]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - fs/ocfs2/aops.c
ocfs2: zero tail of sparse files on truncate
[linux-2.6-omap-h63xx.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28
29 #define MLOG_MASK_PREFIX ML_FILE_IO
30 #include <cluster/masklog.h>
31
32 #include "ocfs2.h"
33
34 #include "alloc.h"
35 #include "aops.h"
36 #include "dlmglue.h"
37 #include "extent_map.h"
38 #include "file.h"
39 #include "inode.h"
40 #include "journal.h"
41 #include "suballoc.h"
42 #include "super.h"
43 #include "symlink.h"
44
45 #include "buffer_head_io.h"
46
47 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
48                                    struct buffer_head *bh_result, int create)
49 {
50         int err = -EIO;
51         int status;
52         struct ocfs2_dinode *fe = NULL;
53         struct buffer_head *bh = NULL;
54         struct buffer_head *buffer_cache_bh = NULL;
55         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
56         void *kaddr;
57
58         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
59                    (unsigned long long)iblock, bh_result, create);
60
61         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
62
63         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
64                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
65                      (unsigned long long)iblock);
66                 goto bail;
67         }
68
69         status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
70                                   OCFS2_I(inode)->ip_blkno,
71                                   &bh, OCFS2_BH_CACHED, inode);
72         if (status < 0) {
73                 mlog_errno(status);
74                 goto bail;
75         }
76         fe = (struct ocfs2_dinode *) bh->b_data;
77
78         if (!OCFS2_IS_VALID_DINODE(fe)) {
79                 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
80                      (unsigned long long)fe->i_blkno, 7, fe->i_signature);
81                 goto bail;
82         }
83
84         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
85                                                     le32_to_cpu(fe->i_clusters))) {
86                 mlog(ML_ERROR, "block offset is outside the allocated size: "
87                      "%llu\n", (unsigned long long)iblock);
88                 goto bail;
89         }
90
91         /* We don't use the page cache to create symlink data, so if
92          * need be, copy it over from the buffer cache. */
93         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
94                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
95                             iblock;
96                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
97                 if (!buffer_cache_bh) {
98                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
99                         goto bail;
100                 }
101
102                 /* we haven't locked out transactions, so a commit
103                  * could've happened. Since we've got a reference on
104                  * the bh, even if it commits while we're doing the
105                  * copy, the data is still good. */
106                 if (buffer_jbd(buffer_cache_bh)
107                     && ocfs2_inode_is_new(inode)) {
108                         kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
109                         if (!kaddr) {
110                                 mlog(ML_ERROR, "couldn't kmap!\n");
111                                 goto bail;
112                         }
113                         memcpy(kaddr + (bh_result->b_size * iblock),
114                                buffer_cache_bh->b_data,
115                                bh_result->b_size);
116                         kunmap_atomic(kaddr, KM_USER0);
117                         set_buffer_uptodate(bh_result);
118                 }
119                 brelse(buffer_cache_bh);
120         }
121
122         map_bh(bh_result, inode->i_sb,
123                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
124
125         err = 0;
126
127 bail:
128         if (bh)
129                 brelse(bh);
130
131         mlog_exit(err);
132         return err;
133 }
134
135 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
136                            struct buffer_head *bh_result, int create)
137 {
138         int err = 0;
139         u64 p_blkno, past_eof;
140         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
141
142         mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
143                    (unsigned long long)iblock, bh_result, create);
144
145         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
146                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
147                      inode, inode->i_ino);
148
149         if (S_ISLNK(inode->i_mode)) {
150                 /* this always does I/O for some reason. */
151                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
152                 goto bail;
153         }
154
155         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL);
156         if (err) {
157                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
158                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159                      (unsigned long long)p_blkno);
160                 goto bail;
161         }
162
163         /*
164          * ocfs2 never allocates in this function - the only time we
165          * need to use BH_New is when we're extending i_size on a file
166          * system which doesn't support holes, in which case BH_New
167          * allows block_prepare_write() to zero.
168          */
169         mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
170                         "ino %lu, iblock %llu\n", inode->i_ino,
171                         (unsigned long long)iblock);
172
173         if (p_blkno)
174                 map_bh(bh_result, inode->i_sb, p_blkno);
175
176         if (!ocfs2_sparse_alloc(osb)) {
177                 if (p_blkno == 0) {
178                         err = -EIO;
179                         mlog(ML_ERROR,
180                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
181                              (unsigned long long)iblock,
182                              (unsigned long long)p_blkno,
183                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
184                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
185                         dump_stack();
186                 }
187
188                 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
189                 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
190                      (unsigned long long)past_eof);
191
192                 if (create && (iblock >= past_eof))
193                         set_buffer_new(bh_result);
194         }
195
196 bail:
197         if (err < 0)
198                 err = -EIO;
199
200         mlog_exit(err);
201         return err;
202 }
203
204 static int ocfs2_readpage(struct file *file, struct page *page)
205 {
206         struct inode *inode = page->mapping->host;
207         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
208         int ret, unlock = 1;
209
210         mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
211
212         ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
213         if (ret != 0) {
214                 if (ret == AOP_TRUNCATED_PAGE)
215                         unlock = 0;
216                 mlog_errno(ret);
217                 goto out;
218         }
219
220         down_read(&OCFS2_I(inode)->ip_alloc_sem);
221
222         /*
223          * i_size might have just been updated as we grabed the meta lock.  We
224          * might now be discovering a truncate that hit on another node.
225          * block_read_full_page->get_block freaks out if it is asked to read
226          * beyond the end of a file, so we check here.  Callers
227          * (generic_file_read, fault->nopage) are clever enough to check i_size
228          * and notice that the page they just read isn't needed.
229          *
230          * XXX sys_readahead() seems to get that wrong?
231          */
232         if (start >= i_size_read(inode)) {
233                 char *addr = kmap(page);
234                 memset(addr, 0, PAGE_SIZE);
235                 flush_dcache_page(page);
236                 kunmap(page);
237                 SetPageUptodate(page);
238                 ret = 0;
239                 goto out_alloc;
240         }
241
242         ret = ocfs2_data_lock_with_page(inode, 0, page);
243         if (ret != 0) {
244                 if (ret == AOP_TRUNCATED_PAGE)
245                         unlock = 0;
246                 mlog_errno(ret);
247                 goto out_alloc;
248         }
249
250         ret = block_read_full_page(page, ocfs2_get_block);
251         unlock = 0;
252
253         ocfs2_data_unlock(inode, 0);
254 out_alloc:
255         up_read(&OCFS2_I(inode)->ip_alloc_sem);
256         ocfs2_meta_unlock(inode, 0);
257 out:
258         if (unlock)
259                 unlock_page(page);
260         mlog_exit(ret);
261         return ret;
262 }
263
264 /* Note: Because we don't support holes, our allocation has
265  * already happened (allocation writes zeros to the file data)
266  * so we don't have to worry about ordered writes in
267  * ocfs2_writepage.
268  *
269  * ->writepage is called during the process of invalidating the page cache
270  * during blocked lock processing.  It can't block on any cluster locks
271  * to during block mapping.  It's relying on the fact that the block
272  * mapping can't have disappeared under the dirty pages that it is
273  * being asked to write back.
274  */
275 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
276 {
277         int ret;
278
279         mlog_entry("(0x%p)\n", page);
280
281         ret = block_write_full_page(page, ocfs2_get_block, wbc);
282
283         mlog_exit(ret);
284
285         return ret;
286 }
287
288 /*
289  * This is called from ocfs2_write_zero_page() which has handled it's
290  * own cluster locking and has ensured allocation exists for those
291  * blocks to be written.
292  */
293 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
294                                unsigned from, unsigned to)
295 {
296         int ret;
297
298         down_read(&OCFS2_I(inode)->ip_alloc_sem);
299
300         ret = block_prepare_write(page, from, to, ocfs2_get_block);
301
302         up_read(&OCFS2_I(inode)->ip_alloc_sem);
303
304         return ret;
305 }
306
307 /* Taken from ext3. We don't necessarily need the full blown
308  * functionality yet, but IMHO it's better to cut and paste the whole
309  * thing so we can avoid introducing our own bugs (and easily pick up
310  * their fixes when they happen) --Mark */
311 int walk_page_buffers(  handle_t *handle,
312                         struct buffer_head *head,
313                         unsigned from,
314                         unsigned to,
315                         int *partial,
316                         int (*fn)(      handle_t *handle,
317                                         struct buffer_head *bh))
318 {
319         struct buffer_head *bh;
320         unsigned block_start, block_end;
321         unsigned blocksize = head->b_size;
322         int err, ret = 0;
323         struct buffer_head *next;
324
325         for (   bh = head, block_start = 0;
326                 ret == 0 && (bh != head || !block_start);
327                 block_start = block_end, bh = next)
328         {
329                 next = bh->b_this_page;
330                 block_end = block_start + blocksize;
331                 if (block_end <= from || block_start >= to) {
332                         if (partial && !buffer_uptodate(bh))
333                                 *partial = 1;
334                         continue;
335                 }
336                 err = (*fn)(handle, bh);
337                 if (!ret)
338                         ret = err;
339         }
340         return ret;
341 }
342
343 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
344                                                          struct page *page,
345                                                          unsigned from,
346                                                          unsigned to)
347 {
348         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
349         handle_t *handle = NULL;
350         int ret = 0;
351
352         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
353         if (!handle) {
354                 ret = -ENOMEM;
355                 mlog_errno(ret);
356                 goto out;
357         }
358
359         if (ocfs2_should_order_data(inode)) {
360                 ret = walk_page_buffers(handle,
361                                         page_buffers(page),
362                                         from, to, NULL,
363                                         ocfs2_journal_dirty_data);
364                 if (ret < 0) 
365                         mlog_errno(ret);
366         }
367 out:
368         if (ret) {
369                 if (handle)
370                         ocfs2_commit_trans(osb, handle);
371                 handle = ERR_PTR(ret);
372         }
373         return handle;
374 }
375
376 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
377 {
378         sector_t status;
379         u64 p_blkno = 0;
380         int err = 0;
381         struct inode *inode = mapping->host;
382
383         mlog_entry("(block = %llu)\n", (unsigned long long)block);
384
385         /* We don't need to lock journal system files, since they aren't
386          * accessed concurrently from multiple nodes.
387          */
388         if (!INODE_JOURNAL(inode)) {
389                 err = ocfs2_meta_lock(inode, NULL, 0);
390                 if (err) {
391                         if (err != -ENOENT)
392                                 mlog_errno(err);
393                         goto bail;
394                 }
395                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
396         }
397
398         err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL);
399
400         if (!INODE_JOURNAL(inode)) {
401                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
402                 ocfs2_meta_unlock(inode, 0);
403         }
404
405         if (err) {
406                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
407                      (unsigned long long)block);
408                 mlog_errno(err);
409                 goto bail;
410         }
411
412
413 bail:
414         status = err ? 0 : p_blkno;
415
416         mlog_exit((int)status);
417
418         return status;
419 }
420
421 /*
422  * TODO: Make this into a generic get_blocks function.
423  *
424  * From do_direct_io in direct-io.c:
425  *  "So what we do is to permit the ->get_blocks function to populate
426  *   bh.b_size with the size of IO which is permitted at this offset and
427  *   this i_blkbits."
428  *
429  * This function is called directly from get_more_blocks in direct-io.c.
430  *
431  * called like this: dio->get_blocks(dio->inode, fs_startblk,
432  *                                      fs_count, map_bh, dio->rw == WRITE);
433  */
434 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
435                                      struct buffer_head *bh_result, int create)
436 {
437         int ret;
438         u64 p_blkno, inode_blocks;
439         int contig_blocks;
440         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
441         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
442
443         /* This function won't even be called if the request isn't all
444          * nicely aligned and of the right size, so there's no need
445          * for us to check any of that. */
446
447         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
448
449         /*
450          * Any write past EOF is not allowed because we'd be extending.
451          */
452         if (create && (iblock + max_blocks) > inode_blocks) {
453                 ret = -EIO;
454                 goto bail;
455         }
456
457         /* This figures out the size of the next contiguous block, and
458          * our logical offset */
459         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
460                                           &contig_blocks);
461         if (ret) {
462                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
463                      (unsigned long long)iblock);
464                 ret = -EIO;
465                 goto bail;
466         }
467
468         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
469                 ocfs2_error(inode->i_sb,
470                             "Inode %llu has a hole at block %llu\n",
471                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
472                             (unsigned long long)iblock);
473                 ret = -EROFS;
474                 goto bail;
475         }
476
477         /*
478          * get_more_blocks() expects us to describe a hole by clearing
479          * the mapped bit on bh_result().
480          */
481         if (p_blkno)
482                 map_bh(bh_result, inode->i_sb, p_blkno);
483         else {
484                 /*
485                  * ocfs2_prepare_inode_for_write() should have caught
486                  * the case where we'd be filling a hole and triggered
487                  * a buffered write instead.
488                  */
489                 if (create) {
490                         ret = -EIO;
491                         mlog_errno(ret);
492                         goto bail;
493                 }
494
495                 clear_buffer_mapped(bh_result);
496         }
497
498         /* make sure we don't map more than max_blocks blocks here as
499            that's all the kernel will handle at this point. */
500         if (max_blocks < contig_blocks)
501                 contig_blocks = max_blocks;
502         bh_result->b_size = contig_blocks << blocksize_bits;
503 bail:
504         return ret;
505 }
506
507 /* 
508  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
509  * particularly interested in the aio/dio case.  Like the core uses
510  * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
511  * truncation on another.
512  */
513 static void ocfs2_dio_end_io(struct kiocb *iocb,
514                              loff_t offset,
515                              ssize_t bytes,
516                              void *private)
517 {
518         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
519
520         /* this io's submitter should not have unlocked this before we could */
521         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
522         ocfs2_iocb_clear_rw_locked(iocb);
523         up_read(&inode->i_alloc_sem);
524         ocfs2_rw_unlock(inode, 0);
525 }
526
527 /*
528  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
529  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
530  * do journalled data.
531  */
532 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
533 {
534         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
535
536         journal_invalidatepage(journal, page, offset);
537 }
538
539 static int ocfs2_releasepage(struct page *page, gfp_t wait)
540 {
541         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
542
543         if (!page_has_buffers(page))
544                 return 0;
545         return journal_try_to_free_buffers(journal, page, wait);
546 }
547
548 static ssize_t ocfs2_direct_IO(int rw,
549                                struct kiocb *iocb,
550                                const struct iovec *iov,
551                                loff_t offset,
552                                unsigned long nr_segs)
553 {
554         struct file *file = iocb->ki_filp;
555         struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
556         int ret;
557
558         mlog_entry_void();
559
560         if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
561                 /*
562                  * We get PR data locks even for O_DIRECT.  This
563                  * allows concurrent O_DIRECT I/O but doesn't let
564                  * O_DIRECT with extending and buffered zeroing writes
565                  * race.  If they did race then the buffered zeroing
566                  * could be written back after the O_DIRECT I/O.  It's
567                  * one thing to tell people not to mix buffered and
568                  * O_DIRECT writes, but expecting them to understand
569                  * that file extension is also an implicit buffered
570                  * write is too much.  By getting the PR we force
571                  * writeback of the buffered zeroing before
572                  * proceeding.
573                  */
574                 ret = ocfs2_data_lock(inode, 0);
575                 if (ret < 0) {
576                         mlog_errno(ret);
577                         goto out;
578                 }
579                 ocfs2_data_unlock(inode, 0);
580         }
581
582         ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
583                                             inode->i_sb->s_bdev, iov, offset,
584                                             nr_segs, 
585                                             ocfs2_direct_IO_get_blocks,
586                                             ocfs2_dio_end_io);
587 out:
588         mlog_exit(ret);
589         return ret;
590 }
591
592 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
593                                             u32 cpos,
594                                             unsigned int *start,
595                                             unsigned int *end)
596 {
597         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
598
599         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
600                 unsigned int cpp;
601
602                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
603
604                 cluster_start = cpos % cpp;
605                 cluster_start = cluster_start << osb->s_clustersize_bits;
606
607                 cluster_end = cluster_start + osb->s_clustersize;
608         }
609
610         BUG_ON(cluster_start > PAGE_SIZE);
611         BUG_ON(cluster_end > PAGE_SIZE);
612
613         if (start)
614                 *start = cluster_start;
615         if (end)
616                 *end = cluster_end;
617 }
618
619 /*
620  * 'from' and 'to' are the region in the page to avoid zeroing.
621  *
622  * If pagesize > clustersize, this function will avoid zeroing outside
623  * of the cluster boundary.
624  *
625  * from == to == 0 is code for "zero the entire cluster region"
626  */
627 static void ocfs2_clear_page_regions(struct page *page,
628                                      struct ocfs2_super *osb, u32 cpos,
629                                      unsigned from, unsigned to)
630 {
631         void *kaddr;
632         unsigned int cluster_start, cluster_end;
633
634         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
635
636         kaddr = kmap_atomic(page, KM_USER0);
637
638         if (from || to) {
639                 if (from > cluster_start)
640                         memset(kaddr + cluster_start, 0, from - cluster_start);
641                 if (to < cluster_end)
642                         memset(kaddr + to, 0, cluster_end - to);
643         } else {
644                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
645         }
646
647         kunmap_atomic(kaddr, KM_USER0);
648 }
649
650 /*
651  * Some of this taken from block_prepare_write(). We already have our
652  * mapping by now though, and the entire write will be allocating or
653  * it won't, so not much need to use BH_New.
654  *
655  * This will also skip zeroing, which is handled externally.
656  */
657 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
658                           struct inode *inode, unsigned int from,
659                           unsigned int to, int new)
660 {
661         int ret = 0;
662         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
663         unsigned int block_end, block_start;
664         unsigned int bsize = 1 << inode->i_blkbits;
665
666         if (!page_has_buffers(page))
667                 create_empty_buffers(page, bsize, 0);
668
669         head = page_buffers(page);
670         for (bh = head, block_start = 0; bh != head || !block_start;
671              bh = bh->b_this_page, block_start += bsize) {
672                 block_end = block_start + bsize;
673
674                 /*
675                  * Ignore blocks outside of our i/o range -
676                  * they may belong to unallocated clusters.
677                  */
678                 if (block_start >= to || block_end <= from) {
679                         if (PageUptodate(page))
680                                 set_buffer_uptodate(bh);
681                         continue;
682                 }
683
684                 /*
685                  * For an allocating write with cluster size >= page
686                  * size, we always write the entire page.
687                  */
688
689                 if (buffer_new(bh))
690                         clear_buffer_new(bh);
691
692                 if (!buffer_mapped(bh)) {
693                         map_bh(bh, inode->i_sb, *p_blkno);
694                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
695                 }
696
697                 if (PageUptodate(page)) {
698                         if (!buffer_uptodate(bh))
699                                 set_buffer_uptodate(bh);
700                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
701                      (block_start < from || block_end > to)) {
702                         ll_rw_block(READ, 1, &bh);
703                         *wait_bh++=bh;
704                 }
705
706                 *p_blkno = *p_blkno + 1;
707         }
708
709         /*
710          * If we issued read requests - let them complete.
711          */
712         while(wait_bh > wait) {
713                 wait_on_buffer(*--wait_bh);
714                 if (!buffer_uptodate(*wait_bh))
715                         ret = -EIO;
716         }
717
718         if (ret == 0 || !new)
719                 return ret;
720
721         /*
722          * If we get -EIO above, zero out any newly allocated blocks
723          * to avoid exposing stale data.
724          */
725         bh = head;
726         block_start = 0;
727         do {
728                 void *kaddr;
729
730                 block_end = block_start + bsize;
731                 if (block_end <= from)
732                         goto next_bh;
733                 if (block_start >= to)
734                         break;
735
736                 kaddr = kmap_atomic(page, KM_USER0);
737                 memset(kaddr+block_start, 0, bh->b_size);
738                 flush_dcache_page(page);
739                 kunmap_atomic(kaddr, KM_USER0);
740                 set_buffer_uptodate(bh);
741                 mark_buffer_dirty(bh);
742
743 next_bh:
744                 block_start = block_end;
745                 bh = bh->b_this_page;
746         } while (bh != head);
747
748         return ret;
749 }
750
751 /*
752  * This will copy user data from the iovec in the buffered write
753  * context.
754  */
755 int ocfs2_map_and_write_user_data(struct inode *inode,
756                                   struct ocfs2_write_ctxt *wc, u64 *p_blkno,
757                                   unsigned int *ret_from, unsigned int *ret_to)
758 {
759         int ret;
760         unsigned int to, from, cluster_start, cluster_end;
761         unsigned long bytes, src_from;
762         char *dst;
763         struct ocfs2_buffered_write_priv *bp = wc->w_private;
764         const struct iovec *cur_iov = bp->b_cur_iov;
765         char __user *buf;
766         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
767
768         ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
769                                         &cluster_end);
770
771         buf = cur_iov->iov_base + bp->b_cur_off;
772         src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
773
774         from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
775
776         /*
777          * This is a lot of comparisons, but it reads quite
778          * easily, which is important here.
779          */
780         /* Stay within the src page */
781         bytes = PAGE_SIZE - src_from;
782         /* Stay within the vector */
783         bytes = min(bytes,
784                     (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
785         /* Stay within count */
786         bytes = min(bytes, (unsigned long)wc->w_count);
787         /*
788          * For clustersize > page size, just stay within
789          * target page, otherwise we have to calculate pos
790          * within the cluster and obey the rightmost
791          * boundary.
792          */
793         if (wc->w_large_pages) {
794                 /*
795                  * For cluster size < page size, we have to
796                  * calculate pos within the cluster and obey
797                  * the rightmost boundary.
798                  */
799                 bytes = min(bytes, (unsigned long)(osb->s_clustersize
800                                    - (wc->w_pos & (osb->s_clustersize - 1))));
801         } else {
802                 /*
803                  * cluster size > page size is the most common
804                  * case - we just stay within the target page
805                  * boundary.
806                  */
807                 bytes = min(bytes, PAGE_CACHE_SIZE - from);
808         }
809
810         to = from + bytes;
811
812         if (wc->w_this_page_new)
813                 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
814                                             cluster_start, cluster_end, 1);
815         else
816                 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
817                                             from, to, 0);
818         if (ret) {
819                 mlog_errno(ret);
820                 goto out;
821         }
822
823         BUG_ON(from > PAGE_CACHE_SIZE);
824         BUG_ON(to > PAGE_CACHE_SIZE);
825         BUG_ON(from > osb->s_clustersize);
826         BUG_ON(to > osb->s_clustersize);
827
828         dst = kmap(wc->w_this_page);
829         memcpy(dst + from, bp->b_src_buf + src_from, bytes);
830         kunmap(wc->w_this_page);
831
832         /*
833          * XXX: This is slow, but simple. The caller of
834          * ocfs2_buffered_write_cluster() is responsible for
835          * passing through the iovecs, so it's difficult to
836          * predict what our next step is in here after our
837          * initial write. A future version should be pushing
838          * that iovec manipulation further down.
839          *
840          * By setting this, we indicate that a copy from user
841          * data was done, and subsequent calls for this
842          * cluster will skip copying more data.
843          */
844         wc->w_finished_copy = 1;
845
846         *ret_from = from;
847         *ret_to = to;
848 out:
849
850         return bytes ? (unsigned int)bytes : ret;
851 }
852
853 /*
854  * Map, fill and write a page to disk.
855  *
856  * The work of copying data is done via callback.  Newly allocated
857  * pages which don't take user data will be zero'd (set 'new' to
858  * indicate an allocating write)
859  *
860  * Returns a negative error code or the number of bytes copied into
861  * the page.
862  */
863 int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
864                           u64 *p_blkno, struct page *page,
865                           struct ocfs2_write_ctxt *wc, int new)
866 {
867         int ret, copied = 0;
868         unsigned int from = 0, to = 0;
869         unsigned int cluster_start, cluster_end;
870         unsigned int zero_from = 0, zero_to = 0;
871
872         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
873                                         &cluster_start, &cluster_end);
874
875         if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
876             && !wc->w_finished_copy) {
877
878                 wc->w_this_page = page;
879                 wc->w_this_page_new = new;
880                 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
881                 if (ret < 0) {
882                         mlog_errno(ret);
883                         goto out;
884                 }
885
886                 copied = ret;
887
888                 zero_from = from;
889                 zero_to = to;
890                 if (new) {
891                         from = cluster_start;
892                         to = cluster_end;
893                 }
894         } else {
895                 /*
896                  * If we haven't allocated the new page yet, we
897                  * shouldn't be writing it out without copying user
898                  * data. This is likely a math error from the caller.
899                  */
900                 BUG_ON(!new);
901
902                 from = cluster_start;
903                 to = cluster_end;
904
905                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
906                                             cluster_start, cluster_end, 1);
907                 if (ret) {
908                         mlog_errno(ret);
909                         goto out;
910                 }
911         }
912
913         /*
914          * Parts of newly allocated pages need to be zero'd.
915          *
916          * Above, we have also rewritten 'to' and 'from' - as far as
917          * the rest of the function is concerned, the entire cluster
918          * range inside of a page needs to be written.
919          *
920          * We can skip this if the page is up to date - it's already
921          * been zero'd from being read in as a hole.
922          */
923         if (new && !PageUptodate(page))
924                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
925                                          wc->w_cpos, zero_from, zero_to);
926
927         flush_dcache_page(page);
928
929         if (ocfs2_should_order_data(inode)) {
930                 ret = walk_page_buffers(handle,
931                                         page_buffers(page),
932                                         from, to, NULL,
933                                         ocfs2_journal_dirty_data);
934                 if (ret < 0)
935                         mlog_errno(ret);
936         }
937
938         /*
939          * We don't use generic_commit_write() because we need to
940          * handle our own i_size update.
941          */
942         ret = block_commit_write(page, from, to);
943         if (ret)
944                 mlog_errno(ret);
945 out:
946
947         return copied ? copied : ret;
948 }
949
950 /*
951  * Do the actual write of some data into an inode. Optionally allocate
952  * in order to fulfill the write.
953  *
954  * cpos is the logical cluster offset within the file to write at
955  *
956  * 'phys' is the physical mapping of that offset. a 'phys' value of
957  * zero indicates that allocation is required. In this case, data_ac
958  * and meta_ac should be valid (meta_ac can be null if metadata
959  * allocation isn't required).
960  */
961 static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
962                            struct buffer_head *di_bh,
963                            struct ocfs2_alloc_context *data_ac,
964                            struct ocfs2_alloc_context *meta_ac,
965                            struct ocfs2_write_ctxt *wc)
966 {
967         int ret, i, numpages = 1, new;
968         unsigned int copied = 0;
969         u32 tmp_pos;
970         u64 v_blkno, p_blkno;
971         struct address_space *mapping = file->f_mapping;
972         struct inode *inode = mapping->host;
973         unsigned long index, start;
974         struct page **cpages;
975
976         new = phys == 0 ? 1 : 0;
977
978         /*
979          * Figure out how many pages we'll be manipulating here. For
980          * non allocating write, we just change the one
981          * page. Otherwise, we'll need a whole clusters worth.
982          */
983         if (new)
984                 numpages = ocfs2_pages_per_cluster(inode->i_sb);
985
986         cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
987         if (!cpages) {
988                 ret = -ENOMEM;
989                 mlog_errno(ret);
990                 return ret;
991         }
992
993         /*
994          * Fill our page array first. That way we've grabbed enough so
995          * that we can zero and flush if we error after adding the
996          * extent.
997          */
998         if (new) {
999                 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1000                                                            wc->w_cpos);
1001                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1002         } else {
1003                 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1004                 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1005         }
1006
1007         for(i = 0; i < numpages; i++) {
1008                 index = start + i;
1009
1010                 cpages[i] = grab_cache_page(mapping, index);
1011                 if (!cpages[i]) {
1012                         ret = -ENOMEM;
1013                         mlog_errno(ret);
1014                         goto out;
1015                 }
1016         }
1017
1018         if (new) {
1019                 /*
1020                  * This is safe to call with the page locks - it won't take
1021                  * any additional semaphores or cluster locks.
1022                  */
1023                 tmp_pos = wc->w_cpos;
1024                 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1025                                                  &tmp_pos, 1, di_bh, handle,
1026                                                  data_ac, meta_ac, NULL);
1027                 /*
1028                  * This shouldn't happen because we must have already
1029                  * calculated the correct meta data allocation required. The
1030                  * internal tree allocation code should know how to increase
1031                  * transaction credits itself.
1032                  *
1033                  * If need be, we could handle -EAGAIN for a
1034                  * RESTART_TRANS here.
1035                  */
1036                 mlog_bug_on_msg(ret == -EAGAIN,
1037                                 "Inode %llu: EAGAIN return during allocation.\n",
1038                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1039                 if (ret < 0) {
1040                         mlog_errno(ret);
1041                         goto out;
1042                 }
1043         }
1044
1045         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
1046         if (ret < 0) {
1047
1048                 /*
1049                  * XXX: Should we go readonly here?
1050                  */
1051
1052                 mlog_errno(ret);
1053                 goto out;
1054         }
1055
1056         BUG_ON(p_blkno == 0);
1057
1058         for(i = 0; i < numpages; i++) {
1059                 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1060                                             wc, new);
1061                 if (ret < 0) {
1062                         mlog_errno(ret);
1063                         goto out;
1064                 }
1065
1066                 copied += ret;
1067         }
1068
1069 out:
1070         for(i = 0; i < numpages; i++) {
1071                 unlock_page(cpages[i]);
1072                 mark_page_accessed(cpages[i]);
1073                 page_cache_release(cpages[i]);
1074         }
1075         kfree(cpages);
1076
1077         return copied ? copied : ret;
1078 }
1079
1080 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1081                                   struct ocfs2_super *osb, loff_t pos,
1082                                   size_t count, ocfs2_page_writer *cb,
1083                                   void *cb_priv)
1084 {
1085         wc->w_count = count;
1086         wc->w_pos = pos;
1087         wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1088         wc->w_finished_copy = 0;
1089
1090         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1091                 wc->w_large_pages = 1;
1092         else
1093                 wc->w_large_pages = 0;
1094
1095         wc->w_write_data_page = cb;
1096         wc->w_private = cb_priv;
1097 }
1098
1099 /*
1100  * Write a cluster to an inode. The cluster may not be allocated yet,
1101  * in which case it will be. This only exists for buffered writes -
1102  * O_DIRECT takes a more "traditional" path through the kernel.
1103  *
1104  * The caller is responsible for incrementing pos, written counts, etc
1105  *
1106  * For file systems that don't support sparse files, pre-allocation
1107  * and page zeroing up until cpos should be done prior to this
1108  * function call.
1109  *
1110  * Callers should be holding i_sem, and the rw cluster lock.
1111  *
1112  * Returns the number of user bytes written, or less than zero for
1113  * error.
1114  */
1115 ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1116                                      size_t count, ocfs2_page_writer *actor,
1117                                      void *priv)
1118 {
1119         int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1120         ssize_t written = 0;
1121         u32 phys;
1122         struct inode *inode = file->f_mapping->host;
1123         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1124         struct buffer_head *di_bh = NULL;
1125         struct ocfs2_dinode *di;
1126         struct ocfs2_alloc_context *data_ac = NULL;
1127         struct ocfs2_alloc_context *meta_ac = NULL;
1128         handle_t *handle;
1129         struct ocfs2_write_ctxt wc;
1130
1131         ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1132
1133         ret = ocfs2_meta_lock(inode, &di_bh, 1);
1134         if (ret) {
1135                 mlog_errno(ret);
1136                 goto out;
1137         }
1138         di = (struct ocfs2_dinode *)di_bh->b_data;
1139
1140         /*
1141          * Take alloc sem here to prevent concurrent lookups. That way
1142          * the mapping, zeroing and tree manipulation within
1143          * ocfs2_write() will be safe against ->readpage(). This
1144          * should also serve to lock out allocation from a shared
1145          * writeable region.
1146          */
1147         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1148
1149         ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
1150         if (ret) {
1151                 mlog_errno(ret);
1152                 goto out_meta;
1153         }
1154
1155         /* phys == 0 means that allocation is required. */
1156         if (phys == 0) {
1157                 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1158                 if (ret) {
1159                         mlog_errno(ret);
1160                         goto out_meta;
1161                 }
1162
1163                 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1164         }
1165
1166         ret = ocfs2_data_lock(inode, 1);
1167         if (ret) {
1168                 mlog_errno(ret);
1169                 goto out_meta;
1170         }
1171
1172         handle = ocfs2_start_trans(osb, credits);
1173         if (IS_ERR(handle)) {
1174                 ret = PTR_ERR(handle);
1175                 mlog_errno(ret);
1176                 goto out_data;
1177         }
1178
1179         written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1180                               meta_ac, &wc);
1181         if (written < 0) {
1182                 ret = written;
1183                 mlog_errno(ret);
1184                 goto out_commit;
1185         }
1186
1187         ret = ocfs2_journal_access(handle, inode, di_bh,
1188                                    OCFS2_JOURNAL_ACCESS_WRITE);
1189         if (ret) {
1190                 mlog_errno(ret);
1191                 goto out_commit;
1192         }
1193
1194         pos += written;
1195         if (pos > inode->i_size) {
1196                 i_size_write(inode, pos);
1197                 mark_inode_dirty(inode);
1198         }
1199         inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
1200         di->i_size = cpu_to_le64((u64)i_size_read(inode));
1201         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1202         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1203         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1204
1205         ret = ocfs2_journal_dirty(handle, di_bh);
1206         if (ret)
1207                 mlog_errno(ret);
1208
1209 out_commit:
1210         ocfs2_commit_trans(osb, handle);
1211
1212 out_data:
1213         ocfs2_data_unlock(inode, 1);
1214
1215 out_meta:
1216         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1217         ocfs2_meta_unlock(inode, 1);
1218
1219 out:
1220         brelse(di_bh);
1221         if (data_ac)
1222                 ocfs2_free_alloc_context(data_ac);
1223         if (meta_ac)
1224                 ocfs2_free_alloc_context(meta_ac);
1225
1226         return written ? written : ret;
1227 }
1228
1229 const struct address_space_operations ocfs2_aops = {
1230         .readpage       = ocfs2_readpage,
1231         .writepage      = ocfs2_writepage,
1232         .bmap           = ocfs2_bmap,
1233         .sync_page      = block_sync_page,
1234         .direct_IO      = ocfs2_direct_IO,
1235         .invalidatepage = ocfs2_invalidatepage,
1236         .releasepage    = ocfs2_releasepage,
1237         .migratepage    = buffer_migrate_page,
1238 };