]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - include/asm-powerpc/io.h
53bff8bd39b90fd0331084c5732be7165125ac5c
[linux-2.6-omap-h63xx.git] / include / asm-powerpc / io.h
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4
5 /* 
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 /* Check of existence of legacy devices */
13 extern int check_legacy_ioport(unsigned long base_port);
14 #define PNPBIOS_BASE    0xf000  /* only relevant for PReP */
15
16 #include <linux/compiler.h>
17 #include <asm/page.h>
18 #include <asm/byteorder.h>
19 #include <asm/synch.h>
20 #include <asm/delay.h>
21 #include <asm/mmu.h>
22
23 #include <asm-generic/iomap.h>
24
25 #ifdef CONFIG_PPC64
26 #include <asm/paca.h>
27 #endif
28
29 #define SIO_CONFIG_RA   0x398
30 #define SIO_CONFIG_RD   0x399
31
32 #define SLOW_DOWN_IO
33
34 /* 32 bits uses slightly different variables for the various IO
35  * bases. Most of this file only uses _IO_BASE though which we
36  * define properly based on the platform
37  */
38 #ifndef CONFIG_PCI
39 #define _IO_BASE        0
40 #define _ISA_MEM_BASE   0
41 #define PCI_DRAM_OFFSET 0
42 #elif defined(CONFIG_PPC32)
43 #define _IO_BASE        isa_io_base
44 #define _ISA_MEM_BASE   isa_mem_base
45 #define PCI_DRAM_OFFSET pci_dram_offset
46 #else
47 #define _IO_BASE        pci_io_base
48 #define _ISA_MEM_BASE   0
49 #define PCI_DRAM_OFFSET 0
50 #endif
51
52 extern unsigned long isa_io_base;
53 extern unsigned long isa_mem_base;
54 extern unsigned long pci_io_base;
55 extern unsigned long pci_dram_offset;
56
57 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
58 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
59 #endif
60
61 /*
62  *
63  * Low level MMIO accessors
64  *
65  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
66  * specific and thus shouldn't be used in generic code. The accessors
67  * provided here are:
68  *
69  *      in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
70  *      out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
71  *      _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
72  *
73  * Those operate directly on a kernel virtual address. Note that the prototype
74  * for the out_* accessors has the arguments in opposite order from the usual
75  * linux PCI accessors. Unlike those, they take the address first and the value
76  * next.
77  *
78  * Note: I might drop the _ns suffix on the stream operations soon as it is
79  * simply normal for stream operations to not swap in the first place.
80  *
81  */
82
83 #ifdef CONFIG_PPC64
84 #define IO_SET_SYNC_FLAG()      do { get_paca()->io_sync = 1; } while(0)
85 #else
86 #define IO_SET_SYNC_FLAG()
87 #endif
88
89 #define DEF_MMIO_IN(name, type, insn)                                   \
90 static inline type name(const volatile type __iomem *addr)              \
91 {                                                                       \
92         type ret;                                                       \
93         __asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync"           \
94                 : "=r" (ret) : "r" (addr), "m" (*addr));                \
95         return ret;                                                     \
96 }
97
98 #define DEF_MMIO_OUT(name, type, insn)                                  \
99 static inline void name(volatile type __iomem *addr, type val)          \
100 {                                                                       \
101         __asm__ __volatile__("sync;" insn                               \
102                 : "=m" (*addr) : "r" (val), "r" (addr));                \
103         IO_SET_SYNC_FLAG();                                     \
104 }
105
106
107 #define DEF_MMIO_IN_BE(name, size, insn) \
108         DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
109 #define DEF_MMIO_IN_LE(name, size, insn) \
110         DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
111
112 #define DEF_MMIO_OUT_BE(name, size, insn) \
113         DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
114 #define DEF_MMIO_OUT_LE(name, size, insn) \
115         DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
116
117 DEF_MMIO_IN_BE(in_8,     8, lbz);
118 DEF_MMIO_IN_BE(in_be16, 16, lhz);
119 DEF_MMIO_IN_BE(in_be32, 32, lwz);
120 DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
121 DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
122
123 DEF_MMIO_OUT_BE(out_8,     8, stb);
124 DEF_MMIO_OUT_BE(out_be16, 16, sth);
125 DEF_MMIO_OUT_BE(out_be32, 32, stw);
126 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
127 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
128
129 #ifdef __powerpc64__
130 DEF_MMIO_OUT_BE(out_be64, 64, std);
131 DEF_MMIO_IN_BE(in_be64, 64, ld);
132
133 /* There is no asm instructions for 64 bits reverse loads and stores */
134 static inline u64 in_le64(const volatile u64 __iomem *addr)
135 {
136         return le64_to_cpu(in_be64(addr));
137 }
138
139 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
140 {
141         out_be64(addr, cpu_to_le64(val));
142 }
143 #endif /* __powerpc64__ */
144
145 /*
146  * Low level IO stream instructions are defined out of line for now
147  */
148 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
149 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
150 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
151 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
152 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
153 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
154
155 /* The _ns naming is historical and will be removed. For now, just #define
156  * the non _ns equivalent names
157  */
158 #define _insw   _insw_ns
159 #define _insl   _insl_ns
160 #define _outsw  _outsw_ns
161 #define _outsl  _outsl_ns
162
163
164 /*
165  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
166  */
167
168 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
169 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
170                            unsigned long n);
171 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
172                          unsigned long n);
173
174 /*
175  *
176  * PCI and standard ISA accessors
177  *
178  * Those are globally defined linux accessors for devices on PCI or ISA
179  * busses. They follow the Linux defined semantics. The current implementation
180  * for PowerPC is as close as possible to the x86 version of these, and thus
181  * provides fairly heavy weight barriers for the non-raw versions
182  *
183  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
184  * allowing the platform to provide its own implementation of some or all
185  * of the accessors.
186  */
187
188
189 /*
190  * Non ordered and non-swapping "raw" accessors
191  */
192
193 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
194 {
195         return *(volatile unsigned char __force *)addr;
196 }
197 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
198 {
199         return *(volatile unsigned short __force *)addr;
200 }
201 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
202 {
203         return *(volatile unsigned int __force *)addr;
204 }
205 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
206 {
207         *(volatile unsigned char __force *)addr = v;
208 }
209 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
210 {
211         *(volatile unsigned short __force *)addr = v;
212 }
213 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
214 {
215         *(volatile unsigned int __force *)addr = v;
216 }
217
218 #ifdef __powerpc64__
219 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
220 {
221         return *(volatile unsigned long __force *)addr;
222 }
223 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
224 {
225         *(volatile unsigned long __force *)addr = v;
226 }
227 #endif /* __powerpc64__ */
228
229 /*
230  *
231  * PCI PIO and MMIO accessors.
232  *
233  */
234
235 /*
236  * Include the EEH definitions when EEH is enabled only so they don't get
237  * in the way when building for 32 bits
238  */
239 #ifdef CONFIG_EEH
240 #include <asm/eeh.h>
241 #endif
242
243 /* Shortcut to the MMIO argument pointer */
244 #define PCI_IO_ADDR     volatile void __iomem *
245
246 /* Indirect IO address tokens:
247  *
248  * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
249  * on all IOs. (Note that this is all 64 bits only for now)
250  *
251  * To help platforms who may need to differenciate MMIO addresses in
252  * their hooks, a bitfield is reserved for use by the platform near the
253  * top of MMIO addresses (not PIO, those have to cope the hard way).
254  *
255  * This bit field is 12 bits and is at the top of the IO virtual
256  * addresses PCI_IO_INDIRECT_TOKEN_MASK.
257  *
258  * The kernel virtual space is thus:
259  *
260  *  0xD000000000000000          : vmalloc
261  *  0xD000080000000000          : PCI PHB IO space
262  *  0xD000080080000000          : ioremap
263  *  0xD0000fffffffffff          : end of ioremap region
264  *
265  * Since the top 4 bits are reserved as the region ID, we use thus
266  * the next 12 bits and keep 4 bits available for the future if the
267  * virtual address space is ever to be extended.
268  *
269  * The direct IO mapping operations will then mask off those bits
270  * before doing the actual access, though that only happen when
271  * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
272  * mechanism
273  */
274
275 #ifdef CONFIG_PPC_INDIRECT_IO
276 #define PCI_IO_IND_TOKEN_MASK   0x0fff000000000000ul
277 #define PCI_IO_IND_TOKEN_SHIFT  48
278 #define PCI_FIX_ADDR(addr)                                              \
279         ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
280 #define PCI_GET_ADDR_TOKEN(addr)                                        \
281         (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >>             \
282                 PCI_IO_IND_TOKEN_SHIFT)
283 #define PCI_SET_ADDR_TOKEN(addr, token)                                 \
284 do {                                                                    \
285         unsigned long __a = (unsigned long)(addr);                      \
286         __a &= ~PCI_IO_IND_TOKEN_MASK;                                  \
287         __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;      \
288         (addr) = (void __iomem *)__a;                                   \
289 } while(0)
290 #else
291 #define PCI_FIX_ADDR(addr) (addr)
292 #endif
293
294 /*
295  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
296  * machine checks (which they occasionally do when probing non existing
297  * IO ports on some platforms, like PowerMac and 8xx).
298  * I always found it to be of dubious reliability and I am tempted to get
299  * rid of it one of these days. So if you think it's important to keep it,
300  * please voice up asap. We never had it for 64 bits and I do not intend
301  * to port it over
302  */
303
304 #ifdef CONFIG_PPC32
305
306 #define __do_in_asm(name, op)                           \
307 extern __inline__ unsigned int name(unsigned int port)  \
308 {                                                       \
309         unsigned int x;                                 \
310         __asm__ __volatile__(                           \
311                 "sync\n"                                \
312                 "0:"    op "    %0,0,%1\n"              \
313                 "1:     twi     0,%0,0\n"               \
314                 "2:     isync\n"                        \
315                 "3:     nop\n"                          \
316                 "4:\n"                                  \
317                 ".section .fixup,\"ax\"\n"              \
318                 "5:     li      %0,-1\n"                \
319                 "       b       4b\n"                   \
320                 ".previous\n"                           \
321                 ".section __ex_table,\"a\"\n"           \
322                 "       .align  2\n"                    \
323                 "       .long   0b,5b\n"                \
324                 "       .long   1b,5b\n"                \
325                 "       .long   2b,5b\n"                \
326                 "       .long   3b,5b\n"                \
327                 ".previous"                             \
328                 : "=&r" (x)                             \
329                 : "r" (port + _IO_BASE));               \
330         return x;                                       \
331 }
332
333 #define __do_out_asm(name, op)                          \
334 extern __inline__ void name(unsigned int val, unsigned int port) \
335 {                                                       \
336         __asm__ __volatile__(                           \
337                 "sync\n"                                \
338                 "0:" op " %0,0,%1\n"                    \
339                 "1:     sync\n"                         \
340                 "2:\n"                                  \
341                 ".section __ex_table,\"a\"\n"           \
342                 "       .align  2\n"                    \
343                 "       .long   0b,2b\n"                \
344                 "       .long   1b,2b\n"                \
345                 ".previous"                             \
346                 : : "r" (val), "r" (port + _IO_BASE));  \
347 }
348
349 __do_in_asm(_rec_inb, "lbzx")
350 __do_in_asm(_rec_inw, "lhbrx")
351 __do_in_asm(_rec_inl, "lwbrx")
352 __do_out_asm(_rec_outb, "stbx")
353 __do_out_asm(_rec_outw, "sthbrx")
354 __do_out_asm(_rec_outl, "stwbrx")
355
356 #endif /* CONFIG_PPC32 */
357
358 /* The "__do_*" operations below provide the actual "base" implementation
359  * for each of the defined acccessor. Some of them use the out_* functions
360  * directly, some of them still use EEH, though we might change that in the
361  * future. Those macros below provide the necessary argument swapping and
362  * handling of the IO base for PIO.
363  *
364  * They are themselves used by the macros that define the actual accessors
365  * and can be used by the hooks if any.
366  *
367  * Note that PIO operations are always defined in terms of their corresonding
368  * MMIO operations. That allows platforms like iSeries who want to modify the
369  * behaviour of both to only hook on the MMIO version and get both. It's also
370  * possible to hook directly at the toplevel PIO operation if they have to
371  * be handled differently
372  */
373 #define __do_writeb(val, addr)  out_8(PCI_FIX_ADDR(addr), val)
374 #define __do_writew(val, addr)  out_le16(PCI_FIX_ADDR(addr), val)
375 #define __do_writel(val, addr)  out_le32(PCI_FIX_ADDR(addr), val)
376 #define __do_writeq(val, addr)  out_le64(PCI_FIX_ADDR(addr), val)
377 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
378 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
379 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
380
381 #ifdef CONFIG_EEH
382 #define __do_readb(addr)        eeh_readb(PCI_FIX_ADDR(addr))
383 #define __do_readw(addr)        eeh_readw(PCI_FIX_ADDR(addr))
384 #define __do_readl(addr)        eeh_readl(PCI_FIX_ADDR(addr))
385 #define __do_readq(addr)        eeh_readq(PCI_FIX_ADDR(addr))
386 #define __do_readw_be(addr)     eeh_readw_be(PCI_FIX_ADDR(addr))
387 #define __do_readl_be(addr)     eeh_readl_be(PCI_FIX_ADDR(addr))
388 #define __do_readq_be(addr)     eeh_readq_be(PCI_FIX_ADDR(addr))
389 #else /* CONFIG_EEH */
390 #define __do_readb(addr)        in_8(PCI_FIX_ADDR(addr))
391 #define __do_readw(addr)        in_le16(PCI_FIX_ADDR(addr))
392 #define __do_readl(addr)        in_le32(PCI_FIX_ADDR(addr))
393 #define __do_readq(addr)        in_le64(PCI_FIX_ADDR(addr))
394 #define __do_readw_be(addr)     in_be16(PCI_FIX_ADDR(addr))
395 #define __do_readl_be(addr)     in_be32(PCI_FIX_ADDR(addr))
396 #define __do_readq_be(addr)     in_be64(PCI_FIX_ADDR(addr))
397 #endif /* !defined(CONFIG_EEH) */
398
399 #ifdef CONFIG_PPC32
400 #define __do_outb(val, port)    _rec_outb(val, port)
401 #define __do_outw(val, port)    _rec_outw(val, port)
402 #define __do_outl(val, port)    _rec_outl(val, port)
403 #define __do_inb(port)          _rec_inb(port)
404 #define __do_inw(port)          _rec_inw(port)
405 #define __do_inl(port)          _rec_inl(port)
406 #else /* CONFIG_PPC32 */
407 #define __do_outb(val, port)    writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
408 #define __do_outw(val, port)    writew(val,(PCI_IO_ADDR)_IO_BASE+port);
409 #define __do_outl(val, port)    writel(val,(PCI_IO_ADDR)_IO_BASE+port);
410 #define __do_inb(port)          readb((PCI_IO_ADDR)_IO_BASE + port);
411 #define __do_inw(port)          readw((PCI_IO_ADDR)_IO_BASE + port);
412 #define __do_inl(port)          readl((PCI_IO_ADDR)_IO_BASE + port);
413 #endif /* !CONFIG_PPC32 */
414
415 #ifdef CONFIG_EEH
416 #define __do_readsb(a, b, n)    eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
417 #define __do_readsw(a, b, n)    eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
418 #define __do_readsl(a, b, n)    eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
419 #else /* CONFIG_EEH */
420 #define __do_readsb(a, b, n)    _insb(PCI_FIX_ADDR(a), (b), (n))
421 #define __do_readsw(a, b, n)    _insw(PCI_FIX_ADDR(a), (b), (n))
422 #define __do_readsl(a, b, n)    _insl(PCI_FIX_ADDR(a), (b), (n))
423 #endif /* !CONFIG_EEH */
424 #define __do_writesb(a, b, n)   _outsb(PCI_FIX_ADDR(a),(b),(n))
425 #define __do_writesw(a, b, n)   _outsw(PCI_FIX_ADDR(a),(b),(n))
426 #define __do_writesl(a, b, n)   _outsl(PCI_FIX_ADDR(a),(b),(n))
427
428 #define __do_insb(p, b, n)      readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
429 #define __do_insw(p, b, n)      readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
430 #define __do_insl(p, b, n)      readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
431 #define __do_outsb(p, b, n)     writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
432 #define __do_outsw(p, b, n)     writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
433 #define __do_outsl(p, b, n)     writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
434
435 #define __do_memset_io(addr, c, n)      \
436                                 _memset_io(PCI_FIX_ADDR(addr), c, n)
437 #define __do_memcpy_toio(dst, src, n)   \
438                                 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
439
440 #ifdef CONFIG_EEH
441 #define __do_memcpy_fromio(dst, src, n) \
442                                 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
443 #else /* CONFIG_EEH */
444 #define __do_memcpy_fromio(dst, src, n) \
445                                 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
446 #endif /* !CONFIG_EEH */
447
448 #ifdef CONFIG_PPC_INDIRECT_IO
449 #define DEF_PCI_HOOK(x)         x
450 #else
451 #define DEF_PCI_HOOK(x)         NULL
452 #endif
453
454 /* Structure containing all the hooks */
455 extern struct ppc_pci_io {
456
457 #define DEF_PCI_AC_RET(name, ret, at, al)       ret (*name) at;
458 #define DEF_PCI_AC_NORET(name, at, al)          void (*name) at;
459
460 #include <asm/io-defs.h>
461
462 #undef DEF_PCI_AC_RET
463 #undef DEF_PCI_AC_NORET
464
465 } ppc_pci_io;
466
467 /* The inline wrappers */
468 #define DEF_PCI_AC_RET(name, ret, at, al)                       \
469 static inline ret name at                                       \
470 {                                                               \
471         if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)              \
472                 return ppc_pci_io.name al;                      \
473         return __do_##name al;                                  \
474 }
475
476 #define DEF_PCI_AC_NORET(name, at, al)                          \
477 static inline void name at                                      \
478 {                                                               \
479         if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)              \
480                 ppc_pci_io.name al;                             \
481         else                                                    \
482                 __do_##name al;                                 \
483 }
484
485 #include <asm/io-defs.h>
486
487 #undef DEF_PCI_AC_RET
488 #undef DEF_PCI_AC_NORET
489
490 /* Some drivers check for the presence of readq & writeq with
491  * a #ifdef, so we make them happy here.
492  */
493 #ifdef __powerpc64__
494 #define readq   readq
495 #define writeq  writeq
496 #endif
497
498 #ifdef CONFIG_NOT_COHERENT_CACHE
499
500 #define dma_cache_inv(_start,_size) \
501         invalidate_dcache_range(_start, (_start + _size))
502 #define dma_cache_wback(_start,_size) \
503         clean_dcache_range(_start, (_start + _size))
504 #define dma_cache_wback_inv(_start,_size) \
505         flush_dcache_range(_start, (_start + _size))
506
507 #else /* CONFIG_NOT_COHERENT_CACHE */
508
509 #define dma_cache_inv(_start,_size)             do { } while (0)
510 #define dma_cache_wback(_start,_size)           do { } while (0)
511 #define dma_cache_wback_inv(_start,_size)       do { } while (0)
512
513 #endif /* !CONFIG_NOT_COHERENT_CACHE */
514
515 /*
516  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
517  * access
518  */
519 #define xlate_dev_mem_ptr(p)    __va(p)
520
521 /*
522  * Convert a virtual cached pointer to an uncached pointer
523  */
524 #define xlate_dev_kmem_ptr(p)   p
525
526 /*
527  * We don't do relaxed operations yet, at least not with this semantic
528  */
529 #define readb_relaxed(addr) readb(addr)
530 #define readw_relaxed(addr) readw(addr)
531 #define readl_relaxed(addr) readl(addr)
532 #define readq_relaxed(addr) readq(addr)
533
534 #ifdef CONFIG_PPC32
535 #define mmiowb()
536 #else
537 /*
538  * Enforce synchronisation of stores vs. spin_unlock
539  * (this does it explicitely, though our implementation of spin_unlock
540  * does it implicitely too)
541  */
542 static inline void mmiowb(void)
543 {
544         unsigned long tmp;
545
546         __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
547         : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
548         : "memory");
549 }
550 #endif /* !CONFIG_PPC32 */
551
552 static inline void iosync(void)
553 {
554         __asm__ __volatile__ ("sync" : : : "memory");
555 }
556
557 /* Enforce in-order execution of data I/O.
558  * No distinction between read/write on PPC; use eieio for all three.
559  * Those are fairly week though. They don't provide a barrier between
560  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
561  * they only provide barriers between 2 __raw MMIO operations and
562  * possibly break write combining.
563  */
564 #define iobarrier_rw() eieio()
565 #define iobarrier_r()  eieio()
566 #define iobarrier_w()  eieio()
567
568
569 /*
570  * output pause versions need a delay at least for the
571  * w83c105 ide controller in a p610.
572  */
573 #define inb_p(port)             inb(port)
574 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
575 #define inw_p(port)             inw(port)
576 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
577 #define inl_p(port)             inl(port)
578 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
579
580
581 #define IO_SPACE_LIMIT ~(0UL)
582
583
584 /**
585  * ioremap     -   map bus memory into CPU space
586  * @address:   bus address of the memory
587  * @size:      size of the resource to map
588  *
589  * ioremap performs a platform specific sequence of operations to
590  * make bus memory CPU accessible via the readb/readw/readl/writeb/
591  * writew/writel functions and the other mmio helpers. The returned
592  * address is not guaranteed to be usable directly as a virtual
593  * address.
594  *
595  * We provide a few variations of it:
596  *
597  * * ioremap is the standard one and provides non-cacheable guarded mappings
598  *   and can be hooked by the platform via ppc_md
599  *
600  * * ioremap_flags allows to specify the page flags as an argument and can
601  *   also be hooked by the platform via ppc_md
602  *
603  * * ioremap_nocache is identical to ioremap
604  *
605  * * iounmap undoes such a mapping and can be hooked
606  *
607  * * __ioremap_explicit (and the pending __iounmap_explicit) are low level
608  *   functions to create hand-made mappings for use only by the PCI code
609  *   and cannot currently be hooked.
610  *
611  * * __ioremap is the low level implementation used by ioremap and
612  *   ioremap_flags and cannot be hooked (but can be used by a hook on one
613  *   of the previous ones)
614  *
615  * * __iounmap, is the low level implementation used by iounmap and cannot
616  *   be hooked (but can be used by a hook on iounmap)
617  *
618  */
619 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
620 extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
621                                    unsigned long flags);
622 #define ioremap_nocache(addr, size)     ioremap((addr), (size))
623 extern void iounmap(volatile void __iomem *addr);
624
625 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
626                                unsigned long flags);
627 extern void __iounmap(volatile void __iomem *addr);
628
629 extern int __ioremap_explicit(phys_addr_t p_addr, unsigned long v_addr,
630                               unsigned long size, unsigned long flags);
631 extern int __iounmap_explicit(volatile void __iomem *start,
632                               unsigned long size);
633
634 extern void __iomem * reserve_phb_iospace(unsigned long size);
635
636 /* Those are more 32 bits only functions */
637 extern unsigned long iopa(unsigned long addr);
638 extern unsigned long mm_ptov(unsigned long addr) __attribute_const__;
639 extern void io_block_mapping(unsigned long virt, phys_addr_t phys,
640                              unsigned int size, int flags);
641
642
643 /*
644  * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
645  * which needs some additional definitions here. They basically allow PIO
646  * space overall to be 1GB. This will work as long as we never try to use
647  * iomap to map MMIO below 1GB which should be fine on ppc64
648  */
649 #define HAVE_ARCH_PIO_SIZE              1
650 #define PIO_OFFSET                      0x00000000UL
651 #define PIO_MASK                        0x3fffffffUL
652 #define PIO_RESERVED                    0x40000000UL
653
654 #define mmio_read16be(addr)             readw_be(addr)
655 #define mmio_read32be(addr)             readl_be(addr)
656 #define mmio_write16be(val, addr)       writew_be(val, addr)
657 #define mmio_write32be(val, addr)       writel_be(val, addr)
658 #define mmio_insb(addr, dst, count)     readsb(addr, dst, count)
659 #define mmio_insw(addr, dst, count)     readsw(addr, dst, count)
660 #define mmio_insl(addr, dst, count)     readsl(addr, dst, count)
661 #define mmio_outsb(addr, src, count)    writesb(addr, src, count)
662 #define mmio_outsw(addr, src, count)    writesw(addr, src, count)
663 #define mmio_outsl(addr, src, count)    writesl(addr, src, count)
664
665 /**
666  *      virt_to_phys    -       map virtual addresses to physical
667  *      @address: address to remap
668  *
669  *      The returned physical address is the physical (CPU) mapping for
670  *      the memory address given. It is only valid to use this function on
671  *      addresses directly mapped or allocated via kmalloc.
672  *
673  *      This function does not give bus mappings for DMA transfers. In
674  *      almost all conceivable cases a device driver should not be using
675  *      this function
676  */
677 static inline unsigned long virt_to_phys(volatile void * address)
678 {
679         return __pa((unsigned long)address);
680 }
681
682 /**
683  *      phys_to_virt    -       map physical address to virtual
684  *      @address: address to remap
685  *
686  *      The returned virtual address is a current CPU mapping for
687  *      the memory address given. It is only valid to use this function on
688  *      addresses that have a kernel mapping
689  *
690  *      This function does not handle bus mappings for DMA transfers. In
691  *      almost all conceivable cases a device driver should not be using
692  *      this function
693  */
694 static inline void * phys_to_virt(unsigned long address)
695 {
696         return (void *)__va(address);
697 }
698
699 /*
700  * Change "struct page" to physical address.
701  */
702 #define page_to_phys(page)      (page_to_pfn(page) << PAGE_SHIFT)
703
704 /* We do NOT want virtual merging, it would put too much pressure on
705  * our iommu allocator. Instead, we want drivers to be smart enough
706  * to coalesce sglists that happen to have been mapped in a contiguous
707  * way by the iommu
708  */
709 #define BIO_VMERGE_BOUNDARY     0
710
711 /*
712  * 32 bits still uses virt_to_bus() for it's implementation of DMA
713  * mappings se we have to keep it defined here. We also have some old
714  * drivers (shame shame shame) that use bus_to_virt() and haven't been
715  * fixed yet so I need to define it here.
716  */
717 #ifdef CONFIG_PPC32
718
719 static inline unsigned long virt_to_bus(volatile void * address)
720 {
721         if (address == NULL)
722                 return 0;
723         return __pa(address) + PCI_DRAM_OFFSET;
724 }
725
726 static inline void * bus_to_virt(unsigned long address)
727 {
728         if (address == 0)
729                 return NULL;
730         return __va(address - PCI_DRAM_OFFSET);
731 }
732
733 #define page_to_bus(page)       (page_to_phys(page) + PCI_DRAM_OFFSET)
734
735 #endif /* CONFIG_PPC32 */
736
737
738 #endif /* __KERNEL__ */
739
740 #endif /* _ASM_POWERPC_IO_H */