4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
57 static void exit_mm(struct task_struct * tsk);
59 static inline int task_detached(struct task_struct *p)
61 return p->exit_signal == -1;
64 static void __unhash_process(struct task_struct *p)
67 detach_pid(p, PIDTYPE_PID);
68 if (thread_group_leader(p)) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 __get_cpu_var(process_counts)--;
75 list_del_rcu(&p->thread_group);
76 list_del_init(&p->sibling);
80 * This function expects the tasklist_lock write-locked.
82 static void __exit_signal(struct task_struct *tsk)
84 struct signal_struct *sig = tsk->signal;
85 struct sighand_struct *sighand;
88 BUG_ON(!atomic_read(&sig->count));
90 sighand = rcu_dereference(tsk->sighand);
91 spin_lock(&sighand->siglock);
93 posix_cpu_timers_exit(tsk);
94 if (atomic_dec_and_test(&sig->count))
95 posix_cpu_timers_exit_group(tsk);
98 * If there is any task waiting for the group exit
101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102 wake_up_process(sig->group_exit_task);
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 sig = NULL; /* Marker for below. */
127 __unhash_process(tsk);
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 flush_sigqueue(&tsk->pending);
137 spin_unlock(&sighand->siglock);
139 __cleanup_sighand(sighand);
140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
145 * Make sure ->signal can't go away under rq->lock,
146 * see account_group_exec_runtime().
148 task_rq_unlock_wait(tsk);
149 __cleanup_signal(sig);
153 static void delayed_put_task_struct(struct rcu_head *rhp)
155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157 trace_sched_process_free(tsk);
158 put_task_struct(tsk);
162 void release_task(struct task_struct * p)
164 struct task_struct *leader;
167 tracehook_prepare_release_task(p);
168 atomic_dec(&p->user->processes);
170 write_lock_irq(&tasklist_lock);
171 tracehook_finish_release_task(p);
175 * If we are the last non-leader member of the thread
176 * group, and the leader is zombie, then notify the
177 * group leader's parent process. (if it wants notification.)
180 leader = p->group_leader;
181 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
182 BUG_ON(task_detached(leader));
183 do_notify_parent(leader, leader->exit_signal);
185 * If we were the last child thread and the leader has
186 * exited already, and the leader's parent ignores SIGCHLD,
187 * then we are the one who should release the leader.
189 * do_notify_parent() will have marked it self-reaping in
192 zap_leader = task_detached(leader);
195 * This maintains the invariant that release_task()
196 * only runs on a task in EXIT_DEAD, just for sanity.
199 leader->exit_state = EXIT_DEAD;
202 write_unlock_irq(&tasklist_lock);
204 call_rcu(&p->rcu, delayed_put_task_struct);
207 if (unlikely(zap_leader))
212 * This checks not only the pgrp, but falls back on the pid if no
213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
216 * The caller must hold rcu lock or the tasklist lock.
218 struct pid *session_of_pgrp(struct pid *pgrp)
220 struct task_struct *p;
221 struct pid *sid = NULL;
223 p = pid_task(pgrp, PIDTYPE_PGID);
225 p = pid_task(pgrp, PIDTYPE_PID);
227 sid = task_session(p);
233 * Determine if a process group is "orphaned", according to the POSIX
234 * definition in 2.2.2.52. Orphaned process groups are not to be affected
235 * by terminal-generated stop signals. Newly orphaned process groups are
236 * to receive a SIGHUP and a SIGCONT.
238 * "I ask you, have you ever known what it is to be an orphan?"
240 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 struct task_struct *p;
244 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
245 if ((p == ignored_task) ||
246 (p->exit_state && thread_group_empty(p)) ||
247 is_global_init(p->real_parent))
250 if (task_pgrp(p->real_parent) != pgrp &&
251 task_session(p->real_parent) == task_session(p))
253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 int is_current_pgrp_orphaned(void)
262 read_lock(&tasklist_lock);
263 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
264 read_unlock(&tasklist_lock);
269 static int has_stopped_jobs(struct pid *pgrp)
272 struct task_struct *p;
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if (!task_is_stopped(p))
279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 * Check to see if any process groups have become orphaned as
285 * a result of our exiting, and if they have any stopped jobs,
286 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
291 struct pid *pgrp = task_pgrp(tsk);
292 struct task_struct *ignored_task = tsk;
295 /* exit: our father is in a different pgrp than
296 * we are and we were the only connection outside.
298 parent = tsk->real_parent;
300 /* reparent: our child is in a different pgrp than
301 * we are, and it was the only connection outside.
305 if (task_pgrp(parent) != pgrp &&
306 task_session(parent) == task_session(tsk) &&
307 will_become_orphaned_pgrp(pgrp, ignored_task) &&
308 has_stopped_jobs(pgrp)) {
309 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
310 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
315 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
317 * If a kernel thread is launched as a result of a system call, or if
318 * it ever exits, it should generally reparent itself to kthreadd so it
319 * isn't in the way of other processes and is correctly cleaned up on exit.
321 * The various task state such as scheduling policy and priority may have
322 * been inherited from a user process, so we reset them to sane values here.
324 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
326 static void reparent_to_kthreadd(void)
328 write_lock_irq(&tasklist_lock);
330 ptrace_unlink(current);
331 /* Reparent to init */
332 current->real_parent = current->parent = kthreadd_task;
333 list_move_tail(¤t->sibling, ¤t->real_parent->children);
335 /* Set the exit signal to SIGCHLD so we signal init on exit */
336 current->exit_signal = SIGCHLD;
338 if (task_nice(current) < 0)
339 set_user_nice(current, 0);
343 security_task_reparent_to_init(current);
344 memcpy(current->signal->rlim, init_task.signal->rlim,
345 sizeof(current->signal->rlim));
346 atomic_inc(&(INIT_USER->__count));
347 write_unlock_irq(&tasklist_lock);
348 switch_uid(INIT_USER);
351 void __set_special_pids(struct pid *pid)
353 struct task_struct *curr = current->group_leader;
354 pid_t nr = pid_nr(pid);
356 if (task_session(curr) != pid) {
357 change_pid(curr, PIDTYPE_SID, pid);
358 set_task_session(curr, nr);
360 if (task_pgrp(curr) != pid) {
361 change_pid(curr, PIDTYPE_PGID, pid);
362 set_task_pgrp(curr, nr);
366 static void set_special_pids(struct pid *pid)
368 write_lock_irq(&tasklist_lock);
369 __set_special_pids(pid);
370 write_unlock_irq(&tasklist_lock);
374 * Let kernel threads use this to say that they
375 * allow a certain signal (since daemonize() will
376 * have disabled all of them by default).
378 int allow_signal(int sig)
380 if (!valid_signal(sig) || sig < 1)
383 spin_lock_irq(¤t->sighand->siglock);
384 sigdelset(¤t->blocked, sig);
386 /* Kernel threads handle their own signals.
387 Let the signal code know it'll be handled, so
388 that they don't get converted to SIGKILL or
389 just silently dropped */
390 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
393 spin_unlock_irq(¤t->sighand->siglock);
397 EXPORT_SYMBOL(allow_signal);
399 int disallow_signal(int sig)
401 if (!valid_signal(sig) || sig < 1)
404 spin_lock_irq(¤t->sighand->siglock);
405 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
407 spin_unlock_irq(¤t->sighand->siglock);
411 EXPORT_SYMBOL(disallow_signal);
414 * Put all the gunge required to become a kernel thread without
415 * attached user resources in one place where it belongs.
418 void daemonize(const char *name, ...)
421 struct fs_struct *fs;
424 va_start(args, name);
425 vsnprintf(current->comm, sizeof(current->comm), name, args);
429 * If we were started as result of loading a module, close all of the
430 * user space pages. We don't need them, and if we didn't close them
431 * they would be locked into memory.
435 * We don't want to have TIF_FREEZE set if the system-wide hibernation
436 * or suspend transition begins right now.
438 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
440 if (current->nsproxy != &init_nsproxy) {
441 get_nsproxy(&init_nsproxy);
442 switch_task_namespaces(current, &init_nsproxy);
444 set_special_pids(&init_struct_pid);
445 proc_clear_tty(current);
447 /* Block and flush all signals */
448 sigfillset(&blocked);
449 sigprocmask(SIG_BLOCK, &blocked, NULL);
450 flush_signals(current);
452 /* Become as one with the init task */
454 exit_fs(current); /* current->fs->count--; */
457 atomic_inc(&fs->count);
460 current->files = init_task.files;
461 atomic_inc(¤t->files->count);
463 reparent_to_kthreadd();
466 EXPORT_SYMBOL(daemonize);
468 static void close_files(struct files_struct * files)
476 * It is safe to dereference the fd table without RCU or
477 * ->file_lock because this is the last reference to the
480 fdt = files_fdtable(files);
484 if (i >= fdt->max_fds)
486 set = fdt->open_fds->fds_bits[j++];
489 struct file * file = xchg(&fdt->fd[i], NULL);
491 filp_close(file, files);
501 struct files_struct *get_files_struct(struct task_struct *task)
503 struct files_struct *files;
508 atomic_inc(&files->count);
514 void put_files_struct(struct files_struct *files)
518 if (atomic_dec_and_test(&files->count)) {
521 * Free the fd and fdset arrays if we expanded them.
522 * If the fdtable was embedded, pass files for freeing
523 * at the end of the RCU grace period. Otherwise,
524 * you can free files immediately.
526 fdt = files_fdtable(files);
527 if (fdt != &files->fdtab)
528 kmem_cache_free(files_cachep, files);
533 void reset_files_struct(struct files_struct *files)
535 struct task_struct *tsk = current;
536 struct files_struct *old;
542 put_files_struct(old);
545 void exit_files(struct task_struct *tsk)
547 struct files_struct * files = tsk->files;
553 put_files_struct(files);
557 void put_fs_struct(struct fs_struct *fs)
559 /* No need to hold fs->lock if we are killing it */
560 if (atomic_dec_and_test(&fs->count)) {
563 kmem_cache_free(fs_cachep, fs);
567 void exit_fs(struct task_struct *tsk)
569 struct fs_struct * fs = tsk->fs;
579 EXPORT_SYMBOL_GPL(exit_fs);
581 #ifdef CONFIG_MM_OWNER
583 * Task p is exiting and it owned mm, lets find a new owner for it
586 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
589 * If there are other users of the mm and the owner (us) is exiting
590 * we need to find a new owner to take on the responsibility.
592 if (atomic_read(&mm->mm_users) <= 1)
599 void mm_update_next_owner(struct mm_struct *mm)
601 struct task_struct *c, *g, *p = current;
604 if (!mm_need_new_owner(mm, p))
607 read_lock(&tasklist_lock);
609 * Search in the children
611 list_for_each_entry(c, &p->children, sibling) {
613 goto assign_new_owner;
617 * Search in the siblings
619 list_for_each_entry(c, &p->parent->children, sibling) {
621 goto assign_new_owner;
625 * Search through everything else. We should not get
628 do_each_thread(g, c) {
630 goto assign_new_owner;
631 } while_each_thread(g, c);
633 read_unlock(&tasklist_lock);
635 * We found no owner yet mm_users > 1: this implies that we are
636 * most likely racing with swapoff (try_to_unuse()) or /proc or
637 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
638 * so that subsystems can understand the callback and take action.
640 down_write(&mm->mmap_sem);
641 cgroup_mm_owner_callbacks(mm->owner, NULL);
643 up_write(&mm->mmap_sem);
649 read_unlock(&tasklist_lock);
650 down_write(&mm->mmap_sem);
652 * The task_lock protects c->mm from changing.
653 * We always want mm->owner->mm == mm
658 up_write(&mm->mmap_sem);
662 cgroup_mm_owner_callbacks(mm->owner, c);
665 up_write(&mm->mmap_sem);
668 #endif /* CONFIG_MM_OWNER */
671 * Turn us into a lazy TLB process if we
674 static void exit_mm(struct task_struct * tsk)
676 struct mm_struct *mm = tsk->mm;
677 struct core_state *core_state;
683 * Serialize with any possible pending coredump.
684 * We must hold mmap_sem around checking core_state
685 * and clearing tsk->mm. The core-inducing thread
686 * will increment ->nr_threads for each thread in the
687 * group with ->mm != NULL.
689 down_read(&mm->mmap_sem);
690 core_state = mm->core_state;
692 struct core_thread self;
693 up_read(&mm->mmap_sem);
696 self.next = xchg(&core_state->dumper.next, &self);
698 * Implies mb(), the result of xchg() must be visible
699 * to core_state->dumper.
701 if (atomic_dec_and_test(&core_state->nr_threads))
702 complete(&core_state->startup);
705 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
706 if (!self.task) /* see coredump_finish() */
710 __set_task_state(tsk, TASK_RUNNING);
711 down_read(&mm->mmap_sem);
713 atomic_inc(&mm->mm_count);
714 BUG_ON(mm != tsk->active_mm);
715 /* more a memory barrier than a real lock */
718 up_read(&mm->mmap_sem);
719 enter_lazy_tlb(mm, current);
720 /* We don't want this task to be frozen prematurely */
721 clear_freeze_flag(tsk);
723 mm_update_next_owner(mm);
728 * Return nonzero if @parent's children should reap themselves.
730 * Called with write_lock_irq(&tasklist_lock) held.
732 static int ignoring_children(struct task_struct *parent)
735 struct sighand_struct *psig = parent->sighand;
737 spin_lock_irqsave(&psig->siglock, flags);
738 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
739 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
740 spin_unlock_irqrestore(&psig->siglock, flags);
745 * Detach all tasks we were using ptrace on.
746 * Any that need to be release_task'd are put on the @dead list.
748 * Called with write_lock(&tasklist_lock) held.
750 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
752 struct task_struct *p, *n;
755 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
758 if (p->exit_state != EXIT_ZOMBIE)
762 * If it's a zombie, our attachedness prevented normal
763 * parent notification or self-reaping. Do notification
764 * now if it would have happened earlier. If it should
765 * reap itself, add it to the @dead list. We can't call
766 * release_task() here because we already hold tasklist_lock.
768 * If it's our own child, there is no notification to do.
769 * But if our normal children self-reap, then this child
770 * was prevented by ptrace and we must reap it now.
772 if (!task_detached(p) && thread_group_empty(p)) {
773 if (!same_thread_group(p->real_parent, parent))
774 do_notify_parent(p, p->exit_signal);
777 ign = ignoring_children(parent);
783 if (task_detached(p)) {
785 * Mark it as in the process of being reaped.
787 p->exit_state = EXIT_DEAD;
788 list_add(&p->ptrace_entry, dead);
794 * Finish up exit-time ptrace cleanup.
796 * Called without locks.
798 static void ptrace_exit_finish(struct task_struct *parent,
799 struct list_head *dead)
801 struct task_struct *p, *n;
803 BUG_ON(!list_empty(&parent->ptraced));
805 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
806 list_del_init(&p->ptrace_entry);
811 static void reparent_thread(struct task_struct *p, struct task_struct *father)
813 if (p->pdeath_signal)
814 /* We already hold the tasklist_lock here. */
815 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
817 list_move_tail(&p->sibling, &p->real_parent->children);
819 /* If this is a threaded reparent there is no need to
820 * notify anyone anything has happened.
822 if (same_thread_group(p->real_parent, father))
825 /* We don't want people slaying init. */
826 if (!task_detached(p))
827 p->exit_signal = SIGCHLD;
829 /* If we'd notified the old parent about this child's death,
830 * also notify the new parent.
832 if (!ptrace_reparented(p) &&
833 p->exit_state == EXIT_ZOMBIE &&
834 !task_detached(p) && thread_group_empty(p))
835 do_notify_parent(p, p->exit_signal);
837 kill_orphaned_pgrp(p, father);
841 * When we die, we re-parent all our children.
842 * Try to give them to another thread in our thread
843 * group, and if no such member exists, give it to
844 * the child reaper process (ie "init") in our pid
847 static struct task_struct *find_new_reaper(struct task_struct *father)
849 struct pid_namespace *pid_ns = task_active_pid_ns(father);
850 struct task_struct *thread;
853 while_each_thread(father, thread) {
854 if (thread->flags & PF_EXITING)
856 if (unlikely(pid_ns->child_reaper == father))
857 pid_ns->child_reaper = thread;
861 if (unlikely(pid_ns->child_reaper == father)) {
862 write_unlock_irq(&tasklist_lock);
863 if (unlikely(pid_ns == &init_pid_ns))
864 panic("Attempted to kill init!");
866 zap_pid_ns_processes(pid_ns);
867 write_lock_irq(&tasklist_lock);
869 * We can not clear ->child_reaper or leave it alone.
870 * There may by stealth EXIT_DEAD tasks on ->children,
871 * forget_original_parent() must move them somewhere.
873 pid_ns->child_reaper = init_pid_ns.child_reaper;
876 return pid_ns->child_reaper;
879 static void forget_original_parent(struct task_struct *father)
881 struct task_struct *p, *n, *reaper;
882 LIST_HEAD(ptrace_dead);
884 write_lock_irq(&tasklist_lock);
885 reaper = find_new_reaper(father);
887 * First clean up ptrace if we were using it.
889 ptrace_exit(father, &ptrace_dead);
891 list_for_each_entry_safe(p, n, &father->children, sibling) {
892 p->real_parent = reaper;
893 if (p->parent == father) {
895 p->parent = p->real_parent;
897 reparent_thread(p, father);
900 write_unlock_irq(&tasklist_lock);
901 BUG_ON(!list_empty(&father->children));
903 ptrace_exit_finish(father, &ptrace_dead);
907 * Send signals to all our closest relatives so that they know
908 * to properly mourn us..
910 static void exit_notify(struct task_struct *tsk, int group_dead)
916 * This does two things:
918 * A. Make init inherit all the child processes
919 * B. Check to see if any process groups have become orphaned
920 * as a result of our exiting, and if they have any stopped
921 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
923 forget_original_parent(tsk);
924 exit_task_namespaces(tsk);
926 write_lock_irq(&tasklist_lock);
928 kill_orphaned_pgrp(tsk->group_leader, NULL);
930 /* Let father know we died
932 * Thread signals are configurable, but you aren't going to use
933 * that to send signals to arbitary processes.
934 * That stops right now.
936 * If the parent exec id doesn't match the exec id we saved
937 * when we started then we know the parent has changed security
940 * If our self_exec id doesn't match our parent_exec_id then
941 * we have changed execution domain as these two values started
942 * the same after a fork.
944 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
945 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
946 tsk->self_exec_id != tsk->parent_exec_id) &&
948 tsk->exit_signal = SIGCHLD;
950 signal = tracehook_notify_death(tsk, &cookie, group_dead);
952 signal = do_notify_parent(tsk, signal);
954 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
956 /* mt-exec, de_thread() is waiting for us */
957 if (thread_group_leader(tsk) &&
958 tsk->signal->group_exit_task &&
959 tsk->signal->notify_count < 0)
960 wake_up_process(tsk->signal->group_exit_task);
962 write_unlock_irq(&tasklist_lock);
964 tracehook_report_death(tsk, signal, cookie, group_dead);
966 /* If the process is dead, release it - nobody will wait for it */
967 if (signal == DEATH_REAP)
971 #ifdef CONFIG_DEBUG_STACK_USAGE
972 static void check_stack_usage(void)
974 static DEFINE_SPINLOCK(low_water_lock);
975 static int lowest_to_date = THREAD_SIZE;
976 unsigned long *n = end_of_stack(current);
981 free = (unsigned long)n - (unsigned long)end_of_stack(current);
983 if (free >= lowest_to_date)
986 spin_lock(&low_water_lock);
987 if (free < lowest_to_date) {
988 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
990 current->comm, free);
991 lowest_to_date = free;
993 spin_unlock(&low_water_lock);
996 static inline void check_stack_usage(void) {}
999 NORET_TYPE void do_exit(long code)
1001 struct task_struct *tsk = current;
1004 profile_task_exit(tsk);
1006 WARN_ON(atomic_read(&tsk->fs_excl));
1008 if (unlikely(in_interrupt()))
1009 panic("Aiee, killing interrupt handler!");
1010 if (unlikely(!tsk->pid))
1011 panic("Attempted to kill the idle task!");
1013 tracehook_report_exit(&code);
1016 * We're taking recursive faults here in do_exit. Safest is to just
1017 * leave this task alone and wait for reboot.
1019 if (unlikely(tsk->flags & PF_EXITING)) {
1021 "Fixing recursive fault but reboot is needed!\n");
1023 * We can do this unlocked here. The futex code uses
1024 * this flag just to verify whether the pi state
1025 * cleanup has been done or not. In the worst case it
1026 * loops once more. We pretend that the cleanup was
1027 * done as there is no way to return. Either the
1028 * OWNER_DIED bit is set by now or we push the blocked
1029 * task into the wait for ever nirwana as well.
1031 tsk->flags |= PF_EXITPIDONE;
1032 if (tsk->io_context)
1034 set_current_state(TASK_UNINTERRUPTIBLE);
1038 exit_signals(tsk); /* sets PF_EXITING */
1040 * tsk->flags are checked in the futex code to protect against
1041 * an exiting task cleaning up the robust pi futexes.
1044 spin_unlock_wait(&tsk->pi_lock);
1046 if (unlikely(in_atomic()))
1047 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1048 current->comm, task_pid_nr(current),
1051 acct_update_integrals(tsk);
1053 update_hiwater_rss(tsk->mm);
1054 update_hiwater_vm(tsk->mm);
1056 group_dead = atomic_dec_and_test(&tsk->signal->live);
1058 hrtimer_cancel(&tsk->signal->real_timer);
1059 exit_itimers(tsk->signal);
1061 acct_collect(code, group_dead);
1063 if (unlikely(tsk->robust_list))
1064 exit_robust_list(tsk);
1065 #ifdef CONFIG_COMPAT
1066 if (unlikely(tsk->compat_robust_list))
1067 compat_exit_robust_list(tsk);
1072 if (unlikely(tsk->audit_context))
1075 tsk->exit_code = code;
1076 taskstats_exit(tsk, group_dead);
1082 trace_sched_process_exit(tsk);
1087 check_stack_usage();
1089 cgroup_exit(tsk, 1);
1092 if (group_dead && tsk->signal->leader)
1093 disassociate_ctty(1);
1095 module_put(task_thread_info(tsk)->exec_domain->module);
1097 module_put(tsk->binfmt->module);
1099 proc_exit_connector(tsk);
1100 exit_notify(tsk, group_dead);
1102 mpol_put(tsk->mempolicy);
1103 tsk->mempolicy = NULL;
1107 * This must happen late, after the PID is not
1110 if (unlikely(!list_empty(&tsk->pi_state_list)))
1111 exit_pi_state_list(tsk);
1112 if (unlikely(current->pi_state_cache))
1113 kfree(current->pi_state_cache);
1116 * Make sure we are holding no locks:
1118 debug_check_no_locks_held(tsk);
1120 * We can do this unlocked here. The futex code uses this flag
1121 * just to verify whether the pi state cleanup has been done
1122 * or not. In the worst case it loops once more.
1124 tsk->flags |= PF_EXITPIDONE;
1126 if (tsk->io_context)
1129 if (tsk->splice_pipe)
1130 __free_pipe_info(tsk->splice_pipe);
1133 /* causes final put_task_struct in finish_task_switch(). */
1134 tsk->state = TASK_DEAD;
1138 /* Avoid "noreturn function does return". */
1140 cpu_relax(); /* For when BUG is null */
1143 EXPORT_SYMBOL_GPL(do_exit);
1145 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1153 EXPORT_SYMBOL(complete_and_exit);
1155 asmlinkage long sys_exit(int error_code)
1157 do_exit((error_code&0xff)<<8);
1161 * Take down every thread in the group. This is called by fatal signals
1162 * as well as by sys_exit_group (below).
1165 do_group_exit(int exit_code)
1167 struct signal_struct *sig = current->signal;
1169 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1171 if (signal_group_exit(sig))
1172 exit_code = sig->group_exit_code;
1173 else if (!thread_group_empty(current)) {
1174 struct sighand_struct *const sighand = current->sighand;
1175 spin_lock_irq(&sighand->siglock);
1176 if (signal_group_exit(sig))
1177 /* Another thread got here before we took the lock. */
1178 exit_code = sig->group_exit_code;
1180 sig->group_exit_code = exit_code;
1181 sig->flags = SIGNAL_GROUP_EXIT;
1182 zap_other_threads(current);
1184 spin_unlock_irq(&sighand->siglock);
1192 * this kills every thread in the thread group. Note that any externally
1193 * wait4()-ing process will get the correct exit code - even if this
1194 * thread is not the thread group leader.
1196 asmlinkage void sys_exit_group(int error_code)
1198 do_group_exit((error_code & 0xff) << 8);
1201 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1203 struct pid *pid = NULL;
1204 if (type == PIDTYPE_PID)
1205 pid = task->pids[type].pid;
1206 else if (type < PIDTYPE_MAX)
1207 pid = task->group_leader->pids[type].pid;
1211 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1212 struct task_struct *p)
1216 if (type < PIDTYPE_MAX) {
1217 if (task_pid_type(p, type) != pid)
1221 /* Wait for all children (clone and not) if __WALL is set;
1222 * otherwise, wait for clone children *only* if __WCLONE is
1223 * set; otherwise, wait for non-clone children *only*. (Note:
1224 * A "clone" child here is one that reports to its parent
1225 * using a signal other than SIGCHLD.) */
1226 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1227 && !(options & __WALL))
1230 err = security_task_wait(p);
1237 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1238 int why, int status,
1239 struct siginfo __user *infop,
1240 struct rusage __user *rusagep)
1242 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1246 retval = put_user(SIGCHLD, &infop->si_signo);
1248 retval = put_user(0, &infop->si_errno);
1250 retval = put_user((short)why, &infop->si_code);
1252 retval = put_user(pid, &infop->si_pid);
1254 retval = put_user(uid, &infop->si_uid);
1256 retval = put_user(status, &infop->si_status);
1263 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1264 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1265 * the lock and this task is uninteresting. If we return nonzero, we have
1266 * released the lock and the system call should return.
1268 static int wait_task_zombie(struct task_struct *p, int options,
1269 struct siginfo __user *infop,
1270 int __user *stat_addr, struct rusage __user *ru)
1272 unsigned long state;
1273 int retval, status, traced;
1274 pid_t pid = task_pid_vnr(p);
1276 if (!likely(options & WEXITED))
1279 if (unlikely(options & WNOWAIT)) {
1281 int exit_code = p->exit_code;
1285 read_unlock(&tasklist_lock);
1286 if ((exit_code & 0x7f) == 0) {
1288 status = exit_code >> 8;
1290 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1291 status = exit_code & 0x7f;
1293 return wait_noreap_copyout(p, pid, uid, why,
1298 * Try to move the task's state to DEAD
1299 * only one thread is allowed to do this:
1301 state = xchg(&p->exit_state, EXIT_DEAD);
1302 if (state != EXIT_ZOMBIE) {
1303 BUG_ON(state != EXIT_DEAD);
1307 traced = ptrace_reparented(p);
1309 if (likely(!traced)) {
1310 struct signal_struct *psig;
1311 struct signal_struct *sig;
1312 struct task_cputime cputime;
1315 * The resource counters for the group leader are in its
1316 * own task_struct. Those for dead threads in the group
1317 * are in its signal_struct, as are those for the child
1318 * processes it has previously reaped. All these
1319 * accumulate in the parent's signal_struct c* fields.
1321 * We don't bother to take a lock here to protect these
1322 * p->signal fields, because they are only touched by
1323 * __exit_signal, which runs with tasklist_lock
1324 * write-locked anyway, and so is excluded here. We do
1325 * need to protect the access to p->parent->signal fields,
1326 * as other threads in the parent group can be right
1327 * here reaping other children at the same time.
1329 * We use thread_group_cputime() to get times for the thread
1330 * group, which consolidates times for all threads in the
1331 * group including the group leader.
1333 spin_lock_irq(&p->parent->sighand->siglock);
1334 psig = p->parent->signal;
1336 thread_group_cputime(p, &cputime);
1338 cputime_add(psig->cutime,
1339 cputime_add(cputime.utime,
1342 cputime_add(psig->cstime,
1343 cputime_add(cputime.stime,
1346 cputime_add(psig->cgtime,
1347 cputime_add(p->gtime,
1348 cputime_add(sig->gtime,
1351 p->min_flt + sig->min_flt + sig->cmin_flt;
1353 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1355 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1357 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1359 task_io_get_inblock(p) +
1360 sig->inblock + sig->cinblock;
1362 task_io_get_oublock(p) +
1363 sig->oublock + sig->coublock;
1364 task_io_accounting_add(&psig->ioac, &p->ioac);
1365 task_io_accounting_add(&psig->ioac, &sig->ioac);
1366 spin_unlock_irq(&p->parent->sighand->siglock);
1370 * Now we are sure this task is interesting, and no other
1371 * thread can reap it because we set its state to EXIT_DEAD.
1373 read_unlock(&tasklist_lock);
1375 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1376 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1377 ? p->signal->group_exit_code : p->exit_code;
1378 if (!retval && stat_addr)
1379 retval = put_user(status, stat_addr);
1380 if (!retval && infop)
1381 retval = put_user(SIGCHLD, &infop->si_signo);
1382 if (!retval && infop)
1383 retval = put_user(0, &infop->si_errno);
1384 if (!retval && infop) {
1387 if ((status & 0x7f) == 0) {
1391 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1394 retval = put_user((short)why, &infop->si_code);
1396 retval = put_user(status, &infop->si_status);
1398 if (!retval && infop)
1399 retval = put_user(pid, &infop->si_pid);
1400 if (!retval && infop)
1401 retval = put_user(p->uid, &infop->si_uid);
1406 write_lock_irq(&tasklist_lock);
1407 /* We dropped tasklist, ptracer could die and untrace */
1410 * If this is not a detached task, notify the parent.
1411 * If it's still not detached after that, don't release
1414 if (!task_detached(p)) {
1415 do_notify_parent(p, p->exit_signal);
1416 if (!task_detached(p)) {
1417 p->exit_state = EXIT_ZOMBIE;
1421 write_unlock_irq(&tasklist_lock);
1430 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1431 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1432 * the lock and this task is uninteresting. If we return nonzero, we have
1433 * released the lock and the system call should return.
1435 static int wait_task_stopped(int ptrace, struct task_struct *p,
1436 int options, struct siginfo __user *infop,
1437 int __user *stat_addr, struct rusage __user *ru)
1439 int retval, exit_code, why;
1440 uid_t uid = 0; /* unneeded, required by compiler */
1443 if (!(options & WUNTRACED))
1447 spin_lock_irq(&p->sighand->siglock);
1449 if (unlikely(!task_is_stopped_or_traced(p)))
1452 if (!ptrace && p->signal->group_stop_count > 0)
1454 * A group stop is in progress and this is the group leader.
1455 * We won't report until all threads have stopped.
1459 exit_code = p->exit_code;
1463 if (!unlikely(options & WNOWAIT))
1468 spin_unlock_irq(&p->sighand->siglock);
1473 * Now we are pretty sure this task is interesting.
1474 * Make sure it doesn't get reaped out from under us while we
1475 * give up the lock and then examine it below. We don't want to
1476 * keep holding onto the tasklist_lock while we call getrusage and
1477 * possibly take page faults for user memory.
1480 pid = task_pid_vnr(p);
1481 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1482 read_unlock(&tasklist_lock);
1484 if (unlikely(options & WNOWAIT))
1485 return wait_noreap_copyout(p, pid, uid,
1489 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1490 if (!retval && stat_addr)
1491 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1492 if (!retval && infop)
1493 retval = put_user(SIGCHLD, &infop->si_signo);
1494 if (!retval && infop)
1495 retval = put_user(0, &infop->si_errno);
1496 if (!retval && infop)
1497 retval = put_user((short)why, &infop->si_code);
1498 if (!retval && infop)
1499 retval = put_user(exit_code, &infop->si_status);
1500 if (!retval && infop)
1501 retval = put_user(pid, &infop->si_pid);
1502 if (!retval && infop)
1503 retval = put_user(uid, &infop->si_uid);
1513 * Handle do_wait work for one task in a live, non-stopped state.
1514 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1515 * the lock and this task is uninteresting. If we return nonzero, we have
1516 * released the lock and the system call should return.
1518 static int wait_task_continued(struct task_struct *p, int options,
1519 struct siginfo __user *infop,
1520 int __user *stat_addr, struct rusage __user *ru)
1526 if (!unlikely(options & WCONTINUED))
1529 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1532 spin_lock_irq(&p->sighand->siglock);
1533 /* Re-check with the lock held. */
1534 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1535 spin_unlock_irq(&p->sighand->siglock);
1538 if (!unlikely(options & WNOWAIT))
1539 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1540 spin_unlock_irq(&p->sighand->siglock);
1542 pid = task_pid_vnr(p);
1545 read_unlock(&tasklist_lock);
1548 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1550 if (!retval && stat_addr)
1551 retval = put_user(0xffff, stat_addr);
1555 retval = wait_noreap_copyout(p, pid, uid,
1556 CLD_CONTINUED, SIGCONT,
1558 BUG_ON(retval == 0);
1565 * Consider @p for a wait by @parent.
1567 * -ECHILD should be in *@notask_error before the first call.
1568 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1569 * Returns zero if the search for a child should continue;
1570 * then *@notask_error is 0 if @p is an eligible child,
1571 * or another error from security_task_wait(), or still -ECHILD.
1573 static int wait_consider_task(struct task_struct *parent, int ptrace,
1574 struct task_struct *p, int *notask_error,
1575 enum pid_type type, struct pid *pid, int options,
1576 struct siginfo __user *infop,
1577 int __user *stat_addr, struct rusage __user *ru)
1579 int ret = eligible_child(type, pid, options, p);
1583 if (unlikely(ret < 0)) {
1585 * If we have not yet seen any eligible child,
1586 * then let this error code replace -ECHILD.
1587 * A permission error will give the user a clue
1588 * to look for security policy problems, rather
1589 * than for mysterious wait bugs.
1592 *notask_error = ret;
1595 if (likely(!ptrace) && unlikely(p->ptrace)) {
1597 * This child is hidden by ptrace.
1598 * We aren't allowed to see it now, but eventually we will.
1604 if (p->exit_state == EXIT_DEAD)
1608 * We don't reap group leaders with subthreads.
1610 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1611 return wait_task_zombie(p, options, infop, stat_addr, ru);
1614 * It's stopped or running now, so it might
1615 * later continue, exit, or stop again.
1619 if (task_is_stopped_or_traced(p))
1620 return wait_task_stopped(ptrace, p, options,
1621 infop, stat_addr, ru);
1623 return wait_task_continued(p, options, infop, stat_addr, ru);
1627 * Do the work of do_wait() for one thread in the group, @tsk.
1629 * -ECHILD should be in *@notask_error before the first call.
1630 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1631 * Returns zero if the search for a child should continue; then
1632 * *@notask_error is 0 if there were any eligible children,
1633 * or another error from security_task_wait(), or still -ECHILD.
1635 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1636 enum pid_type type, struct pid *pid, int options,
1637 struct siginfo __user *infop, int __user *stat_addr,
1638 struct rusage __user *ru)
1640 struct task_struct *p;
1642 list_for_each_entry(p, &tsk->children, sibling) {
1644 * Do not consider detached threads.
1646 if (!task_detached(p)) {
1647 int ret = wait_consider_task(tsk, 0, p, notask_error,
1649 infop, stat_addr, ru);
1658 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1659 enum pid_type type, struct pid *pid, int options,
1660 struct siginfo __user *infop, int __user *stat_addr,
1661 struct rusage __user *ru)
1663 struct task_struct *p;
1666 * Traditionally we see ptrace'd stopped tasks regardless of options.
1668 options |= WUNTRACED;
1670 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1671 int ret = wait_consider_task(tsk, 1, p, notask_error,
1673 infop, stat_addr, ru);
1681 static long do_wait(enum pid_type type, struct pid *pid, int options,
1682 struct siginfo __user *infop, int __user *stat_addr,
1683 struct rusage __user *ru)
1685 DECLARE_WAITQUEUE(wait, current);
1686 struct task_struct *tsk;
1689 trace_sched_process_wait(pid);
1691 add_wait_queue(¤t->signal->wait_chldexit,&wait);
1694 * If there is nothing that can match our critiera just get out.
1695 * We will clear @retval to zero if we see any child that might later
1696 * match our criteria, even if we are not able to reap it yet.
1699 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1702 current->state = TASK_INTERRUPTIBLE;
1703 read_lock(&tasklist_lock);
1706 int tsk_result = do_wait_thread(tsk, &retval,
1708 infop, stat_addr, ru);
1710 tsk_result = ptrace_do_wait(tsk, &retval,
1712 infop, stat_addr, ru);
1715 * tasklist_lock is unlocked and we have a final result.
1717 retval = tsk_result;
1721 if (options & __WNOTHREAD)
1723 tsk = next_thread(tsk);
1724 BUG_ON(tsk->signal != current->signal);
1725 } while (tsk != current);
1726 read_unlock(&tasklist_lock);
1728 if (!retval && !(options & WNOHANG)) {
1729 retval = -ERESTARTSYS;
1730 if (!signal_pending(current)) {
1737 current->state = TASK_RUNNING;
1738 remove_wait_queue(¤t->signal->wait_chldexit,&wait);
1744 * For a WNOHANG return, clear out all the fields
1745 * we would set so the user can easily tell the
1749 retval = put_user(0, &infop->si_signo);
1751 retval = put_user(0, &infop->si_errno);
1753 retval = put_user(0, &infop->si_code);
1755 retval = put_user(0, &infop->si_pid);
1757 retval = put_user(0, &infop->si_uid);
1759 retval = put_user(0, &infop->si_status);
1765 asmlinkage long sys_waitid(int which, pid_t upid,
1766 struct siginfo __user *infop, int options,
1767 struct rusage __user *ru)
1769 struct pid *pid = NULL;
1773 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1775 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1788 type = PIDTYPE_PGID;
1796 if (type < PIDTYPE_MAX)
1797 pid = find_get_pid(upid);
1798 ret = do_wait(type, pid, options, infop, NULL, ru);
1801 /* avoid REGPARM breakage on x86: */
1802 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1806 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1807 int options, struct rusage __user *ru)
1809 struct pid *pid = NULL;
1813 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1814 __WNOTHREAD|__WCLONE|__WALL))
1819 else if (upid < 0) {
1820 type = PIDTYPE_PGID;
1821 pid = find_get_pid(-upid);
1822 } else if (upid == 0) {
1823 type = PIDTYPE_PGID;
1824 pid = get_pid(task_pgrp(current));
1825 } else /* upid > 0 */ {
1827 pid = find_get_pid(upid);
1830 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1833 /* avoid REGPARM breakage on x86: */
1834 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1838 #ifdef __ARCH_WANT_SYS_WAITPID
1841 * sys_waitpid() remains for compatibility. waitpid() should be
1842 * implemented by calling sys_wait4() from libc.a.
1844 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1846 return sys_wait4(pid, stat_addr, options, NULL);