]> pilppa.org Git - linux-2.6-omap-h63xx.git/blob - kernel/fork.c
[PATCH] copy_process: cleanup bad_fork_cleanup_signal
[linux-2.6-omap-h63xx.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;      /* Handle normal Linux uptimes. */
59 int nr_threads;                 /* The idle threads do not count.. */
60
61 int max_threads;                /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71         int cpu;
72         int total = 0;
73
74         for_each_online_cpu(cpu)
75                 total += per_cpu(process_counts, cpu);
76
77         return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106         free_thread_info(tsk->thread_info);
107         free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110
111 void __put_task_struct_cb(struct rcu_head *rhp)
112 {
113         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
114
115         WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
116         WARN_ON(atomic_read(&tsk->usage));
117         WARN_ON(tsk == current);
118
119         if (unlikely(tsk->audit_context))
120                 audit_free(tsk);
121         security_task_free(tsk);
122         free_uid(tsk->user);
123         put_group_info(tsk->group_info);
124
125         if (!profile_handoff_task(tsk))
126                 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
134 #endif
135         /* create a slab on which task_structs can be allocated */
136         task_struct_cachep =
137                 kmem_cache_create("task_struct", sizeof(struct task_struct),
138                         ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141         /*
142          * The default maximum number of threads is set to a safe
143          * value: the thread structures can take up at most half
144          * of memory.
145          */
146         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148         /*
149          * we need to allow at least 20 threads to boot a system
150          */
151         if(max_threads < 20)
152                 max_threads = 20;
153
154         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156         init_task.signal->rlim[RLIMIT_SIGPENDING] =
157                 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162         struct task_struct *tsk;
163         struct thread_info *ti;
164
165         prepare_to_copy(orig);
166
167         tsk = alloc_task_struct();
168         if (!tsk)
169                 return NULL;
170
171         ti = alloc_thread_info(tsk);
172         if (!ti) {
173                 free_task_struct(tsk);
174                 return NULL;
175         }
176
177         *tsk = *orig;
178         tsk->thread_info = ti;
179         setup_thread_stack(tsk, orig);
180
181         /* One for us, one for whoever does the "release_task()" (usually parent) */
182         atomic_set(&tsk->usage,2);
183         atomic_set(&tsk->fs_excl, 0);
184         tsk->btrace_seq = 0;
185         return tsk;
186 }
187
188 #ifdef CONFIG_MMU
189 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
190 {
191         struct vm_area_struct *mpnt, *tmp, **pprev;
192         struct rb_node **rb_link, *rb_parent;
193         int retval;
194         unsigned long charge;
195         struct mempolicy *pol;
196
197         down_write(&oldmm->mmap_sem);
198         flush_cache_mm(oldmm);
199         down_write(&mm->mmap_sem);
200
201         mm->locked_vm = 0;
202         mm->mmap = NULL;
203         mm->mmap_cache = NULL;
204         mm->free_area_cache = oldmm->mmap_base;
205         mm->cached_hole_size = ~0UL;
206         mm->map_count = 0;
207         cpus_clear(mm->cpu_vm_mask);
208         mm->mm_rb = RB_ROOT;
209         rb_link = &mm->mm_rb.rb_node;
210         rb_parent = NULL;
211         pprev = &mm->mmap;
212
213         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
214                 struct file *file;
215
216                 if (mpnt->vm_flags & VM_DONTCOPY) {
217                         long pages = vma_pages(mpnt);
218                         mm->total_vm -= pages;
219                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
220                                                                 -pages);
221                         continue;
222                 }
223                 charge = 0;
224                 if (mpnt->vm_flags & VM_ACCOUNT) {
225                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
226                         if (security_vm_enough_memory(len))
227                                 goto fail_nomem;
228                         charge = len;
229                 }
230                 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
231                 if (!tmp)
232                         goto fail_nomem;
233                 *tmp = *mpnt;
234                 pol = mpol_copy(vma_policy(mpnt));
235                 retval = PTR_ERR(pol);
236                 if (IS_ERR(pol))
237                         goto fail_nomem_policy;
238                 vma_set_policy(tmp, pol);
239                 tmp->vm_flags &= ~VM_LOCKED;
240                 tmp->vm_mm = mm;
241                 tmp->vm_next = NULL;
242                 anon_vma_link(tmp);
243                 file = tmp->vm_file;
244                 if (file) {
245                         struct inode *inode = file->f_dentry->d_inode;
246                         get_file(file);
247                         if (tmp->vm_flags & VM_DENYWRITE)
248                                 atomic_dec(&inode->i_writecount);
249       
250                         /* insert tmp into the share list, just after mpnt */
251                         spin_lock(&file->f_mapping->i_mmap_lock);
252                         tmp->vm_truncate_count = mpnt->vm_truncate_count;
253                         flush_dcache_mmap_lock(file->f_mapping);
254                         vma_prio_tree_add(tmp, mpnt);
255                         flush_dcache_mmap_unlock(file->f_mapping);
256                         spin_unlock(&file->f_mapping->i_mmap_lock);
257                 }
258
259                 /*
260                  * Link in the new vma and copy the page table entries.
261                  */
262                 *pprev = tmp;
263                 pprev = &tmp->vm_next;
264
265                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
266                 rb_link = &tmp->vm_rb.rb_right;
267                 rb_parent = &tmp->vm_rb;
268
269                 mm->map_count++;
270                 retval = copy_page_range(mm, oldmm, mpnt);
271
272                 if (tmp->vm_ops && tmp->vm_ops->open)
273                         tmp->vm_ops->open(tmp);
274
275                 if (retval)
276                         goto out;
277         }
278         retval = 0;
279 out:
280         up_write(&mm->mmap_sem);
281         flush_tlb_mm(oldmm);
282         up_write(&oldmm->mmap_sem);
283         return retval;
284 fail_nomem_policy:
285         kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287         retval = -ENOMEM;
288         vm_unacct_memory(charge);
289         goto out;
290 }
291
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 {
294         mm->pgd = pgd_alloc(mm);
295         if (unlikely(!mm->pgd))
296                 return -ENOMEM;
297         return 0;
298 }
299
300 static inline void mm_free_pgd(struct mm_struct * mm)
301 {
302         pgd_free(mm->pgd);
303 }
304 #else
305 #define dup_mmap(mm, oldmm)     (0)
306 #define mm_alloc_pgd(mm)        (0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
309
310  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311
312 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
314
315 #include <linux/init_task.h>
316
317 static struct mm_struct * mm_init(struct mm_struct * mm)
318 {
319         atomic_set(&mm->mm_users, 1);
320         atomic_set(&mm->mm_count, 1);
321         init_rwsem(&mm->mmap_sem);
322         INIT_LIST_HEAD(&mm->mmlist);
323         mm->core_waiters = 0;
324         mm->nr_ptes = 0;
325         set_mm_counter(mm, file_rss, 0);
326         set_mm_counter(mm, anon_rss, 0);
327         spin_lock_init(&mm->page_table_lock);
328         rwlock_init(&mm->ioctx_list_lock);
329         mm->ioctx_list = NULL;
330         mm->free_area_cache = TASK_UNMAPPED_BASE;
331         mm->cached_hole_size = ~0UL;
332
333         if (likely(!mm_alloc_pgd(mm))) {
334                 mm->def_flags = 0;
335                 return mm;
336         }
337         free_mm(mm);
338         return NULL;
339 }
340
341 /*
342  * Allocate and initialize an mm_struct.
343  */
344 struct mm_struct * mm_alloc(void)
345 {
346         struct mm_struct * mm;
347
348         mm = allocate_mm();
349         if (mm) {
350                 memset(mm, 0, sizeof(*mm));
351                 mm = mm_init(mm);
352         }
353         return mm;
354 }
355
356 /*
357  * Called when the last reference to the mm
358  * is dropped: either by a lazy thread or by
359  * mmput. Free the page directory and the mm.
360  */
361 void fastcall __mmdrop(struct mm_struct *mm)
362 {
363         BUG_ON(mm == &init_mm);
364         mm_free_pgd(mm);
365         destroy_context(mm);
366         free_mm(mm);
367 }
368
369 /*
370  * Decrement the use count and release all resources for an mm.
371  */
372 void mmput(struct mm_struct *mm)
373 {
374         if (atomic_dec_and_test(&mm->mm_users)) {
375                 exit_aio(mm);
376                 exit_mmap(mm);
377                 if (!list_empty(&mm->mmlist)) {
378                         spin_lock(&mmlist_lock);
379                         list_del(&mm->mmlist);
380                         spin_unlock(&mmlist_lock);
381                 }
382                 put_swap_token(mm);
383                 mmdrop(mm);
384         }
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387
388 /**
389  * get_task_mm - acquire a reference to the task's mm
390  *
391  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
392  * this kernel workthread has transiently adopted a user mm with use_mm,
393  * to do its AIO) is not set and if so returns a reference to it, after
394  * bumping up the use count.  User must release the mm via mmput()
395  * after use.  Typically used by /proc and ptrace.
396  */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399         struct mm_struct *mm;
400
401         task_lock(task);
402         mm = task->mm;
403         if (mm) {
404                 if (task->flags & PF_BORROWED_MM)
405                         mm = NULL;
406                 else
407                         atomic_inc(&mm->mm_users);
408         }
409         task_unlock(task);
410         return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413
414 /* Please note the differences between mmput and mm_release.
415  * mmput is called whenever we stop holding onto a mm_struct,
416  * error success whatever.
417  *
418  * mm_release is called after a mm_struct has been removed
419  * from the current process.
420  *
421  * This difference is important for error handling, when we
422  * only half set up a mm_struct for a new process and need to restore
423  * the old one.  Because we mmput the new mm_struct before
424  * restoring the old one. . .
425  * Eric Biederman 10 January 1998
426  */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429         struct completion *vfork_done = tsk->vfork_done;
430
431         /* Get rid of any cached register state */
432         deactivate_mm(tsk, mm);
433
434         /* notify parent sleeping on vfork() */
435         if (vfork_done) {
436                 tsk->vfork_done = NULL;
437                 complete(vfork_done);
438         }
439         if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440                 u32 __user * tidptr = tsk->clear_child_tid;
441                 tsk->clear_child_tid = NULL;
442
443                 /*
444                  * We don't check the error code - if userspace has
445                  * not set up a proper pointer then tough luck.
446                  */
447                 put_user(0, tidptr);
448                 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449         }
450 }
451
452 /*
453  * Allocate a new mm structure and copy contents from the
454  * mm structure of the passed in task structure.
455  */
456 static struct mm_struct *dup_mm(struct task_struct *tsk)
457 {
458         struct mm_struct *mm, *oldmm = current->mm;
459         int err;
460
461         if (!oldmm)
462                 return NULL;
463
464         mm = allocate_mm();
465         if (!mm)
466                 goto fail_nomem;
467
468         memcpy(mm, oldmm, sizeof(*mm));
469
470         if (!mm_init(mm))
471                 goto fail_nomem;
472
473         if (init_new_context(tsk, mm))
474                 goto fail_nocontext;
475
476         err = dup_mmap(mm, oldmm);
477         if (err)
478                 goto free_pt;
479
480         mm->hiwater_rss = get_mm_rss(mm);
481         mm->hiwater_vm = mm->total_vm;
482
483         return mm;
484
485 free_pt:
486         mmput(mm);
487
488 fail_nomem:
489         return NULL;
490
491 fail_nocontext:
492         /*
493          * If init_new_context() failed, we cannot use mmput() to free the mm
494          * because it calls destroy_context()
495          */
496         mm_free_pgd(mm);
497         free_mm(mm);
498         return NULL;
499 }
500
501 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
502 {
503         struct mm_struct * mm, *oldmm;
504         int retval;
505
506         tsk->min_flt = tsk->maj_flt = 0;
507         tsk->nvcsw = tsk->nivcsw = 0;
508
509         tsk->mm = NULL;
510         tsk->active_mm = NULL;
511
512         /*
513          * Are we cloning a kernel thread?
514          *
515          * We need to steal a active VM for that..
516          */
517         oldmm = current->mm;
518         if (!oldmm)
519                 return 0;
520
521         if (clone_flags & CLONE_VM) {
522                 atomic_inc(&oldmm->mm_users);
523                 mm = oldmm;
524                 goto good_mm;
525         }
526
527         retval = -ENOMEM;
528         mm = dup_mm(tsk);
529         if (!mm)
530                 goto fail_nomem;
531
532 good_mm:
533         tsk->mm = mm;
534         tsk->active_mm = mm;
535         return 0;
536
537 fail_nomem:
538         return retval;
539 }
540
541 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
542 {
543         struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
544         /* We don't need to lock fs - think why ;-) */
545         if (fs) {
546                 atomic_set(&fs->count, 1);
547                 rwlock_init(&fs->lock);
548                 fs->umask = old->umask;
549                 read_lock(&old->lock);
550                 fs->rootmnt = mntget(old->rootmnt);
551                 fs->root = dget(old->root);
552                 fs->pwdmnt = mntget(old->pwdmnt);
553                 fs->pwd = dget(old->pwd);
554                 if (old->altroot) {
555                         fs->altrootmnt = mntget(old->altrootmnt);
556                         fs->altroot = dget(old->altroot);
557                 } else {
558                         fs->altrootmnt = NULL;
559                         fs->altroot = NULL;
560                 }
561                 read_unlock(&old->lock);
562         }
563         return fs;
564 }
565
566 struct fs_struct *copy_fs_struct(struct fs_struct *old)
567 {
568         return __copy_fs_struct(old);
569 }
570
571 EXPORT_SYMBOL_GPL(copy_fs_struct);
572
573 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
574 {
575         if (clone_flags & CLONE_FS) {
576                 atomic_inc(&current->fs->count);
577                 return 0;
578         }
579         tsk->fs = __copy_fs_struct(current->fs);
580         if (!tsk->fs)
581                 return -ENOMEM;
582         return 0;
583 }
584
585 static int count_open_files(struct fdtable *fdt)
586 {
587         int size = fdt->max_fdset;
588         int i;
589
590         /* Find the last open fd */
591         for (i = size/(8*sizeof(long)); i > 0; ) {
592                 if (fdt->open_fds->fds_bits[--i])
593                         break;
594         }
595         i = (i+1) * 8 * sizeof(long);
596         return i;
597 }
598
599 static struct files_struct *alloc_files(void)
600 {
601         struct files_struct *newf;
602         struct fdtable *fdt;
603
604         newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
605         if (!newf)
606                 goto out;
607
608         atomic_set(&newf->count, 1);
609
610         spin_lock_init(&newf->file_lock);
611         newf->next_fd = 0;
612         fdt = &newf->fdtab;
613         fdt->max_fds = NR_OPEN_DEFAULT;
614         fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
615         fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
616         fdt->open_fds = (fd_set *)&newf->open_fds_init;
617         fdt->fd = &newf->fd_array[0];
618         INIT_RCU_HEAD(&fdt->rcu);
619         fdt->free_files = NULL;
620         fdt->next = NULL;
621         rcu_assign_pointer(newf->fdt, fdt);
622 out:
623         return newf;
624 }
625
626 /*
627  * Allocate a new files structure and copy contents from the
628  * passed in files structure.
629  */
630 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
631 {
632         struct files_struct *newf;
633         struct file **old_fds, **new_fds;
634         int open_files, size, i, expand;
635         struct fdtable *old_fdt, *new_fdt;
636
637         newf = alloc_files();
638         if (!newf)
639                 goto out;
640
641         spin_lock(&oldf->file_lock);
642         old_fdt = files_fdtable(oldf);
643         new_fdt = files_fdtable(newf);
644         size = old_fdt->max_fdset;
645         open_files = count_open_files(old_fdt);
646         expand = 0;
647
648         /*
649          * Check whether we need to allocate a larger fd array or fd set.
650          * Note: we're not a clone task, so the open count won't  change.
651          */
652         if (open_files > new_fdt->max_fdset) {
653                 new_fdt->max_fdset = 0;
654                 expand = 1;
655         }
656         if (open_files > new_fdt->max_fds) {
657                 new_fdt->max_fds = 0;
658                 expand = 1;
659         }
660
661         /* if the old fdset gets grown now, we'll only copy up to "size" fds */
662         if (expand) {
663                 spin_unlock(&oldf->file_lock);
664                 spin_lock(&newf->file_lock);
665                 *errorp = expand_files(newf, open_files-1);
666                 spin_unlock(&newf->file_lock);
667                 if (*errorp < 0)
668                         goto out_release;
669                 new_fdt = files_fdtable(newf);
670                 /*
671                  * Reacquire the oldf lock and a pointer to its fd table
672                  * who knows it may have a new bigger fd table. We need
673                  * the latest pointer.
674                  */
675                 spin_lock(&oldf->file_lock);
676                 old_fdt = files_fdtable(oldf);
677         }
678
679         old_fds = old_fdt->fd;
680         new_fds = new_fdt->fd;
681
682         memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
683         memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
684
685         for (i = open_files; i != 0; i--) {
686                 struct file *f = *old_fds++;
687                 if (f) {
688                         get_file(f);
689                 } else {
690                         /*
691                          * The fd may be claimed in the fd bitmap but not yet
692                          * instantiated in the files array if a sibling thread
693                          * is partway through open().  So make sure that this
694                          * fd is available to the new process.
695                          */
696                         FD_CLR(open_files - i, new_fdt->open_fds);
697                 }
698                 rcu_assign_pointer(*new_fds++, f);
699         }
700         spin_unlock(&oldf->file_lock);
701
702         /* compute the remainder to be cleared */
703         size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
704
705         /* This is long word aligned thus could use a optimized version */ 
706         memset(new_fds, 0, size); 
707
708         if (new_fdt->max_fdset > open_files) {
709                 int left = (new_fdt->max_fdset-open_files)/8;
710                 int start = open_files / (8 * sizeof(unsigned long));
711
712                 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
713                 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
714         }
715
716 out:
717         return newf;
718
719 out_release:
720         free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
721         free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
722         free_fd_array(new_fdt->fd, new_fdt->max_fds);
723         kmem_cache_free(files_cachep, newf);
724         goto out;
725 }
726
727 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
728 {
729         struct files_struct *oldf, *newf;
730         int error = 0;
731
732         /*
733          * A background process may not have any files ...
734          */
735         oldf = current->files;
736         if (!oldf)
737                 goto out;
738
739         if (clone_flags & CLONE_FILES) {
740                 atomic_inc(&oldf->count);
741                 goto out;
742         }
743
744         /*
745          * Note: we may be using current for both targets (See exec.c)
746          * This works because we cache current->files (old) as oldf. Don't
747          * break this.
748          */
749         tsk->files = NULL;
750         error = -ENOMEM;
751         newf = dup_fd(oldf, &error);
752         if (!newf)
753                 goto out;
754
755         tsk->files = newf;
756         error = 0;
757 out:
758         return error;
759 }
760
761 /*
762  *      Helper to unshare the files of the current task.
763  *      We don't want to expose copy_files internals to
764  *      the exec layer of the kernel.
765  */
766
767 int unshare_files(void)
768 {
769         struct files_struct *files  = current->files;
770         int rc;
771
772         BUG_ON(!files);
773
774         /* This can race but the race causes us to copy when we don't
775            need to and drop the copy */
776         if(atomic_read(&files->count) == 1)
777         {
778                 atomic_inc(&files->count);
779                 return 0;
780         }
781         rc = copy_files(0, current);
782         if(rc)
783                 current->files = files;
784         return rc;
785 }
786
787 EXPORT_SYMBOL(unshare_files);
788
789 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
790 {
791         struct sighand_struct *sig;
792
793         if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
794                 atomic_inc(&current->sighand->count);
795                 return 0;
796         }
797         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
798         rcu_assign_pointer(tsk->sighand, sig);
799         if (!sig)
800                 return -ENOMEM;
801         atomic_set(&sig->count, 1);
802         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
803         return 0;
804 }
805
806 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
807 {
808         struct signal_struct *sig;
809         int ret;
810
811         if (clone_flags & CLONE_THREAD) {
812                 atomic_inc(&current->signal->count);
813                 atomic_inc(&current->signal->live);
814                 return 0;
815         }
816         sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
817         tsk->signal = sig;
818         if (!sig)
819                 return -ENOMEM;
820
821         ret = copy_thread_group_keys(tsk);
822         if (ret < 0) {
823                 kmem_cache_free(signal_cachep, sig);
824                 return ret;
825         }
826
827         atomic_set(&sig->count, 1);
828         atomic_set(&sig->live, 1);
829         init_waitqueue_head(&sig->wait_chldexit);
830         sig->flags = 0;
831         sig->group_exit_code = 0;
832         sig->group_exit_task = NULL;
833         sig->group_stop_count = 0;
834         sig->curr_target = NULL;
835         init_sigpending(&sig->shared_pending);
836         INIT_LIST_HEAD(&sig->posix_timers);
837
838         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
839         sig->it_real_incr.tv64 = 0;
840         sig->real_timer.function = it_real_fn;
841         sig->tsk = tsk;
842
843         sig->it_virt_expires = cputime_zero;
844         sig->it_virt_incr = cputime_zero;
845         sig->it_prof_expires = cputime_zero;
846         sig->it_prof_incr = cputime_zero;
847
848         sig->leader = 0;        /* session leadership doesn't inherit */
849         sig->tty_old_pgrp = 0;
850
851         sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
852         sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
853         sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
854         sig->sched_time = 0;
855         INIT_LIST_HEAD(&sig->cpu_timers[0]);
856         INIT_LIST_HEAD(&sig->cpu_timers[1]);
857         INIT_LIST_HEAD(&sig->cpu_timers[2]);
858
859         task_lock(current->group_leader);
860         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
861         task_unlock(current->group_leader);
862
863         if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
864                 /*
865                  * New sole thread in the process gets an expiry time
866                  * of the whole CPU time limit.
867                  */
868                 tsk->it_prof_expires =
869                         secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
870         }
871
872         return 0;
873 }
874
875 void __cleanup_signal(struct signal_struct *sig)
876 {
877         exit_thread_group_keys(sig);
878         kmem_cache_free(signal_cachep, sig);
879 }
880
881 static inline void cleanup_signal(struct task_struct *tsk)
882 {
883         struct signal_struct *sig = tsk->signal;
884
885         atomic_dec(&sig->live);
886
887         if (atomic_dec_and_test(&sig->count))
888                 __cleanup_signal(sig);
889 }
890
891 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
892 {
893         unsigned long new_flags = p->flags;
894
895         new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
896         new_flags |= PF_FORKNOEXEC;
897         if (!(clone_flags & CLONE_PTRACE))
898                 p->ptrace = 0;
899         p->flags = new_flags;
900 }
901
902 asmlinkage long sys_set_tid_address(int __user *tidptr)
903 {
904         current->clear_child_tid = tidptr;
905
906         return current->pid;
907 }
908
909 /*
910  * This creates a new process as a copy of the old one,
911  * but does not actually start it yet.
912  *
913  * It copies the registers, and all the appropriate
914  * parts of the process environment (as per the clone
915  * flags). The actual kick-off is left to the caller.
916  */
917 static task_t *copy_process(unsigned long clone_flags,
918                                  unsigned long stack_start,
919                                  struct pt_regs *regs,
920                                  unsigned long stack_size,
921                                  int __user *parent_tidptr,
922                                  int __user *child_tidptr,
923                                  int pid)
924 {
925         int retval;
926         struct task_struct *p = NULL;
927
928         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
929                 return ERR_PTR(-EINVAL);
930
931         /*
932          * Thread groups must share signals as well, and detached threads
933          * can only be started up within the thread group.
934          */
935         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
936                 return ERR_PTR(-EINVAL);
937
938         /*
939          * Shared signal handlers imply shared VM. By way of the above,
940          * thread groups also imply shared VM. Blocking this case allows
941          * for various simplifications in other code.
942          */
943         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
944                 return ERR_PTR(-EINVAL);
945
946         retval = security_task_create(clone_flags);
947         if (retval)
948                 goto fork_out;
949
950         retval = -ENOMEM;
951         p = dup_task_struct(current);
952         if (!p)
953                 goto fork_out;
954
955         retval = -EAGAIN;
956         if (atomic_read(&p->user->processes) >=
957                         p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
958                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
959                                 p->user != &root_user)
960                         goto bad_fork_free;
961         }
962
963         atomic_inc(&p->user->__count);
964         atomic_inc(&p->user->processes);
965         get_group_info(p->group_info);
966
967         /*
968          * If multiple threads are within copy_process(), then this check
969          * triggers too late. This doesn't hurt, the check is only there
970          * to stop root fork bombs.
971          */
972         if (nr_threads >= max_threads)
973                 goto bad_fork_cleanup_count;
974
975         if (!try_module_get(task_thread_info(p)->exec_domain->module))
976                 goto bad_fork_cleanup_count;
977
978         if (p->binfmt && !try_module_get(p->binfmt->module))
979                 goto bad_fork_cleanup_put_domain;
980
981         p->did_exec = 0;
982         copy_flags(clone_flags, p);
983         p->pid = pid;
984         retval = -EFAULT;
985         if (clone_flags & CLONE_PARENT_SETTID)
986                 if (put_user(p->pid, parent_tidptr))
987                         goto bad_fork_cleanup;
988
989         p->proc_dentry = NULL;
990
991         INIT_LIST_HEAD(&p->children);
992         INIT_LIST_HEAD(&p->sibling);
993         p->vfork_done = NULL;
994         spin_lock_init(&p->alloc_lock);
995         spin_lock_init(&p->proc_lock);
996
997         clear_tsk_thread_flag(p, TIF_SIGPENDING);
998         init_sigpending(&p->pending);
999
1000         p->utime = cputime_zero;
1001         p->stime = cputime_zero;
1002         p->sched_time = 0;
1003         p->rchar = 0;           /* I/O counter: bytes read */
1004         p->wchar = 0;           /* I/O counter: bytes written */
1005         p->syscr = 0;           /* I/O counter: read syscalls */
1006         p->syscw = 0;           /* I/O counter: write syscalls */
1007         acct_clear_integrals(p);
1008
1009         p->it_virt_expires = cputime_zero;
1010         p->it_prof_expires = cputime_zero;
1011         p->it_sched_expires = 0;
1012         INIT_LIST_HEAD(&p->cpu_timers[0]);
1013         INIT_LIST_HEAD(&p->cpu_timers[1]);
1014         INIT_LIST_HEAD(&p->cpu_timers[2]);
1015
1016         p->lock_depth = -1;             /* -1 = no lock */
1017         do_posix_clock_monotonic_gettime(&p->start_time);
1018         p->security = NULL;
1019         p->io_context = NULL;
1020         p->io_wait = NULL;
1021         p->audit_context = NULL;
1022         cpuset_fork(p);
1023 #ifdef CONFIG_NUMA
1024         p->mempolicy = mpol_copy(p->mempolicy);
1025         if (IS_ERR(p->mempolicy)) {
1026                 retval = PTR_ERR(p->mempolicy);
1027                 p->mempolicy = NULL;
1028                 goto bad_fork_cleanup_cpuset;
1029         }
1030         mpol_fix_fork_child_flag(p);
1031 #endif
1032
1033 #ifdef CONFIG_DEBUG_MUTEXES
1034         p->blocked_on = NULL; /* not blocked yet */
1035 #endif
1036
1037         p->tgid = p->pid;
1038         if (clone_flags & CLONE_THREAD)
1039                 p->tgid = current->tgid;
1040
1041         if ((retval = security_task_alloc(p)))
1042                 goto bad_fork_cleanup_policy;
1043         if ((retval = audit_alloc(p)))
1044                 goto bad_fork_cleanup_security;
1045         /* copy all the process information */
1046         if ((retval = copy_semundo(clone_flags, p)))
1047                 goto bad_fork_cleanup_audit;
1048         if ((retval = copy_files(clone_flags, p)))
1049                 goto bad_fork_cleanup_semundo;
1050         if ((retval = copy_fs(clone_flags, p)))
1051                 goto bad_fork_cleanup_files;
1052         if ((retval = copy_sighand(clone_flags, p)))
1053                 goto bad_fork_cleanup_fs;
1054         if ((retval = copy_signal(clone_flags, p)))
1055                 goto bad_fork_cleanup_sighand;
1056         if ((retval = copy_mm(clone_flags, p)))
1057                 goto bad_fork_cleanup_signal;
1058         if ((retval = copy_keys(clone_flags, p)))
1059                 goto bad_fork_cleanup_mm;
1060         if ((retval = copy_namespace(clone_flags, p)))
1061                 goto bad_fork_cleanup_keys;
1062         retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1063         if (retval)
1064                 goto bad_fork_cleanup_namespace;
1065
1066         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1067         /*
1068          * Clear TID on mm_release()?
1069          */
1070         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1071         p->robust_list = NULL;
1072 #ifdef CONFIG_COMPAT
1073         p->compat_robust_list = NULL;
1074 #endif
1075         /*
1076          * sigaltstack should be cleared when sharing the same VM
1077          */
1078         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1079                 p->sas_ss_sp = p->sas_ss_size = 0;
1080
1081         /*
1082          * Syscall tracing should be turned off in the child regardless
1083          * of CLONE_PTRACE.
1084          */
1085         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1086 #ifdef TIF_SYSCALL_EMU
1087         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1088 #endif
1089
1090         /* Our parent execution domain becomes current domain
1091            These must match for thread signalling to apply */
1092            
1093         p->parent_exec_id = p->self_exec_id;
1094
1095         /* ok, now we should be set up.. */
1096         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1097         p->pdeath_signal = 0;
1098         p->exit_state = 0;
1099
1100         /*
1101          * Ok, make it visible to the rest of the system.
1102          * We dont wake it up yet.
1103          */
1104         p->group_leader = p;
1105         INIT_LIST_HEAD(&p->ptrace_children);
1106         INIT_LIST_HEAD(&p->ptrace_list);
1107
1108         /* Perform scheduler related setup. Assign this task to a CPU. */
1109         sched_fork(p, clone_flags);
1110
1111         /* Need tasklist lock for parent etc handling! */
1112         write_lock_irq(&tasklist_lock);
1113
1114         /*
1115          * The task hasn't been attached yet, so its cpus_allowed mask will
1116          * not be changed, nor will its assigned CPU.
1117          *
1118          * The cpus_allowed mask of the parent may have changed after it was
1119          * copied first time - so re-copy it here, then check the child's CPU
1120          * to ensure it is on a valid CPU (and if not, just force it back to
1121          * parent's CPU). This avoids alot of nasty races.
1122          */
1123         p->cpus_allowed = current->cpus_allowed;
1124         if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1125                         !cpu_online(task_cpu(p))))
1126                 set_task_cpu(p, smp_processor_id());
1127
1128         /*
1129          * Check for pending SIGKILL! The new thread should not be allowed
1130          * to slip out of an OOM kill. (or normal SIGKILL.)
1131          */
1132         if (sigismember(&current->pending.signal, SIGKILL)) {
1133                 write_unlock_irq(&tasklist_lock);
1134                 retval = -EINTR;
1135                 goto bad_fork_cleanup_namespace;
1136         }
1137
1138         /* CLONE_PARENT re-uses the old parent */
1139         if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1140                 p->real_parent = current->real_parent;
1141         else
1142                 p->real_parent = current;
1143         p->parent = p->real_parent;
1144
1145         spin_lock(&current->sighand->siglock);
1146         if (clone_flags & CLONE_THREAD) {
1147                 /*
1148                  * Important: if an exit-all has been started then
1149                  * do not create this new thread - the whole thread
1150                  * group is supposed to exit anyway.
1151                  */
1152                 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1153                         spin_unlock(&current->sighand->siglock);
1154                         write_unlock_irq(&tasklist_lock);
1155                         retval = -EAGAIN;
1156                         goto bad_fork_cleanup_namespace;
1157                 }
1158                 p->group_leader = current->group_leader;
1159
1160                 if (current->signal->group_stop_count > 0) {
1161                         /*
1162                          * There is an all-stop in progress for the group.
1163                          * We ourselves will stop as soon as we check signals.
1164                          * Make the new thread part of that group stop too.
1165                          */
1166                         current->signal->group_stop_count++;
1167                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1168                 }
1169
1170                 if (!cputime_eq(current->signal->it_virt_expires,
1171                                 cputime_zero) ||
1172                     !cputime_eq(current->signal->it_prof_expires,
1173                                 cputime_zero) ||
1174                     current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1175                     !list_empty(&current->signal->cpu_timers[0]) ||
1176                     !list_empty(&current->signal->cpu_timers[1]) ||
1177                     !list_empty(&current->signal->cpu_timers[2])) {
1178                         /*
1179                          * Have child wake up on its first tick to check
1180                          * for process CPU timers.
1181                          */
1182                         p->it_prof_expires = jiffies_to_cputime(1);
1183                 }
1184         }
1185
1186         /*
1187          * inherit ioprio
1188          */
1189         p->ioprio = current->ioprio;
1190
1191         if (likely(p->pid)) {
1192                 add_parent(p);
1193                 if (unlikely(p->ptrace & PT_PTRACED))
1194                         __ptrace_link(p, current->parent);
1195
1196                 if (thread_group_leader(p)) {
1197                         p->signal->tty = current->signal->tty;
1198                         p->signal->pgrp = process_group(current);
1199                         p->signal->session = current->signal->session;
1200                         attach_pid(p, PIDTYPE_PGID, process_group(p));
1201                         attach_pid(p, PIDTYPE_SID, p->signal->session);
1202
1203                         list_add_tail(&p->tasks, &init_task.tasks);
1204                         __get_cpu_var(process_counts)++;
1205                 }
1206                 attach_pid(p, PIDTYPE_TGID, p->tgid);
1207                 attach_pid(p, PIDTYPE_PID, p->pid);
1208                 nr_threads++;
1209         }
1210
1211         total_forks++;
1212         spin_unlock(&current->sighand->siglock);
1213         write_unlock_irq(&tasklist_lock);
1214         proc_fork_connector(p);
1215         return p;
1216
1217 bad_fork_cleanup_namespace:
1218         exit_namespace(p);
1219 bad_fork_cleanup_keys:
1220         exit_keys(p);
1221 bad_fork_cleanup_mm:
1222         if (p->mm)
1223                 mmput(p->mm);
1224 bad_fork_cleanup_signal:
1225         cleanup_signal(p);
1226 bad_fork_cleanup_sighand:
1227         __exit_sighand(p);
1228 bad_fork_cleanup_fs:
1229         exit_fs(p); /* blocking */
1230 bad_fork_cleanup_files:
1231         exit_files(p); /* blocking */
1232 bad_fork_cleanup_semundo:
1233         exit_sem(p);
1234 bad_fork_cleanup_audit:
1235         audit_free(p);
1236 bad_fork_cleanup_security:
1237         security_task_free(p);
1238 bad_fork_cleanup_policy:
1239 #ifdef CONFIG_NUMA
1240         mpol_free(p->mempolicy);
1241 bad_fork_cleanup_cpuset:
1242 #endif
1243         cpuset_exit(p);
1244 bad_fork_cleanup:
1245         if (p->binfmt)
1246                 module_put(p->binfmt->module);
1247 bad_fork_cleanup_put_domain:
1248         module_put(task_thread_info(p)->exec_domain->module);
1249 bad_fork_cleanup_count:
1250         put_group_info(p->group_info);
1251         atomic_dec(&p->user->processes);
1252         free_uid(p->user);
1253 bad_fork_free:
1254         free_task(p);
1255 fork_out:
1256         return ERR_PTR(retval);
1257 }
1258
1259 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1260 {
1261         memset(regs, 0, sizeof(struct pt_regs));
1262         return regs;
1263 }
1264
1265 task_t * __devinit fork_idle(int cpu)
1266 {
1267         task_t *task;
1268         struct pt_regs regs;
1269
1270         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1271         if (!task)
1272                 return ERR_PTR(-ENOMEM);
1273         init_idle(task, cpu);
1274
1275         return task;
1276 }
1277
1278 static inline int fork_traceflag (unsigned clone_flags)
1279 {
1280         if (clone_flags & CLONE_UNTRACED)
1281                 return 0;
1282         else if (clone_flags & CLONE_VFORK) {
1283                 if (current->ptrace & PT_TRACE_VFORK)
1284                         return PTRACE_EVENT_VFORK;
1285         } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1286                 if (current->ptrace & PT_TRACE_CLONE)
1287                         return PTRACE_EVENT_CLONE;
1288         } else if (current->ptrace & PT_TRACE_FORK)
1289                 return PTRACE_EVENT_FORK;
1290
1291         return 0;
1292 }
1293
1294 /*
1295  *  Ok, this is the main fork-routine.
1296  *
1297  * It copies the process, and if successful kick-starts
1298  * it and waits for it to finish using the VM if required.
1299  */
1300 long do_fork(unsigned long clone_flags,
1301               unsigned long stack_start,
1302               struct pt_regs *regs,
1303               unsigned long stack_size,
1304               int __user *parent_tidptr,
1305               int __user *child_tidptr)
1306 {
1307         struct task_struct *p;
1308         int trace = 0;
1309         long pid = alloc_pidmap();
1310
1311         if (pid < 0)
1312                 return -EAGAIN;
1313         if (unlikely(current->ptrace)) {
1314                 trace = fork_traceflag (clone_flags);
1315                 if (trace)
1316                         clone_flags |= CLONE_PTRACE;
1317         }
1318
1319         p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1320         /*
1321          * Do this prior waking up the new thread - the thread pointer
1322          * might get invalid after that point, if the thread exits quickly.
1323          */
1324         if (!IS_ERR(p)) {
1325                 struct completion vfork;
1326
1327                 if (clone_flags & CLONE_VFORK) {
1328                         p->vfork_done = &vfork;
1329                         init_completion(&vfork);
1330                 }
1331
1332                 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1333                         /*
1334                          * We'll start up with an immediate SIGSTOP.
1335                          */
1336                         sigaddset(&p->pending.signal, SIGSTOP);
1337                         set_tsk_thread_flag(p, TIF_SIGPENDING);
1338                 }
1339
1340                 if (!(clone_flags & CLONE_STOPPED))
1341                         wake_up_new_task(p, clone_flags);
1342                 else
1343                         p->state = TASK_STOPPED;
1344
1345                 if (unlikely (trace)) {
1346                         current->ptrace_message = pid;
1347                         ptrace_notify ((trace << 8) | SIGTRAP);
1348                 }
1349
1350                 if (clone_flags & CLONE_VFORK) {
1351                         wait_for_completion(&vfork);
1352                         if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1353                                 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1354                 }
1355         } else {
1356                 free_pidmap(pid);
1357                 pid = PTR_ERR(p);
1358         }
1359         return pid;
1360 }
1361
1362 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1363 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1364 #endif
1365
1366 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1367 {
1368         struct sighand_struct *sighand = data;
1369
1370         if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1371                                         SLAB_CTOR_CONSTRUCTOR)
1372                 spin_lock_init(&sighand->siglock);
1373 }
1374
1375 void __init proc_caches_init(void)
1376 {
1377         sighand_cachep = kmem_cache_create("sighand_cache",
1378                         sizeof(struct sighand_struct), 0,
1379                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1380                         sighand_ctor, NULL);
1381         signal_cachep = kmem_cache_create("signal_cache",
1382                         sizeof(struct signal_struct), 0,
1383                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1384         files_cachep = kmem_cache_create("files_cache", 
1385                         sizeof(struct files_struct), 0,
1386                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1387         fs_cachep = kmem_cache_create("fs_cache", 
1388                         sizeof(struct fs_struct), 0,
1389                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1390         vm_area_cachep = kmem_cache_create("vm_area_struct",
1391                         sizeof(struct vm_area_struct), 0,
1392                         SLAB_PANIC, NULL, NULL);
1393         mm_cachep = kmem_cache_create("mm_struct",
1394                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1395                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1396 }
1397
1398
1399 /*
1400  * Check constraints on flags passed to the unshare system call and
1401  * force unsharing of additional process context as appropriate.
1402  */
1403 static inline void check_unshare_flags(unsigned long *flags_ptr)
1404 {
1405         /*
1406          * If unsharing a thread from a thread group, must also
1407          * unshare vm.
1408          */
1409         if (*flags_ptr & CLONE_THREAD)
1410                 *flags_ptr |= CLONE_VM;
1411
1412         /*
1413          * If unsharing vm, must also unshare signal handlers.
1414          */
1415         if (*flags_ptr & CLONE_VM)
1416                 *flags_ptr |= CLONE_SIGHAND;
1417
1418         /*
1419          * If unsharing signal handlers and the task was created
1420          * using CLONE_THREAD, then must unshare the thread
1421          */
1422         if ((*flags_ptr & CLONE_SIGHAND) &&
1423             (atomic_read(&current->signal->count) > 1))
1424                 *flags_ptr |= CLONE_THREAD;
1425
1426         /*
1427          * If unsharing namespace, must also unshare filesystem information.
1428          */
1429         if (*flags_ptr & CLONE_NEWNS)
1430                 *flags_ptr |= CLONE_FS;
1431 }
1432
1433 /*
1434  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1435  */
1436 static int unshare_thread(unsigned long unshare_flags)
1437 {
1438         if (unshare_flags & CLONE_THREAD)
1439                 return -EINVAL;
1440
1441         return 0;
1442 }
1443
1444 /*
1445  * Unshare the filesystem structure if it is being shared
1446  */
1447 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1448 {
1449         struct fs_struct *fs = current->fs;
1450
1451         if ((unshare_flags & CLONE_FS) &&
1452             (fs && atomic_read(&fs->count) > 1)) {
1453                 *new_fsp = __copy_fs_struct(current->fs);
1454                 if (!*new_fsp)
1455                         return -ENOMEM;
1456         }
1457
1458         return 0;
1459 }
1460
1461 /*
1462  * Unshare the namespace structure if it is being shared
1463  */
1464 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1465 {
1466         struct namespace *ns = current->namespace;
1467
1468         if ((unshare_flags & CLONE_NEWNS) &&
1469             (ns && atomic_read(&ns->count) > 1)) {
1470                 if (!capable(CAP_SYS_ADMIN))
1471                         return -EPERM;
1472
1473                 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1474                 if (!*new_nsp)
1475                         return -ENOMEM;
1476         }
1477
1478         return 0;
1479 }
1480
1481 /*
1482  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1483  * supported yet
1484  */
1485 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1486 {
1487         struct sighand_struct *sigh = current->sighand;
1488
1489         if ((unshare_flags & CLONE_SIGHAND) &&
1490             (sigh && atomic_read(&sigh->count) > 1))
1491                 return -EINVAL;
1492         else
1493                 return 0;
1494 }
1495
1496 /*
1497  * Unshare vm if it is being shared
1498  */
1499 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1500 {
1501         struct mm_struct *mm = current->mm;
1502
1503         if ((unshare_flags & CLONE_VM) &&
1504             (mm && atomic_read(&mm->mm_users) > 1)) {
1505                 return -EINVAL;
1506         }
1507
1508         return 0;
1509 }
1510
1511 /*
1512  * Unshare file descriptor table if it is being shared
1513  */
1514 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1515 {
1516         struct files_struct *fd = current->files;
1517         int error = 0;
1518
1519         if ((unshare_flags & CLONE_FILES) &&
1520             (fd && atomic_read(&fd->count) > 1)) {
1521                 *new_fdp = dup_fd(fd, &error);
1522                 if (!*new_fdp)
1523                         return error;
1524         }
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1531  * supported yet
1532  */
1533 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1534 {
1535         if (unshare_flags & CLONE_SYSVSEM)
1536                 return -EINVAL;
1537
1538         return 0;
1539 }
1540
1541 /*
1542  * unshare allows a process to 'unshare' part of the process
1543  * context which was originally shared using clone.  copy_*
1544  * functions used by do_fork() cannot be used here directly
1545  * because they modify an inactive task_struct that is being
1546  * constructed. Here we are modifying the current, active,
1547  * task_struct.
1548  */
1549 asmlinkage long sys_unshare(unsigned long unshare_flags)
1550 {
1551         int err = 0;
1552         struct fs_struct *fs, *new_fs = NULL;
1553         struct namespace *ns, *new_ns = NULL;
1554         struct sighand_struct *sigh, *new_sigh = NULL;
1555         struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1556         struct files_struct *fd, *new_fd = NULL;
1557         struct sem_undo_list *new_ulist = NULL;
1558
1559         check_unshare_flags(&unshare_flags);
1560
1561         /* Return -EINVAL for all unsupported flags */
1562         err = -EINVAL;
1563         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1564                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1565                 goto bad_unshare_out;
1566
1567         if ((err = unshare_thread(unshare_flags)))
1568                 goto bad_unshare_out;
1569         if ((err = unshare_fs(unshare_flags, &new_fs)))
1570                 goto bad_unshare_cleanup_thread;
1571         if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1572                 goto bad_unshare_cleanup_fs;
1573         if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1574                 goto bad_unshare_cleanup_ns;
1575         if ((err = unshare_vm(unshare_flags, &new_mm)))
1576                 goto bad_unshare_cleanup_sigh;
1577         if ((err = unshare_fd(unshare_flags, &new_fd)))
1578                 goto bad_unshare_cleanup_vm;
1579         if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1580                 goto bad_unshare_cleanup_fd;
1581
1582         if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1583
1584                 task_lock(current);
1585
1586                 if (new_fs) {
1587                         fs = current->fs;
1588                         current->fs = new_fs;
1589                         new_fs = fs;
1590                 }
1591
1592                 if (new_ns) {
1593                         ns = current->namespace;
1594                         current->namespace = new_ns;
1595                         new_ns = ns;
1596                 }
1597
1598                 if (new_sigh) {
1599                         sigh = current->sighand;
1600                         rcu_assign_pointer(current->sighand, new_sigh);
1601                         new_sigh = sigh;
1602                 }
1603
1604                 if (new_mm) {
1605                         mm = current->mm;
1606                         active_mm = current->active_mm;
1607                         current->mm = new_mm;
1608                         current->active_mm = new_mm;
1609                         activate_mm(active_mm, new_mm);
1610                         new_mm = mm;
1611                 }
1612
1613                 if (new_fd) {
1614                         fd = current->files;
1615                         current->files = new_fd;
1616                         new_fd = fd;
1617                 }
1618
1619                 task_unlock(current);
1620         }
1621
1622 bad_unshare_cleanup_fd:
1623         if (new_fd)
1624                 put_files_struct(new_fd);
1625
1626 bad_unshare_cleanup_vm:
1627         if (new_mm)
1628                 mmput(new_mm);
1629
1630 bad_unshare_cleanup_sigh:
1631         if (new_sigh)
1632                 if (atomic_dec_and_test(&new_sigh->count))
1633                         kmem_cache_free(sighand_cachep, new_sigh);
1634
1635 bad_unshare_cleanup_ns:
1636         if (new_ns)
1637                 put_namespace(new_ns);
1638
1639 bad_unshare_cleanup_fs:
1640         if (new_fs)
1641                 put_fs_struct(new_fs);
1642
1643 bad_unshare_cleanup_thread:
1644 bad_unshare_out:
1645         return err;
1646 }