]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/fork.c
Merge branch 'linus' into stackprotector
[linux-2.6-omap-h63xx.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61 #include <linux/magic.h>
62
63 #include <asm/pgtable.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
69
70 /*
71  * Protected counters by write_lock_irq(&tasklist_lock)
72  */
73 unsigned long total_forks;      /* Handle normal Linux uptimes. */
74 int nr_threads;                 /* The idle threads do not count.. */
75
76 int max_threads;                /* tunable limit on nr_threads */
77
78 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
79
80 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
81
82 int nr_processes(void)
83 {
84         int cpu;
85         int total = 0;
86
87         for_each_online_cpu(cpu)
88                 total += per_cpu(process_counts, cpu);
89
90         return total;
91 }
92
93 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
94 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
95 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
96 static struct kmem_cache *task_struct_cachep;
97 #endif
98
99 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
100 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
101 {
102 #ifdef CONFIG_DEBUG_STACK_USAGE
103         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
104 #else
105         gfp_t mask = GFP_KERNEL;
106 #endif
107         return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
108 }
109
110 static inline void free_thread_info(struct thread_info *ti)
111 {
112         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
113 }
114 #endif
115
116 /* SLAB cache for signal_struct structures (tsk->signal) */
117 static struct kmem_cache *signal_cachep;
118
119 /* SLAB cache for sighand_struct structures (tsk->sighand) */
120 struct kmem_cache *sighand_cachep;
121
122 /* SLAB cache for files_struct structures (tsk->files) */
123 struct kmem_cache *files_cachep;
124
125 /* SLAB cache for fs_struct structures (tsk->fs) */
126 struct kmem_cache *fs_cachep;
127
128 /* SLAB cache for vm_area_struct structures */
129 struct kmem_cache *vm_area_cachep;
130
131 /* SLAB cache for mm_struct structures (tsk->mm) */
132 static struct kmem_cache *mm_cachep;
133
134 void free_task(struct task_struct *tsk)
135 {
136         prop_local_destroy_single(&tsk->dirties);
137         free_thread_info(tsk->stack);
138         rt_mutex_debug_task_free(tsk);
139         free_task_struct(tsk);
140 }
141 EXPORT_SYMBOL(free_task);
142
143 void __put_task_struct(struct task_struct *tsk)
144 {
145         WARN_ON(!tsk->exit_state);
146         WARN_ON(atomic_read(&tsk->usage));
147         WARN_ON(tsk == current);
148
149         security_task_free(tsk);
150         free_uid(tsk->user);
151         put_group_info(tsk->group_info);
152         delayacct_tsk_free(tsk);
153
154         if (!profile_handoff_task(tsk))
155                 free_task(tsk);
156 }
157
158 /*
159  * macro override instead of weak attribute alias, to workaround
160  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
161  */
162 #ifndef arch_task_cache_init
163 #define arch_task_cache_init()
164 #endif
165
166 void __init fork_init(unsigned long mempages)
167 {
168 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
169 #ifndef ARCH_MIN_TASKALIGN
170 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
171 #endif
172         /* create a slab on which task_structs can be allocated */
173         task_struct_cachep =
174                 kmem_cache_create("task_struct", sizeof(struct task_struct),
175                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
176 #endif
177
178         /* do the arch specific task caches init */
179         arch_task_cache_init();
180
181         /*
182          * The default maximum number of threads is set to a safe
183          * value: the thread structures can take up at most half
184          * of memory.
185          */
186         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
187
188         /*
189          * we need to allow at least 20 threads to boot a system
190          */
191         if(max_threads < 20)
192                 max_threads = 20;
193
194         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
195         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
196         init_task.signal->rlim[RLIMIT_SIGPENDING] =
197                 init_task.signal->rlim[RLIMIT_NPROC];
198 }
199
200 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
201                                                struct task_struct *src)
202 {
203         *dst = *src;
204         return 0;
205 }
206
207 static struct task_struct *dup_task_struct(struct task_struct *orig)
208 {
209         struct task_struct *tsk;
210         struct thread_info *ti;
211         unsigned long *stackend;
212
213         int err;
214
215         prepare_to_copy(orig);
216
217         tsk = alloc_task_struct();
218         if (!tsk)
219                 return NULL;
220
221         ti = alloc_thread_info(tsk);
222         if (!ti) {
223                 free_task_struct(tsk);
224                 return NULL;
225         }
226
227         err = arch_dup_task_struct(tsk, orig);
228         if (err)
229                 goto out;
230
231         tsk->stack = ti;
232
233         err = prop_local_init_single(&tsk->dirties);
234         if (err)
235                 goto out;
236
237         setup_thread_stack(tsk, orig);
238         stackend = end_of_stack(tsk);
239         *stackend = STACK_END_MAGIC;    /* for overflow detection */
240
241 #ifdef CONFIG_CC_STACKPROTECTOR
242         tsk->stack_canary = get_random_int();
243 #endif
244
245         /* One for us, one for whoever does the "release_task()" (usually parent) */
246         atomic_set(&tsk->usage,2);
247         atomic_set(&tsk->fs_excl, 0);
248 #ifdef CONFIG_BLK_DEV_IO_TRACE
249         tsk->btrace_seq = 0;
250 #endif
251         tsk->splice_pipe = NULL;
252         return tsk;
253
254 out:
255         free_thread_info(ti);
256         free_task_struct(tsk);
257         return NULL;
258 }
259
260 #ifdef CONFIG_MMU
261 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
262 {
263         struct vm_area_struct *mpnt, *tmp, **pprev;
264         struct rb_node **rb_link, *rb_parent;
265         int retval;
266         unsigned long charge;
267         struct mempolicy *pol;
268
269         down_write(&oldmm->mmap_sem);
270         flush_cache_dup_mm(oldmm);
271         /*
272          * Not linked in yet - no deadlock potential:
273          */
274         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
275
276         mm->locked_vm = 0;
277         mm->mmap = NULL;
278         mm->mmap_cache = NULL;
279         mm->free_area_cache = oldmm->mmap_base;
280         mm->cached_hole_size = ~0UL;
281         mm->map_count = 0;
282         cpus_clear(mm->cpu_vm_mask);
283         mm->mm_rb = RB_ROOT;
284         rb_link = &mm->mm_rb.rb_node;
285         rb_parent = NULL;
286         pprev = &mm->mmap;
287
288         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
289                 struct file *file;
290
291                 if (mpnt->vm_flags & VM_DONTCOPY) {
292                         long pages = vma_pages(mpnt);
293                         mm->total_vm -= pages;
294                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
295                                                                 -pages);
296                         continue;
297                 }
298                 charge = 0;
299                 if (mpnt->vm_flags & VM_ACCOUNT) {
300                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
301                         if (security_vm_enough_memory(len))
302                                 goto fail_nomem;
303                         charge = len;
304                 }
305                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
306                 if (!tmp)
307                         goto fail_nomem;
308                 *tmp = *mpnt;
309                 pol = mpol_dup(vma_policy(mpnt));
310                 retval = PTR_ERR(pol);
311                 if (IS_ERR(pol))
312                         goto fail_nomem_policy;
313                 vma_set_policy(tmp, pol);
314                 tmp->vm_flags &= ~VM_LOCKED;
315                 tmp->vm_mm = mm;
316                 tmp->vm_next = NULL;
317                 anon_vma_link(tmp);
318                 file = tmp->vm_file;
319                 if (file) {
320                         struct inode *inode = file->f_path.dentry->d_inode;
321                         get_file(file);
322                         if (tmp->vm_flags & VM_DENYWRITE)
323                                 atomic_dec(&inode->i_writecount);
324
325                         /* insert tmp into the share list, just after mpnt */
326                         spin_lock(&file->f_mapping->i_mmap_lock);
327                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
328                         flush_dcache_mmap_lock(file->f_mapping);
329                         vma_prio_tree_add(tmp, mpnt);
330                         flush_dcache_mmap_unlock(file->f_mapping);
331                         spin_unlock(&file->f_mapping->i_mmap_lock);
332                 }
333
334                 /*
335                  * Clear hugetlb-related page reserves for children. This only
336                  * affects MAP_PRIVATE mappings. Faults generated by the child
337                  * are not guaranteed to succeed, even if read-only
338                  */
339                 if (is_vm_hugetlb_page(tmp))
340                         reset_vma_resv_huge_pages(tmp);
341
342                 /*
343                  * Link in the new vma and copy the page table entries.
344                  */
345                 *pprev = tmp;
346                 pprev = &tmp->vm_next;
347
348                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
349                 rb_link = &tmp->vm_rb.rb_right;
350                 rb_parent = &tmp->vm_rb;
351
352                 mm->map_count++;
353                 retval = copy_page_range(mm, oldmm, mpnt);
354
355                 if (tmp->vm_ops && tmp->vm_ops->open)
356                         tmp->vm_ops->open(tmp);
357
358                 if (retval)
359                         goto out;
360         }
361         /* a new mm has just been created */
362         arch_dup_mmap(oldmm, mm);
363         retval = 0;
364 out:
365         up_write(&mm->mmap_sem);
366         flush_tlb_mm(oldmm);
367         up_write(&oldmm->mmap_sem);
368         return retval;
369 fail_nomem_policy:
370         kmem_cache_free(vm_area_cachep, tmp);
371 fail_nomem:
372         retval = -ENOMEM;
373         vm_unacct_memory(charge);
374         goto out;
375 }
376
377 static inline int mm_alloc_pgd(struct mm_struct * mm)
378 {
379         mm->pgd = pgd_alloc(mm);
380         if (unlikely(!mm->pgd))
381                 return -ENOMEM;
382         return 0;
383 }
384
385 static inline void mm_free_pgd(struct mm_struct * mm)
386 {
387         pgd_free(mm, mm->pgd);
388 }
389 #else
390 #define dup_mmap(mm, oldmm)     (0)
391 #define mm_alloc_pgd(mm)        (0)
392 #define mm_free_pgd(mm)
393 #endif /* CONFIG_MMU */
394
395 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
396
397 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
398 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
399
400 #include <linux/init_task.h>
401
402 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
403 {
404         atomic_set(&mm->mm_users, 1);
405         atomic_set(&mm->mm_count, 1);
406         init_rwsem(&mm->mmap_sem);
407         INIT_LIST_HEAD(&mm->mmlist);
408         mm->flags = (current->mm) ? current->mm->flags
409                                   : MMF_DUMP_FILTER_DEFAULT;
410         mm->core_state = NULL;
411         mm->nr_ptes = 0;
412         set_mm_counter(mm, file_rss, 0);
413         set_mm_counter(mm, anon_rss, 0);
414         spin_lock_init(&mm->page_table_lock);
415         rwlock_init(&mm->ioctx_list_lock);
416         mm->ioctx_list = NULL;
417         mm->free_area_cache = TASK_UNMAPPED_BASE;
418         mm->cached_hole_size = ~0UL;
419         mm_init_owner(mm, p);
420
421         if (likely(!mm_alloc_pgd(mm))) {
422                 mm->def_flags = 0;
423                 mmu_notifier_mm_init(mm);
424                 return mm;
425         }
426
427         free_mm(mm);
428         return NULL;
429 }
430
431 /*
432  * Allocate and initialize an mm_struct.
433  */
434 struct mm_struct * mm_alloc(void)
435 {
436         struct mm_struct * mm;
437
438         mm = allocate_mm();
439         if (mm) {
440                 memset(mm, 0, sizeof(*mm));
441                 mm = mm_init(mm, current);
442         }
443         return mm;
444 }
445
446 /*
447  * Called when the last reference to the mm
448  * is dropped: either by a lazy thread or by
449  * mmput. Free the page directory and the mm.
450  */
451 void __mmdrop(struct mm_struct *mm)
452 {
453         BUG_ON(mm == &init_mm);
454         mm_free_pgd(mm);
455         destroy_context(mm);
456         mmu_notifier_mm_destroy(mm);
457         free_mm(mm);
458 }
459 EXPORT_SYMBOL_GPL(__mmdrop);
460
461 /*
462  * Decrement the use count and release all resources for an mm.
463  */
464 void mmput(struct mm_struct *mm)
465 {
466         might_sleep();
467
468         if (atomic_dec_and_test(&mm->mm_users)) {
469                 exit_aio(mm);
470                 exit_mmap(mm);
471                 set_mm_exe_file(mm, NULL);
472                 if (!list_empty(&mm->mmlist)) {
473                         spin_lock(&mmlist_lock);
474                         list_del(&mm->mmlist);
475                         spin_unlock(&mmlist_lock);
476                 }
477                 put_swap_token(mm);
478                 mmdrop(mm);
479         }
480 }
481 EXPORT_SYMBOL_GPL(mmput);
482
483 /**
484  * get_task_mm - acquire a reference to the task's mm
485  *
486  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
487  * this kernel workthread has transiently adopted a user mm with use_mm,
488  * to do its AIO) is not set and if so returns a reference to it, after
489  * bumping up the use count.  User must release the mm via mmput()
490  * after use.  Typically used by /proc and ptrace.
491  */
492 struct mm_struct *get_task_mm(struct task_struct *task)
493 {
494         struct mm_struct *mm;
495
496         task_lock(task);
497         mm = task->mm;
498         if (mm) {
499                 if (task->flags & PF_KTHREAD)
500                         mm = NULL;
501                 else
502                         atomic_inc(&mm->mm_users);
503         }
504         task_unlock(task);
505         return mm;
506 }
507 EXPORT_SYMBOL_GPL(get_task_mm);
508
509 /* Please note the differences between mmput and mm_release.
510  * mmput is called whenever we stop holding onto a mm_struct,
511  * error success whatever.
512  *
513  * mm_release is called after a mm_struct has been removed
514  * from the current process.
515  *
516  * This difference is important for error handling, when we
517  * only half set up a mm_struct for a new process and need to restore
518  * the old one.  Because we mmput the new mm_struct before
519  * restoring the old one. . .
520  * Eric Biederman 10 January 1998
521  */
522 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
523 {
524         struct completion *vfork_done = tsk->vfork_done;
525
526         /* Get rid of any cached register state */
527         deactivate_mm(tsk, mm);
528
529         /* notify parent sleeping on vfork() */
530         if (vfork_done) {
531                 tsk->vfork_done = NULL;
532                 complete(vfork_done);
533         }
534
535         /*
536          * If we're exiting normally, clear a user-space tid field if
537          * requested.  We leave this alone when dying by signal, to leave
538          * the value intact in a core dump, and to save the unnecessary
539          * trouble otherwise.  Userland only wants this done for a sys_exit.
540          */
541         if (tsk->clear_child_tid
542             && !(tsk->flags & PF_SIGNALED)
543             && atomic_read(&mm->mm_users) > 1) {
544                 u32 __user * tidptr = tsk->clear_child_tid;
545                 tsk->clear_child_tid = NULL;
546
547                 /*
548                  * We don't check the error code - if userspace has
549                  * not set up a proper pointer then tough luck.
550                  */
551                 put_user(0, tidptr);
552                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
553         }
554 }
555
556 /*
557  * Allocate a new mm structure and copy contents from the
558  * mm structure of the passed in task structure.
559  */
560 struct mm_struct *dup_mm(struct task_struct *tsk)
561 {
562         struct mm_struct *mm, *oldmm = current->mm;
563         int err;
564
565         if (!oldmm)
566                 return NULL;
567
568         mm = allocate_mm();
569         if (!mm)
570                 goto fail_nomem;
571
572         memcpy(mm, oldmm, sizeof(*mm));
573
574         /* Initializing for Swap token stuff */
575         mm->token_priority = 0;
576         mm->last_interval = 0;
577
578         if (!mm_init(mm, tsk))
579                 goto fail_nomem;
580
581         if (init_new_context(tsk, mm))
582                 goto fail_nocontext;
583
584         dup_mm_exe_file(oldmm, mm);
585
586         err = dup_mmap(mm, oldmm);
587         if (err)
588                 goto free_pt;
589
590         mm->hiwater_rss = get_mm_rss(mm);
591         mm->hiwater_vm = mm->total_vm;
592
593         return mm;
594
595 free_pt:
596         mmput(mm);
597
598 fail_nomem:
599         return NULL;
600
601 fail_nocontext:
602         /*
603          * If init_new_context() failed, we cannot use mmput() to free the mm
604          * because it calls destroy_context()
605          */
606         mm_free_pgd(mm);
607         free_mm(mm);
608         return NULL;
609 }
610
611 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
612 {
613         struct mm_struct * mm, *oldmm;
614         int retval;
615
616         tsk->min_flt = tsk->maj_flt = 0;
617         tsk->nvcsw = tsk->nivcsw = 0;
618
619         tsk->mm = NULL;
620         tsk->active_mm = NULL;
621
622         /*
623          * Are we cloning a kernel thread?
624          *
625          * We need to steal a active VM for that..
626          */
627         oldmm = current->mm;
628         if (!oldmm)
629                 return 0;
630
631         if (clone_flags & CLONE_VM) {
632                 atomic_inc(&oldmm->mm_users);
633                 mm = oldmm;
634                 goto good_mm;
635         }
636
637         retval = -ENOMEM;
638         mm = dup_mm(tsk);
639         if (!mm)
640                 goto fail_nomem;
641
642 good_mm:
643         /* Initializing for Swap token stuff */
644         mm->token_priority = 0;
645         mm->last_interval = 0;
646
647         tsk->mm = mm;
648         tsk->active_mm = mm;
649         return 0;
650
651 fail_nomem:
652         return retval;
653 }
654
655 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
656 {
657         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
658         /* We don't need to lock fs - think why ;-) */
659         if (fs) {
660                 atomic_set(&fs->count, 1);
661                 rwlock_init(&fs->lock);
662                 fs->umask = old->umask;
663                 read_lock(&old->lock);
664                 fs->root = old->root;
665                 path_get(&old->root);
666                 fs->pwd = old->pwd;
667                 path_get(&old->pwd);
668                 read_unlock(&old->lock);
669         }
670         return fs;
671 }
672
673 struct fs_struct *copy_fs_struct(struct fs_struct *old)
674 {
675         return __copy_fs_struct(old);
676 }
677
678 EXPORT_SYMBOL_GPL(copy_fs_struct);
679
680 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
681 {
682         if (clone_flags & CLONE_FS) {
683                 atomic_inc(&current->fs->count);
684                 return 0;
685         }
686         tsk->fs = __copy_fs_struct(current->fs);
687         if (!tsk->fs)
688                 return -ENOMEM;
689         return 0;
690 }
691
692 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
693 {
694         struct files_struct *oldf, *newf;
695         int error = 0;
696
697         /*
698          * A background process may not have any files ...
699          */
700         oldf = current->files;
701         if (!oldf)
702                 goto out;
703
704         if (clone_flags & CLONE_FILES) {
705                 atomic_inc(&oldf->count);
706                 goto out;
707         }
708
709         newf = dup_fd(oldf, &error);
710         if (!newf)
711                 goto out;
712
713         tsk->files = newf;
714         error = 0;
715 out:
716         return error;
717 }
718
719 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
720 {
721 #ifdef CONFIG_BLOCK
722         struct io_context *ioc = current->io_context;
723
724         if (!ioc)
725                 return 0;
726         /*
727          * Share io context with parent, if CLONE_IO is set
728          */
729         if (clone_flags & CLONE_IO) {
730                 tsk->io_context = ioc_task_link(ioc);
731                 if (unlikely(!tsk->io_context))
732                         return -ENOMEM;
733         } else if (ioprio_valid(ioc->ioprio)) {
734                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
735                 if (unlikely(!tsk->io_context))
736                         return -ENOMEM;
737
738                 tsk->io_context->ioprio = ioc->ioprio;
739         }
740 #endif
741         return 0;
742 }
743
744 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
745 {
746         struct sighand_struct *sig;
747
748         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
749                 atomic_inc(&current->sighand->count);
750                 return 0;
751         }
752         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
753         rcu_assign_pointer(tsk->sighand, sig);
754         if (!sig)
755                 return -ENOMEM;
756         atomic_set(&sig->count, 1);
757         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
758         return 0;
759 }
760
761 void __cleanup_sighand(struct sighand_struct *sighand)
762 {
763         if (atomic_dec_and_test(&sighand->count))
764                 kmem_cache_free(sighand_cachep, sighand);
765 }
766
767 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
768 {
769         struct signal_struct *sig;
770         int ret;
771
772         if (clone_flags & CLONE_THREAD) {
773                 atomic_inc(&current->signal->count);
774                 atomic_inc(&current->signal->live);
775                 return 0;
776         }
777         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
778         tsk->signal = sig;
779         if (!sig)
780                 return -ENOMEM;
781
782         ret = copy_thread_group_keys(tsk);
783         if (ret < 0) {
784                 kmem_cache_free(signal_cachep, sig);
785                 return ret;
786         }
787
788         atomic_set(&sig->count, 1);
789         atomic_set(&sig->live, 1);
790         init_waitqueue_head(&sig->wait_chldexit);
791         sig->flags = 0;
792         sig->group_exit_code = 0;
793         sig->group_exit_task = NULL;
794         sig->group_stop_count = 0;
795         sig->curr_target = tsk;
796         init_sigpending(&sig->shared_pending);
797         INIT_LIST_HEAD(&sig->posix_timers);
798
799         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
800         sig->it_real_incr.tv64 = 0;
801         sig->real_timer.function = it_real_fn;
802
803         sig->it_virt_expires = cputime_zero;
804         sig->it_virt_incr = cputime_zero;
805         sig->it_prof_expires = cputime_zero;
806         sig->it_prof_incr = cputime_zero;
807
808         sig->leader = 0;        /* session leadership doesn't inherit */
809         sig->tty_old_pgrp = NULL;
810         sig->tty = NULL;
811
812         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
813         sig->gtime = cputime_zero;
814         sig->cgtime = cputime_zero;
815         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
816         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
817         sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
818         task_io_accounting_init(&sig->ioac);
819         sig->sum_sched_runtime = 0;
820         INIT_LIST_HEAD(&sig->cpu_timers[0]);
821         INIT_LIST_HEAD(&sig->cpu_timers[1]);
822         INIT_LIST_HEAD(&sig->cpu_timers[2]);
823         taskstats_tgid_init(sig);
824
825         task_lock(current->group_leader);
826         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
827         task_unlock(current->group_leader);
828
829         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
830                 /*
831                  * New sole thread in the process gets an expiry time
832                  * of the whole CPU time limit.
833                  */
834                 tsk->it_prof_expires =
835                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
836         }
837         acct_init_pacct(&sig->pacct);
838
839         tty_audit_fork(sig);
840
841         return 0;
842 }
843
844 void __cleanup_signal(struct signal_struct *sig)
845 {
846         exit_thread_group_keys(sig);
847         tty_kref_put(sig->tty);
848         kmem_cache_free(signal_cachep, sig);
849 }
850
851 static void cleanup_signal(struct task_struct *tsk)
852 {
853         struct signal_struct *sig = tsk->signal;
854
855         atomic_dec(&sig->live);
856
857         if (atomic_dec_and_test(&sig->count))
858                 __cleanup_signal(sig);
859 }
860
861 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
862 {
863         unsigned long new_flags = p->flags;
864
865         new_flags &= ~PF_SUPERPRIV;
866         new_flags |= PF_FORKNOEXEC;
867         new_flags |= PF_STARTING;
868         p->flags = new_flags;
869         clear_freeze_flag(p);
870 }
871
872 asmlinkage long sys_set_tid_address(int __user *tidptr)
873 {
874         current->clear_child_tid = tidptr;
875
876         return task_pid_vnr(current);
877 }
878
879 static void rt_mutex_init_task(struct task_struct *p)
880 {
881         spin_lock_init(&p->pi_lock);
882 #ifdef CONFIG_RT_MUTEXES
883         plist_head_init(&p->pi_waiters, &p->pi_lock);
884         p->pi_blocked_on = NULL;
885 #endif
886 }
887
888 #ifdef CONFIG_MM_OWNER
889 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
890 {
891         mm->owner = p;
892 }
893 #endif /* CONFIG_MM_OWNER */
894
895 /*
896  * This creates a new process as a copy of the old one,
897  * but does not actually start it yet.
898  *
899  * It copies the registers, and all the appropriate
900  * parts of the process environment (as per the clone
901  * flags). The actual kick-off is left to the caller.
902  */
903 static struct task_struct *copy_process(unsigned long clone_flags,
904                                         unsigned long stack_start,
905                                         struct pt_regs *regs,
906                                         unsigned long stack_size,
907                                         int __user *child_tidptr,
908                                         struct pid *pid,
909                                         int trace)
910 {
911         int retval;
912         struct task_struct *p;
913         int cgroup_callbacks_done = 0;
914
915         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
916                 return ERR_PTR(-EINVAL);
917
918         /*
919          * Thread groups must share signals as well, and detached threads
920          * can only be started up within the thread group.
921          */
922         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
923                 return ERR_PTR(-EINVAL);
924
925         /*
926          * Shared signal handlers imply shared VM. By way of the above,
927          * thread groups also imply shared VM. Blocking this case allows
928          * for various simplifications in other code.
929          */
930         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
931                 return ERR_PTR(-EINVAL);
932
933         retval = security_task_create(clone_flags);
934         if (retval)
935                 goto fork_out;
936
937         retval = -ENOMEM;
938         p = dup_task_struct(current);
939         if (!p)
940                 goto fork_out;
941
942         rt_mutex_init_task(p);
943
944 #ifdef CONFIG_PROVE_LOCKING
945         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
946         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
947 #endif
948         retval = -EAGAIN;
949         if (atomic_read(&p->user->processes) >=
950                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
951                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
952                     p->user != current->nsproxy->user_ns->root_user)
953                         goto bad_fork_free;
954         }
955
956         atomic_inc(&p->user->__count);
957         atomic_inc(&p->user->processes);
958         get_group_info(p->group_info);
959
960         /*
961          * If multiple threads are within copy_process(), then this check
962          * triggers too late. This doesn't hurt, the check is only there
963          * to stop root fork bombs.
964          */
965         if (nr_threads >= max_threads)
966                 goto bad_fork_cleanup_count;
967
968         if (!try_module_get(task_thread_info(p)->exec_domain->module))
969                 goto bad_fork_cleanup_count;
970
971         if (p->binfmt && !try_module_get(p->binfmt->module))
972                 goto bad_fork_cleanup_put_domain;
973
974         p->did_exec = 0;
975         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
976         copy_flags(clone_flags, p);
977         INIT_LIST_HEAD(&p->children);
978         INIT_LIST_HEAD(&p->sibling);
979 #ifdef CONFIG_PREEMPT_RCU
980         p->rcu_read_lock_nesting = 0;
981         p->rcu_flipctr_idx = 0;
982 #endif /* #ifdef CONFIG_PREEMPT_RCU */
983         p->vfork_done = NULL;
984         spin_lock_init(&p->alloc_lock);
985
986         clear_tsk_thread_flag(p, TIF_SIGPENDING);
987         init_sigpending(&p->pending);
988
989         p->utime = cputime_zero;
990         p->stime = cputime_zero;
991         p->gtime = cputime_zero;
992         p->utimescaled = cputime_zero;
993         p->stimescaled = cputime_zero;
994         p->prev_utime = cputime_zero;
995         p->prev_stime = cputime_zero;
996
997 #ifdef CONFIG_DETECT_SOFTLOCKUP
998         p->last_switch_count = 0;
999         p->last_switch_timestamp = 0;
1000 #endif
1001
1002         task_io_accounting_init(&p->ioac);
1003         acct_clear_integrals(p);
1004
1005         p->it_virt_expires = cputime_zero;
1006         p->it_prof_expires = cputime_zero;
1007         p->it_sched_expires = 0;
1008         INIT_LIST_HEAD(&p->cpu_timers[0]);
1009         INIT_LIST_HEAD(&p->cpu_timers[1]);
1010         INIT_LIST_HEAD(&p->cpu_timers[2]);
1011
1012         p->lock_depth = -1;             /* -1 = no lock */
1013         do_posix_clock_monotonic_gettime(&p->start_time);
1014         p->real_start_time = p->start_time;
1015         monotonic_to_bootbased(&p->real_start_time);
1016 #ifdef CONFIG_SECURITY
1017         p->security = NULL;
1018 #endif
1019         p->cap_bset = current->cap_bset;
1020         p->io_context = NULL;
1021         p->audit_context = NULL;
1022         cgroup_fork(p);
1023 #ifdef CONFIG_NUMA
1024         p->mempolicy = mpol_dup(p->mempolicy);
1025         if (IS_ERR(p->mempolicy)) {
1026                 retval = PTR_ERR(p->mempolicy);
1027                 p->mempolicy = NULL;
1028                 goto bad_fork_cleanup_cgroup;
1029         }
1030         mpol_fix_fork_child_flag(p);
1031 #endif
1032 #ifdef CONFIG_TRACE_IRQFLAGS
1033         p->irq_events = 0;
1034 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1035         p->hardirqs_enabled = 1;
1036 #else
1037         p->hardirqs_enabled = 0;
1038 #endif
1039         p->hardirq_enable_ip = 0;
1040         p->hardirq_enable_event = 0;
1041         p->hardirq_disable_ip = _THIS_IP_;
1042         p->hardirq_disable_event = 0;
1043         p->softirqs_enabled = 1;
1044         p->softirq_enable_ip = _THIS_IP_;
1045         p->softirq_enable_event = 0;
1046         p->softirq_disable_ip = 0;
1047         p->softirq_disable_event = 0;
1048         p->hardirq_context = 0;
1049         p->softirq_context = 0;
1050 #endif
1051 #ifdef CONFIG_LOCKDEP
1052         p->lockdep_depth = 0; /* no locks held yet */
1053         p->curr_chain_key = 0;
1054         p->lockdep_recursion = 0;
1055 #endif
1056
1057 #ifdef CONFIG_DEBUG_MUTEXES
1058         p->blocked_on = NULL; /* not blocked yet */
1059 #endif
1060
1061         /* Perform scheduler related setup. Assign this task to a CPU. */
1062         sched_fork(p, clone_flags);
1063
1064         if ((retval = security_task_alloc(p)))
1065                 goto bad_fork_cleanup_policy;
1066         if ((retval = audit_alloc(p)))
1067                 goto bad_fork_cleanup_security;
1068         /* copy all the process information */
1069         if ((retval = copy_semundo(clone_flags, p)))
1070                 goto bad_fork_cleanup_audit;
1071         if ((retval = copy_files(clone_flags, p)))
1072                 goto bad_fork_cleanup_semundo;
1073         if ((retval = copy_fs(clone_flags, p)))
1074                 goto bad_fork_cleanup_files;
1075         if ((retval = copy_sighand(clone_flags, p)))
1076                 goto bad_fork_cleanup_fs;
1077         if ((retval = copy_signal(clone_flags, p)))
1078                 goto bad_fork_cleanup_sighand;
1079         if ((retval = copy_mm(clone_flags, p)))
1080                 goto bad_fork_cleanup_signal;
1081         if ((retval = copy_keys(clone_flags, p)))
1082                 goto bad_fork_cleanup_mm;
1083         if ((retval = copy_namespaces(clone_flags, p)))
1084                 goto bad_fork_cleanup_keys;
1085         if ((retval = copy_io(clone_flags, p)))
1086                 goto bad_fork_cleanup_namespaces;
1087         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1088         if (retval)
1089                 goto bad_fork_cleanup_io;
1090
1091         if (pid != &init_struct_pid) {
1092                 retval = -ENOMEM;
1093                 pid = alloc_pid(task_active_pid_ns(p));
1094                 if (!pid)
1095                         goto bad_fork_cleanup_io;
1096
1097                 if (clone_flags & CLONE_NEWPID) {
1098                         retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1099                         if (retval < 0)
1100                                 goto bad_fork_free_pid;
1101                 }
1102         }
1103
1104         p->pid = pid_nr(pid);
1105         p->tgid = p->pid;
1106         if (clone_flags & CLONE_THREAD)
1107                 p->tgid = current->tgid;
1108
1109         if (current->nsproxy != p->nsproxy) {
1110                 retval = ns_cgroup_clone(p, pid);
1111                 if (retval)
1112                         goto bad_fork_free_pid;
1113         }
1114
1115         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1116         /*
1117          * Clear TID on mm_release()?
1118          */
1119         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1120 #ifdef CONFIG_FUTEX
1121         p->robust_list = NULL;
1122 #ifdef CONFIG_COMPAT
1123         p->compat_robust_list = NULL;
1124 #endif
1125         INIT_LIST_HEAD(&p->pi_state_list);
1126         p->pi_state_cache = NULL;
1127 #endif
1128         /*
1129          * sigaltstack should be cleared when sharing the same VM
1130          */
1131         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1132                 p->sas_ss_sp = p->sas_ss_size = 0;
1133
1134         /*
1135          * Syscall tracing should be turned off in the child regardless
1136          * of CLONE_PTRACE.
1137          */
1138         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1139 #ifdef TIF_SYSCALL_EMU
1140         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1141 #endif
1142         clear_all_latency_tracing(p);
1143
1144         /* Our parent execution domain becomes current domain
1145            These must match for thread signalling to apply */
1146         p->parent_exec_id = p->self_exec_id;
1147
1148         /* ok, now we should be set up.. */
1149         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1150         p->pdeath_signal = 0;
1151         p->exit_state = 0;
1152
1153         /*
1154          * Ok, make it visible to the rest of the system.
1155          * We dont wake it up yet.
1156          */
1157         p->group_leader = p;
1158         INIT_LIST_HEAD(&p->thread_group);
1159
1160         /* Now that the task is set up, run cgroup callbacks if
1161          * necessary. We need to run them before the task is visible
1162          * on the tasklist. */
1163         cgroup_fork_callbacks(p);
1164         cgroup_callbacks_done = 1;
1165
1166         /* Need tasklist lock for parent etc handling! */
1167         write_lock_irq(&tasklist_lock);
1168
1169         /*
1170          * The task hasn't been attached yet, so its cpus_allowed mask will
1171          * not be changed, nor will its assigned CPU.
1172          *
1173          * The cpus_allowed mask of the parent may have changed after it was
1174          * copied first time - so re-copy it here, then check the child's CPU
1175          * to ensure it is on a valid CPU (and if not, just force it back to
1176          * parent's CPU). This avoids alot of nasty races.
1177          */
1178         p->cpus_allowed = current->cpus_allowed;
1179         p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1180         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1181                         !cpu_online(task_cpu(p))))
1182                 set_task_cpu(p, smp_processor_id());
1183
1184         /* CLONE_PARENT re-uses the old parent */
1185         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1186                 p->real_parent = current->real_parent;
1187         else
1188                 p->real_parent = current;
1189
1190         spin_lock(&current->sighand->siglock);
1191
1192         /*
1193          * Process group and session signals need to be delivered to just the
1194          * parent before the fork or both the parent and the child after the
1195          * fork. Restart if a signal comes in before we add the new process to
1196          * it's process group.
1197          * A fatal signal pending means that current will exit, so the new
1198          * thread can't slip out of an OOM kill (or normal SIGKILL).
1199          */
1200         recalc_sigpending();
1201         if (signal_pending(current)) {
1202                 spin_unlock(&current->sighand->siglock);
1203                 write_unlock_irq(&tasklist_lock);
1204                 retval = -ERESTARTNOINTR;
1205                 goto bad_fork_free_pid;
1206         }
1207
1208         if (clone_flags & CLONE_THREAD) {
1209                 p->group_leader = current->group_leader;
1210                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1211
1212                 if (!cputime_eq(current->signal->it_virt_expires,
1213                                 cputime_zero) ||
1214                     !cputime_eq(current->signal->it_prof_expires,
1215                                 cputime_zero) ||
1216                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1217                     !list_empty(&current->signal->cpu_timers[0]) ||
1218                     !list_empty(&current->signal->cpu_timers[1]) ||
1219                     !list_empty(&current->signal->cpu_timers[2])) {
1220                         /*
1221                          * Have child wake up on its first tick to check
1222                          * for process CPU timers.
1223                          */
1224                         p->it_prof_expires = jiffies_to_cputime(1);
1225                 }
1226         }
1227
1228         if (likely(p->pid)) {
1229                 list_add_tail(&p->sibling, &p->real_parent->children);
1230                 tracehook_finish_clone(p, clone_flags, trace);
1231
1232                 if (thread_group_leader(p)) {
1233                         if (clone_flags & CLONE_NEWPID)
1234                                 p->nsproxy->pid_ns->child_reaper = p;
1235
1236                         p->signal->leader_pid = pid;
1237                         tty_kref_put(p->signal->tty);
1238                         p->signal->tty = tty_kref_get(current->signal->tty);
1239                         set_task_pgrp(p, task_pgrp_nr(current));
1240                         set_task_session(p, task_session_nr(current));
1241                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1242                         attach_pid(p, PIDTYPE_SID, task_session(current));
1243                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1244                         __get_cpu_var(process_counts)++;
1245                 }
1246                 attach_pid(p, PIDTYPE_PID, pid);
1247                 nr_threads++;
1248         }
1249
1250         total_forks++;
1251         spin_unlock(&current->sighand->siglock);
1252         write_unlock_irq(&tasklist_lock);
1253         proc_fork_connector(p);
1254         cgroup_post_fork(p);
1255         return p;
1256
1257 bad_fork_free_pid:
1258         if (pid != &init_struct_pid)
1259                 free_pid(pid);
1260 bad_fork_cleanup_io:
1261         put_io_context(p->io_context);
1262 bad_fork_cleanup_namespaces:
1263         exit_task_namespaces(p);
1264 bad_fork_cleanup_keys:
1265         exit_keys(p);
1266 bad_fork_cleanup_mm:
1267         if (p->mm)
1268                 mmput(p->mm);
1269 bad_fork_cleanup_signal:
1270         cleanup_signal(p);
1271 bad_fork_cleanup_sighand:
1272         __cleanup_sighand(p->sighand);
1273 bad_fork_cleanup_fs:
1274         exit_fs(p); /* blocking */
1275 bad_fork_cleanup_files:
1276         exit_files(p); /* blocking */
1277 bad_fork_cleanup_semundo:
1278         exit_sem(p);
1279 bad_fork_cleanup_audit:
1280         audit_free(p);
1281 bad_fork_cleanup_security:
1282         security_task_free(p);
1283 bad_fork_cleanup_policy:
1284 #ifdef CONFIG_NUMA
1285         mpol_put(p->mempolicy);
1286 bad_fork_cleanup_cgroup:
1287 #endif
1288         cgroup_exit(p, cgroup_callbacks_done);
1289         delayacct_tsk_free(p);
1290         if (p->binfmt)
1291                 module_put(p->binfmt->module);
1292 bad_fork_cleanup_put_domain:
1293         module_put(task_thread_info(p)->exec_domain->module);
1294 bad_fork_cleanup_count:
1295         put_group_info(p->group_info);
1296         atomic_dec(&p->user->processes);
1297         free_uid(p->user);
1298 bad_fork_free:
1299         free_task(p);
1300 fork_out:
1301         return ERR_PTR(retval);
1302 }
1303
1304 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1305 {
1306         memset(regs, 0, sizeof(struct pt_regs));
1307         return regs;
1308 }
1309
1310 struct task_struct * __cpuinit fork_idle(int cpu)
1311 {
1312         struct task_struct *task;
1313         struct pt_regs regs;
1314
1315         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1316                             &init_struct_pid, 0);
1317         if (!IS_ERR(task))
1318                 init_idle(task, cpu);
1319
1320         return task;
1321 }
1322
1323 /*
1324  *  Ok, this is the main fork-routine.
1325  *
1326  * It copies the process, and if successful kick-starts
1327  * it and waits for it to finish using the VM if required.
1328  */
1329 long do_fork(unsigned long clone_flags,
1330               unsigned long stack_start,
1331               struct pt_regs *regs,
1332               unsigned long stack_size,
1333               int __user *parent_tidptr,
1334               int __user *child_tidptr)
1335 {
1336         struct task_struct *p;
1337         int trace = 0;
1338         long nr;
1339
1340         /*
1341          * We hope to recycle these flags after 2.6.26
1342          */
1343         if (unlikely(clone_flags & CLONE_STOPPED)) {
1344                 static int __read_mostly count = 100;
1345
1346                 if (count > 0 && printk_ratelimit()) {
1347                         char comm[TASK_COMM_LEN];
1348
1349                         count--;
1350                         printk(KERN_INFO "fork(): process `%s' used deprecated "
1351                                         "clone flags 0x%lx\n",
1352                                 get_task_comm(comm, current),
1353                                 clone_flags & CLONE_STOPPED);
1354                 }
1355         }
1356
1357         /*
1358          * When called from kernel_thread, don't do user tracing stuff.
1359          */
1360         if (likely(user_mode(regs)))
1361                 trace = tracehook_prepare_clone(clone_flags);
1362
1363         p = copy_process(clone_flags, stack_start, regs, stack_size,
1364                          child_tidptr, NULL, trace);
1365         /*
1366          * Do this prior waking up the new thread - the thread pointer
1367          * might get invalid after that point, if the thread exits quickly.
1368          */
1369         if (!IS_ERR(p)) {
1370                 struct completion vfork;
1371
1372                 nr = task_pid_vnr(p);
1373
1374                 if (clone_flags & CLONE_PARENT_SETTID)
1375                         put_user(nr, parent_tidptr);
1376
1377                 if (clone_flags & CLONE_VFORK) {
1378                         p->vfork_done = &vfork;
1379                         init_completion(&vfork);
1380                 }
1381
1382                 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1383
1384                 /*
1385                  * We set PF_STARTING at creation in case tracing wants to
1386                  * use this to distinguish a fully live task from one that
1387                  * hasn't gotten to tracehook_report_clone() yet.  Now we
1388                  * clear it and set the child going.
1389                  */
1390                 p->flags &= ~PF_STARTING;
1391
1392                 if (unlikely(clone_flags & CLONE_STOPPED)) {
1393                         /*
1394                          * We'll start up with an immediate SIGSTOP.
1395                          */
1396                         sigaddset(&p->pending.signal, SIGSTOP);
1397                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1398                         __set_task_state(p, TASK_STOPPED);
1399                 } else {
1400                         wake_up_new_task(p, clone_flags);
1401                 }
1402
1403                 tracehook_report_clone_complete(trace, regs,
1404                                                 clone_flags, nr, p);
1405
1406                 if (clone_flags & CLONE_VFORK) {
1407                         freezer_do_not_count();
1408                         wait_for_completion(&vfork);
1409                         freezer_count();
1410                         tracehook_report_vfork_done(p, nr);
1411                 }
1412         } else {
1413                 nr = PTR_ERR(p);
1414         }
1415         return nr;
1416 }
1417
1418 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1419 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1420 #endif
1421
1422 static void sighand_ctor(void *data)
1423 {
1424         struct sighand_struct *sighand = data;
1425
1426         spin_lock_init(&sighand->siglock);
1427         init_waitqueue_head(&sighand->signalfd_wqh);
1428 }
1429
1430 void __init proc_caches_init(void)
1431 {
1432         sighand_cachep = kmem_cache_create("sighand_cache",
1433                         sizeof(struct sighand_struct), 0,
1434                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1435                         sighand_ctor);
1436         signal_cachep = kmem_cache_create("signal_cache",
1437                         sizeof(struct signal_struct), 0,
1438                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1439         files_cachep = kmem_cache_create("files_cache",
1440                         sizeof(struct files_struct), 0,
1441                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1442         fs_cachep = kmem_cache_create("fs_cache",
1443                         sizeof(struct fs_struct), 0,
1444                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1445         vm_area_cachep = kmem_cache_create("vm_area_struct",
1446                         sizeof(struct vm_area_struct), 0,
1447                         SLAB_PANIC, NULL);
1448         mm_cachep = kmem_cache_create("mm_struct",
1449                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1450                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1451 }
1452
1453 /*
1454  * Check constraints on flags passed to the unshare system call and
1455  * force unsharing of additional process context as appropriate.
1456  */
1457 static void check_unshare_flags(unsigned long *flags_ptr)
1458 {
1459         /*
1460          * If unsharing a thread from a thread group, must also
1461          * unshare vm.
1462          */
1463         if (*flags_ptr & CLONE_THREAD)
1464                 *flags_ptr |= CLONE_VM;
1465
1466         /*
1467          * If unsharing vm, must also unshare signal handlers.
1468          */
1469         if (*flags_ptr & CLONE_VM)
1470                 *flags_ptr |= CLONE_SIGHAND;
1471
1472         /*
1473          * If unsharing signal handlers and the task was created
1474          * using CLONE_THREAD, then must unshare the thread
1475          */
1476         if ((*flags_ptr & CLONE_SIGHAND) &&
1477             (atomic_read(&current->signal->count) > 1))
1478                 *flags_ptr |= CLONE_THREAD;
1479
1480         /*
1481          * If unsharing namespace, must also unshare filesystem information.
1482          */
1483         if (*flags_ptr & CLONE_NEWNS)
1484                 *flags_ptr |= CLONE_FS;
1485 }
1486
1487 /*
1488  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1489  */
1490 static int unshare_thread(unsigned long unshare_flags)
1491 {
1492         if (unshare_flags & CLONE_THREAD)
1493                 return -EINVAL;
1494
1495         return 0;
1496 }
1497
1498 /*
1499  * Unshare the filesystem structure if it is being shared
1500  */
1501 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1502 {
1503         struct fs_struct *fs = current->fs;
1504
1505         if ((unshare_flags & CLONE_FS) &&
1506             (fs && atomic_read(&fs->count) > 1)) {
1507                 *new_fsp = __copy_fs_struct(current->fs);
1508                 if (!*new_fsp)
1509                         return -ENOMEM;
1510         }
1511
1512         return 0;
1513 }
1514
1515 /*
1516  * Unsharing of sighand is not supported yet
1517  */
1518 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1519 {
1520         struct sighand_struct *sigh = current->sighand;
1521
1522         if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1523                 return -EINVAL;
1524         else
1525                 return 0;
1526 }
1527
1528 /*
1529  * Unshare vm if it is being shared
1530  */
1531 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1532 {
1533         struct mm_struct *mm = current->mm;
1534
1535         if ((unshare_flags & CLONE_VM) &&
1536             (mm && atomic_read(&mm->mm_users) > 1)) {
1537                 return -EINVAL;
1538         }
1539
1540         return 0;
1541 }
1542
1543 /*
1544  * Unshare file descriptor table if it is being shared
1545  */
1546 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1547 {
1548         struct files_struct *fd = current->files;
1549         int error = 0;
1550
1551         if ((unshare_flags & CLONE_FILES) &&
1552             (fd && atomic_read(&fd->count) > 1)) {
1553                 *new_fdp = dup_fd(fd, &error);
1554                 if (!*new_fdp)
1555                         return error;
1556         }
1557
1558         return 0;
1559 }
1560
1561 /*
1562  * unshare allows a process to 'unshare' part of the process
1563  * context which was originally shared using clone.  copy_*
1564  * functions used by do_fork() cannot be used here directly
1565  * because they modify an inactive task_struct that is being
1566  * constructed. Here we are modifying the current, active,
1567  * task_struct.
1568  */
1569 asmlinkage long sys_unshare(unsigned long unshare_flags)
1570 {
1571         int err = 0;
1572         struct fs_struct *fs, *new_fs = NULL;
1573         struct sighand_struct *new_sigh = NULL;
1574         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1575         struct files_struct *fd, *new_fd = NULL;
1576         struct nsproxy *new_nsproxy = NULL;
1577         int do_sysvsem = 0;
1578
1579         check_unshare_flags(&unshare_flags);
1580
1581         /* Return -EINVAL for all unsupported flags */
1582         err = -EINVAL;
1583         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1584                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1585                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1586                                 CLONE_NEWNET))
1587                 goto bad_unshare_out;
1588
1589         /*
1590          * CLONE_NEWIPC must also detach from the undolist: after switching
1591          * to a new ipc namespace, the semaphore arrays from the old
1592          * namespace are unreachable.
1593          */
1594         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1595                 do_sysvsem = 1;
1596         if ((err = unshare_thread(unshare_flags)))
1597                 goto bad_unshare_out;
1598         if ((err = unshare_fs(unshare_flags, &new_fs)))
1599                 goto bad_unshare_cleanup_thread;
1600         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1601                 goto bad_unshare_cleanup_fs;
1602         if ((err = unshare_vm(unshare_flags, &new_mm)))
1603                 goto bad_unshare_cleanup_sigh;
1604         if ((err = unshare_fd(unshare_flags, &new_fd)))
1605                 goto bad_unshare_cleanup_vm;
1606         if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1607                         new_fs)))
1608                 goto bad_unshare_cleanup_fd;
1609
1610         if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1611                 if (do_sysvsem) {
1612                         /*
1613                          * CLONE_SYSVSEM is equivalent to sys_exit().
1614                          */
1615                         exit_sem(current);
1616                 }
1617
1618                 if (new_nsproxy) {
1619                         switch_task_namespaces(current, new_nsproxy);
1620                         new_nsproxy = NULL;
1621                 }
1622
1623                 task_lock(current);
1624
1625                 if (new_fs) {
1626                         fs = current->fs;
1627                         current->fs = new_fs;
1628                         new_fs = fs;
1629                 }
1630
1631                 if (new_mm) {
1632                         mm = current->mm;
1633                         active_mm = current->active_mm;
1634                         current->mm = new_mm;
1635                         current->active_mm = new_mm;
1636                         activate_mm(active_mm, new_mm);
1637                         new_mm = mm;
1638                 }
1639
1640                 if (new_fd) {
1641                         fd = current->files;
1642                         current->files = new_fd;
1643                         new_fd = fd;
1644                 }
1645
1646                 task_unlock(current);
1647         }
1648
1649         if (new_nsproxy)
1650                 put_nsproxy(new_nsproxy);
1651
1652 bad_unshare_cleanup_fd:
1653         if (new_fd)
1654                 put_files_struct(new_fd);
1655
1656 bad_unshare_cleanup_vm:
1657         if (new_mm)
1658                 mmput(new_mm);
1659
1660 bad_unshare_cleanup_sigh:
1661         if (new_sigh)
1662                 if (atomic_dec_and_test(&new_sigh->count))
1663                         kmem_cache_free(sighand_cachep, new_sigh);
1664
1665 bad_unshare_cleanup_fs:
1666         if (new_fs)
1667                 put_fs_struct(new_fs);
1668
1669 bad_unshare_cleanup_thread:
1670 bad_unshare_out:
1671         return err;
1672 }
1673
1674 /*
1675  *      Helper to unshare the files of the current task.
1676  *      We don't want to expose copy_files internals to
1677  *      the exec layer of the kernel.
1678  */
1679
1680 int unshare_files(struct files_struct **displaced)
1681 {
1682         struct task_struct *task = current;
1683         struct files_struct *copy = NULL;
1684         int error;
1685
1686         error = unshare_fd(CLONE_FILES, &copy);
1687         if (error || !copy) {
1688                 *displaced = NULL;
1689                 return error;
1690         }
1691         *displaced = task->files;
1692         task_lock(task);
1693         task->files = copy;
1694         task_unlock(task);
1695         return 0;
1696 }