]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/fuse/dev.c
fuse: cleanup in release
[linux-2.6-omap-h63xx.git] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2006  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26         /*
27          * Lockless access is OK, because file->private data is set
28          * once during mount and is valid until the file is released.
29          */
30         return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35         memset(req, 0, sizeof(*req));
36         INIT_LIST_HEAD(&req->list);
37         INIT_LIST_HEAD(&req->intr_entry);
38         init_waitqueue_head(&req->waitq);
39         atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45         if (req)
46                 fuse_request_init(req);
47         return req;
48 }
49
50 void fuse_request_free(struct fuse_req *req)
51 {
52         kmem_cache_free(fuse_req_cachep, req);
53 }
54
55 static void block_sigs(sigset_t *oldset)
56 {
57         sigset_t mask;
58
59         siginitsetinv(&mask, sigmask(SIGKILL));
60         sigprocmask(SIG_BLOCK, &mask, oldset);
61 }
62
63 static void restore_sigs(sigset_t *oldset)
64 {
65         sigprocmask(SIG_SETMASK, oldset, NULL);
66 }
67
68 static void __fuse_get_request(struct fuse_req *req)
69 {
70         atomic_inc(&req->count);
71 }
72
73 /* Must be called with > 1 refcount */
74 static void __fuse_put_request(struct fuse_req *req)
75 {
76         BUG_ON(atomic_read(&req->count) < 2);
77         atomic_dec(&req->count);
78 }
79
80 static void fuse_req_init_context(struct fuse_req *req)
81 {
82         req->in.h.uid = current->fsuid;
83         req->in.h.gid = current->fsgid;
84         req->in.h.pid = current->pid;
85 }
86
87 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
88 {
89         struct fuse_req *req;
90         sigset_t oldset;
91         int intr;
92         int err;
93
94         atomic_inc(&fc->num_waiting);
95         block_sigs(&oldset);
96         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
97         restore_sigs(&oldset);
98         err = -EINTR;
99         if (intr)
100                 goto out;
101
102         err = -ENOTCONN;
103         if (!fc->connected)
104                 goto out;
105
106         req = fuse_request_alloc();
107         err = -ENOMEM;
108         if (!req)
109                 goto out;
110
111         fuse_req_init_context(req);
112         req->waiting = 1;
113         return req;
114
115  out:
116         atomic_dec(&fc->num_waiting);
117         return ERR_PTR(err);
118 }
119
120 /*
121  * Return request in fuse_file->reserved_req.  However that may
122  * currently be in use.  If that is the case, wait for it to become
123  * available.
124  */
125 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
126                                          struct file *file)
127 {
128         struct fuse_req *req = NULL;
129         struct fuse_file *ff = file->private_data;
130
131         do {
132                 wait_event(fc->reserved_req_waitq, ff->reserved_req);
133                 spin_lock(&fc->lock);
134                 if (ff->reserved_req) {
135                         req = ff->reserved_req;
136                         ff->reserved_req = NULL;
137                         get_file(file);
138                         req->stolen_file = file;
139                 }
140                 spin_unlock(&fc->lock);
141         } while (!req);
142
143         return req;
144 }
145
146 /*
147  * Put stolen request back into fuse_file->reserved_req
148  */
149 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
150 {
151         struct file *file = req->stolen_file;
152         struct fuse_file *ff = file->private_data;
153
154         spin_lock(&fc->lock);
155         fuse_request_init(req);
156         BUG_ON(ff->reserved_req);
157         ff->reserved_req = req;
158         wake_up_all(&fc->reserved_req_waitq);
159         spin_unlock(&fc->lock);
160         fput(file);
161 }
162
163 /*
164  * Gets a requests for a file operation, always succeeds
165  *
166  * This is used for sending the FLUSH request, which must get to
167  * userspace, due to POSIX locks which may need to be unlocked.
168  *
169  * If allocation fails due to OOM, use the reserved request in
170  * fuse_file.
171  *
172  * This is very unlikely to deadlock accidentally, since the
173  * filesystem should not have it's own file open.  If deadlock is
174  * intentional, it can still be broken by "aborting" the filesystem.
175  */
176 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
177 {
178         struct fuse_req *req;
179
180         atomic_inc(&fc->num_waiting);
181         wait_event(fc->blocked_waitq, !fc->blocked);
182         req = fuse_request_alloc();
183         if (!req)
184                 req = get_reserved_req(fc, file);
185
186         fuse_req_init_context(req);
187         req->waiting = 1;
188         return req;
189 }
190
191 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
192 {
193         if (atomic_dec_and_test(&req->count)) {
194                 if (req->waiting)
195                         atomic_dec(&fc->num_waiting);
196
197                 if (req->stolen_file)
198                         put_reserved_req(fc, req);
199                 else
200                         fuse_request_free(req);
201         }
202 }
203
204 /*
205  * This function is called when a request is finished.  Either a reply
206  * has arrived or it was aborted (and not yet sent) or some error
207  * occurred during communication with userspace, or the device file
208  * was closed.  The requester thread is woken up (if still waiting),
209  * the 'end' callback is called if given, else the reference to the
210  * request is released
211  *
212  * Called with fc->lock, unlocks it
213  */
214 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
215         __releases(fc->lock)
216 {
217         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
218         req->end = NULL;
219         list_del(&req->list);
220         list_del(&req->intr_entry);
221         req->state = FUSE_REQ_FINISHED;
222         if (req->background) {
223                 if (fc->num_background == FUSE_MAX_BACKGROUND) {
224                         fc->blocked = 0;
225                         wake_up_all(&fc->blocked_waitq);
226                 }
227                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
228                         clear_bdi_congested(&fc->bdi, READ);
229                         clear_bdi_congested(&fc->bdi, WRITE);
230                 }
231                 fc->num_background--;
232         }
233         spin_unlock(&fc->lock);
234         wake_up(&req->waitq);
235         if (end)
236                 end(fc, req);
237         else
238                 fuse_put_request(fc, req);
239 }
240
241 static void wait_answer_interruptible(struct fuse_conn *fc,
242                                       struct fuse_req *req)
243 {
244         if (signal_pending(current))
245                 return;
246
247         spin_unlock(&fc->lock);
248         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
249         spin_lock(&fc->lock);
250 }
251
252 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
253 {
254         list_add_tail(&req->intr_entry, &fc->interrupts);
255         wake_up(&fc->waitq);
256         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
257 }
258
259 /* Called with fc->lock held.  Releases, and then reacquires it. */
260 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
261 {
262         if (!fc->no_interrupt) {
263                 /* Any signal may interrupt this */
264                 wait_answer_interruptible(fc, req);
265
266                 if (req->aborted)
267                         goto aborted;
268                 if (req->state == FUSE_REQ_FINISHED)
269                         return;
270
271                 req->interrupted = 1;
272                 if (req->state == FUSE_REQ_SENT)
273                         queue_interrupt(fc, req);
274         }
275
276         if (req->force) {
277                 spin_unlock(&fc->lock);
278                 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
279                 spin_lock(&fc->lock);
280         } else {
281                 sigset_t oldset;
282
283                 /* Only fatal signals may interrupt this */
284                 block_sigs(&oldset);
285                 wait_answer_interruptible(fc, req);
286                 restore_sigs(&oldset);
287         }
288
289         if (req->aborted)
290                 goto aborted;
291         if (req->state == FUSE_REQ_FINISHED)
292                 return;
293
294         req->out.h.error = -EINTR;
295         req->aborted = 1;
296
297  aborted:
298         if (req->locked) {
299                 /* This is uninterruptible sleep, because data is
300                    being copied to/from the buffers of req.  During
301                    locked state, there mustn't be any filesystem
302                    operation (e.g. page fault), since that could lead
303                    to deadlock */
304                 spin_unlock(&fc->lock);
305                 wait_event(req->waitq, !req->locked);
306                 spin_lock(&fc->lock);
307         }
308         if (req->state == FUSE_REQ_PENDING) {
309                 list_del(&req->list);
310                 __fuse_put_request(req);
311         } else if (req->state == FUSE_REQ_SENT) {
312                 spin_unlock(&fc->lock);
313                 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
314                 spin_lock(&fc->lock);
315         }
316 }
317
318 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
319 {
320         unsigned nbytes = 0;
321         unsigned i;
322
323         for (i = 0; i < numargs; i++)
324                 nbytes += args[i].size;
325
326         return nbytes;
327 }
328
329 static u64 fuse_get_unique(struct fuse_conn *fc)
330  {
331         fc->reqctr++;
332         /* zero is special */
333         if (fc->reqctr == 0)
334                 fc->reqctr = 1;
335
336         return fc->reqctr;
337 }
338
339 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
340 {
341         req->in.h.unique = fuse_get_unique(fc);
342         req->in.h.len = sizeof(struct fuse_in_header) +
343                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
344         list_add_tail(&req->list, &fc->pending);
345         req->state = FUSE_REQ_PENDING;
346         if (!req->waiting) {
347                 req->waiting = 1;
348                 atomic_inc(&fc->num_waiting);
349         }
350         wake_up(&fc->waitq);
351         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
352 }
353
354 void request_send(struct fuse_conn *fc, struct fuse_req *req)
355 {
356         req->isreply = 1;
357         spin_lock(&fc->lock);
358         if (!fc->connected)
359                 req->out.h.error = -ENOTCONN;
360         else if (fc->conn_error)
361                 req->out.h.error = -ECONNREFUSED;
362         else {
363                 queue_request(fc, req);
364                 /* acquire extra reference, since request is still needed
365                    after request_end() */
366                 __fuse_get_request(req);
367
368                 request_wait_answer(fc, req);
369         }
370         spin_unlock(&fc->lock);
371 }
372
373 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
374 {
375         spin_lock(&fc->lock);
376         if (fc->connected) {
377                 req->background = 1;
378                 fc->num_background++;
379                 if (fc->num_background == FUSE_MAX_BACKGROUND)
380                         fc->blocked = 1;
381                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
382                         set_bdi_congested(&fc->bdi, READ);
383                         set_bdi_congested(&fc->bdi, WRITE);
384                 }
385
386                 queue_request(fc, req);
387                 spin_unlock(&fc->lock);
388         } else {
389                 req->out.h.error = -ENOTCONN;
390                 request_end(fc, req);
391         }
392 }
393
394 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
395 {
396         req->isreply = 0;
397         request_send_nowait(fc, req);
398 }
399
400 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
401 {
402         req->isreply = 1;
403         request_send_nowait(fc, req);
404 }
405
406 /*
407  * Lock the request.  Up to the next unlock_request() there mustn't be
408  * anything that could cause a page-fault.  If the request was already
409  * aborted bail out.
410  */
411 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
412 {
413         int err = 0;
414         if (req) {
415                 spin_lock(&fc->lock);
416                 if (req->aborted)
417                         err = -ENOENT;
418                 else
419                         req->locked = 1;
420                 spin_unlock(&fc->lock);
421         }
422         return err;
423 }
424
425 /*
426  * Unlock request.  If it was aborted during being locked, the
427  * requester thread is currently waiting for it to be unlocked, so
428  * wake it up.
429  */
430 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
431 {
432         if (req) {
433                 spin_lock(&fc->lock);
434                 req->locked = 0;
435                 if (req->aborted)
436                         wake_up(&req->waitq);
437                 spin_unlock(&fc->lock);
438         }
439 }
440
441 struct fuse_copy_state {
442         struct fuse_conn *fc;
443         int write;
444         struct fuse_req *req;
445         const struct iovec *iov;
446         unsigned long nr_segs;
447         unsigned long seglen;
448         unsigned long addr;
449         struct page *pg;
450         void *mapaddr;
451         void *buf;
452         unsigned len;
453 };
454
455 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
456                            int write, struct fuse_req *req,
457                            const struct iovec *iov, unsigned long nr_segs)
458 {
459         memset(cs, 0, sizeof(*cs));
460         cs->fc = fc;
461         cs->write = write;
462         cs->req = req;
463         cs->iov = iov;
464         cs->nr_segs = nr_segs;
465 }
466
467 /* Unmap and put previous page of userspace buffer */
468 static void fuse_copy_finish(struct fuse_copy_state *cs)
469 {
470         if (cs->mapaddr) {
471                 kunmap_atomic(cs->mapaddr, KM_USER0);
472                 if (cs->write) {
473                         flush_dcache_page(cs->pg);
474                         set_page_dirty_lock(cs->pg);
475                 }
476                 put_page(cs->pg);
477                 cs->mapaddr = NULL;
478         }
479 }
480
481 /*
482  * Get another pagefull of userspace buffer, and map it to kernel
483  * address space, and lock request
484  */
485 static int fuse_copy_fill(struct fuse_copy_state *cs)
486 {
487         unsigned long offset;
488         int err;
489
490         unlock_request(cs->fc, cs->req);
491         fuse_copy_finish(cs);
492         if (!cs->seglen) {
493                 BUG_ON(!cs->nr_segs);
494                 cs->seglen = cs->iov[0].iov_len;
495                 cs->addr = (unsigned long) cs->iov[0].iov_base;
496                 cs->iov ++;
497                 cs->nr_segs --;
498         }
499         down_read(&current->mm->mmap_sem);
500         err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
501                              &cs->pg, NULL);
502         up_read(&current->mm->mmap_sem);
503         if (err < 0)
504                 return err;
505         BUG_ON(err != 1);
506         offset = cs->addr % PAGE_SIZE;
507         cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
508         cs->buf = cs->mapaddr + offset;
509         cs->len = min(PAGE_SIZE - offset, cs->seglen);
510         cs->seglen -= cs->len;
511         cs->addr += cs->len;
512
513         return lock_request(cs->fc, cs->req);
514 }
515
516 /* Do as much copy to/from userspace buffer as we can */
517 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
518 {
519         unsigned ncpy = min(*size, cs->len);
520         if (val) {
521                 if (cs->write)
522                         memcpy(cs->buf, *val, ncpy);
523                 else
524                         memcpy(*val, cs->buf, ncpy);
525                 *val += ncpy;
526         }
527         *size -= ncpy;
528         cs->len -= ncpy;
529         cs->buf += ncpy;
530         return ncpy;
531 }
532
533 /*
534  * Copy a page in the request to/from the userspace buffer.  Must be
535  * done atomically
536  */
537 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
538                           unsigned offset, unsigned count, int zeroing)
539 {
540         if (page && zeroing && count < PAGE_SIZE) {
541                 void *mapaddr = kmap_atomic(page, KM_USER1);
542                 memset(mapaddr, 0, PAGE_SIZE);
543                 kunmap_atomic(mapaddr, KM_USER1);
544         }
545         while (count) {
546                 int err;
547                 if (!cs->len && (err = fuse_copy_fill(cs)))
548                         return err;
549                 if (page) {
550                         void *mapaddr = kmap_atomic(page, KM_USER1);
551                         void *buf = mapaddr + offset;
552                         offset += fuse_copy_do(cs, &buf, &count);
553                         kunmap_atomic(mapaddr, KM_USER1);
554                 } else
555                         offset += fuse_copy_do(cs, NULL, &count);
556         }
557         if (page && !cs->write)
558                 flush_dcache_page(page);
559         return 0;
560 }
561
562 /* Copy pages in the request to/from userspace buffer */
563 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
564                            int zeroing)
565 {
566         unsigned i;
567         struct fuse_req *req = cs->req;
568         unsigned offset = req->page_offset;
569         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
570
571         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
572                 struct page *page = req->pages[i];
573                 int err = fuse_copy_page(cs, page, offset, count, zeroing);
574                 if (err)
575                         return err;
576
577                 nbytes -= count;
578                 count = min(nbytes, (unsigned) PAGE_SIZE);
579                 offset = 0;
580         }
581         return 0;
582 }
583
584 /* Copy a single argument in the request to/from userspace buffer */
585 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
586 {
587         while (size) {
588                 int err;
589                 if (!cs->len && (err = fuse_copy_fill(cs)))
590                         return err;
591                 fuse_copy_do(cs, &val, &size);
592         }
593         return 0;
594 }
595
596 /* Copy request arguments to/from userspace buffer */
597 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
598                           unsigned argpages, struct fuse_arg *args,
599                           int zeroing)
600 {
601         int err = 0;
602         unsigned i;
603
604         for (i = 0; !err && i < numargs; i++)  {
605                 struct fuse_arg *arg = &args[i];
606                 if (i == numargs - 1 && argpages)
607                         err = fuse_copy_pages(cs, arg->size, zeroing);
608                 else
609                         err = fuse_copy_one(cs, arg->value, arg->size);
610         }
611         return err;
612 }
613
614 static int request_pending(struct fuse_conn *fc)
615 {
616         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
617 }
618
619 /* Wait until a request is available on the pending list */
620 static void request_wait(struct fuse_conn *fc)
621 {
622         DECLARE_WAITQUEUE(wait, current);
623
624         add_wait_queue_exclusive(&fc->waitq, &wait);
625         while (fc->connected && !request_pending(fc)) {
626                 set_current_state(TASK_INTERRUPTIBLE);
627                 if (signal_pending(current))
628                         break;
629
630                 spin_unlock(&fc->lock);
631                 schedule();
632                 spin_lock(&fc->lock);
633         }
634         set_current_state(TASK_RUNNING);
635         remove_wait_queue(&fc->waitq, &wait);
636 }
637
638 /*
639  * Transfer an interrupt request to userspace
640  *
641  * Unlike other requests this is assembled on demand, without a need
642  * to allocate a separate fuse_req structure.
643  *
644  * Called with fc->lock held, releases it
645  */
646 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
647                                const struct iovec *iov, unsigned long nr_segs)
648         __releases(fc->lock)
649 {
650         struct fuse_copy_state cs;
651         struct fuse_in_header ih;
652         struct fuse_interrupt_in arg;
653         unsigned reqsize = sizeof(ih) + sizeof(arg);
654         int err;
655
656         list_del_init(&req->intr_entry);
657         req->intr_unique = fuse_get_unique(fc);
658         memset(&ih, 0, sizeof(ih));
659         memset(&arg, 0, sizeof(arg));
660         ih.len = reqsize;
661         ih.opcode = FUSE_INTERRUPT;
662         ih.unique = req->intr_unique;
663         arg.unique = req->in.h.unique;
664
665         spin_unlock(&fc->lock);
666         if (iov_length(iov, nr_segs) < reqsize)
667                 return -EINVAL;
668
669         fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
670         err = fuse_copy_one(&cs, &ih, sizeof(ih));
671         if (!err)
672                 err = fuse_copy_one(&cs, &arg, sizeof(arg));
673         fuse_copy_finish(&cs);
674
675         return err ? err : reqsize;
676 }
677
678 /*
679  * Read a single request into the userspace filesystem's buffer.  This
680  * function waits until a request is available, then removes it from
681  * the pending list and copies request data to userspace buffer.  If
682  * no reply is needed (FORGET) or request has been aborted or there
683  * was an error during the copying then it's finished by calling
684  * request_end().  Otherwise add it to the processing list, and set
685  * the 'sent' flag.
686  */
687 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
688                               unsigned long nr_segs, loff_t pos)
689 {
690         int err;
691         struct fuse_req *req;
692         struct fuse_in *in;
693         struct fuse_copy_state cs;
694         unsigned reqsize;
695         struct file *file = iocb->ki_filp;
696         struct fuse_conn *fc = fuse_get_conn(file);
697         if (!fc)
698                 return -EPERM;
699
700  restart:
701         spin_lock(&fc->lock);
702         err = -EAGAIN;
703         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
704             !request_pending(fc))
705                 goto err_unlock;
706
707         request_wait(fc);
708         err = -ENODEV;
709         if (!fc->connected)
710                 goto err_unlock;
711         err = -ERESTARTSYS;
712         if (!request_pending(fc))
713                 goto err_unlock;
714
715         if (!list_empty(&fc->interrupts)) {
716                 req = list_entry(fc->interrupts.next, struct fuse_req,
717                                  intr_entry);
718                 return fuse_read_interrupt(fc, req, iov, nr_segs);
719         }
720
721         req = list_entry(fc->pending.next, struct fuse_req, list);
722         req->state = FUSE_REQ_READING;
723         list_move(&req->list, &fc->io);
724
725         in = &req->in;
726         reqsize = in->h.len;
727         /* If request is too large, reply with an error and restart the read */
728         if (iov_length(iov, nr_segs) < reqsize) {
729                 req->out.h.error = -EIO;
730                 /* SETXATTR is special, since it may contain too large data */
731                 if (in->h.opcode == FUSE_SETXATTR)
732                         req->out.h.error = -E2BIG;
733                 request_end(fc, req);
734                 goto restart;
735         }
736         spin_unlock(&fc->lock);
737         fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
738         err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
739         if (!err)
740                 err = fuse_copy_args(&cs, in->numargs, in->argpages,
741                                      (struct fuse_arg *) in->args, 0);
742         fuse_copy_finish(&cs);
743         spin_lock(&fc->lock);
744         req->locked = 0;
745         if (!err && req->aborted)
746                 err = -ENOENT;
747         if (err) {
748                 if (!req->aborted)
749                         req->out.h.error = -EIO;
750                 request_end(fc, req);
751                 return err;
752         }
753         if (!req->isreply)
754                 request_end(fc, req);
755         else {
756                 req->state = FUSE_REQ_SENT;
757                 list_move_tail(&req->list, &fc->processing);
758                 if (req->interrupted)
759                         queue_interrupt(fc, req);
760                 spin_unlock(&fc->lock);
761         }
762         return reqsize;
763
764  err_unlock:
765         spin_unlock(&fc->lock);
766         return err;
767 }
768
769 /* Look up request on processing list by unique ID */
770 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
771 {
772         struct list_head *entry;
773
774         list_for_each(entry, &fc->processing) {
775                 struct fuse_req *req;
776                 req = list_entry(entry, struct fuse_req, list);
777                 if (req->in.h.unique == unique || req->intr_unique == unique)
778                         return req;
779         }
780         return NULL;
781 }
782
783 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
784                          unsigned nbytes)
785 {
786         unsigned reqsize = sizeof(struct fuse_out_header);
787
788         if (out->h.error)
789                 return nbytes != reqsize ? -EINVAL : 0;
790
791         reqsize += len_args(out->numargs, out->args);
792
793         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
794                 return -EINVAL;
795         else if (reqsize > nbytes) {
796                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
797                 unsigned diffsize = reqsize - nbytes;
798                 if (diffsize > lastarg->size)
799                         return -EINVAL;
800                 lastarg->size -= diffsize;
801         }
802         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
803                               out->page_zeroing);
804 }
805
806 /*
807  * Write a single reply to a request.  First the header is copied from
808  * the write buffer.  The request is then searched on the processing
809  * list by the unique ID found in the header.  If found, then remove
810  * it from the list and copy the rest of the buffer to the request.
811  * The request is finished by calling request_end()
812  */
813 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
814                                unsigned long nr_segs, loff_t pos)
815 {
816         int err;
817         unsigned nbytes = iov_length(iov, nr_segs);
818         struct fuse_req *req;
819         struct fuse_out_header oh;
820         struct fuse_copy_state cs;
821         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
822         if (!fc)
823                 return -EPERM;
824
825         fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
826         if (nbytes < sizeof(struct fuse_out_header))
827                 return -EINVAL;
828
829         err = fuse_copy_one(&cs, &oh, sizeof(oh));
830         if (err)
831                 goto err_finish;
832         err = -EINVAL;
833         if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
834             oh.len != nbytes)
835                 goto err_finish;
836
837         spin_lock(&fc->lock);
838         err = -ENOENT;
839         if (!fc->connected)
840                 goto err_unlock;
841
842         req = request_find(fc, oh.unique);
843         if (!req)
844                 goto err_unlock;
845
846         if (req->aborted) {
847                 spin_unlock(&fc->lock);
848                 fuse_copy_finish(&cs);
849                 spin_lock(&fc->lock);
850                 request_end(fc, req);
851                 return -ENOENT;
852         }
853         /* Is it an interrupt reply? */
854         if (req->intr_unique == oh.unique) {
855                 err = -EINVAL;
856                 if (nbytes != sizeof(struct fuse_out_header))
857                         goto err_unlock;
858
859                 if (oh.error == -ENOSYS)
860                         fc->no_interrupt = 1;
861                 else if (oh.error == -EAGAIN)
862                         queue_interrupt(fc, req);
863
864                 spin_unlock(&fc->lock);
865                 fuse_copy_finish(&cs);
866                 return nbytes;
867         }
868
869         req->state = FUSE_REQ_WRITING;
870         list_move(&req->list, &fc->io);
871         req->out.h = oh;
872         req->locked = 1;
873         cs.req = req;
874         spin_unlock(&fc->lock);
875
876         err = copy_out_args(&cs, &req->out, nbytes);
877         fuse_copy_finish(&cs);
878
879         spin_lock(&fc->lock);
880         req->locked = 0;
881         if (!err) {
882                 if (req->aborted)
883                         err = -ENOENT;
884         } else if (!req->aborted)
885                 req->out.h.error = -EIO;
886         request_end(fc, req);
887
888         return err ? err : nbytes;
889
890  err_unlock:
891         spin_unlock(&fc->lock);
892  err_finish:
893         fuse_copy_finish(&cs);
894         return err;
895 }
896
897 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
898 {
899         unsigned mask = POLLOUT | POLLWRNORM;
900         struct fuse_conn *fc = fuse_get_conn(file);
901         if (!fc)
902                 return POLLERR;
903
904         poll_wait(file, &fc->waitq, wait);
905
906         spin_lock(&fc->lock);
907         if (!fc->connected)
908                 mask = POLLERR;
909         else if (request_pending(fc))
910                 mask |= POLLIN | POLLRDNORM;
911         spin_unlock(&fc->lock);
912
913         return mask;
914 }
915
916 /*
917  * Abort all requests on the given list (pending or processing)
918  *
919  * This function releases and reacquires fc->lock
920  */
921 static void end_requests(struct fuse_conn *fc, struct list_head *head)
922 {
923         while (!list_empty(head)) {
924                 struct fuse_req *req;
925                 req = list_entry(head->next, struct fuse_req, list);
926                 req->out.h.error = -ECONNABORTED;
927                 request_end(fc, req);
928                 spin_lock(&fc->lock);
929         }
930 }
931
932 /*
933  * Abort requests under I/O
934  *
935  * The requests are set to aborted and finished, and the request
936  * waiter is woken up.  This will make request_wait_answer() wait
937  * until the request is unlocked and then return.
938  *
939  * If the request is asynchronous, then the end function needs to be
940  * called after waiting for the request to be unlocked (if it was
941  * locked).
942  */
943 static void end_io_requests(struct fuse_conn *fc)
944 {
945         while (!list_empty(&fc->io)) {
946                 struct fuse_req *req =
947                         list_entry(fc->io.next, struct fuse_req, list);
948                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
949
950                 req->aborted = 1;
951                 req->out.h.error = -ECONNABORTED;
952                 req->state = FUSE_REQ_FINISHED;
953                 list_del_init(&req->list);
954                 wake_up(&req->waitq);
955                 if (end) {
956                         req->end = NULL;
957                         /* The end function will consume this reference */
958                         __fuse_get_request(req);
959                         spin_unlock(&fc->lock);
960                         wait_event(req->waitq, !req->locked);
961                         end(fc, req);
962                         spin_lock(&fc->lock);
963                 }
964         }
965 }
966
967 /*
968  * Abort all requests.
969  *
970  * Emergency exit in case of a malicious or accidental deadlock, or
971  * just a hung filesystem.
972  *
973  * The same effect is usually achievable through killing the
974  * filesystem daemon and all users of the filesystem.  The exception
975  * is the combination of an asynchronous request and the tricky
976  * deadlock (see Documentation/filesystems/fuse.txt).
977  *
978  * During the aborting, progression of requests from the pending and
979  * processing lists onto the io list, and progression of new requests
980  * onto the pending list is prevented by req->connected being false.
981  *
982  * Progression of requests under I/O to the processing list is
983  * prevented by the req->aborted flag being true for these requests.
984  * For this reason requests on the io list must be aborted first.
985  */
986 void fuse_abort_conn(struct fuse_conn *fc)
987 {
988         spin_lock(&fc->lock);
989         if (fc->connected) {
990                 fc->connected = 0;
991                 fc->blocked = 0;
992                 end_io_requests(fc);
993                 end_requests(fc, &fc->pending);
994                 end_requests(fc, &fc->processing);
995                 wake_up_all(&fc->waitq);
996                 wake_up_all(&fc->blocked_waitq);
997                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
998         }
999         spin_unlock(&fc->lock);
1000 }
1001
1002 static int fuse_dev_release(struct inode *inode, struct file *file)
1003 {
1004         struct fuse_conn *fc = fuse_get_conn(file);
1005         if (fc) {
1006                 spin_lock(&fc->lock);
1007                 fc->connected = 0;
1008                 end_requests(fc, &fc->pending);
1009                 end_requests(fc, &fc->processing);
1010                 spin_unlock(&fc->lock);
1011                 fasync_helper(-1, file, 0, &fc->fasync);
1012                 fuse_conn_put(fc);
1013         }
1014
1015         return 0;
1016 }
1017
1018 static int fuse_dev_fasync(int fd, struct file *file, int on)
1019 {
1020         struct fuse_conn *fc = fuse_get_conn(file);
1021         if (!fc)
1022                 return -EPERM;
1023
1024         /* No locking - fasync_helper does its own locking */
1025         return fasync_helper(fd, file, on, &fc->fasync);
1026 }
1027
1028 const struct file_operations fuse_dev_operations = {
1029         .owner          = THIS_MODULE,
1030         .llseek         = no_llseek,
1031         .read           = do_sync_read,
1032         .aio_read       = fuse_dev_read,
1033         .write          = do_sync_write,
1034         .aio_write      = fuse_dev_write,
1035         .poll           = fuse_dev_poll,
1036         .release        = fuse_dev_release,
1037         .fasync         = fuse_dev_fasync,
1038 };
1039
1040 static struct miscdevice fuse_miscdevice = {
1041         .minor = FUSE_MINOR,
1042         .name  = "fuse",
1043         .fops = &fuse_dev_operations,
1044 };
1045
1046 int __init fuse_dev_init(void)
1047 {
1048         int err = -ENOMEM;
1049         fuse_req_cachep = kmem_cache_create("fuse_request",
1050                                             sizeof(struct fuse_req),
1051                                             0, 0, NULL);
1052         if (!fuse_req_cachep)
1053                 goto out;
1054
1055         err = misc_register(&fuse_miscdevice);
1056         if (err)
1057                 goto out_cache_clean;
1058
1059         return 0;
1060
1061  out_cache_clean:
1062         kmem_cache_destroy(fuse_req_cachep);
1063  out:
1064         return err;
1065 }
1066
1067 void fuse_dev_cleanup(void)
1068 {
1069         misc_deregister(&fuse_miscdevice);
1070         kmem_cache_destroy(fuse_req_cachep);
1071 }