_block[0] = 0;
4075                         raw_inode->i_block[1] =
4076                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4077                         raw_inode->i_block[2] = 0;
4078                 }
4079         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4080                 raw_inode->i_block[block] = ei->i_data[block];
4081
4082         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4083         if (ei->i_extra_isize) {
4084                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4085                         raw_inode->i_version_hi =
4086                         cpu_to_le32(inode->i_version >> 32);
4087                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4088         }
4089
4090
4091         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4092         rc = ext4_journal_dirty_metadata(handle, bh);
4093         if (!err)
4094                 err = rc;
4095         ei->i_state &= ~EXT4_STATE_NEW;
4096
4097 out_brelse:
4098         brelse (bh);
4099         ext4_std_error(inode->i_sb, err);
4100         return err;
4101 }
4102
4103 /*
4104  * ext4_write_inode()
4105  *
4106  * We are called from a few places:
4107  *
4108  * - Within generic_file_write() for O_SYNC files.
4109  *   Here, there will be no transaction running. We wait for any running
4110  *   trasnaction to commit.
4111  *
4112  * - Within sys_sync(), kupdate and such.
4113  *   We wait on commit, if tol to.
4114  *
4115  * - Within prune_icache() (PF_MEMALLOC == true)
4116  *   Here we simply return.  We can't afford to block kswapd on the
4117  *   journal commit.
4118  *
4119  * In all cases it is actually safe for us to return without doing anything,
4120  * because the inode has been copied into a raw inode buffer in
4121  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4122  * knfsd.
4123  *
4124  * Note that we are absolutely dependent upon all inode dirtiers doing the
4125  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4126  * which we are interested.
4127  *
4128  * It would be a bug for them to not do this.  The code:
4129  *
4130  *      mark_inode_dirty(inode)
4131  *      stuff();
4132  *      inode->i_size = expr;
4133  *
4134  * is in error because a kswapd-driven write_inode() could occur while
4135  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4136  * will no longer be on the superblock's dirty inode list.
4137  */
4138 int ext4_write_inode(struct inode *inode, int wait)
4139 {
4140         if (current->flags & PF_MEMALLOC)
4141                 return 0;
4142
4143         if (ext4_journal_current_handle()) {
4144                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4145                 dump_stack();
4146                 return -EIO;
4147         }
4148
4149         if (!wait)
4150                 return 0;
4151
4152         return ext4_force_commit(inode->i_sb);
4153 }
4154
4155 /*
4156  * ext4_setattr()
4157  *
4158  * Called from notify_change.
4159  *
4160  * We want to trap VFS attempts to truncate the file as soon as
4161  * possible.  In particular, we want to make sure that when the VFS
4162  * shrinks i_size, we put the inode on the orphan list and modify
4163  * i_disksize immediately, so that during the subsequent flushing of
4164  * dirty pages and freeing of disk blocks, we can guarantee that any
4165  * commit will leave the blocks being flushed in an unused state on
4166  * disk.  (On recovery, the inode will get truncated and the blocks will
4167  * be freed, so we have a strong guarantee that no future commit will
4168  * leave these blocks visible to the user.)
4169  *
4170  * Another thing we have to assure is that if we are in ordered mode
4171  * and inode is still attached to the committing transaction, we must
4172  * we start writeout of all the dirty pages which are being truncated.
4173  * This way we are sure that all the data written in the previous
4174  * transaction are already on disk (truncate waits for pages under
4175  * writeback).
4176  *
4177  * Called with inode->i_mutex down.
4178  */
4179 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4180 {
4181         struct inode *inode = dentry->d_inode;
4182         int error, rc = 0;
4183         const unsigned int ia_valid = attr->ia_valid;
4184
4185         error = inode_change_ok(inode, attr);
4186         if (error)
4187                 return error;
4188
4189         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4190                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4191                 handle_t *handle;
4192
4193                 /* (user+group)*(old+new) structure, inode write (sb,
4194                  * inode block, ? - but truncate inode update has it) */
4195                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4196                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4197                 if (IS_ERR(handle)) {
4198                         error = PTR_ERR(handle);
4199                         goto err_out;
4200                 }
4201                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4202                 if (error) {
4203                         ext4_journal_stop(handle);
4204                         return error;
4205                 }
4206                 /* Update corresponding info in inode so that everything is in
4207                  * one transaction */
4208                 if (attr->ia_valid & ATTR_UID)
4209                         inode->i_uid = attr->ia_uid;
4210                 if (attr->ia_valid & ATTR_GID)
4211                         inode->i_gid = attr->ia_gid;
4212                 error = ext4_mark_inode_dirty(handle, inode);
4213                 ext4_journal_stop(handle);
4214         }
4215
4216         if (attr->ia_valid & ATTR_SIZE) {
4217                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4218                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4219
4220                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4221                                 error = -EFBIG;
4222                                 goto err_out;
4223                         }
4224                 }
4225         }
4226
4227         if (S_ISREG(inode->i_mode) &&
4228             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4229                 handle_t *handle;
4230
4231                 handle = ext4_journal_start(inode, 3);
4232                 if (IS_ERR(handle)) {
4233                         error = PTR_ERR(handle);
4234                         goto err_out;
4235                 }
4236
4237                 error = ext4_orphan_add(handle, inode);
4238                 EXT4_I(inode)->i_disksize = attr->ia_size;
4239                 rc = ext4_mark_inode_dirty(handle, inode);
4240                 if (!error)
4241                         error = rc;
4242                 ext4_journal_stop(handle);
4243
4244                 if (ext4_should_order_data(inode)) {
4245                         error = ext4_begin_ordered_truncate(inode,
4246                                                             attr->ia_size);
4247                         if (error) {
4248                                 /* Do as much error cleanup as possible */
4249                                 handle = ext4_journal_start(inode, 3);
4250                                 if (IS_ERR(handle)) {
4251                                         ext4_orphan_del(NULL, inode);
4252                                         goto err_out;
4253                                 }
4254                                 ext4_orphan_del(handle, inode);
4255                                 ext4_journal_stop(handle);
4256                                 goto err_out;
4257                         }
4258                 }
4259         }
4260
4261         rc = inode_setattr(inode, attr);
4262
4263         /* If inode_setattr's call to ext4_truncate failed to get a
4264          * transaction handle at all, we need to clean up the in-core
4265          * orphan list manually. */
4266         if (inode->i_nlink)
4267                 ext4_orphan_del(NULL, inode);
4268
4269         if (!rc && (ia_valid & ATTR_MODE))
4270                 rc = ext4_acl_chmod(inode);
4271
4272 err_out:
4273         ext4_std_error(inode->i_sb, error);
4274         if (!error)
4275                 error = rc;
4276         return error;
4277 }
4278
4279 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4280                  struct kstat *stat)
4281 {
4282         struct inode *inode;
4283         unsigned long delalloc_blocks;
4284
4285         inode = dentry->d_inode;
4286         generic_fillattr(inode, stat);
4287
4288         /*
4289          * We can't update i_blocks if the block allocation is delayed
4290          * otherwise in the case of system crash before the real block
4291          * allocation is done, we will have i_blocks inconsistent with
4292          * on-disk file blocks.
4293          * We always keep i_blocks updated together with real
4294          * allocation. But to not confuse with user, stat
4295          * will return the blocks that include the delayed allocation
4296          * blocks for this file.
4297          */
4298         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4299         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4300         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4301
4302         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4303         return 0;
4304 }
4305
4306 /*
4307  * How many blocks doth make a writepage()?
4308  *
4309  * With N blocks per page, it may be:
4310  * N data blocks
4311  * 2 indirect block
4312  * 2 dindirect
4313  * 1 tindirect
4314  * N+5 bitmap blocks (from the above)
4315  * N+5 group descriptor summary blocks
4316  * 1 inode block
4317  * 1 superblock.
4318  * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4319  *
4320  * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4321  *
4322  * With ordered or writeback data it's the same, less the N data blocks.
4323  *
4324  * If the inode's direct blocks can hold an integral number of pages then a
4325  * page cannot straddle two indirect blocks, and we can only touch one indirect
4326  * and dindirect block, and the "5" above becomes "3".
4327  *
4328  * This still overestimates under most circumstances.  If we were to pass the
4329  * start and end offsets in here as well we could do block_to_path() on each
4330  * block and work out the exact number of indirects which are touched.  Pah.
4331  */
4332
4333 int ext4_writepage_trans_blocks(struct inode *inode)
4334 {
4335         int bpp = ext4_journal_blocks_per_page(inode);
4336         int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4337         int ret;
4338
4339         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4340                 return ext4_ext_writepage_trans_blocks(inode, bpp);
4341
4342         if (ext4_should_journal_data(inode))
4343                 ret = 3 * (bpp + indirects) + 2;
4344         else
4345                 ret = 2 * (bpp + indirects) + 2;
4346
4347 #ifdef CONFIG_QUOTA
4348         /* We know that structure was already allocated during DQUOT_INIT so
4349          * we will be updating only the data blocks + inodes */
4350         ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4351 #endif
4352
4353         return ret;
4354 }
4355
4356 /*
4357  * The caller must have previously called ext4_reserve_inode_write().
4358  * Give this, we know that the caller already has write access to iloc->bh.
4359  */
4360 int ext4_mark_iloc_dirty(handle_t *handle,
4361                 struct inode *inode, struct ext4_iloc *iloc)
4362 {
4363         int err = 0;
4364
4365         if (test_opt(inode->i_sb, I_VERSION))
4366                 inode_inc_iversion(inode);
4367
4368         /* the do_update_inode consumes one bh->b_count */
4369         get_bh(iloc->bh);
4370
4371         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4372         err = ext4_do_update_inode(handle, inode, iloc);
4373         put_bh(iloc->bh);
4374         return err;
4375 }
4376
4377 /*
4378  * On success, We end up with an outstanding reference count against
4379  * iloc->bh.  This _must_ be cleaned up later.
4380  */
4381
4382 int
4383 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4384                          struct ext4_iloc *iloc)
4385 {
4386         int err = 0;
4387         if (handle) {
4388                 err = ext4_get_inode_loc(inode, iloc);
4389                 if (!err) {
4390                         BUFFER_TRACE(iloc->bh, "get_write_access");
4391                         err = ext4_journal_get_write_access(handle, iloc->bh);
4392                         if (err) {
4393                                 brelse(iloc->bh);
4394                                 iloc->bh = NULL;
4395                         }
4396                 }
4397         }
4398         ext4_std_error(inode->i_sb, err);
4399         return err;
4400 }
4401
4402 /*
4403  * Expand an inode by new_extra_isize bytes.
4404  * Returns 0 on success or negative error number on failure.
4405  */
4406 static int ext4_expand_extra_isize(struct inode *inode,
4407                                    unsigned int new_extra_isize,
4408                                    struct ext4_iloc iloc,
4409                                    handle_t *handle)
4410 {
4411         struct ext4_inode *raw_inode;
4412         struct ext4_xattr_ibody_header *header;
4413         struct ext4_xattr_entry *entry;
4414
4415         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4416                 return 0;
4417
4418         raw_inode = ext4_raw_inode(&iloc);
4419
4420         header = IHDR(inode, raw_inode);
4421         entry = IFIRST(header);
4422
4423         /* No extended attributes present */
4424         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4425                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4426                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4427                         new_extra_isize);
4428                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4429                 return 0;
4430         }
4431
4432         /* try to expand with EAs present */
4433         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4434                                           raw_inode, handle);
4435 }
4436
4437 /*
4438  * What we do here is to mark the in-core inode as clean with respect to inode
4439  * dirtiness (it may still be data-dirty).
4440  * This means that the in-core inode may be reaped by prune_icache
4441  * without having to perform any I/O.  This is a very good thing,
4442  * because *any* task may call prune_icache - even ones which
4443  * have a transaction open against a different journal.
4444  *
4445  * Is this cheating?  Not really.  Sure, we haven't written the
4446  * inode out, but prune_icache isn't a user-visible syncing function.
4447  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4448  * we start and wait on commits.
4449  *
4450  * Is this efficient/effective?  Well, we're being nice to the system
4451  * by cleaning up our inodes proactively so they can be reaped
4452  * without I/O.  But we are potentially leaving up to five seconds'
4453  * worth of inodes floating about which prune_icache wants us to
4454  * write out.  One way to fix that would be to get prune_icache()
4455  * to do a write_super() to free up some memory.  It has the desired
4456  * effect.
4457  */
4458 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4459 {
4460         struct ext4_iloc iloc;
4461         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4462         static unsigned int mnt_count;
4463         int err, ret;
4464
4465         might_sleep();
4466         err = ext4_reserve_inode_write(handle, inode, &iloc);
4467         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4468             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4469                 /*
4470                  * We need extra buffer credits since we may write into EA block
4471                  * with this same handle. If journal_extend fails, then it will
4472                  * only result in a minor loss of functionality for that inode.
4473                  * If this is felt to be critical, then e2fsck should be run to
4474                  * force a large enough s_min_extra_isize.
4475                  */
4476                 if ((jbd2_journal_extend(handle,
4477                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4478                         ret = ext4_expand_extra_isize(inode,
4479                                                       sbi->s_want_extra_isize,
4480                                                       iloc, handle);
4481                         if (ret) {
4482                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4483                                 if (mnt_count !=
4484                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4485                                         ext4_warning(inode->i_sb, __func__,
4486                                         "Unable to expand inode %lu. Delete"
4487                                         " some EAs or run e2fsck.",
4488                                         inode->i_ino);
4489                                         mnt_count =
4490                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4491                                 }
4492                         }
4493                 }
4494         }
4495         if (!err)
4496                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4497         return err;
4498 }
4499
4500 /*
4501  * ext4_dirty_inode() is called from __mark_inode_dirty()
4502  *
4503  * We're really interested in the case where a file is being extended.
4504  * i_size has been changed by generic_commit_write() and we thus need
4505  * to include the updated inode in the current transaction.
4506  *
4507  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4508  * are allocated to the file.
4509  *
4510  * If the inode is marked synchronous, we don't honour that here - doing
4511  * so would cause a commit on atime updates, which we don't bother doing.
4512  * We handle synchronous inodes at the highest possible level.
4513  */
4514 void ext4_dirty_inode(struct inode *inode)
4515 {
4516         handle_t *current_handle = ext4_journal_current_handle();
4517         handle_t *handle;
4518
4519         handle = ext4_journal_start(inode, 2);
4520         if (IS_ERR(handle))
4521                 goto out;
4522         if (current_handle &&
4523                 current_handle->h_transaction != handle->h_transaction) {
4524                 /* This task has a transaction open against a different fs */
4525                 printk(KERN_EMERG "%s: transactions do not match!\n",
4526                        __func__);
4527         } else {
4528                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4529                                 current_handle);
4530                 ext4_mark_inode_dirty(handle, inode);
4531         }
4532         ext4_journal_stop(handle);
4533 out:
4534         return;
4535 }
4536
4537 #if 0
4538 /*
4539  * Bind an inode's backing buffer_head into this transaction, to prevent
4540  * it from being flushed to disk early.  Unlike
4541  * ext4_reserve_inode_write, this leaves behind no bh reference and
4542  * returns no iloc structure, so the caller needs to repeat the iloc
4543  * lookup to mark the inode dirty later.
4544  */
4545 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4546 {
4547         struct ext4_iloc iloc;
4548
4549         int err = 0;
4550         if (handle) {
4551                 err = ext4_get_inode_loc(inode, &iloc);
4552                 if (!err) {
4553                         BUFFER_TRACE(iloc.bh, "get_write_access");
4554                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4555                         if (!err)
4556                                 err = ext4_journal_dirty_metadata(handle,
4557                                                                   iloc.bh);
4558                         brelse(iloc.bh);
4559                 }
4560         }
4561         ext4_std_error(inode->i_sb, err);
4562         return err;
4563 }
4564 #endif
4565
4566 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4567 {
4568         journal_t *journal;
4569         handle_t *handle;
4570         int err;
4571
4572         /*
4573          * We have to be very careful here: changing a data block's
4574          * journaling status dynamically is dangerous.  If we write a
4575          * data block to the journal, change the status and then delete
4576          * that block, we risk forgetting to revoke the old log record
4577          * from the journal and so a subsequent replay can corrupt data.
4578          * So, first we make sure that the journal is empty and that
4579          * nobody is changing anything.
4580          */
4581
4582         journal = EXT4_JOURNAL(inode);
4583         if (is_journal_aborted(journal))
4584                 return -EROFS;
4585
4586         jbd2_journal_lock_updates(journal);
4587         jbd2_journal_flush(journal);
4588
4589         /*
4590          * OK, there are no updates running now, and all cached data is
4591          * synced to disk.  We are now in a completely consistent state
4592          * which doesn't have anything in the journal, and we know that
4593          * no filesystem updates are running, so it is safe to modify
4594          * the inode's in-core data-journaling state flag now.
4595          */
4596
4597         if (val)
4598                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4599         else
4600                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4601         ext4_set_aops(inode);
4602
4603         jbd2_journal_unlock_updates(journal);
4604
4605         /* Finally we can mark the inode as dirty. */
4606
4607         handle = ext4_journal_start(inode, 1);
4608         if (IS_ERR(handle))
4609                 return PTR_ERR(handle);
4610
4611         err = ext4_mark_inode_dirty(handle, inode);
4612         handle->h_sync = 1;
4613         ext4_journal_stop(handle);
4614         ext4_std_error(inode->i_sb, err);
4615
4616         return err;
4617 }
4618
4619 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4620 {
4621         return !buffer_mapped(bh);
4622 }
4623
4624 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4625 {
4626         loff_t size;
4627         unsigned long len;
4628         int ret = -EINVAL;
4629         struct file *file = vma->vm_file;
4630         struct inode *inode = file->f_path.dentry->d_inode;
4631         struct address_space *mapping = inode->i_mapping;
4632
4633         /*
4634          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4635          * get i_mutex because we are already holding mmap_sem.
4636          */
4637         down_read(&inode->i_alloc_sem);
4638         size = i_size_read(inode);
4639         if (page->mapping != mapping || size <= page_offset(page)
4640             || !PageUptodate(page)) {
4641                 /* page got truncated from under us? */
4642                 goto out_unlock;
4643         }
4644         ret = 0;
4645         if (PageMappedToDisk(page))
4646                 goto out_unlock;
4647
4648         if (page->index == size >> PAGE_CACHE_SHIFT)
4649                 len = size & ~PAGE_CACHE_MASK;
4650         else
4651                 len = PAGE_CACHE_SIZE;
4652
4653         if (page_has_buffers(page)) {
4654                 /* return if we have all the buffers mapped */
4655                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4656                                        ext4_bh_unmapped))
4657                         goto out_unlock;
4658         }
4659         /*
4660          * OK, we need to fill the hole... Do write_begin write_end
4661          * to do block allocation/reservation.We are not holding
4662          * inode.i__mutex here. That allow * parallel write_begin,
4663          * write_end call. lock_page prevent this from happening
4664          * on the same page though
4665          */
4666         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4667                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4668         if (ret < 0)
4669                 goto out_unlock;
4670         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4671                         len, len, page, NULL);
4672         if (ret < 0)
4673                 goto out_unlock;
4674         ret = 0;
4675 out_unlock:
4676         up_read(&inode->i_alloc_sem);
4677         return ret;
4678 }