4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak)) sched_clock(void)
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 #ifdef CONFIG_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups);
166 /* task group related information */
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
188 struct list_head list;
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
197 static struct sched_entity *init_sched_entity_p[NR_CPUS];
198 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
205 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206 static struct rt_rq *init_rt_rq_p[NR_CPUS];
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
212 static DEFINE_SPINLOCK(task_group_lock);
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex);
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
224 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
230 struct task_group init_task_group = {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se = init_sched_entity_p,
233 .cfs_rq = init_cfs_rq_p,
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
242 /* return group to which a task belongs */
243 static inline struct task_group *task_group(struct task_struct *p)
245 struct task_group *tg;
247 #ifdef CONFIG_USER_SCHED
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
253 tg = &init_task_group;
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
272 static inline void lock_doms_cur(void)
274 mutex_lock(&doms_cur_mutex);
277 static inline void unlock_doms_cur(void)
279 mutex_unlock(&doms_cur_mutex);
284 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
288 #endif /* CONFIG_GROUP_SCHED */
290 /* CFS-related fields in a runqueue */
292 struct load_weight load;
293 unsigned long nr_running;
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
304 struct sched_entity *curr, *next;
306 unsigned long nr_spread_over;
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
324 /* Real-Time classes' related field in a runqueue: */
326 struct rt_prio_array active;
327 unsigned long rt_nr_running;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio; /* highest queued rt task prio */
332 unsigned long rt_nr_migratory;
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
375 static struct root_domain def_root_domain;
380 * This is the main, per-CPU runqueue data structure.
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
394 unsigned long nr_running;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397 unsigned char idle_at_tick;
399 unsigned char in_nohz_recently;
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
403 unsigned long nr_load_updates;
408 u64 rt_period_expire;
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list;
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
425 unsigned long nr_uninterruptible;
427 struct task_struct *curr, *idle;
428 unsigned long next_balance;
429 struct mm_struct *prev_mm;
431 u64 clock, prev_clock_raw;
434 unsigned int clock_warps, clock_overflows, clock_underflows;
436 unsigned int clock_deep_idle_events;
442 struct root_domain *rd;
443 struct sched_domain *sd;
445 /* For active balancing */
448 /* cpu of this runqueue: */
451 struct task_struct *migration_thread;
452 struct list_head migration_queue;
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
461 #ifdef CONFIG_SCHEDSTATS
463 struct sched_info rq_sched_info;
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
471 /* schedule() stats */
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
481 unsigned int bkl_count;
483 struct lock_class_key rq_lock_key;
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
488 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
490 rq->curr->sched_class->check_preempt_curr(rq, p);
493 static inline int cpu_of(struct rq *rq)
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
506 static void __update_rq_clock(struct rq *rq)
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
517 * Protect against sched_clock() occasionally going backwards:
519 if (unlikely(delta < 0)) {
524 * Catch too large forward jumps too:
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
531 rq->clock_overflows++;
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
539 rq->prev_clock_raw = now;
543 static void update_rq_clock(struct rq *rq)
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
564 unsigned long rt_needs_cpu(int cpu)
566 struct rq *rq = cpu_rq(cpu);
569 if (!rq->rt_throttled)
572 if (rq->clock > rq->rt_period_expire)
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
578 return (unsigned long)delta;
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
587 # define const_debug static const
591 * Debugging: various feature bits
594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
597 SCHED_FEAT_HRTICK = 8,
598 SCHED_FEAT_DOUBLE_TICK = 16,
601 const_debug unsigned int sysctl_sched_features =
602 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
603 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
604 SCHED_FEAT_START_DEBIT * 1 |
605 SCHED_FEAT_HRTICK * 1 |
606 SCHED_FEAT_DOUBLE_TICK * 0;
608 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
611 * Number of tasks to iterate in a single balance run.
612 * Limited because this is done with IRQs disabled.
614 const_debug unsigned int sysctl_sched_nr_migrate = 32;
617 * period over which we measure -rt task cpu usage in us.
620 unsigned int sysctl_sched_rt_period = 1000000;
622 static __read_mostly int scheduler_running;
625 * part of the period that we allow rt tasks to run in us.
628 int sysctl_sched_rt_runtime = 950000;
631 * single value that denotes runtime == period, ie unlimited time.
633 #define RUNTIME_INF ((u64)~0ULL)
636 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
637 * clock constructed from sched_clock():
639 unsigned long long cpu_clock(int cpu)
641 unsigned long long now;
646 * Only call sched_clock() if the scheduler has already been
647 * initialized (some code might call cpu_clock() very early):
649 if (unlikely(!scheduler_running))
652 local_irq_save(flags);
656 local_irq_restore(flags);
660 EXPORT_SYMBOL_GPL(cpu_clock);
662 #ifndef prepare_arch_switch
663 # define prepare_arch_switch(next) do { } while (0)
665 #ifndef finish_arch_switch
666 # define finish_arch_switch(prev) do { } while (0)
669 static inline int task_current(struct rq *rq, struct task_struct *p)
671 return rq->curr == p;
674 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
675 static inline int task_running(struct rq *rq, struct task_struct *p)
677 return task_current(rq, p);
680 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
684 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
686 #ifdef CONFIG_DEBUG_SPINLOCK
687 /* this is a valid case when another task releases the spinlock */
688 rq->lock.owner = current;
691 * If we are tracking spinlock dependencies then we have to
692 * fix up the runqueue lock - which gets 'carried over' from
695 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
697 spin_unlock_irq(&rq->lock);
700 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
701 static inline int task_running(struct rq *rq, struct task_struct *p)
706 return task_current(rq, p);
710 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
714 * We can optimise this out completely for !SMP, because the
715 * SMP rebalancing from interrupt is the only thing that cares
720 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
721 spin_unlock_irq(&rq->lock);
723 spin_unlock(&rq->lock);
727 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
731 * After ->oncpu is cleared, the task can be moved to a different CPU.
732 * We must ensure this doesn't happen until the switch is completely
738 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
742 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
745 * __task_rq_lock - lock the runqueue a given task resides on.
746 * Must be called interrupts disabled.
748 static inline struct rq *__task_rq_lock(struct task_struct *p)
752 struct rq *rq = task_rq(p);
753 spin_lock(&rq->lock);
754 if (likely(rq == task_rq(p)))
756 spin_unlock(&rq->lock);
761 * task_rq_lock - lock the runqueue a given task resides on and disable
762 * interrupts. Note the ordering: we can safely lookup the task_rq without
763 * explicitly disabling preemption.
765 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
771 local_irq_save(*flags);
773 spin_lock(&rq->lock);
774 if (likely(rq == task_rq(p)))
776 spin_unlock_irqrestore(&rq->lock, *flags);
780 static void __task_rq_unlock(struct rq *rq)
783 spin_unlock(&rq->lock);
786 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
789 spin_unlock_irqrestore(&rq->lock, *flags);
793 * this_rq_lock - lock this runqueue and disable interrupts.
795 static struct rq *this_rq_lock(void)
802 spin_lock(&rq->lock);
808 * We are going deep-idle (irqs are disabled):
810 void sched_clock_idle_sleep_event(void)
812 struct rq *rq = cpu_rq(smp_processor_id());
814 spin_lock(&rq->lock);
815 __update_rq_clock(rq);
816 spin_unlock(&rq->lock);
817 rq->clock_deep_idle_events++;
819 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
822 * We just idled delta nanoseconds (called with irqs disabled):
824 void sched_clock_idle_wakeup_event(u64 delta_ns)
826 struct rq *rq = cpu_rq(smp_processor_id());
827 u64 now = sched_clock();
829 rq->idle_clock += delta_ns;
831 * Override the previous timestamp and ignore all
832 * sched_clock() deltas that occured while we idled,
833 * and use the PM-provided delta_ns to advance the
836 spin_lock(&rq->lock);
837 rq->prev_clock_raw = now;
838 rq->clock += delta_ns;
839 spin_unlock(&rq->lock);
840 touch_softlockup_watchdog();
842 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
844 static void __resched_task(struct task_struct *p, int tif_bit);
846 static inline void resched_task(struct task_struct *p)
848 __resched_task(p, TIF_NEED_RESCHED);
851 #ifdef CONFIG_SCHED_HRTICK
853 * Use HR-timers to deliver accurate preemption points.
855 * Its all a bit involved since we cannot program an hrt while holding the
856 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
859 * When we get rescheduled we reprogram the hrtick_timer outside of the
862 static inline void resched_hrt(struct task_struct *p)
864 __resched_task(p, TIF_HRTICK_RESCHED);
867 static inline void resched_rq(struct rq *rq)
871 spin_lock_irqsave(&rq->lock, flags);
872 resched_task(rq->curr);
873 spin_unlock_irqrestore(&rq->lock, flags);
877 HRTICK_SET, /* re-programm hrtick_timer */
878 HRTICK_RESET, /* not a new slice */
883 * - enabled by features
884 * - hrtimer is actually high res
886 static inline int hrtick_enabled(struct rq *rq)
888 if (!sched_feat(HRTICK))
890 return hrtimer_is_hres_active(&rq->hrtick_timer);
894 * Called to set the hrtick timer state.
896 * called with rq->lock held and irqs disabled
898 static void hrtick_start(struct rq *rq, u64 delay, int reset)
900 assert_spin_locked(&rq->lock);
903 * preempt at: now + delay
906 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
908 * indicate we need to program the timer
910 __set_bit(HRTICK_SET, &rq->hrtick_flags);
912 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
915 * New slices are called from the schedule path and don't need a
919 resched_hrt(rq->curr);
922 static void hrtick_clear(struct rq *rq)
924 if (hrtimer_active(&rq->hrtick_timer))
925 hrtimer_cancel(&rq->hrtick_timer);
929 * Update the timer from the possible pending state.
931 static void hrtick_set(struct rq *rq)
937 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
939 spin_lock_irqsave(&rq->lock, flags);
940 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
941 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
942 time = rq->hrtick_expire;
943 clear_thread_flag(TIF_HRTICK_RESCHED);
944 spin_unlock_irqrestore(&rq->lock, flags);
947 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
948 if (reset && !hrtimer_active(&rq->hrtick_timer))
955 * High-resolution timer tick.
956 * Runs from hardirq context with interrupts disabled.
958 static enum hrtimer_restart hrtick(struct hrtimer *timer)
960 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
962 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
964 spin_lock(&rq->lock);
965 __update_rq_clock(rq);
966 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
967 spin_unlock(&rq->lock);
969 return HRTIMER_NORESTART;
972 static inline void init_rq_hrtick(struct rq *rq)
974 rq->hrtick_flags = 0;
975 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
976 rq->hrtick_timer.function = hrtick;
977 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
980 void hrtick_resched(void)
985 if (!test_thread_flag(TIF_HRTICK_RESCHED))
988 local_irq_save(flags);
989 rq = cpu_rq(smp_processor_id());
991 local_irq_restore(flags);
994 static inline void hrtick_clear(struct rq *rq)
998 static inline void hrtick_set(struct rq *rq)
1002 static inline void init_rq_hrtick(struct rq *rq)
1006 void hrtick_resched(void)
1012 * resched_task - mark a task 'to be rescheduled now'.
1014 * On UP this means the setting of the need_resched flag, on SMP it
1015 * might also involve a cross-CPU call to trigger the scheduler on
1020 #ifndef tsk_is_polling
1021 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1024 static void __resched_task(struct task_struct *p, int tif_bit)
1028 assert_spin_locked(&task_rq(p)->lock);
1030 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1033 set_tsk_thread_flag(p, tif_bit);
1036 if (cpu == smp_processor_id())
1039 /* NEED_RESCHED must be visible before we test polling */
1041 if (!tsk_is_polling(p))
1042 smp_send_reschedule(cpu);
1045 static void resched_cpu(int cpu)
1047 struct rq *rq = cpu_rq(cpu);
1048 unsigned long flags;
1050 if (!spin_trylock_irqsave(&rq->lock, flags))
1052 resched_task(cpu_curr(cpu));
1053 spin_unlock_irqrestore(&rq->lock, flags);
1056 static void __resched_task(struct task_struct *p, int tif_bit)
1058 assert_spin_locked(&task_rq(p)->lock);
1059 set_tsk_thread_flag(p, tif_bit);
1063 #if BITS_PER_LONG == 32
1064 # define WMULT_CONST (~0UL)
1066 # define WMULT_CONST (1UL << 32)
1069 #define WMULT_SHIFT 32
1072 * Shift right and round:
1074 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1076 static unsigned long
1077 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1078 struct load_weight *lw)
1082 if (unlikely(!lw->inv_weight))
1083 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1085 tmp = (u64)delta_exec * weight;
1087 * Check whether we'd overflow the 64-bit multiplication:
1089 if (unlikely(tmp > WMULT_CONST))
1090 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1093 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1095 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1098 static inline unsigned long
1099 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1101 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1104 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1110 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1117 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1118 * of tasks with abnormal "nice" values across CPUs the contribution that
1119 * each task makes to its run queue's load is weighted according to its
1120 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1121 * scaled version of the new time slice allocation that they receive on time
1125 #define WEIGHT_IDLEPRIO 2
1126 #define WMULT_IDLEPRIO (1 << 31)
1129 * Nice levels are multiplicative, with a gentle 10% change for every
1130 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1131 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1132 * that remained on nice 0.
1134 * The "10% effect" is relative and cumulative: from _any_ nice level,
1135 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1136 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1137 * If a task goes up by ~10% and another task goes down by ~10% then
1138 * the relative distance between them is ~25%.)
1140 static const int prio_to_weight[40] = {
1141 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1142 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1143 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1144 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1145 /* 0 */ 1024, 820, 655, 526, 423,
1146 /* 5 */ 335, 272, 215, 172, 137,
1147 /* 10 */ 110, 87, 70, 56, 45,
1148 /* 15 */ 36, 29, 23, 18, 15,
1152 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1154 * In cases where the weight does not change often, we can use the
1155 * precalculated inverse to speed up arithmetics by turning divisions
1156 * into multiplications:
1158 static const u32 prio_to_wmult[40] = {
1159 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1160 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1161 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1162 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1163 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1164 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1165 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1166 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1169 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1172 * runqueue iterator, to support SMP load-balancing between different
1173 * scheduling classes, without having to expose their internal data
1174 * structures to the load-balancing proper:
1176 struct rq_iterator {
1178 struct task_struct *(*start)(void *);
1179 struct task_struct *(*next)(void *);
1183 static unsigned long
1184 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1185 unsigned long max_load_move, struct sched_domain *sd,
1186 enum cpu_idle_type idle, int *all_pinned,
1187 int *this_best_prio, struct rq_iterator *iterator);
1190 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1191 struct sched_domain *sd, enum cpu_idle_type idle,
1192 struct rq_iterator *iterator);
1195 #ifdef CONFIG_CGROUP_CPUACCT
1196 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1198 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1202 static unsigned long source_load(int cpu, int type);
1203 static unsigned long target_load(int cpu, int type);
1204 static unsigned long cpu_avg_load_per_task(int cpu);
1205 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1206 #endif /* CONFIG_SMP */
1208 #include "sched_stats.h"
1209 #include "sched_idletask.c"
1210 #include "sched_fair.c"
1211 #include "sched_rt.c"
1212 #ifdef CONFIG_SCHED_DEBUG
1213 # include "sched_debug.c"
1216 #define sched_class_highest (&rt_sched_class)
1218 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1220 update_load_add(&rq->load, p->se.load.weight);
1223 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1225 update_load_sub(&rq->load, p->se.load.weight);
1228 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1234 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1240 static void set_load_weight(struct task_struct *p)
1242 if (task_has_rt_policy(p)) {
1243 p->se.load.weight = prio_to_weight[0] * 2;
1244 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1249 * SCHED_IDLE tasks get minimal weight:
1251 if (p->policy == SCHED_IDLE) {
1252 p->se.load.weight = WEIGHT_IDLEPRIO;
1253 p->se.load.inv_weight = WMULT_IDLEPRIO;
1257 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1258 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1261 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1263 sched_info_queued(p);
1264 p->sched_class->enqueue_task(rq, p, wakeup);
1268 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1270 p->sched_class->dequeue_task(rq, p, sleep);
1275 * __normal_prio - return the priority that is based on the static prio
1277 static inline int __normal_prio(struct task_struct *p)
1279 return p->static_prio;
1283 * Calculate the expected normal priority: i.e. priority
1284 * without taking RT-inheritance into account. Might be
1285 * boosted by interactivity modifiers. Changes upon fork,
1286 * setprio syscalls, and whenever the interactivity
1287 * estimator recalculates.
1289 static inline int normal_prio(struct task_struct *p)
1293 if (task_has_rt_policy(p))
1294 prio = MAX_RT_PRIO-1 - p->rt_priority;
1296 prio = __normal_prio(p);
1301 * Calculate the current priority, i.e. the priority
1302 * taken into account by the scheduler. This value might
1303 * be boosted by RT tasks, or might be boosted by
1304 * interactivity modifiers. Will be RT if the task got
1305 * RT-boosted. If not then it returns p->normal_prio.
1307 static int effective_prio(struct task_struct *p)
1309 p->normal_prio = normal_prio(p);
1311 * If we are RT tasks or we were boosted to RT priority,
1312 * keep the priority unchanged. Otherwise, update priority
1313 * to the normal priority:
1315 if (!rt_prio(p->prio))
1316 return p->normal_prio;
1321 * activate_task - move a task to the runqueue.
1323 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1325 if (task_contributes_to_load(p))
1326 rq->nr_uninterruptible--;
1328 enqueue_task(rq, p, wakeup);
1329 inc_nr_running(p, rq);
1333 * deactivate_task - remove a task from the runqueue.
1335 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1337 if (task_contributes_to_load(p))
1338 rq->nr_uninterruptible++;
1340 dequeue_task(rq, p, sleep);
1341 dec_nr_running(p, rq);
1345 * task_curr - is this task currently executing on a CPU?
1346 * @p: the task in question.
1348 inline int task_curr(const struct task_struct *p)
1350 return cpu_curr(task_cpu(p)) == p;
1353 /* Used instead of source_load when we know the type == 0 */
1354 unsigned long weighted_cpuload(const int cpu)
1356 return cpu_rq(cpu)->load.weight;
1359 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1361 set_task_rq(p, cpu);
1364 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1365 * successfuly executed on another CPU. We must ensure that updates of
1366 * per-task data have been completed by this moment.
1369 task_thread_info(p)->cpu = cpu;
1373 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1374 const struct sched_class *prev_class,
1375 int oldprio, int running)
1377 if (prev_class != p->sched_class) {
1378 if (prev_class->switched_from)
1379 prev_class->switched_from(rq, p, running);
1380 p->sched_class->switched_to(rq, p, running);
1382 p->sched_class->prio_changed(rq, p, oldprio, running);
1388 * Is this task likely cache-hot:
1391 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1396 * Buddy candidates are cache hot:
1398 if (&p->se == cfs_rq_of(&p->se)->next)
1401 if (p->sched_class != &fair_sched_class)
1404 if (sysctl_sched_migration_cost == -1)
1406 if (sysctl_sched_migration_cost == 0)
1409 delta = now - p->se.exec_start;
1411 return delta < (s64)sysctl_sched_migration_cost;
1415 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1417 int old_cpu = task_cpu(p);
1418 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1419 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1420 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1423 clock_offset = old_rq->clock - new_rq->clock;
1425 #ifdef CONFIG_SCHEDSTATS
1426 if (p->se.wait_start)
1427 p->se.wait_start -= clock_offset;
1428 if (p->se.sleep_start)
1429 p->se.sleep_start -= clock_offset;
1430 if (p->se.block_start)
1431 p->se.block_start -= clock_offset;
1432 if (old_cpu != new_cpu) {
1433 schedstat_inc(p, se.nr_migrations);
1434 if (task_hot(p, old_rq->clock, NULL))
1435 schedstat_inc(p, se.nr_forced2_migrations);
1438 p->se.vruntime -= old_cfsrq->min_vruntime -
1439 new_cfsrq->min_vruntime;
1441 __set_task_cpu(p, new_cpu);
1444 struct migration_req {
1445 struct list_head list;
1447 struct task_struct *task;
1450 struct completion done;
1454 * The task's runqueue lock must be held.
1455 * Returns true if you have to wait for migration thread.
1458 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1460 struct rq *rq = task_rq(p);
1463 * If the task is not on a runqueue (and not running), then
1464 * it is sufficient to simply update the task's cpu field.
1466 if (!p->se.on_rq && !task_running(rq, p)) {
1467 set_task_cpu(p, dest_cpu);
1471 init_completion(&req->done);
1473 req->dest_cpu = dest_cpu;
1474 list_add(&req->list, &rq->migration_queue);
1480 * wait_task_inactive - wait for a thread to unschedule.
1482 * The caller must ensure that the task *will* unschedule sometime soon,
1483 * else this function might spin for a *long* time. This function can't
1484 * be called with interrupts off, or it may introduce deadlock with
1485 * smp_call_function() if an IPI is sent by the same process we are
1486 * waiting to become inactive.
1488 void wait_task_inactive(struct task_struct *p)
1490 unsigned long flags;
1496 * We do the initial early heuristics without holding
1497 * any task-queue locks at all. We'll only try to get
1498 * the runqueue lock when things look like they will
1504 * If the task is actively running on another CPU
1505 * still, just relax and busy-wait without holding
1508 * NOTE! Since we don't hold any locks, it's not
1509 * even sure that "rq" stays as the right runqueue!
1510 * But we don't care, since "task_running()" will
1511 * return false if the runqueue has changed and p
1512 * is actually now running somewhere else!
1514 while (task_running(rq, p))
1518 * Ok, time to look more closely! We need the rq
1519 * lock now, to be *sure*. If we're wrong, we'll
1520 * just go back and repeat.
1522 rq = task_rq_lock(p, &flags);
1523 running = task_running(rq, p);
1524 on_rq = p->se.on_rq;
1525 task_rq_unlock(rq, &flags);
1528 * Was it really running after all now that we
1529 * checked with the proper locks actually held?
1531 * Oops. Go back and try again..
1533 if (unlikely(running)) {
1539 * It's not enough that it's not actively running,
1540 * it must be off the runqueue _entirely_, and not
1543 * So if it wa still runnable (but just not actively
1544 * running right now), it's preempted, and we should
1545 * yield - it could be a while.
1547 if (unlikely(on_rq)) {
1548 schedule_timeout_uninterruptible(1);
1553 * Ahh, all good. It wasn't running, and it wasn't
1554 * runnable, which means that it will never become
1555 * running in the future either. We're all done!
1562 * kick_process - kick a running thread to enter/exit the kernel
1563 * @p: the to-be-kicked thread
1565 * Cause a process which is running on another CPU to enter
1566 * kernel-mode, without any delay. (to get signals handled.)
1568 * NOTE: this function doesnt have to take the runqueue lock,
1569 * because all it wants to ensure is that the remote task enters
1570 * the kernel. If the IPI races and the task has been migrated
1571 * to another CPU then no harm is done and the purpose has been
1574 void kick_process(struct task_struct *p)
1580 if ((cpu != smp_processor_id()) && task_curr(p))
1581 smp_send_reschedule(cpu);
1586 * Return a low guess at the load of a migration-source cpu weighted
1587 * according to the scheduling class and "nice" value.
1589 * We want to under-estimate the load of migration sources, to
1590 * balance conservatively.
1592 static unsigned long source_load(int cpu, int type)
1594 struct rq *rq = cpu_rq(cpu);
1595 unsigned long total = weighted_cpuload(cpu);
1600 return min(rq->cpu_load[type-1], total);
1604 * Return a high guess at the load of a migration-target cpu weighted
1605 * according to the scheduling class and "nice" value.
1607 static unsigned long target_load(int cpu, int type)
1609 struct rq *rq = cpu_rq(cpu);
1610 unsigned long total = weighted_cpuload(cpu);
1615 return max(rq->cpu_load[type-1], total);
1619 * Return the average load per task on the cpu's run queue
1621 static unsigned long cpu_avg_load_per_task(int cpu)
1623 struct rq *rq = cpu_rq(cpu);
1624 unsigned long total = weighted_cpuload(cpu);
1625 unsigned long n = rq->nr_running;
1627 return n ? total / n : SCHED_LOAD_SCALE;
1631 * find_idlest_group finds and returns the least busy CPU group within the
1634 static struct sched_group *
1635 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1637 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1638 unsigned long min_load = ULONG_MAX, this_load = 0;
1639 int load_idx = sd->forkexec_idx;
1640 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1643 unsigned long load, avg_load;
1647 /* Skip over this group if it has no CPUs allowed */
1648 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1651 local_group = cpu_isset(this_cpu, group->cpumask);
1653 /* Tally up the load of all CPUs in the group */
1656 for_each_cpu_mask(i, group->cpumask) {
1657 /* Bias balancing toward cpus of our domain */
1659 load = source_load(i, load_idx);
1661 load = target_load(i, load_idx);
1666 /* Adjust by relative CPU power of the group */
1667 avg_load = sg_div_cpu_power(group,
1668 avg_load * SCHED_LOAD_SCALE);
1671 this_load = avg_load;
1673 } else if (avg_load < min_load) {
1674 min_load = avg_load;
1677 } while (group = group->next, group != sd->groups);
1679 if (!idlest || 100*this_load < imbalance*min_load)
1685 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1688 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1691 unsigned long load, min_load = ULONG_MAX;
1695 /* Traverse only the allowed CPUs */
1696 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1698 for_each_cpu_mask(i, tmp) {
1699 load = weighted_cpuload(i);
1701 if (load < min_load || (load == min_load && i == this_cpu)) {
1711 * sched_balance_self: balance the current task (running on cpu) in domains
1712 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1715 * Balance, ie. select the least loaded group.
1717 * Returns the target CPU number, or the same CPU if no balancing is needed.
1719 * preempt must be disabled.
1721 static int sched_balance_self(int cpu, int flag)
1723 struct task_struct *t = current;
1724 struct sched_domain *tmp, *sd = NULL;
1726 for_each_domain(cpu, tmp) {
1728 * If power savings logic is enabled for a domain, stop there.
1730 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1732 if (tmp->flags & flag)
1738 struct sched_group *group;
1739 int new_cpu, weight;
1741 if (!(sd->flags & flag)) {
1747 group = find_idlest_group(sd, t, cpu);
1753 new_cpu = find_idlest_cpu(group, t, cpu);
1754 if (new_cpu == -1 || new_cpu == cpu) {
1755 /* Now try balancing at a lower domain level of cpu */
1760 /* Now try balancing at a lower domain level of new_cpu */
1763 weight = cpus_weight(span);
1764 for_each_domain(cpu, tmp) {
1765 if (weight <= cpus_weight(tmp->span))
1767 if (tmp->flags & flag)
1770 /* while loop will break here if sd == NULL */
1776 #endif /* CONFIG_SMP */
1779 * try_to_wake_up - wake up a thread
1780 * @p: the to-be-woken-up thread
1781 * @state: the mask of task states that can be woken
1782 * @sync: do a synchronous wakeup?
1784 * Put it on the run-queue if it's not already there. The "current"
1785 * thread is always on the run-queue (except when the actual
1786 * re-schedule is in progress), and as such you're allowed to do
1787 * the simpler "current->state = TASK_RUNNING" to mark yourself
1788 * runnable without the overhead of this.
1790 * returns failure only if the task is already active.
1792 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1794 int cpu, orig_cpu, this_cpu, success = 0;
1795 unsigned long flags;
1800 rq = task_rq_lock(p, &flags);
1801 old_state = p->state;
1802 if (!(old_state & state))
1810 this_cpu = smp_processor_id();
1813 if (unlikely(task_running(rq, p)))
1816 cpu = p->sched_class->select_task_rq(p, sync);
1817 if (cpu != orig_cpu) {
1818 set_task_cpu(p, cpu);
1819 task_rq_unlock(rq, &flags);
1820 /* might preempt at this point */
1821 rq = task_rq_lock(p, &flags);
1822 old_state = p->state;
1823 if (!(old_state & state))
1828 this_cpu = smp_processor_id();
1832 #ifdef CONFIG_SCHEDSTATS
1833 schedstat_inc(rq, ttwu_count);
1834 if (cpu == this_cpu)
1835 schedstat_inc(rq, ttwu_local);
1837 struct sched_domain *sd;
1838 for_each_domain(this_cpu, sd) {
1839 if (cpu_isset(cpu, sd->span)) {
1840 schedstat_inc(sd, ttwu_wake_remote);
1848 #endif /* CONFIG_SMP */
1849 schedstat_inc(p, se.nr_wakeups);
1851 schedstat_inc(p, se.nr_wakeups_sync);
1852 if (orig_cpu != cpu)
1853 schedstat_inc(p, se.nr_wakeups_migrate);
1854 if (cpu == this_cpu)
1855 schedstat_inc(p, se.nr_wakeups_local);
1857 schedstat_inc(p, se.nr_wakeups_remote);
1858 update_rq_clock(rq);
1859 activate_task(rq, p, 1);
1863 check_preempt_curr(rq, p);
1865 p->state = TASK_RUNNING;
1867 if (p->sched_class->task_wake_up)
1868 p->sched_class->task_wake_up(rq, p);
1871 task_rq_unlock(rq, &flags);
1876 int wake_up_process(struct task_struct *p)
1878 return try_to_wake_up(p, TASK_ALL, 0);
1880 EXPORT_SYMBOL(wake_up_process);
1882 int wake_up_state(struct task_struct *p, unsigned int state)
1884 return try_to_wake_up(p, state, 0);
1888 * Perform scheduler related setup for a newly forked process p.
1889 * p is forked by current.
1891 * __sched_fork() is basic setup used by init_idle() too:
1893 static void __sched_fork(struct task_struct *p)
1895 p->se.exec_start = 0;
1896 p->se.sum_exec_runtime = 0;
1897 p->se.prev_sum_exec_runtime = 0;
1898 p->se.last_wakeup = 0;
1899 p->se.avg_overlap = 0;
1901 #ifdef CONFIG_SCHEDSTATS
1902 p->se.wait_start = 0;
1903 p->se.sum_sleep_runtime = 0;
1904 p->se.sleep_start = 0;
1905 p->se.block_start = 0;
1906 p->se.sleep_max = 0;
1907 p->se.block_max = 0;
1909 p->se.slice_max = 0;
1913 INIT_LIST_HEAD(&p->rt.run_list);
1916 #ifdef CONFIG_PREEMPT_NOTIFIERS
1917 INIT_HLIST_HEAD(&p->preempt_notifiers);
1921 * We mark the process as running here, but have not actually
1922 * inserted it onto the runqueue yet. This guarantees that
1923 * nobody will actually run it, and a signal or other external
1924 * event cannot wake it up and insert it on the runqueue either.
1926 p->state = TASK_RUNNING;
1930 * fork()/clone()-time setup:
1932 void sched_fork(struct task_struct *p, int clone_flags)
1934 int cpu = get_cpu();
1939 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1941 set_task_cpu(p, cpu);
1944 * Make sure we do not leak PI boosting priority to the child:
1946 p->prio = current->normal_prio;
1947 if (!rt_prio(p->prio))
1948 p->sched_class = &fair_sched_class;
1950 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1951 if (likely(sched_info_on()))
1952 memset(&p->sched_info, 0, sizeof(p->sched_info));
1954 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1957 #ifdef CONFIG_PREEMPT
1958 /* Want to start with kernel preemption disabled. */
1959 task_thread_info(p)->preempt_count = 1;
1965 * wake_up_new_task - wake up a newly created task for the first time.
1967 * This function will do some initial scheduler statistics housekeeping
1968 * that must be done for every newly created context, then puts the task
1969 * on the runqueue and wakes it.
1971 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1973 unsigned long flags;
1976 rq = task_rq_lock(p, &flags);
1977 BUG_ON(p->state != TASK_RUNNING);
1978 update_rq_clock(rq);
1980 p->prio = effective_prio(p);
1982 if (!p->sched_class->task_new || !current->se.on_rq) {
1983 activate_task(rq, p, 0);
1986 * Let the scheduling class do new task startup
1987 * management (if any):
1989 p->sched_class->task_new(rq, p);
1990 inc_nr_running(p, rq);
1992 check_preempt_curr(rq, p);
1994 if (p->sched_class->task_wake_up)
1995 p->sched_class->task_wake_up(rq, p);
1997 task_rq_unlock(rq, &flags);
2000 #ifdef CONFIG_PREEMPT_NOTIFIERS
2003 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2004 * @notifier: notifier struct to register
2006 void preempt_notifier_register(struct preempt_notifier *notifier)
2008 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2010 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2013 * preempt_notifier_unregister - no longer interested in preemption notifications
2014 * @notifier: notifier struct to unregister
2016 * This is safe to call from within a preemption notifier.
2018 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2020 hlist_del(¬ifier->link);
2022 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2024 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2026 struct preempt_notifier *notifier;
2027 struct hlist_node *node;
2029 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2030 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2034 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2035 struct task_struct *next)
2037 struct preempt_notifier *notifier;
2038 struct hlist_node *node;
2040 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2041 notifier->ops->sched_out(notifier, next);
2046 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2052 struct task_struct *next)
2059 * prepare_task_switch - prepare to switch tasks
2060 * @rq: the runqueue preparing to switch
2061 * @prev: the current task that is being switched out
2062 * @next: the task we are going to switch to.
2064 * This is called with the rq lock held and interrupts off. It must
2065 * be paired with a subsequent finish_task_switch after the context
2068 * prepare_task_switch sets up locking and calls architecture specific
2072 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2073 struct task_struct *next)
2075 fire_sched_out_preempt_notifiers(prev, next);
2076 prepare_lock_switch(rq, next);
2077 prepare_arch_switch(next);
2081 * finish_task_switch - clean up after a task-switch
2082 * @rq: runqueue associated with task-switch
2083 * @prev: the thread we just switched away from.
2085 * finish_task_switch must be called after the context switch, paired
2086 * with a prepare_task_switch call before the context switch.
2087 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2088 * and do any other architecture-specific cleanup actions.
2090 * Note that we may have delayed dropping an mm in context_switch(). If
2091 * so, we finish that here outside of the runqueue lock. (Doing it
2092 * with the lock held can cause deadlocks; see schedule() for
2095 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2096 __releases(rq->lock)
2098 struct mm_struct *mm = rq->prev_mm;
2104 * A task struct has one reference for the use as "current".
2105 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2106 * schedule one last time. The schedule call will never return, and
2107 * the scheduled task must drop that reference.
2108 * The test for TASK_DEAD must occur while the runqueue locks are
2109 * still held, otherwise prev could be scheduled on another cpu, die
2110 * there before we look at prev->state, and then the reference would
2112 * Manfred Spraul <manfred@colorfullife.com>
2114 prev_state = prev->state;
2115 finish_arch_switch(prev);
2116 finish_lock_switch(rq, prev);
2118 if (current->sched_class->post_schedule)
2119 current->sched_class->post_schedule(rq);
2122 fire_sched_in_preempt_notifiers(current);
2125 if (unlikely(prev_state == TASK_DEAD)) {
2127 * Remove function-return probe instances associated with this
2128 * task and put them back on the free list.
2130 kprobe_flush_task(prev);
2131 put_task_struct(prev);
2136 * schedule_tail - first thing a freshly forked thread must call.
2137 * @prev: the thread we just switched away from.
2139 asmlinkage void schedule_tail(struct task_struct *prev)
2140 __releases(rq->lock)
2142 struct rq *rq = this_rq();
2144 finish_task_switch(rq, prev);
2145 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2146 /* In this case, finish_task_switch does not reenable preemption */
2149 if (current->set_child_tid)
2150 put_user(task_pid_vnr(current), current->set_child_tid);
2154 * context_switch - switch to the new MM and the new
2155 * thread's register state.
2158 context_switch(struct rq *rq, struct task_struct *prev,
2159 struct task_struct *next)
2161 struct mm_struct *mm, *oldmm;
2163 prepare_task_switch(rq, prev, next);
2165 oldmm = prev->active_mm;
2167 * For paravirt, this is coupled with an exit in switch_to to
2168 * combine the page table reload and the switch backend into
2171 arch_enter_lazy_cpu_mode();
2173 if (unlikely(!mm)) {
2174 next->active_mm = oldmm;
2175 atomic_inc(&oldmm->mm_count);
2176 enter_lazy_tlb(oldmm, next);
2178 switch_mm(oldmm, mm, next);
2180 if (unlikely(!prev->mm)) {
2181 prev->active_mm = NULL;
2182 rq->prev_mm = oldmm;
2185 * Since the runqueue lock will be released by the next
2186 * task (which is an invalid locking op but in the case
2187 * of the scheduler it's an obvious special-case), so we
2188 * do an early lockdep release here:
2190 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2191 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2194 /* Here we just switch the register state and the stack. */
2195 switch_to(prev, next, prev);
2199 * this_rq must be evaluated again because prev may have moved
2200 * CPUs since it called schedule(), thus the 'rq' on its stack
2201 * frame will be invalid.
2203 finish_task_switch(this_rq(), prev);
2207 * nr_running, nr_uninterruptible and nr_context_switches:
2209 * externally visible scheduler statistics: current number of runnable
2210 * threads, current number of uninterruptible-sleeping threads, total
2211 * number of context switches performed since bootup.
2213 unsigned long nr_running(void)
2215 unsigned long i, sum = 0;
2217 for_each_online_cpu(i)
2218 sum += cpu_rq(i)->nr_running;
2223 unsigned long nr_uninterruptible(void)
2225 unsigned long i, sum = 0;
2227 for_each_possible_cpu(i)
2228 sum += cpu_rq(i)->nr_uninterruptible;
2231 * Since we read the counters lockless, it might be slightly
2232 * inaccurate. Do not allow it to go below zero though:
2234 if (unlikely((long)sum < 0))
2240 unsigned long long nr_context_switches(void)
2243 unsigned long long sum = 0;
2245 for_each_possible_cpu(i)
2246 sum += cpu_rq(i)->nr_switches;
2251 unsigned long nr_iowait(void)
2253 unsigned long i, sum = 0;
2255 for_each_possible_cpu(i)
2256 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2261 unsigned long nr_active(void)
2263 unsigned long i, running = 0, uninterruptible = 0;
2265 for_each_online_cpu(i) {
2266 running += cpu_rq(i)->nr_running;
2267 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2270 if (unlikely((long)uninterruptible < 0))
2271 uninterruptible = 0;
2273 return running + uninterruptible;
2277 * Update rq->cpu_load[] statistics. This function is usually called every
2278 * scheduler tick (TICK_NSEC).
2280 static void update_cpu_load(struct rq *this_rq)
2282 unsigned long this_load = this_rq->load.weight;
2285 this_rq->nr_load_updates++;
2287 /* Update our load: */
2288 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2289 unsigned long old_load, new_load;
2291 /* scale is effectively 1 << i now, and >> i divides by scale */
2293 old_load = this_rq->cpu_load[i];
2294 new_load = this_load;
2296 * Round up the averaging division if load is increasing. This
2297 * prevents us from getting stuck on 9 if the load is 10, for
2300 if (new_load > old_load)
2301 new_load += scale-1;
2302 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2309 * double_rq_lock - safely lock two runqueues
2311 * Note this does not disable interrupts like task_rq_lock,
2312 * you need to do so manually before calling.
2314 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2315 __acquires(rq1->lock)
2316 __acquires(rq2->lock)
2318 BUG_ON(!irqs_disabled());
2320 spin_lock(&rq1->lock);
2321 __acquire(rq2->lock); /* Fake it out ;) */
2324 spin_lock(&rq1->lock);
2325 spin_lock(&rq2->lock);
2327 spin_lock(&rq2->lock);
2328 spin_lock(&rq1->lock);
2331 update_rq_clock(rq1);
2332 update_rq_clock(rq2);
2336 * double_rq_unlock - safely unlock two runqueues
2338 * Note this does not restore interrupts like task_rq_unlock,
2339 * you need to do so manually after calling.
2341 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2342 __releases(rq1->lock)
2343 __releases(rq2->lock)
2345 spin_unlock(&rq1->lock);
2347 spin_unlock(&rq2->lock);
2349 __release(rq2->lock);
2353 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2355 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2356 __releases(this_rq->lock)
2357 __acquires(busiest->lock)
2358 __acquires(this_rq->lock)
2362 if (unlikely(!irqs_disabled())) {
2363 /* printk() doesn't work good under rq->lock */
2364 spin_unlock(&this_rq->lock);
2367 if (unlikely(!spin_trylock(&busiest->lock))) {
2368 if (busiest < this_rq) {
2369 spin_unlock(&this_rq->lock);
2370 spin_lock(&busiest->lock);
2371 spin_lock(&this_rq->lock);
2374 spin_lock(&busiest->lock);
2380 * If dest_cpu is allowed for this process, migrate the task to it.
2381 * This is accomplished by forcing the cpu_allowed mask to only
2382 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2383 * the cpu_allowed mask is restored.
2385 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2387 struct migration_req req;
2388 unsigned long flags;
2391 rq = task_rq_lock(p, &flags);
2392 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2393 || unlikely(cpu_is_offline(dest_cpu)))
2396 /* force the process onto the specified CPU */
2397 if (migrate_task(p, dest_cpu, &req)) {
2398 /* Need to wait for migration thread (might exit: take ref). */
2399 struct task_struct *mt = rq->migration_thread;
2401 get_task_struct(mt);
2402 task_rq_unlock(rq, &flags);
2403 wake_up_process(mt);
2404 put_task_struct(mt);
2405 wait_for_completion(&req.done);
2410 task_rq_unlock(rq, &flags);
2414 * sched_exec - execve() is a valuable balancing opportunity, because at
2415 * this point the task has the smallest effective memory and cache footprint.
2417 void sched_exec(void)
2419 int new_cpu, this_cpu = get_cpu();
2420 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2422 if (new_cpu != this_cpu)
2423 sched_migrate_task(current, new_cpu);
2427 * pull_task - move a task from a remote runqueue to the local runqueue.
2428 * Both runqueues must be locked.
2430 static void pull_task(struct rq *src_rq, struct task_struct *p,
2431 struct rq *this_rq, int this_cpu)
2433 deactivate_task(src_rq, p, 0);
2434 set_task_cpu(p, this_cpu);
2435 activate_task(this_rq, p, 0);
2437 * Note that idle threads have a prio of MAX_PRIO, for this test
2438 * to be always true for them.
2440 check_preempt_curr(this_rq, p);
2444 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2447 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2448 struct sched_domain *sd, enum cpu_idle_type idle,
2452 * We do not migrate tasks that are:
2453 * 1) running (obviously), or
2454 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2455 * 3) are cache-hot on their current CPU.
2457 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2458 schedstat_inc(p, se.nr_failed_migrations_affine);
2463 if (task_running(rq, p)) {
2464 schedstat_inc(p, se.nr_failed_migrations_running);
2469 * Aggressive migration if:
2470 * 1) task is cache cold, or
2471 * 2) too many balance attempts have failed.
2474 if (!task_hot(p, rq->clock, sd) ||
2475 sd->nr_balance_failed > sd->cache_nice_tries) {
2476 #ifdef CONFIG_SCHEDSTATS
2477 if (task_hot(p, rq->clock, sd)) {
2478 schedstat_inc(sd, lb_hot_gained[idle]);
2479 schedstat_inc(p, se.nr_forced_migrations);
2485 if (task_hot(p, rq->clock, sd)) {
2486 schedstat_inc(p, se.nr_failed_migrations_hot);
2492 static unsigned long
2493 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2494 unsigned long max_load_move, struct sched_domain *sd,
2495 enum cpu_idle_type idle, int *all_pinned,
2496 int *this_best_prio, struct rq_iterator *iterator)
2498 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2499 struct task_struct *p;
2500 long rem_load_move = max_load_move;
2502 if (max_load_move == 0)
2508 * Start the load-balancing iterator:
2510 p = iterator->start(iterator->arg);
2512 if (!p || loops++ > sysctl_sched_nr_migrate)
2515 * To help distribute high priority tasks across CPUs we don't
2516 * skip a task if it will be the highest priority task (i.e. smallest
2517 * prio value) on its new queue regardless of its load weight
2519 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2520 SCHED_LOAD_SCALE_FUZZ;
2521 if ((skip_for_load && p->prio >= *this_best_prio) ||
2522 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2523 p = iterator->next(iterator->arg);
2527 pull_task(busiest, p, this_rq, this_cpu);
2529 rem_load_move -= p->se.load.weight;
2532 * We only want to steal up to the prescribed amount of weighted load.
2534 if (rem_load_move > 0) {
2535 if (p->prio < *this_best_prio)
2536 *this_best_prio = p->prio;
2537 p = iterator->next(iterator->arg);
2542 * Right now, this is one of only two places pull_task() is called,
2543 * so we can safely collect pull_task() stats here rather than
2544 * inside pull_task().
2546 schedstat_add(sd, lb_gained[idle], pulled);
2549 *all_pinned = pinned;
2551 return max_load_move - rem_load_move;
2555 * move_tasks tries to move up to max_load_move weighted load from busiest to
2556 * this_rq, as part of a balancing operation within domain "sd".
2557 * Returns 1 if successful and 0 otherwise.
2559 * Called with both runqueues locked.
2561 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2562 unsigned long max_load_move,
2563 struct sched_domain *sd, enum cpu_idle_type idle,
2566 const struct sched_class *class = sched_class_highest;
2567 unsigned long total_load_moved = 0;
2568 int this_best_prio = this_rq->curr->prio;
2572 class->load_balance(this_rq, this_cpu, busiest,
2573 max_load_move - total_load_moved,
2574 sd, idle, all_pinned, &this_best_prio);
2575 class = class->next;
2576 } while (class && max_load_move > total_load_moved);
2578 return total_load_moved > 0;
2582 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2583 struct sched_domain *sd, enum cpu_idle_type idle,
2584 struct rq_iterator *iterator)
2586 struct task_struct *p = iterator->start(iterator->arg);
2590 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2591 pull_task(busiest, p, this_rq, this_cpu);
2593 * Right now, this is only the second place pull_task()
2594 * is called, so we can safely collect pull_task()
2595 * stats here rather than inside pull_task().
2597 schedstat_inc(sd, lb_gained[idle]);
2601 p = iterator->next(iterator->arg);
2608 * move_one_task tries to move exactly one task from busiest to this_rq, as
2609 * part of active balancing operations within "domain".
2610 * Returns 1 if successful and 0 otherwise.
2612 * Called with both runqueues locked.
2614 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2615 struct sched_domain *sd, enum cpu_idle_type idle)
2617 const struct sched_class *class;
2619 for (class = sched_class_highest; class; class = class->next)
2620 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2627 * find_busiest_group finds and returns the busiest CPU group within the
2628 * domain. It calculates and returns the amount of weighted load which
2629 * should be moved to restore balance via the imbalance parameter.
2631 static struct sched_group *
2632 find_busiest_group(struct sched_domain *sd, int this_cpu,
2633 unsigned long *imbalance, enum cpu_idle_type idle,
2634 int *sd_idle, cpumask_t *cpus, int *balance)
2636 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2637 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2638 unsigned long max_pull;
2639 unsigned long busiest_load_per_task, busiest_nr_running;
2640 unsigned long this_load_per_task, this_nr_running;
2641 int load_idx, group_imb = 0;
2642 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2643 int power_savings_balance = 1;
2644 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2645 unsigned long min_nr_running = ULONG_MAX;
2646 struct sched_group *group_min = NULL, *group_leader = NULL;
2649 max_load = this_load = total_load = total_pwr = 0;
2650 busiest_load_per_task = busiest_nr_running = 0;
2651 this_load_per_task = this_nr_running = 0;
2652 if (idle == CPU_NOT_IDLE)
2653 load_idx = sd->busy_idx;
2654 else if (idle == CPU_NEWLY_IDLE)
2655 load_idx = sd->newidle_idx;
2657 load_idx = sd->idle_idx;
2660 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2663 int __group_imb = 0;
2664 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2665 unsigned long sum_nr_running, sum_weighted_load;
2667 local_group = cpu_isset(this_cpu, group->cpumask);
2670 balance_cpu = first_cpu(group->cpumask);
2672 /* Tally up the load of all CPUs in the group */
2673 sum_weighted_load = sum_nr_running = avg_load = 0;
2675 min_cpu_load = ~0UL;
2677 for_each_cpu_mask(i, group->cpumask) {
2680 if (!cpu_isset(i, *cpus))
2685 if (*sd_idle && rq->nr_running)
2688 /* Bias balancing toward cpus of our domain */
2690 if (idle_cpu(i) && !first_idle_cpu) {
2695 load = target_load(i, load_idx);
2697 load = source_load(i, load_idx);
2698 if (load > max_cpu_load)
2699 max_cpu_load = load;
2700 if (min_cpu_load > load)
2701 min_cpu_load = load;
2705 sum_nr_running += rq->nr_running;
2706 sum_weighted_load += weighted_cpuload(i);
2710 * First idle cpu or the first cpu(busiest) in this sched group
2711 * is eligible for doing load balancing at this and above
2712 * domains. In the newly idle case, we will allow all the cpu's
2713 * to do the newly idle load balance.
2715 if (idle != CPU_NEWLY_IDLE && local_group &&
2716 balance_cpu != this_cpu && balance) {
2721 total_load += avg_load;
2722 total_pwr += group->__cpu_power;
2724 /* Adjust by relative CPU power of the group */
2725 avg_load = sg_div_cpu_power(group,
2726 avg_load * SCHED_LOAD_SCALE);
2728 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2731 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2734 this_load = avg_load;
2736 this_nr_running = sum_nr_running;
2737 this_load_per_task = sum_weighted_load;
2738 } else if (avg_load > max_load &&
2739 (sum_nr_running > group_capacity || __group_imb)) {
2740 max_load = avg_load;
2742 busiest_nr_running = sum_nr_running;
2743 busiest_load_per_task = sum_weighted_load;
2744 group_imb = __group_imb;
2747 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2749 * Busy processors will not participate in power savings
2752 if (idle == CPU_NOT_IDLE ||
2753 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2757 * If the local group is idle or completely loaded
2758 * no need to do power savings balance at this domain
2760 if (local_group && (this_nr_running >= group_capacity ||
2762 power_savings_balance = 0;
2765 * If a group is already running at full capacity or idle,
2766 * don't include that group in power savings calculations
2768 if (!power_savings_balance || sum_nr_running >= group_capacity
2773 * Calculate the group which has the least non-idle load.
2774 * This is the group from where we need to pick up the load
2777 if ((sum_nr_running < min_nr_running) ||
2778 (sum_nr_running == min_nr_running &&
2779 first_cpu(group->cpumask) <
2780 first_cpu(group_min->cpumask))) {
2782 min_nr_running = sum_nr_running;
2783 min_load_per_task = sum_weighted_load /
2788 * Calculate the group which is almost near its
2789 * capacity but still has some space to pick up some load
2790 * from other group and save more power
2792 if (sum_nr_running <= group_capacity - 1) {
2793 if (sum_nr_running > leader_nr_running ||
2794 (sum_nr_running == leader_nr_running &&
2795 first_cpu(group->cpumask) >
2796 first_cpu(group_leader->cpumask))) {
2797 group_leader = group;
2798 leader_nr_running = sum_nr_running;
2803 group = group->next;
2804 } while (group != sd->groups);
2806 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2809 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2811 if (this_load >= avg_load ||
2812 100*max_load <= sd->imbalance_pct*this_load)
2815 busiest_load_per_task /= busiest_nr_running;
2817 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2820 * We're trying to get all the cpus to the average_load, so we don't
2821 * want to push ourselves above the average load, nor do we wish to
2822 * reduce the max loaded cpu below the average load, as either of these
2823 * actions would just result in more rebalancing later, and ping-pong
2824 * tasks around. Thus we look for the minimum possible imbalance.
2825 * Negative imbalances (*we* are more loaded than anyone else) will
2826 * be counted as no imbalance for these purposes -- we can't fix that
2827 * by pulling tasks to us. Be careful of negative numbers as they'll
2828 * appear as very large values with unsigned longs.
2830 if (max_load <= busiest_load_per_task)
2834 * In the presence of smp nice balancing, certain scenarios can have
2835 * max load less than avg load(as we skip the groups at or below
2836 * its cpu_power, while calculating max_load..)
2838 if (max_load < avg_load) {
2840 goto small_imbalance;
2843 /* Don't want to pull so many tasks that a group would go idle */
2844 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2846 /* How much load to actually move to equalise the imbalance */
2847 *imbalance = min(max_pull * busiest->__cpu_power,
2848 (avg_load - this_load) * this->__cpu_power)
2852 * if *imbalance is less than the average load per runnable task
2853 * there is no gaurantee that any tasks will be moved so we'll have
2854 * a think about bumping its value to force at least one task to be
2857 if (*imbalance < busiest_load_per_task) {
2858 unsigned long tmp, pwr_now, pwr_move;
2862 pwr_move = pwr_now = 0;
2864 if (this_nr_running) {
2865 this_load_per_task /= this_nr_running;
2866 if (busiest_load_per_task > this_load_per_task)
2869 this_load_per_task = SCHED_LOAD_SCALE;
2871 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2872 busiest_load_per_task * imbn) {
2873 *imbalance = busiest_load_per_task;
2878 * OK, we don't have enough imbalance to justify moving tasks,
2879 * however we may be able to increase total CPU power used by
2883 pwr_now += busiest->__cpu_power *
2884 min(busiest_load_per_task, max_load);
2885 pwr_now += this->__cpu_power *
2886 min(this_load_per_task, this_load);
2887 pwr_now /= SCHED_LOAD_SCALE;
2889 /* Amount of load we'd subtract */
2890 tmp = sg_div_cpu_power(busiest,
2891 busiest_load_per_task * SCHED_LOAD_SCALE);
2893 pwr_move += busiest->__cpu_power *
2894 min(busiest_load_per_task, max_load - tmp);
2896 /* Amount of load we'd add */
2897 if (max_load * busiest->__cpu_power <
2898 busiest_load_per_task * SCHED_LOAD_SCALE)
2899 tmp = sg_div_cpu_power(this,
2900 max_load * busiest->__cpu_power);
2902 tmp = sg_div_cpu_power(this,
2903 busiest_load_per_task * SCHED_LOAD_SCALE);
2904 pwr_move += this->__cpu_power *
2905 min(this_load_per_task, this_load + tmp);
2906 pwr_move /= SCHED_LOAD_SCALE;
2908 /* Move if we gain throughput */
2909 if (pwr_move > pwr_now)
2910 *imbalance = busiest_load_per_task;
2916 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2917 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2920 if (this == group_leader && group_leader != group_min) {
2921 *imbalance = min_load_per_task;
2931 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2934 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2935 unsigned long imbalance, cpumask_t *cpus)
2937 struct rq *busiest = NULL, *rq;
2938 unsigned long max_load = 0;
2941 for_each_cpu_mask(i, group->cpumask) {
2944 if (!cpu_isset(i, *cpus))
2948 wl = weighted_cpuload(i);
2950 if (rq->nr_running == 1 && wl > imbalance)
2953 if (wl > max_load) {
2963 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2964 * so long as it is large enough.
2966 #define MAX_PINNED_INTERVAL 512
2969 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2970 * tasks if there is an imbalance.
2972 static int load_balance(int this_cpu, struct rq *this_rq,
2973 struct sched_domain *sd, enum cpu_idle_type idle,
2976 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2977 struct sched_group *group;
2978 unsigned long imbalance;
2980 cpumask_t cpus = CPU_MASK_ALL;
2981 unsigned long flags;
2984 * When power savings policy is enabled for the parent domain, idle
2985 * sibling can pick up load irrespective of busy siblings. In this case,
2986 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2987 * portraying it as CPU_NOT_IDLE.
2989 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2990 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2993 schedstat_inc(sd, lb_count[idle]);
2996 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3003 schedstat_inc(sd, lb_nobusyg[idle]);
3007 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3009 schedstat_inc(sd, lb_nobusyq[idle]);
3013 BUG_ON(busiest == this_rq);
3015 schedstat_add(sd, lb_imbalance[idle], imbalance);
3018 if (busiest->nr_running > 1) {
3020 * Attempt to move tasks. If find_busiest_group has found
3021 * an imbalance but busiest->nr_running <= 1, the group is
3022 * still unbalanced. ld_moved simply stays zero, so it is
3023 * correctly treated as an imbalance.
3025 local_irq_save(flags);
3026 double_rq_lock(this_rq, busiest);
3027 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3028 imbalance, sd, idle, &all_pinned);
3029 double_rq_unlock(this_rq, busiest);
3030 local_irq_restore(flags);
3033 * some other cpu did the load balance for us.
3035 if (ld_moved && this_cpu != smp_processor_id())
3036 resched_cpu(this_cpu);
3038 /* All tasks on this runqueue were pinned by CPU affinity */
3039 if (unlikely(all_pinned)) {
3040 cpu_clear(cpu_of(busiest), cpus);
3041 if (!cpus_empty(cpus))
3048 schedstat_inc(sd, lb_failed[idle]);
3049 sd->nr_balance_failed++;
3051 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3053 spin_lock_irqsave(&busiest->lock, flags);
3055 /* don't kick the migration_thread, if the curr
3056 * task on busiest cpu can't be moved to this_cpu
3058 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3059 spin_unlock_irqrestore(&busiest->lock, flags);
3061 goto out_one_pinned;
3064 if (!busiest->active_balance) {
3065 busiest->active_balance = 1;
3066 busiest->push_cpu = this_cpu;
3069 spin_unlock_irqrestore(&busiest->lock, flags);
3071 wake_up_process(busiest->migration_thread);
3074 * We've kicked active balancing, reset the failure
3077 sd->nr_balance_failed = sd->cache_nice_tries+1;
3080 sd->nr_balance_failed = 0;
3082 if (likely(!active_balance)) {
3083 /* We were unbalanced, so reset the balancing interval */
3084 sd->balance_interval = sd->min_interval;
3087 * If we've begun active balancing, start to back off. This
3088 * case may not be covered by the all_pinned logic if there
3089 * is only 1 task on the busy runqueue (because we don't call
3092 if (sd->balance_interval < sd->max_interval)
3093 sd->balance_interval *= 2;
3096 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3097 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3102 schedstat_inc(sd, lb_balanced[idle]);
3104 sd->nr_balance_failed = 0;
3107 /* tune up the balancing interval */
3108 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3109 (sd->balance_interval < sd->max_interval))
3110 sd->balance_interval *= 2;
3112 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3113 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3119 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3120 * tasks if there is an imbalance.
3122 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3123 * this_rq is locked.
3126 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3128 struct sched_group *group;
3129 struct rq *busiest = NULL;
3130 unsigned long imbalance;
3134 cpumask_t cpus = CPU_MASK_ALL;
3137 * When power savings policy is enabled for the parent domain, idle
3138 * sibling can pick up load irrespective of busy siblings. In this case,
3139 * let the state of idle sibling percolate up as IDLE, instead of
3140 * portraying it as CPU_NOT_IDLE.
3142 if (sd->flags & SD_SHARE_CPUPOWER &&
3143 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3146 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3148 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3149 &sd_idle, &cpus, NULL);
3151 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3155 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3158 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3162 BUG_ON(busiest == this_rq);
3164 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3167 if (busiest->nr_running > 1) {
3168 /* Attempt to move tasks */
3169 double_lock_balance(this_rq, busiest);
3170 /* this_rq->clock is already updated */
3171 update_rq_clock(busiest);
3172 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3173 imbalance, sd, CPU_NEWLY_IDLE,
3175 spin_unlock(&busiest->lock);
3177 if (unlikely(all_pinned)) {
3178 cpu_clear(cpu_of(busiest), cpus);
3179 if (!cpus_empty(cpus))
3185 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3186 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3187 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3190 sd->nr_balance_failed = 0;
3195 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3196 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3197 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3199 sd->nr_balance_failed = 0;
3205 * idle_balance is called by schedule() if this_cpu is about to become
3206 * idle. Attempts to pull tasks from other CPUs.
3208 static void idle_balance(int this_cpu, struct rq *this_rq)
3210 struct sched_domain *sd;
3211 int pulled_task = -1;
3212 unsigned long next_balance = jiffies + HZ;
3214 for_each_domain(this_cpu, sd) {
3215 unsigned long interval;
3217 if (!(sd->flags & SD_LOAD_BALANCE))
3220 if (sd->flags & SD_BALANCE_NEWIDLE)
3221 /* If we've pulled tasks over stop searching: */
3222 pulled_task = load_balance_newidle(this_cpu,
3225 interval = msecs_to_jiffies(sd->balance_interval);
3226 if (time_after(next_balance, sd->last_balance + interval))
3227 next_balance = sd->last_balance + interval;
3231 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3233 * We are going idle. next_balance may be set based on
3234 * a busy processor. So reset next_balance.
3236 this_rq->next_balance = next_balance;
3241 * active_load_balance is run by migration threads. It pushes running tasks
3242 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3243 * running on each physical CPU where possible, and avoids physical /
3244 * logical imbalances.
3246 * Called with busiest_rq locked.
3248 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3250 int target_cpu = busiest_rq->push_cpu;
3251 struct sched_domain *sd;
3252 struct rq *target_rq;
3254 /* Is there any task to move? */
3255 if (busiest_rq->nr_running <= 1)
3258 target_rq = cpu_rq(target_cpu);
3261 * This condition is "impossible", if it occurs
3262 * we need to fix it. Originally reported by
3263 * Bjorn Helgaas on a 128-cpu setup.
3265 BUG_ON(busiest_rq == target_rq);
3267 /* move a task from busiest_rq to target_rq */
3268 double_lock_balance(busiest_rq, target_rq);
3269 update_rq_clock(busiest_rq);
3270 update_rq_clock(target_rq);
3272 /* Search for an sd spanning us and the target CPU. */
3273 for_each_domain(target_cpu, sd) {
3274 if ((sd->flags & SD_LOAD_BALANCE) &&
3275 cpu_isset(busiest_cpu, sd->span))
3280 schedstat_inc(sd, alb_count);
3282 if (move_one_task(target_rq, target_cpu, busiest_rq,
3284 schedstat_inc(sd, alb_pushed);
3286 schedstat_inc(sd, alb_failed);
3288 spin_unlock(&target_rq->lock);
3293 atomic_t load_balancer;
3295 } nohz ____cacheline_aligned = {
3296 .load_balancer = ATOMIC_INIT(-1),
3297 .cpu_mask = CPU_MASK_NONE,
3301 * This routine will try to nominate the ilb (idle load balancing)
3302 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3303 * load balancing on behalf of all those cpus. If all the cpus in the system
3304 * go into this tickless mode, then there will be no ilb owner (as there is
3305 * no need for one) and all the cpus will sleep till the next wakeup event
3308 * For the ilb owner, tick is not stopped. And this tick will be used
3309 * for idle load balancing. ilb owner will still be part of
3312 * While stopping the tick, this cpu will become the ilb owner if there
3313 * is no other owner. And will be the owner till that cpu becomes busy
3314 * or if all cpus in the system stop their ticks at which point
3315 * there is no need for ilb owner.
3317 * When the ilb owner becomes busy, it nominates another owner, during the
3318 * next busy scheduler_tick()
3320 int select_nohz_load_balancer(int stop_tick)
3322 int cpu = smp_processor_id();
3325 cpu_set(cpu, nohz.cpu_mask);
3326 cpu_rq(cpu)->in_nohz_recently = 1;
3329 * If we are going offline and still the leader, give up!
3331 if (cpu_is_offline(cpu) &&
3332 atomic_read(&nohz.load_balancer) == cpu) {
3333 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3338 /* time for ilb owner also to sleep */
3339 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3340 if (atomic_read(&nohz.load_balancer) == cpu)
3341 atomic_set(&nohz.load_balancer, -1);
3345 if (atomic_read(&nohz.load_balancer) == -1) {
3346 /* make me the ilb owner */
3347 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3349 } else if (atomic_read(&nohz.load_balancer) == cpu)
3352 if (!cpu_isset(cpu, nohz.cpu_mask))
3355 cpu_clear(cpu, nohz.cpu_mask);
3357 if (atomic_read(&nohz.load_balancer) == cpu)
3358 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3365 static DEFINE_SPINLOCK(balancing);
3368 * It checks each scheduling domain to see if it is due to be balanced,
3369 * and initiates a balancing operation if so.
3371 * Balancing parameters are set up in arch_init_sched_domains.
3373 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3376 struct rq *rq = cpu_rq(cpu);
3377 unsigned long interval;
3378 struct sched_domain *sd;
3379 /* Earliest time when we have to do rebalance again */
3380 unsigned long next_balance = jiffies + 60*HZ;
3381 int update_next_balance = 0;
3383 for_each_domain(cpu, sd) {
3384 if (!(sd->flags & SD_LOAD_BALANCE))
3387 interval = sd->balance_interval;
3388 if (idle != CPU_IDLE)
3389 interval *= sd->busy_factor;
3391 /* scale ms to jiffies */
3392 interval = msecs_to_jiffies(interval);
3393 if (unlikely(!interval))
3395 if (interval > HZ*NR_CPUS/10)
3396 interval = HZ*NR_CPUS/10;
3399 if (sd->flags & SD_SERIALIZE) {
3400 if (!spin_trylock(&balancing))
3404 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3405 if (load_balance(cpu, rq, sd, idle, &balance)) {
3407 * We've pulled tasks over so either we're no
3408 * longer idle, or one of our SMT siblings is
3411 idle = CPU_NOT_IDLE;
3413 sd->last_balance = jiffies;
3415 if (sd->flags & SD_SERIALIZE)
3416 spin_unlock(&balancing);
3418 if (time_after(next_balance, sd->last_balance + interval)) {
3419 next_balance = sd->last_balance + interval;
3420 update_next_balance = 1;
3424 * Stop the load balance at this level. There is another
3425 * CPU in our sched group which is doing load balancing more
3433 * next_balance will be updated only when there is a need.
3434 * When the cpu is attached to null domain for ex, it will not be
3437 if (likely(update_next_balance))
3438 rq->next_balance = next_balance;
3442 * run_rebalance_domains is triggered when needed from the scheduler tick.
3443 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3444 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3446 static void run_rebalance_domains(struct softirq_action *h)
3448 int this_cpu = smp_processor_id();
3449 struct rq *this_rq = cpu_rq(this_cpu);
3450 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3451 CPU_IDLE : CPU_NOT_IDLE;
3453 rebalance_domains(this_cpu, idle);
3457 * If this cpu is the owner for idle load balancing, then do the
3458 * balancing on behalf of the other idle cpus whose ticks are
3461 if (this_rq->idle_at_tick &&
3462 atomic_read(&nohz.load_balancer) == this_cpu) {
3463 cpumask_t cpus = nohz.cpu_mask;
3467 cpu_clear(this_cpu, cpus);
3468 for_each_cpu_mask(balance_cpu, cpus) {
3470 * If this cpu gets work to do, stop the load balancing
3471 * work being done for other cpus. Next load
3472 * balancing owner will pick it up.
3477 rebalance_domains(balance_cpu, CPU_IDLE);
3479 rq = cpu_rq(balance_cpu);
3480 if (time_after(this_rq->next_balance, rq->next_balance))
3481 this_rq->next_balance = rq->next_balance;
3488 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3490 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3491 * idle load balancing owner or decide to stop the periodic load balancing,
3492 * if the whole system is idle.
3494 static inline void trigger_load_balance(struct rq *rq, int cpu)
3498 * If we were in the nohz mode recently and busy at the current
3499 * scheduler tick, then check if we need to nominate new idle
3502 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3503 rq->in_nohz_recently = 0;
3505 if (atomic_read(&nohz.load_balancer) == cpu) {
3506 cpu_clear(cpu, nohz.cpu_mask);
3507 atomic_set(&nohz.load_balancer, -1);
3510 if (atomic_read(&nohz.load_balancer) == -1) {
3512 * simple selection for now: Nominate the
3513 * first cpu in the nohz list to be the next
3516 * TBD: Traverse the sched domains and nominate
3517 * the nearest cpu in the nohz.cpu_mask.
3519 int ilb = first_cpu(nohz.cpu_mask);
3527 * If this cpu is idle and doing idle load balancing for all the
3528 * cpus with ticks stopped, is it time for that to stop?
3530 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3531 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3537 * If this cpu is idle and the idle load balancing is done by
3538 * someone else, then no need raise the SCHED_SOFTIRQ
3540 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3541 cpu_isset(cpu, nohz.cpu_mask))
3544 if (time_after_eq(jiffies, rq->next_balance))
3545 raise_softirq(SCHED_SOFTIRQ);
3548 #else /* CONFIG_SMP */
3551 * on UP we do not need to balance between CPUs:
3553 static inline void idle_balance(int cpu, struct rq *rq)
3559 DEFINE_PER_CPU(struct kernel_stat, kstat);
3561 EXPORT_PER_CPU_SYMBOL(kstat);
3564 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3565 * that have not yet been banked in case the task is currently running.
3567 unsigned long long task_sched_runtime(struct task_struct *p)
3569 unsigned long flags;
3573 rq = task_rq_lock(p, &flags);
3574 ns = p->se.sum_exec_runtime;
3575 if (task_current(rq, p)) {
3576 update_rq_clock(rq);
3577 delta_exec = rq->clock - p->se.exec_start;
3578 if ((s64)delta_exec > 0)
3581 task_rq_unlock(rq, &flags);
3587 * Account user cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in user space since the last update
3591 void account_user_time(struct task_struct *p, cputime_t cputime)
3593 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3596 p->utime = cputime_add(p->utime, cputime);
3598 /* Add user time to cpustat. */
3599 tmp = cputime_to_cputime64(cputime);
3600 if (TASK_NICE(p) > 0)
3601 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3603 cpustat->user = cputime64_add(cpustat->user, tmp);
3607 * Account guest cpu time to a process.
3608 * @p: the process that the cpu time gets accounted to
3609 * @cputime: the cpu time spent in virtual machine since the last update
3611 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3616 tmp = cputime_to_cputime64(cputime);
3618 p->utime = cputime_add(p->utime, cputime);
3619 p->gtime = cputime_add(p->gtime, cputime);
3621 cpustat->user = cputime64_add(cpustat->user, tmp);
3622 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3626 * Account scaled user cpu time to a process.
3627 * @p: the process that the cpu time gets accounted to
3628 * @cputime: the cpu time spent in user space since the last update
3630 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3632 p->utimescaled = cputime_add(p->utimescaled, cputime);
3636 * Account system cpu time to a process.
3637 * @p: the process that the cpu time gets accounted to
3638 * @hardirq_offset: the offset to subtract from hardirq_count()
3639 * @cputime: the cpu time spent in kernel space since the last update
3641 void account_system_time(struct task_struct *p, int hardirq_offset,
3644 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3645 struct rq *rq = this_rq();
3648 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3649 return account_guest_time(p, cputime);
3651 p->stime = cputime_add(p->stime, cputime);
3653 /* Add system time to cpustat. */
3654 tmp = cputime_to_cputime64(cputime);
3655 if (hardirq_count() - hardirq_offset)
3656 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3657 else if (softirq_count())
3658 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3659 else if (p != rq->idle)
3660 cpustat->system = cputime64_add(cpustat->system, tmp);
3661 else if (atomic_read(&rq->nr_iowait) > 0)
3662 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3664 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3665 /* Account for system time used */
3666 acct_update_integrals(p);
3670 * Account scaled system cpu time to a process.
3671 * @p: the process that the cpu time gets accounted to
3672 * @hardirq_offset: the offset to subtract from hardirq_count()
3673 * @cputime: the cpu time spent in kernel space since the last update
3675 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3677 p->stimescaled = cputime_add(p->stimescaled, cputime);
3681 * Account for involuntary wait time.
3682 * @p: the process from which the cpu time has been stolen
3683 * @steal: the cpu time spent in involuntary wait
3685 void account_steal_time(struct task_struct *p, cputime_t steal)
3687 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3688 cputime64_t tmp = cputime_to_cputime64(steal);
3689 struct rq *rq = this_rq();
3691 if (p == rq->idle) {
3692 p->stime = cputime_add(p->stime, steal);
3693 if (atomic_read(&rq->nr_iowait) > 0)
3694 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3696 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3698 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3702 * This function gets called by the timer code, with HZ frequency.
3703 * We call it with interrupts disabled.
3705 * It also gets called by the fork code, when changing the parent's
3708 void scheduler_tick(void)
3710 int cpu = smp_processor_id();
3711 struct rq *rq = cpu_rq(cpu);
3712 struct task_struct *curr = rq->curr;
3713 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3715 spin_lock(&rq->lock);
3716 __update_rq_clock(rq);
3718 * Let rq->clock advance by at least TICK_NSEC:
3720 if (unlikely(rq->clock < next_tick)) {
3721 rq->clock = next_tick;
3722 rq->clock_underflows++;
3724 rq->tick_timestamp = rq->clock;
3725 update_cpu_load(rq);
3726 curr->sched_class->task_tick(rq, curr, 0);
3727 update_sched_rt_period(rq);
3728 spin_unlock(&rq->lock);
3731 rq->idle_at_tick = idle_cpu(cpu);
3732 trigger_load_balance(rq, cpu);
3736 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3738 void __kprobes add_preempt_count(int val)
3743 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3745 preempt_count() += val;
3747 * Spinlock count overflowing soon?
3749 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3752 EXPORT_SYMBOL(add_preempt_count);
3754 void __kprobes sub_preempt_count(int val)
3759 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3762 * Is the spinlock portion underflowing?
3764 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3765 !(preempt_count() & PREEMPT_MASK)))
3768 preempt_count() -= val;
3770 EXPORT_SYMBOL(sub_preempt_count);
3775 * Print scheduling while atomic bug:
3777 static noinline void __schedule_bug(struct task_struct *prev)
3779 struct pt_regs *regs = get_irq_regs();
3781 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3782 prev->comm, prev->pid, preempt_count());
3784 debug_show_held_locks(prev);
3785 if (irqs_disabled())
3786 print_irqtrace_events(prev);
3795 * Various schedule()-time debugging checks and statistics:
3797 static inline void schedule_debug(struct task_struct *prev)
3800 * Test if we are atomic. Since do_exit() needs to call into
3801 * schedule() atomically, we ignore that path for now.
3802 * Otherwise, whine if we are scheduling when we should not be.
3804 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3805 __schedule_bug(prev);
3807 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3809 schedstat_inc(this_rq(), sched_count);
3810 #ifdef CONFIG_SCHEDSTATS
3811 if (unlikely(prev->lock_depth >= 0)) {
3812 schedstat_inc(this_rq(), bkl_count);
3813 schedstat_inc(prev, sched_info.bkl_count);
3819 * Pick up the highest-prio task:
3821 static inline struct task_struct *
3822 pick_next_task(struct rq *rq, struct task_struct *prev)
3824 const struct sched_class *class;
3825 struct task_struct *p;
3828 * Optimization: we know that if all tasks are in
3829 * the fair class we can call that function directly:
3831 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3832 p = fair_sched_class.pick_next_task(rq);
3837 class = sched_class_highest;
3839 p = class->pick_next_task(rq);
3843 * Will never be NULL as the idle class always
3844 * returns a non-NULL p:
3846 class = class->next;
3851 * schedule() is the main scheduler function.
3853 asmlinkage void __sched schedule(void)
3855 struct task_struct *prev, *next;
3856 unsigned long *switch_count;
3862 cpu = smp_processor_id();
3866 switch_count = &prev->nivcsw;
3868 release_kernel_lock(prev);
3869 need_resched_nonpreemptible:
3871 schedule_debug(prev);
3876 * Do the rq-clock update outside the rq lock:
3878 local_irq_disable();
3879 __update_rq_clock(rq);
3880 spin_lock(&rq->lock);
3881 clear_tsk_need_resched(prev);
3883 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3884 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3885 signal_pending(prev))) {
3886 prev->state = TASK_RUNNING;
3888 deactivate_task(rq, prev, 1);
3890 switch_count = &prev->nvcsw;
3894 if (prev->sched_class->pre_schedule)
3895 prev->sched_class->pre_schedule(rq, prev);
3898 if (unlikely(!rq->nr_running))
3899 idle_balance(cpu, rq);
3901 prev->sched_class->put_prev_task(rq, prev);
3902 next = pick_next_task(rq, prev);
3904 sched_info_switch(prev, next);
3906 if (likely(prev != next)) {
3911 context_switch(rq, prev, next); /* unlocks the rq */
3913 * the context switch might have flipped the stack from under
3914 * us, hence refresh the local variables.
3916 cpu = smp_processor_id();
3919 spin_unlock_irq(&rq->lock);
3923 if (unlikely(reacquire_kernel_lock(current) < 0))
3924 goto need_resched_nonpreemptible;
3926 preempt_enable_no_resched();
3927 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3930 EXPORT_SYMBOL(schedule);
3932 #ifdef CONFIG_PREEMPT
3934 * this is the entry point to schedule() from in-kernel preemption
3935 * off of preempt_enable. Kernel preemptions off return from interrupt
3936 * occur there and call schedule directly.
3938 asmlinkage void __sched preempt_schedule(void)
3940 struct thread_info *ti = current_thread_info();
3941 struct task_struct *task = current;
3942 int saved_lock_depth;
3945 * If there is a non-zero preempt_count or interrupts are disabled,
3946 * we do not want to preempt the current task. Just return..
3948 if (likely(ti->preempt_count || irqs_disabled()))
3952 add_preempt_count(PREEMPT_ACTIVE);
3955 * We keep the big kernel semaphore locked, but we
3956 * clear ->lock_depth so that schedule() doesnt
3957 * auto-release the semaphore:
3959 saved_lock_depth = task->lock_depth;
3960 task->lock_depth = -1;
3962 task->lock_depth = saved_lock_depth;
3963 sub_preempt_count(PREEMPT_ACTIVE);
3966 * Check again in case we missed a preemption opportunity
3967 * between schedule and now.
3970 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3972 EXPORT_SYMBOL(preempt_schedule);
3975 * this is the entry point to schedule() from kernel preemption
3976 * off of irq context.
3977 * Note, that this is called and return with irqs disabled. This will
3978 * protect us against recursive calling from irq.
3980 asmlinkage void __sched preempt_schedule_irq(void)
3982 struct thread_info *ti = current_thread_info();
3983 struct task_struct *task = current;
3984 int saved_lock_depth;
3986 /* Catch callers which need to be fixed */
3987 BUG_ON(ti->preempt_count || !irqs_disabled());
3990 add_preempt_count(PREEMPT_ACTIVE);
3993 * We keep the big kernel semaphore locked, but we
3994 * clear ->lock_depth so that schedule() doesnt
3995 * auto-release the semaphore:
3997 saved_lock_depth = task->lock_depth;
3998 task->lock_depth = -1;
4001 local_irq_disable();
4002 task->lock_depth = saved_lock_depth;
4003 sub_preempt_count(PREEMPT_ACTIVE);
4006 * Check again in case we missed a preemption opportunity
4007 * between schedule and now.
4010 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4013 #endif /* CONFIG_PREEMPT */
4015 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4018 return try_to_wake_up(curr->private, mode, sync);
4020 EXPORT_SYMBOL(default_wake_function);
4023 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4024 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4025 * number) then we wake all the non-exclusive tasks and one exclusive task.
4027 * There are circumstances in which we can try to wake a task which has already
4028 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4029 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4031 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4032 int nr_exclusive, int sync, void *key)
4034 wait_queue_t *curr, *next;
4036 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4037 unsigned flags = curr->flags;
4039 if (curr->func(curr, mode, sync, key) &&
4040 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4046 * __wake_up - wake up threads blocked on a waitqueue.
4048 * @mode: which threads
4049 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4050 * @key: is directly passed to the wakeup function
4052 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4053 int nr_exclusive, void *key)
4055 unsigned long flags;
4057 spin_lock_irqsave(&q->lock, flags);
4058 __wake_up_common(q, mode, nr_exclusive, 0, key);
4059 spin_unlock_irqrestore(&q->lock, flags);
4061 EXPORT_SYMBOL(__wake_up);
4064 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4066 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4068 __wake_up_common(q, mode, 1, 0, NULL);
4072 * __wake_up_sync - wake up threads blocked on a waitqueue.
4074 * @mode: which threads
4075 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4077 * The sync wakeup differs that the waker knows that it will schedule
4078 * away soon, so while the target thread will be woken up, it will not
4079 * be migrated to another CPU - ie. the two threads are 'synchronized'
4080 * with each other. This can prevent needless bouncing between CPUs.
4082 * On UP it can prevent extra preemption.
4085 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4087 unsigned long flags;
4093 if (unlikely(!nr_exclusive))
4096 spin_lock_irqsave(&q->lock, flags);
4097 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4098 spin_unlock_irqrestore(&q->lock, flags);
4100 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4102 void complete(struct completion *x)
4104 unsigned long flags;
4106 spin_lock_irqsave(&x->wait.lock, flags);
4108 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4109 spin_unlock_irqrestore(&x->wait.lock, flags);
4111 EXPORT_SYMBOL(complete);
4113 void complete_all(struct completion *x)
4115 unsigned long flags;
4117 spin_lock_irqsave(&x->wait.lock, flags);
4118 x->done += UINT_MAX/2;
4119 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4120 spin_unlock_irqrestore(&x->wait.lock, flags);
4122 EXPORT_SYMBOL(complete_all);
4124 static inline long __sched
4125 do_wait_for_common(struct completion *x, long timeout, int state)
4128 DECLARE_WAITQUEUE(wait, current);
4130 wait.flags |= WQ_FLAG_EXCLUSIVE;
4131 __add_wait_queue_tail(&x->wait, &wait);
4133 if ((state == TASK_INTERRUPTIBLE &&
4134 signal_pending(current)) ||
4135 (state == TASK_KILLABLE &&
4136 fatal_signal_pending(current))) {
4137 __remove_wait_queue(&x->wait, &wait);
4138 return -ERESTARTSYS;
4140 __set_current_state(state);
4141 spin_unlock_irq(&x->wait.lock);
4142 timeout = schedule_timeout(timeout);
4143 spin_lock_irq(&x->wait.lock);
4145 __remove_wait_queue(&x->wait, &wait);
4149 __remove_wait_queue(&x->wait, &wait);
4156 wait_for_common(struct completion *x, long timeout, int state)
4160 spin_lock_irq(&x->wait.lock);
4161 timeout = do_wait_for_common(x, timeout, state);
4162 spin_unlock_irq(&x->wait.lock);
4166 void __sched wait_for_completion(struct completion *x)
4168 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4170 EXPORT_SYMBOL(wait_for_completion);
4172 unsigned long __sched
4173 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4175 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4177 EXPORT_SYMBOL(wait_for_completion_timeout);
4179 int __sched wait_for_completion_interruptible(struct completion *x)
4181 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4182 if (t == -ERESTARTSYS)
4186 EXPORT_SYMBOL(wait_for_completion_interruptible);
4188 unsigned long __sched
4189 wait_for_completion_interruptible_timeout(struct completion *x,
4190 unsigned long timeout)
4192 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4194 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4196 int __sched wait_for_completion_killable(struct completion *x)
4198 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4199 if (t == -ERESTARTSYS)
4203 EXPORT_SYMBOL(wait_for_completion_killable);
4206 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4208 unsigned long flags;
4211 init_waitqueue_entry(&wait, current);
4213 __set_current_state(state);
4215 spin_lock_irqsave(&q->lock, flags);
4216 __add_wait_queue(q, &wait);
4217 spin_unlock(&q->lock);
4218 timeout = schedule_timeout(timeout);
4219 spin_lock_irq(&q->lock);
4220 __remove_wait_queue(q, &wait);
4221 spin_unlock_irqrestore(&q->lock, flags);
4226 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4228 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4230 EXPORT_SYMBOL(interruptible_sleep_on);
4233 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4235 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4237 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4239 void __sched sleep_on(wait_queue_head_t *q)
4241 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4243 EXPORT_SYMBOL(sleep_on);
4245 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4247 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4249 EXPORT_SYMBOL(sleep_on_timeout);
4251 #ifdef CONFIG_RT_MUTEXES
4254 * rt_mutex_setprio - set the current priority of a task
4256 * @prio: prio value (kernel-internal form)
4258 * This function changes the 'effective' priority of a task. It does
4259 * not touch ->normal_prio like __setscheduler().
4261 * Used by the rt_mutex code to implement priority inheritance logic.
4263 void rt_mutex_setprio(struct task_struct *p, int prio)
4265 unsigned long flags;
4266 int oldprio, on_rq, running;
4268 const struct sched_class *prev_class = p->sched_class;
4270 BUG_ON(prio < 0 || prio > MAX_PRIO);
4272 rq = task_rq_lock(p, &flags);
4273 update_rq_clock(rq);
4276 on_rq = p->se.on_rq;
4277 running = task_current(rq, p);
4279 dequeue_task(rq, p, 0);
4281 p->sched_class->put_prev_task(rq, p);
4284 p->sched_class = &rt_sched_class;
4286 p->sched_class = &fair_sched_class;
4291 p->sched_class->set_curr_task(rq);
4293 enqueue_task(rq, p, 0);
4295 check_class_changed(rq, p, prev_class, oldprio, running);
4297 task_rq_unlock(rq, &flags);
4302 void set_user_nice(struct task_struct *p, long nice)
4304 int old_prio, delta, on_rq;
4305 unsigned long flags;
4308 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4311 * We have to be careful, if called from sys_setpriority(),
4312 * the task might be in the middle of scheduling on another CPU.
4314 rq = task_rq_lock(p, &flags);
4315 update_rq_clock(rq);
4317 * The RT priorities are set via sched_setscheduler(), but we still
4318 * allow the 'normal' nice value to be set - but as expected
4319 * it wont have any effect on scheduling until the task is
4320 * SCHED_FIFO/SCHED_RR:
4322 if (task_has_rt_policy(p)) {
4323 p->static_prio = NICE_TO_PRIO(nice);
4326 on_rq = p->se.on_rq;
4328 dequeue_task(rq, p, 0);
4332 p->static_prio = NICE_TO_PRIO(nice);
4335 p->prio = effective_prio(p);
4336 delta = p->prio - old_prio;
4339 enqueue_task(rq, p, 0);
4342 * If the task increased its priority or is running and
4343 * lowered its priority, then reschedule its CPU:
4345 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4346 resched_task(rq->curr);
4349 task_rq_unlock(rq, &flags);
4351 EXPORT_SYMBOL(set_user_nice);
4354 * can_nice - check if a task can reduce its nice value
4358 int can_nice(const struct task_struct *p, const int nice)
4360 /* convert nice value [19,-20] to rlimit style value [1,40] */
4361 int nice_rlim = 20 - nice;
4363 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4364 capable(CAP_SYS_NICE));
4367 #ifdef __ARCH_WANT_SYS_NICE
4370 * sys_nice - change the priority of the current process.
4371 * @increment: priority increment
4373 * sys_setpriority is a more generic, but much slower function that
4374 * does similar things.
4376 asmlinkage long sys_nice(int increment)
4381 * Setpriority might change our priority at the same moment.
4382 * We don't have to worry. Conceptually one call occurs first
4383 * and we have a single winner.
4385 if (increment < -40)
4390 nice = PRIO_TO_NICE(current->static_prio) + increment;
4396 if (increment < 0 && !can_nice(current, nice))
4399 retval = security_task_setnice(current, nice);
4403 set_user_nice(current, nice);
4410 * task_prio - return the priority value of a given task.
4411 * @p: the task in question.
4413 * This is the priority value as seen by users in /proc.
4414 * RT tasks are offset by -200. Normal tasks are centered
4415 * around 0, value goes from -16 to +15.
4417 int task_prio(const struct task_struct *p)
4419 return p->prio - MAX_RT_PRIO;
4423 * task_nice - return the nice value of a given task.
4424 * @p: the task in question.
4426 int task_nice(const struct task_struct *p)
4428 return TASK_NICE(p);
4430 EXPORT_SYMBOL(task_nice);
4433 * idle_cpu - is a given cpu idle currently?
4434 * @cpu: the processor in question.
4436 int idle_cpu(int cpu)
4438 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4442 * idle_task - return the idle task for a given cpu.
4443 * @cpu: the processor in question.
4445 struct task_struct *idle_task(int cpu)
4447 return cpu_rq(cpu)->idle;
4451 * find_process_by_pid - find a process with a matching PID value.
4452 * @pid: the pid in question.
4454 static struct task_struct *find_process_by_pid(pid_t pid)
4456 return pid ? find_task_by_vpid(pid) : current;
4459 /* Actually do priority change: must hold rq lock. */
4461 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4463 BUG_ON(p->se.on_rq);
4466 switch (p->policy) {
4470 p->sched_class = &fair_sched_class;
4474 p->sched_class = &rt_sched_class;
4478 p->rt_priority = prio;
4479 p->normal_prio = normal_prio(p);
4480 /* we are holding p->pi_lock already */
4481 p->prio = rt_mutex_getprio(p);
4486 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4487 * @p: the task in question.
4488 * @policy: new policy.
4489 * @param: structure containing the new RT priority.
4491 * NOTE that the task may be already dead.
4493 int sched_setscheduler(struct task_struct *p, int policy,
4494 struct sched_param *param)
4496 int retval, oldprio, oldpolicy = -1, on_rq, running;
4497 unsigned long flags;
4498 const struct sched_class *prev_class = p->sched_class;
4501 /* may grab non-irq protected spin_locks */
4502 BUG_ON(in_interrupt());
4504 /* double check policy once rq lock held */
4506 policy = oldpolicy = p->policy;
4507 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4508 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4509 policy != SCHED_IDLE)
4512 * Valid priorities for SCHED_FIFO and SCHED_RR are
4513 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4514 * SCHED_BATCH and SCHED_IDLE is 0.
4516 if (param->sched_priority < 0 ||
4517 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4518 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4520 if (rt_policy(policy) != (param->sched_priority != 0))
4524 * Allow unprivileged RT tasks to decrease priority:
4526 if (!capable(CAP_SYS_NICE)) {
4527 if (rt_policy(policy)) {
4528 unsigned long rlim_rtprio;
4530 if (!lock_task_sighand(p, &flags))
4532 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4533 unlock_task_sighand(p, &flags);
4535 /* can't set/change the rt policy */
4536 if (policy != p->policy && !rlim_rtprio)
4539 /* can't increase priority */
4540 if (param->sched_priority > p->rt_priority &&
4541 param->sched_priority > rlim_rtprio)
4545 * Like positive nice levels, dont allow tasks to
4546 * move out of SCHED_IDLE either:
4548 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4551 /* can't change other user's priorities */
4552 if ((current->euid != p->euid) &&
4553 (current->euid != p->uid))
4557 #ifdef CONFIG_RT_GROUP_SCHED
4559 * Do not allow realtime tasks into groups that have no runtime
4562 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4566 retval = security_task_setscheduler(p, policy, param);
4570 * make sure no PI-waiters arrive (or leave) while we are
4571 * changing the priority of the task:
4573 spin_lock_irqsave(&p->pi_lock, flags);
4575 * To be able to change p->policy safely, the apropriate
4576 * runqueue lock must be held.
4578 rq = __task_rq_lock(p);
4579 /* recheck policy now with rq lock held */
4580 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4581 policy = oldpolicy = -1;
4582 __task_rq_unlock(rq);
4583 spin_unlock_irqrestore(&p->pi_lock, flags);
4586 update_rq_clock(rq);
4587 on_rq = p->se.on_rq;
4588 running = task_current(rq, p);
4590 deactivate_task(rq, p, 0);
4592 p->sched_class->put_prev_task(rq, p);
4595 __setscheduler(rq, p, policy, param->sched_priority);
4598 p->sched_class->set_curr_task(rq);
4600 activate_task(rq, p, 0);
4602 check_class_changed(rq, p, prev_class, oldprio, running);
4604 __task_rq_unlock(rq);
4605 spin_unlock_irqrestore(&p->pi_lock, flags);
4607 rt_mutex_adjust_pi(p);
4611 EXPORT_SYMBOL_GPL(sched_setscheduler);
4614 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4616 struct sched_param lparam;
4617 struct task_struct *p;
4620 if (!param || pid < 0)
4622 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4627 p = find_process_by_pid(pid);
4629 retval = sched_setscheduler(p, policy, &lparam);
4636 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4637 * @pid: the pid in question.
4638 * @policy: new policy.
4639 * @param: structure containing the new RT priority.
4642 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4644 /* negative values for policy are not valid */
4648 return do_sched_setscheduler(pid, policy, param);
4652 * sys_sched_setparam - set/change the RT priority of a thread
4653 * @pid: the pid in question.
4654 * @param: structure containing the new RT priority.
4656 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4658 return do_sched_setscheduler(pid, -1, param);
4662 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4663 * @pid: the pid in question.
4665 asmlinkage long sys_sched_getscheduler(pid_t pid)
4667 struct task_struct *p;
4674 read_lock(&tasklist_lock);
4675 p = find_process_by_pid(pid);
4677 retval = security_task_getscheduler(p);
4681 read_unlock(&tasklist_lock);
4686 * sys_sched_getscheduler - get the RT priority of a thread
4687 * @pid: the pid in question.
4688 * @param: structure containing the RT priority.
4690 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4692 struct sched_param lp;
4693 struct task_struct *p;
4696 if (!param || pid < 0)
4699 read_lock(&tasklist_lock);
4700 p = find_process_by_pid(pid);
4705 retval = security_task_getscheduler(p);
4709 lp.sched_priority = p->rt_priority;
4710 read_unlock(&tasklist_lock);
4713 * This one might sleep, we cannot do it with a spinlock held ...
4715 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4720 read_unlock(&tasklist_lock);
4724 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4726 cpumask_t cpus_allowed;
4727 struct task_struct *p;
4731 read_lock(&tasklist_lock);
4733 p = find_process_by_pid(pid);
4735 read_unlock(&tasklist_lock);
4741 * It is not safe to call set_cpus_allowed with the
4742 * tasklist_lock held. We will bump the task_struct's
4743 * usage count and then drop tasklist_lock.
4746 read_unlock(&tasklist_lock);
4749 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4750 !capable(CAP_SYS_NICE))
4753 retval = security_task_setscheduler(p, 0, NULL);
4757 cpus_allowed = cpuset_cpus_allowed(p);
4758 cpus_and(new_mask, new_mask, cpus_allowed);
4760 retval = set_cpus_allowed(p, new_mask);
4763 cpus_allowed = cpuset_cpus_allowed(p);
4764 if (!cpus_subset(new_mask, cpus_allowed)) {
4766 * We must have raced with a concurrent cpuset
4767 * update. Just reset the cpus_allowed to the
4768 * cpuset's cpus_allowed
4770 new_mask = cpus_allowed;
4780 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4781 cpumask_t *new_mask)
4783 if (len < sizeof(cpumask_t)) {
4784 memset(new_mask, 0, sizeof(cpumask_t));
4785 } else if (len > sizeof(cpumask_t)) {
4786 len = sizeof(cpumask_t);
4788 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4792 * sys_sched_setaffinity - set the cpu affinity of a process
4793 * @pid: pid of the process
4794 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4795 * @user_mask_ptr: user-space pointer to the new cpu mask
4797 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4798 unsigned long __user *user_mask_ptr)
4803 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4807 return sched_setaffinity(pid, new_mask);
4811 * Represents all cpu's present in the system
4812 * In systems capable of hotplug, this map could dynamically grow
4813 * as new cpu's are detected in the system via any platform specific
4814 * method, such as ACPI for e.g.
4817 cpumask_t cpu_present_map __read_mostly;
4818 EXPORT_SYMBOL(cpu_present_map);
4821 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4822 EXPORT_SYMBOL(cpu_online_map);
4824 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4825 EXPORT_SYMBOL(cpu_possible_map);
4828 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4830 struct task_struct *p;
4834 read_lock(&tasklist_lock);
4837 p = find_process_by_pid(pid);
4841 retval = security_task_getscheduler(p);
4845 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4848 read_unlock(&tasklist_lock);
4855 * sys_sched_getaffinity - get the cpu affinity of a process
4856 * @pid: pid of the process
4857 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4858 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4860 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4861 unsigned long __user *user_mask_ptr)
4866 if (len < sizeof(cpumask_t))
4869 ret = sched_getaffinity(pid, &mask);
4873 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4876 return sizeof(cpumask_t);
4880 * sys_sched_yield - yield the current processor to other threads.
4882 * This function yields the current CPU to other tasks. If there are no
4883 * other threads running on this CPU then this function will return.
4885 asmlinkage long sys_sched_yield(void)
4887 struct rq *rq = this_rq_lock();
4889 schedstat_inc(rq, yld_count);
4890 current->sched_class->yield_task(rq);
4893 * Since we are going to call schedule() anyway, there's
4894 * no need to preempt or enable interrupts:
4896 __release(rq->lock);
4897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4898 _raw_spin_unlock(&rq->lock);
4899 preempt_enable_no_resched();
4906 static void __cond_resched(void)
4908 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4909 __might_sleep(__FILE__, __LINE__);
4912 * The BKS might be reacquired before we have dropped
4913 * PREEMPT_ACTIVE, which could trigger a second
4914 * cond_resched() call.
4917 add_preempt_count(PREEMPT_ACTIVE);
4919 sub_preempt_count(PREEMPT_ACTIVE);
4920 } while (need_resched());
4923 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4924 int __sched _cond_resched(void)
4926 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4927 system_state == SYSTEM_RUNNING) {
4933 EXPORT_SYMBOL(_cond_resched);
4937 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4938 * call schedule, and on return reacquire the lock.
4940 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4941 * operations here to prevent schedule() from being called twice (once via
4942 * spin_unlock(), once by hand).
4944 int cond_resched_lock(spinlock_t *lock)
4946 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4949 if (spin_needbreak(lock) || resched) {
4951 if (resched && need_resched())
4960 EXPORT_SYMBOL(cond_resched_lock);
4962 int __sched cond_resched_softirq(void)
4964 BUG_ON(!in_softirq());
4966 if (need_resched() && system_state == SYSTEM_RUNNING) {
4974 EXPORT_SYMBOL(cond_resched_softirq);
4977 * yield - yield the current processor to other threads.
4979 * This is a shortcut for kernel-space yielding - it marks the
4980 * thread runnable and calls sys_sched_yield().
4982 void __sched yield(void)
4984 set_current_state(TASK_RUNNING);
4987 EXPORT_SYMBOL(yield);
4990 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4991 * that process accounting knows that this is a task in IO wait state.
4993 * But don't do that if it is a deliberate, throttling IO wait (this task
4994 * has set its backing_dev_info: the queue against which it should throttle)
4996 void __sched io_schedule(void)
4998 struct rq *rq = &__raw_get_cpu_var(runqueues);
5000 delayacct_blkio_start();
5001 atomic_inc(&rq->nr_iowait);
5003 atomic_dec(&rq->nr_iowait);
5004 delayacct_blkio_end();
5006 EXPORT_SYMBOL(io_schedule);
5008 long __sched io_schedule_timeout(long timeout)
5010 struct rq *rq = &__raw_get_cpu_var(runqueues);
5013 delayacct_blkio_start();
5014 atomic_inc(&rq->nr_iowait);
5015 ret = schedule_timeout(timeout);
5016 atomic_dec(&rq->nr_iowait);
5017 delayacct_blkio_end();
5022 * sys_sched_get_priority_max - return maximum RT priority.
5023 * @policy: scheduling class.
5025 * this syscall returns the maximum rt_priority that can be used
5026 * by a given scheduling class.
5028 asmlinkage long sys_sched_get_priority_max(int policy)
5035 ret = MAX_USER_RT_PRIO-1;
5047 * sys_sched_get_priority_min - return minimum RT priority.
5048 * @policy: scheduling class.
5050 * this syscall returns the minimum rt_priority that can be used
5051 * by a given scheduling class.
5053 asmlinkage long sys_sched_get_priority_min(int policy)
5071 * sys_sched_rr_get_interval - return the default timeslice of a process.
5072 * @pid: pid of the process.
5073 * @interval: userspace pointer to the timeslice value.
5075 * this syscall writes the default timeslice value of a given process
5076 * into the user-space timespec buffer. A value of '0' means infinity.
5079 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5081 struct task_struct *p;
5082 unsigned int time_slice;
5090 read_lock(&tasklist_lock);
5091 p = find_process_by_pid(pid);
5095 retval = security_task_getscheduler(p);
5100 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5101 * tasks that are on an otherwise idle runqueue:
5104 if (p->policy == SCHED_RR) {
5105 time_slice = DEF_TIMESLICE;
5106 } else if (p->policy != SCHED_FIFO) {
5107 struct sched_entity *se = &p->se;
5108 unsigned long flags;
5111 rq = task_rq_lock(p, &flags);
5112 if (rq->cfs.load.weight)
5113 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5114 task_rq_unlock(rq, &flags);
5116 read_unlock(&tasklist_lock);
5117 jiffies_to_timespec(time_slice, &t);
5118 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5122 read_unlock(&tasklist_lock);
5126 static const char stat_nam[] = "RSDTtZX";
5128 void sched_show_task(struct task_struct *p)
5130 unsigned long free = 0;
5133 state = p->state ? __ffs(p->state) + 1 : 0;
5134 printk(KERN_INFO "%-13.13s %c", p->comm,
5135 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5136 #if BITS_PER_LONG == 32
5137 if (state == TASK_RUNNING)
5138 printk(KERN_CONT " running ");
5140 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5142 if (state == TASK_RUNNING)
5143 printk(KERN_CONT " running task ");
5145 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5147 #ifdef CONFIG_DEBUG_STACK_USAGE
5149 unsigned long *n = end_of_stack(p);
5152 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5155 printk(KERN_CONT "%5lu %5d %6d\n", free,
5156 task_pid_nr(p), task_pid_nr(p->real_parent));
5158 show_stack(p, NULL);
5161 void show_state_filter(unsigned long state_filter)
5163 struct task_struct *g, *p;
5165 #if BITS_PER_LONG == 32
5167 " task PC stack pid father\n");
5170 " task PC stack pid father\n");
5172 read_lock(&tasklist_lock);
5173 do_each_thread(g, p) {
5175 * reset the NMI-timeout, listing all files on a slow
5176 * console might take alot of time:
5178 touch_nmi_watchdog();
5179 if (!state_filter || (p->state & state_filter))
5181 } while_each_thread(g, p);
5183 touch_all_softlockup_watchdogs();
5185 #ifdef CONFIG_SCHED_DEBUG
5186 sysrq_sched_debug_show();
5188 read_unlock(&tasklist_lock);
5190 * Only show locks if all tasks are dumped:
5192 if (state_filter == -1)
5193 debug_show_all_locks();
5196 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5198 idle->sched_class = &idle_sched_class;
5202 * init_idle - set up an idle thread for a given CPU
5203 * @idle: task in question
5204 * @cpu: cpu the idle task belongs to
5206 * NOTE: this function does not set the idle thread's NEED_RESCHED
5207 * flag, to make booting more robust.
5209 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5211 struct rq *rq = cpu_rq(cpu);
5212 unsigned long flags;
5215 idle->se.exec_start = sched_clock();
5217 idle->prio = idle->normal_prio = MAX_PRIO;
5218 idle->cpus_allowed = cpumask_of_cpu(cpu);
5219 __set_task_cpu(idle, cpu);
5221 spin_lock_irqsave(&rq->lock, flags);
5222 rq->curr = rq->idle = idle;
5223 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5226 spin_unlock_irqrestore(&rq->lock, flags);
5228 /* Set the preempt count _outside_ the spinlocks! */
5229 task_thread_info(idle)->preempt_count = 0;
5232 * The idle tasks have their own, simple scheduling class:
5234 idle->sched_class = &idle_sched_class;
5238 * In a system that switches off the HZ timer nohz_cpu_mask
5239 * indicates which cpus entered this state. This is used
5240 * in the rcu update to wait only for active cpus. For system
5241 * which do not switch off the HZ timer nohz_cpu_mask should
5242 * always be CPU_MASK_NONE.
5244 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5247 * Increase the granularity value when there are more CPUs,
5248 * because with more CPUs the 'effective latency' as visible
5249 * to users decreases. But the relationship is not linear,
5250 * so pick a second-best guess by going with the log2 of the
5253 * This idea comes from the SD scheduler of Con Kolivas:
5255 static inline void sched_init_granularity(void)
5257 unsigned int factor = 1 + ilog2(num_online_cpus());
5258 const unsigned long limit = 200000000;
5260 sysctl_sched_min_granularity *= factor;
5261 if (sysctl_sched_min_granularity > limit)
5262 sysctl_sched_min_granularity = limit;
5264 sysctl_sched_latency *= factor;
5265 if (sysctl_sched_latency > limit)
5266 sysctl_sched_latency = limit;
5268 sysctl_sched_wakeup_granularity *= factor;
5269 sysctl_sched_batch_wakeup_granularity *= factor;
5274 * This is how migration works:
5276 * 1) we queue a struct migration_req structure in the source CPU's
5277 * runqueue and wake up that CPU's migration thread.
5278 * 2) we down() the locked semaphore => thread blocks.
5279 * 3) migration thread wakes up (implicitly it forces the migrated
5280 * thread off the CPU)
5281 * 4) it gets the migration request and checks whether the migrated
5282 * task is still in the wrong runqueue.
5283 * 5) if it's in the wrong runqueue then the migration thread removes
5284 * it and puts it into the right queue.
5285 * 6) migration thread up()s the semaphore.
5286 * 7) we wake up and the migration is done.
5290 * Change a given task's CPU affinity. Migrate the thread to a
5291 * proper CPU and schedule it away if the CPU it's executing on
5292 * is removed from the allowed bitmask.
5294 * NOTE: the caller must have a valid reference to the task, the
5295 * task must not exit() & deallocate itself prematurely. The
5296 * call is not atomic; no spinlocks may be held.
5298 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5300 struct migration_req req;
5301 unsigned long flags;
5305 rq = task_rq_lock(p, &flags);
5306 if (!cpus_intersects(new_mask, cpu_online_map)) {
5311 if (p->sched_class->set_cpus_allowed)
5312 p->sched_class->set_cpus_allowed(p, &new_mask);
5314 p->cpus_allowed = new_mask;
5315 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5318 /* Can the task run on the task's current CPU? If so, we're done */
5319 if (cpu_isset(task_cpu(p), new_mask))
5322 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5323 /* Need help from migration thread: drop lock and wait. */
5324 task_rq_unlock(rq, &flags);
5325 wake_up_process(rq->migration_thread);
5326 wait_for_completion(&req.done);
5327 tlb_migrate_finish(p->mm);
5331 task_rq_unlock(rq, &flags);
5335 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5338 * Move (not current) task off this cpu, onto dest cpu. We're doing
5339 * this because either it can't run here any more (set_cpus_allowed()
5340 * away from this CPU, or CPU going down), or because we're
5341 * attempting to rebalance this task on exec (sched_exec).
5343 * So we race with normal scheduler movements, but that's OK, as long
5344 * as the task is no longer on this CPU.
5346 * Returns non-zero if task was successfully migrated.
5348 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5350 struct rq *rq_dest, *rq_src;
5353 if (unlikely(cpu_is_offline(dest_cpu)))
5356 rq_src = cpu_rq(src_cpu);
5357 rq_dest = cpu_rq(dest_cpu);
5359 double_rq_lock(rq_src, rq_dest);
5360 /* Already moved. */
5361 if (task_cpu(p) != src_cpu)
5363 /* Affinity changed (again). */
5364 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5367 on_rq = p->se.on_rq;
5369 deactivate_task(rq_src, p, 0);
5371 set_task_cpu(p, dest_cpu);
5373 activate_task(rq_dest, p, 0);
5374 check_preempt_curr(rq_dest, p);
5378 double_rq_unlock(rq_src, rq_dest);
5383 * migration_thread - this is a highprio system thread that performs
5384 * thread migration by bumping thread off CPU then 'pushing' onto
5387 static int migration_thread(void *data)
5389 int cpu = (long)data;
5393 BUG_ON(rq->migration_thread != current);
5395 set_current_state(TASK_INTERRUPTIBLE);
5396 while (!kthread_should_stop()) {
5397 struct migration_req *req;
5398 struct list_head *head;
5400 spin_lock_irq(&rq->lock);
5402 if (cpu_is_offline(cpu)) {
5403 spin_unlock_irq(&rq->lock);
5407 if (rq->active_balance) {
5408 active_load_balance(rq, cpu);
5409 rq->active_balance = 0;
5412 head = &rq->migration_queue;
5414 if (list_empty(head)) {
5415 spin_unlock_irq(&rq->lock);
5417 set_current_state(TASK_INTERRUPTIBLE);
5420 req = list_entry(head->next, struct migration_req, list);
5421 list_del_init(head->next);
5423 spin_unlock(&rq->lock);
5424 __migrate_task(req->task, cpu, req->dest_cpu);
5427 complete(&req->done);
5429 __set_current_state(TASK_RUNNING);
5433 /* Wait for kthread_stop */
5434 set_current_state(TASK_INTERRUPTIBLE);
5435 while (!kthread_should_stop()) {
5437 set_current_state(TASK_INTERRUPTIBLE);
5439 __set_current_state(TASK_RUNNING);
5443 #ifdef CONFIG_HOTPLUG_CPU
5445 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5449 local_irq_disable();
5450 ret = __migrate_task(p, src_cpu, dest_cpu);
5456 * Figure out where task on dead CPU should go, use force if necessary.
5457 * NOTE: interrupts should be disabled by the caller
5459 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5461 unsigned long flags;
5468 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5469 cpus_and(mask, mask, p->cpus_allowed);
5470 dest_cpu = any_online_cpu(mask);
5472 /* On any allowed CPU? */
5473 if (dest_cpu == NR_CPUS)
5474 dest_cpu = any_online_cpu(p->cpus_allowed);
5476 /* No more Mr. Nice Guy. */
5477 if (dest_cpu == NR_CPUS) {
5478 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5480 * Try to stay on the same cpuset, where the
5481 * current cpuset may be a subset of all cpus.
5482 * The cpuset_cpus_allowed_locked() variant of
5483 * cpuset_cpus_allowed() will not block. It must be
5484 * called within calls to cpuset_lock/cpuset_unlock.
5486 rq = task_rq_lock(p, &flags);
5487 p->cpus_allowed = cpus_allowed;
5488 dest_cpu = any_online_cpu(p->cpus_allowed);
5489 task_rq_unlock(rq, &flags);
5492 * Don't tell them about moving exiting tasks or
5493 * kernel threads (both mm NULL), since they never
5496 if (p->mm && printk_ratelimit()) {
5497 printk(KERN_INFO "process %d (%s) no "
5498 "longer affine to cpu%d\n",
5499 task_pid_nr(p), p->comm, dead_cpu);
5502 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5506 * While a dead CPU has no uninterruptible tasks queued at this point,
5507 * it might still have a nonzero ->nr_uninterruptible counter, because
5508 * for performance reasons the counter is not stricly tracking tasks to
5509 * their home CPUs. So we just add the counter to another CPU's counter,
5510 * to keep the global sum constant after CPU-down:
5512 static void migrate_nr_uninterruptible(struct rq *rq_src)
5514 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5515 unsigned long flags;
5517 local_irq_save(flags);
5518 double_rq_lock(rq_src, rq_dest);
5519 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5520 rq_src->nr_uninterruptible = 0;
5521 double_rq_unlock(rq_src, rq_dest);
5522 local_irq_restore(flags);
5525 /* Run through task list and migrate tasks from the dead cpu. */
5526 static void migrate_live_tasks(int src_cpu)
5528 struct task_struct *p, *t;
5530 read_lock(&tasklist_lock);
5532 do_each_thread(t, p) {
5536 if (task_cpu(p) == src_cpu)
5537 move_task_off_dead_cpu(src_cpu, p);
5538 } while_each_thread(t, p);
5540 read_unlock(&tasklist_lock);
5544 * Schedules idle task to be the next runnable task on current CPU.
5545 * It does so by boosting its priority to highest possible.
5546 * Used by CPU offline code.
5548 void sched_idle_next(void)
5550 int this_cpu = smp_processor_id();
5551 struct rq *rq = cpu_rq(this_cpu);
5552 struct task_struct *p = rq->idle;
5553 unsigned long flags;
5555 /* cpu has to be offline */
5556 BUG_ON(cpu_online(this_cpu));
5559 * Strictly not necessary since rest of the CPUs are stopped by now
5560 * and interrupts disabled on the current cpu.
5562 spin_lock_irqsave(&rq->lock, flags);
5564 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5566 update_rq_clock(rq);
5567 activate_task(rq, p, 0);
5569 spin_unlock_irqrestore(&rq->lock, flags);
5573 * Ensures that the idle task is using init_mm right before its cpu goes
5576 void idle_task_exit(void)
5578 struct mm_struct *mm = current->active_mm;
5580 BUG_ON(cpu_online(smp_processor_id()));
5583 switch_mm(mm, &init_mm, current);
5587 /* called under rq->lock with disabled interrupts */
5588 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5590 struct rq *rq = cpu_rq(dead_cpu);
5592 /* Must be exiting, otherwise would be on tasklist. */
5593 BUG_ON(!p->exit_state);
5595 /* Cannot have done final schedule yet: would have vanished. */
5596 BUG_ON(p->state == TASK_DEAD);
5601 * Drop lock around migration; if someone else moves it,
5602 * that's OK. No task can be added to this CPU, so iteration is
5605 spin_unlock_irq(&rq->lock);
5606 move_task_off_dead_cpu(dead_cpu, p);
5607 spin_lock_irq(&rq->lock);
5612 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5613 static void migrate_dead_tasks(unsigned int dead_cpu)
5615 struct rq *rq = cpu_rq(dead_cpu);
5616 struct task_struct *next;
5619 if (!rq->nr_running)
5621 update_rq_clock(rq);
5622 next = pick_next_task(rq, rq->curr);
5625 migrate_dead(dead_cpu, next);
5629 #endif /* CONFIG_HOTPLUG_CPU */
5631 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5633 static struct ctl_table sd_ctl_dir[] = {
5635 .procname = "sched_domain",
5641 static struct ctl_table sd_ctl_root[] = {
5643 .ctl_name = CTL_KERN,
5644 .procname = "kernel",
5646 .child = sd_ctl_dir,
5651 static struct ctl_table *sd_alloc_ctl_entry(int n)
5653 struct ctl_table *entry =
5654 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5659 static void sd_free_ctl_entry(struct ctl_table **tablep)
5661 struct ctl_table *entry;
5664 * In the intermediate directories, both the child directory and
5665 * procname are dynamically allocated and could fail but the mode
5666 * will always be set. In the lowest directory the names are
5667 * static strings and all have proc handlers.
5669 for (entry = *tablep; entry->mode; entry++) {
5671 sd_free_ctl_entry(&entry->child);
5672 if (entry->proc_handler == NULL)
5673 kfree(entry->procname);
5681 set_table_entry(struct ctl_table *entry,
5682 const char *procname, void *data, int maxlen,
5683 mode_t mode, proc_handler *proc_handler)
5685 entry->procname = procname;
5687 entry->maxlen = maxlen;
5689 entry->proc_handler = proc_handler;
5692 static struct ctl_table *
5693 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5695 struct ctl_table *table = sd_alloc_ctl_entry(12);
5700 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5701 sizeof(long), 0644, proc_doulongvec_minmax);
5702 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5703 sizeof(long), 0644, proc_doulongvec_minmax);
5704 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5705 sizeof(int), 0644, proc_dointvec_minmax);
5706 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5707 sizeof(int), 0644, proc_dointvec_minmax);
5708 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5709 sizeof(int), 0644, proc_dointvec_minmax);
5710 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5711 sizeof(int), 0644, proc_dointvec_minmax);
5712 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5713 sizeof(int), 0644, proc_dointvec_minmax);
5714 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 set_table_entry(&table[9], "cache_nice_tries",
5719 &sd->cache_nice_tries,
5720 sizeof(int), 0644, proc_dointvec_minmax);
5721 set_table_entry(&table[10], "flags", &sd->flags,
5722 sizeof(int), 0644, proc_dointvec_minmax);
5723 /* &table[11] is terminator */
5728 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5730 struct ctl_table *entry, *table;
5731 struct sched_domain *sd;
5732 int domain_num = 0, i;
5735 for_each_domain(cpu, sd)
5737 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5742 for_each_domain(cpu, sd) {
5743 snprintf(buf, 32, "domain%d", i);
5744 entry->procname = kstrdup(buf, GFP_KERNEL);
5746 entry->child = sd_alloc_ctl_domain_table(sd);
5753 static struct ctl_table_header *sd_sysctl_header;
5754 static void register_sched_domain_sysctl(void)
5756 int i, cpu_num = num_online_cpus();
5757 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5760 WARN_ON(sd_ctl_dir[0].child);
5761 sd_ctl_dir[0].child = entry;
5766 for_each_online_cpu(i) {
5767 snprintf(buf, 32, "cpu%d", i);
5768 entry->procname = kstrdup(buf, GFP_KERNEL);
5770 entry->child = sd_alloc_ctl_cpu_table(i);
5774 WARN_ON(sd_sysctl_header);
5775 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5778 /* may be called multiple times per register */
5779 static void unregister_sched_domain_sysctl(void)
5781 if (sd_sysctl_header)
5782 unregister_sysctl_table(sd_sysctl_header);
5783 sd_sysctl_header = NULL;
5784 if (sd_ctl_dir[0].child)
5785 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5788 static void register_sched_domain_sysctl(void)
5791 static void unregister_sched_domain_sysctl(void)
5797 * migration_call - callback that gets triggered when a CPU is added.
5798 * Here we can start up the necessary migration thread for the new CPU.
5800 static int __cpuinit
5801 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5803 struct task_struct *p;
5804 int cpu = (long)hcpu;
5805 unsigned long flags;
5810 case CPU_UP_PREPARE:
5811 case CPU_UP_PREPARE_FROZEN:
5812 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5815 kthread_bind(p, cpu);
5816 /* Must be high prio: stop_machine expects to yield to it. */
5817 rq = task_rq_lock(p, &flags);
5818 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5819 task_rq_unlock(rq, &flags);
5820 cpu_rq(cpu)->migration_thread = p;
5824 case CPU_ONLINE_FROZEN:
5825 /* Strictly unnecessary, as first user will wake it. */
5826 wake_up_process(cpu_rq(cpu)->migration_thread);
5828 /* Update our root-domain */
5830 spin_lock_irqsave(&rq->lock, flags);
5832 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5833 cpu_set(cpu, rq->rd->online);
5835 spin_unlock_irqrestore(&rq->lock, flags);
5838 #ifdef CONFIG_HOTPLUG_CPU
5839 case CPU_UP_CANCELED:
5840 case CPU_UP_CANCELED_FROZEN:
5841 if (!cpu_rq(cpu)->migration_thread)
5843 /* Unbind it from offline cpu so it can run. Fall thru. */
5844 kthread_bind(cpu_rq(cpu)->migration_thread,
5845 any_online_cpu(cpu_online_map));
5846 kthread_stop(cpu_rq(cpu)->migration_thread);
5847 cpu_rq(cpu)->migration_thread = NULL;
5851 case CPU_DEAD_FROZEN:
5852 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5853 migrate_live_tasks(cpu);
5855 kthread_stop(rq->migration_thread);
5856 rq->migration_thread = NULL;
5857 /* Idle task back to normal (off runqueue, low prio) */
5858 spin_lock_irq(&rq->lock);
5859 update_rq_clock(rq);
5860 deactivate_task(rq, rq->idle, 0);
5861 rq->idle->static_prio = MAX_PRIO;
5862 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5863 rq->idle->sched_class = &idle_sched_class;
5864 migrate_dead_tasks(cpu);
5865 spin_unlock_irq(&rq->lock);
5867 migrate_nr_uninterruptible(rq);
5868 BUG_ON(rq->nr_running != 0);
5871 * No need to migrate the tasks: it was best-effort if
5872 * they didn't take sched_hotcpu_mutex. Just wake up
5875 spin_lock_irq(&rq->lock);
5876 while (!list_empty(&rq->migration_queue)) {
5877 struct migration_req *req;
5879 req = list_entry(rq->migration_queue.next,
5880 struct migration_req, list);
5881 list_del_init(&req->list);
5882 complete(&req->done);
5884 spin_unlock_irq(&rq->lock);
5888 case CPU_DYING_FROZEN:
5889 /* Update our root-domain */
5891 spin_lock_irqsave(&rq->lock, flags);
5893 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5894 cpu_clear(cpu, rq->rd->online);
5896 spin_unlock_irqrestore(&rq->lock, flags);
5903 /* Register at highest priority so that task migration (migrate_all_tasks)
5904 * happens before everything else.
5906 static struct notifier_block __cpuinitdata migration_notifier = {
5907 .notifier_call = migration_call,
5911 void __init migration_init(void)
5913 void *cpu = (void *)(long)smp_processor_id();
5916 /* Start one for the boot CPU: */
5917 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5918 BUG_ON(err == NOTIFY_BAD);
5919 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5920 register_cpu_notifier(&migration_notifier);
5926 /* Number of possible processor ids */
5927 int nr_cpu_ids __read_mostly = NR_CPUS;
5928 EXPORT_SYMBOL(nr_cpu_ids);
5930 #ifdef CONFIG_SCHED_DEBUG
5932 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5934 struct sched_group *group = sd->groups;
5935 cpumask_t groupmask;
5938 cpumask_scnprintf(str, NR_CPUS, sd->span);
5939 cpus_clear(groupmask);
5941 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5943 if (!(sd->flags & SD_LOAD_BALANCE)) {
5944 printk("does not load-balance\n");
5946 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5951 printk(KERN_CONT "span %s\n", str);
5953 if (!cpu_isset(cpu, sd->span)) {
5954 printk(KERN_ERR "ERROR: domain->span does not contain "
5957 if (!cpu_isset(cpu, group->cpumask)) {
5958 printk(KERN_ERR "ERROR: domain->groups does not contain"
5962 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5966 printk(KERN_ERR "ERROR: group is NULL\n");
5970 if (!group->__cpu_power) {
5971 printk(KERN_CONT "\n");
5972 printk(KERN_ERR "ERROR: domain->cpu_power not "
5977 if (!cpus_weight(group->cpumask)) {
5978 printk(KERN_CONT "\n");
5979 printk(KERN_ERR "ERROR: empty group\n");
5983 if (cpus_intersects(groupmask, group->cpumask)) {
5984 printk(KERN_CONT "\n");
5985 printk(KERN_ERR "ERROR: repeated CPUs\n");
5989 cpus_or(groupmask, groupmask, group->cpumask);
5991 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5992 printk(KERN_CONT " %s", str);
5994 group = group->next;
5995 } while (group != sd->groups);
5996 printk(KERN_CONT "\n");
5998 if (!cpus_equal(sd->span, groupmask))
5999 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6001 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6002 printk(KERN_ERR "ERROR: parent span is not a superset "
6003 "of domain->span\n");
6007 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6012 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6016 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6019 if (sched_domain_debug_one(sd, cpu, level))
6028 # define sched_domain_debug(sd, cpu) do { } while (0)
6031 static int sd_degenerate(struct sched_domain *sd)
6033 if (cpus_weight(sd->span) == 1)
6036 /* Following flags need at least 2 groups */
6037 if (sd->flags & (SD_LOAD_BALANCE |
6038 SD_BALANCE_NEWIDLE |
6042 SD_SHARE_PKG_RESOURCES)) {
6043 if (sd->groups != sd->groups->next)
6047 /* Following flags don't use groups */
6048 if (sd->flags & (SD_WAKE_IDLE |
6057 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6059 unsigned long cflags = sd->flags, pflags = parent->flags;
6061 if (sd_degenerate(parent))
6064 if (!cpus_equal(sd->span, parent->span))
6067 /* Does parent contain flags not in child? */
6068 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6069 if (cflags & SD_WAKE_AFFINE)
6070 pflags &= ~SD_WAKE_BALANCE;
6071 /* Flags needing groups don't count if only 1 group in parent */
6072 if (parent->groups == parent->groups->next) {
6073 pflags &= ~(SD_LOAD_BALANCE |
6074 SD_BALANCE_NEWIDLE |
6078 SD_SHARE_PKG_RESOURCES);
6080 if (~cflags & pflags)
6086 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6088 unsigned long flags;
6089 const struct sched_class *class;
6091 spin_lock_irqsave(&rq->lock, flags);
6094 struct root_domain *old_rd = rq->rd;
6096 for (class = sched_class_highest; class; class = class->next) {
6097 if (class->leave_domain)
6098 class->leave_domain(rq);
6101 cpu_clear(rq->cpu, old_rd->span);
6102 cpu_clear(rq->cpu, old_rd->online);
6104 if (atomic_dec_and_test(&old_rd->refcount))
6108 atomic_inc(&rd->refcount);
6111 cpu_set(rq->cpu, rd->span);
6112 if (cpu_isset(rq->cpu, cpu_online_map))
6113 cpu_set(rq->cpu, rd->online);
6115 for (class = sched_class_highest; class; class = class->next) {
6116 if (class->join_domain)
6117 class->join_domain(rq);
6120 spin_unlock_irqrestore(&rq->lock, flags);
6123 static void init_rootdomain(struct root_domain *rd)
6125 memset(rd, 0, sizeof(*rd));
6127 cpus_clear(rd->span);
6128 cpus_clear(rd->online);
6131 static void init_defrootdomain(void)
6133 init_rootdomain(&def_root_domain);
6134 atomic_set(&def_root_domain.refcount, 1);
6137 static struct root_domain *alloc_rootdomain(void)
6139 struct root_domain *rd;
6141 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6145 init_rootdomain(rd);
6151 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6152 * hold the hotplug lock.
6155 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6157 struct rq *rq = cpu_rq(cpu);
6158 struct sched_domain *tmp;
6160 /* Remove the sched domains which do not contribute to scheduling. */
6161 for (tmp = sd; tmp; tmp = tmp->parent) {
6162 struct sched_domain *parent = tmp->parent;
6165 if (sd_parent_degenerate(tmp, parent)) {
6166 tmp->parent = parent->parent;
6168 parent->parent->child = tmp;
6172 if (sd && sd_degenerate(sd)) {
6178 sched_domain_debug(sd, cpu);
6180 rq_attach_root(rq, rd);
6181 rcu_assign_pointer(rq->sd, sd);
6184 /* cpus with isolated domains */
6185 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6187 /* Setup the mask of cpus configured for isolated domains */
6188 static int __init isolated_cpu_setup(char *str)
6190 int ints[NR_CPUS], i;
6192 str = get_options(str, ARRAY_SIZE(ints), ints);
6193 cpus_clear(cpu_isolated_map);
6194 for (i = 1; i <= ints[0]; i++)
6195 if (ints[i] < NR_CPUS)
6196 cpu_set(ints[i], cpu_isolated_map);
6200 __setup("isolcpus=", isolated_cpu_setup);
6203 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6204 * to a function which identifies what group(along with sched group) a CPU
6205 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6206 * (due to the fact that we keep track of groups covered with a cpumask_t).
6208 * init_sched_build_groups will build a circular linked list of the groups
6209 * covered by the given span, and will set each group's ->cpumask correctly,
6210 * and ->cpu_power to 0.
6213 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6214 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6215 struct sched_group **sg))
6217 struct sched_group *first = NULL, *last = NULL;
6218 cpumask_t covered = CPU_MASK_NONE;
6221 for_each_cpu_mask(i, span) {
6222 struct sched_group *sg;
6223 int group = group_fn(i, cpu_map, &sg);
6226 if (cpu_isset(i, covered))
6229 sg->cpumask = CPU_MASK_NONE;
6230 sg->__cpu_power = 0;
6232 for_each_cpu_mask(j, span) {
6233 if (group_fn(j, cpu_map, NULL) != group)
6236 cpu_set(j, covered);
6237 cpu_set(j, sg->cpumask);
6248 #define SD_NODES_PER_DOMAIN 16
6253 * find_next_best_node - find the next node to include in a sched_domain
6254 * @node: node whose sched_domain we're building
6255 * @used_nodes: nodes already in the sched_domain
6257 * Find the next node to include in a given scheduling domain. Simply
6258 * finds the closest node not already in the @used_nodes map.
6260 * Should use nodemask_t.
6262 static int find_next_best_node(int node, unsigned long *used_nodes)
6264 int i, n, val, min_val, best_node = 0;
6268 for (i = 0; i < MAX_NUMNODES; i++) {
6269 /* Start at @node */
6270 n = (node + i) % MAX_NUMNODES;
6272 if (!nr_cpus_node(n))
6275 /* Skip already used nodes */
6276 if (test_bit(n, used_nodes))
6279 /* Simple min distance search */
6280 val = node_distance(node, n);
6282 if (val < min_val) {
6288 set_bit(best_node, used_nodes);
6293 * sched_domain_node_span - get a cpumask for a node's sched_domain
6294 * @node: node whose cpumask we're constructing
6295 * @size: number of nodes to include in this span
6297 * Given a node, construct a good cpumask for its sched_domain to span. It
6298 * should be one that prevents unnecessary balancing, but also spreads tasks
6301 static cpumask_t sched_domain_node_span(int node)
6303 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6304 cpumask_t span, nodemask;
6308 bitmap_zero(used_nodes, MAX_NUMNODES);
6310 nodemask = node_to_cpumask(node);
6311 cpus_or(span, span, nodemask);
6312 set_bit(node, used_nodes);
6314 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6315 int next_node = find_next_best_node(node, used_nodes);
6317 nodemask = node_to_cpumask(next_node);
6318 cpus_or(span, span, nodemask);
6325 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6328 * SMT sched-domains:
6330 #ifdef CONFIG_SCHED_SMT
6331 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6332 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6335 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6338 *sg = &per_cpu(sched_group_cpus, cpu);
6344 * multi-core sched-domains:
6346 #ifdef CONFIG_SCHED_MC
6347 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6348 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6351 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6353 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6356 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6357 cpus_and(mask, mask, *cpu_map);
6358 group = first_cpu(mask);
6360 *sg = &per_cpu(sched_group_core, group);
6363 #elif defined(CONFIG_SCHED_MC)
6365 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6368 *sg = &per_cpu(sched_group_core, cpu);
6373 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6374 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6377 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6380 #ifdef CONFIG_SCHED_MC
6381 cpumask_t mask = cpu_coregroup_map(cpu);
6382 cpus_and(mask, mask, *cpu_map);
6383 group = first_cpu(mask);
6384 #elif defined(CONFIG_SCHED_SMT)
6385 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6386 cpus_and(mask, mask, *cpu_map);
6387 group = first_cpu(mask);
6392 *sg = &per_cpu(sched_group_phys, group);
6398 * The init_sched_build_groups can't handle what we want to do with node
6399 * groups, so roll our own. Now each node has its own list of groups which
6400 * gets dynamically allocated.
6402 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6403 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6405 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6406 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6408 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6409 struct sched_group **sg)
6411 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6414 cpus_and(nodemask, nodemask, *cpu_map);
6415 group = first_cpu(nodemask);
6418 *sg = &per_cpu(sched_group_allnodes, group);
6422 static void init_numa_sched_groups_power(struct sched_group *group_head)
6424 struct sched_group *sg = group_head;
6430 for_each_cpu_mask(j, sg->cpumask) {
6431 struct sched_domain *sd;
6433 sd = &per_cpu(phys_domains, j);
6434 if (j != first_cpu(sd->groups->cpumask)) {
6436 * Only add "power" once for each
6442 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6445 } while (sg != group_head);
6450 /* Free memory allocated for various sched_group structures */
6451 static void free_sched_groups(const cpumask_t *cpu_map)
6455 for_each_cpu_mask(cpu, *cpu_map) {
6456 struct sched_group **sched_group_nodes
6457 = sched_group_nodes_bycpu[cpu];
6459 if (!sched_group_nodes)
6462 for (i = 0; i < MAX_NUMNODES; i++) {
6463 cpumask_t nodemask = node_to_cpumask(i);
6464 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6466 cpus_and(nodemask, nodemask, *cpu_map);
6467 if (cpus_empty(nodemask))
6477 if (oldsg != sched_group_nodes[i])
6480 kfree(sched_group_nodes);
6481 sched_group_nodes_bycpu[cpu] = NULL;
6485 static void free_sched_groups(const cpumask_t *cpu_map)
6491 * Initialize sched groups cpu_power.
6493 * cpu_power indicates the capacity of sched group, which is used while
6494 * distributing the load between different sched groups in a sched domain.
6495 * Typically cpu_power for all the groups in a sched domain will be same unless
6496 * there are asymmetries in the topology. If there are asymmetries, group
6497 * having more cpu_power will pickup more load compared to the group having
6500 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6501 * the maximum number of tasks a group can handle in the presence of other idle
6502 * or lightly loaded groups in the same sched domain.
6504 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6506 struct sched_domain *child;
6507 struct sched_group *group;
6509 WARN_ON(!sd || !sd->groups);
6511 if (cpu != first_cpu(sd->groups->cpumask))
6516 sd->groups->__cpu_power = 0;
6519 * For perf policy, if the groups in child domain share resources
6520 * (for example cores sharing some portions of the cache hierarchy
6521 * or SMT), then set this domain groups cpu_power such that each group
6522 * can handle only one task, when there are other idle groups in the
6523 * same sched domain.
6525 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6527 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6528 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6533 * add cpu_power of each child group to this groups cpu_power
6535 group = child->groups;
6537 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6538 group = group->next;
6539 } while (group != child->groups);
6543 * Build sched domains for a given set of cpus and attach the sched domains
6544 * to the individual cpus
6546 static int build_sched_domains(const cpumask_t *cpu_map)
6549 struct root_domain *rd;
6551 struct sched_group **sched_group_nodes = NULL;
6552 int sd_allnodes = 0;
6555 * Allocate the per-node list of sched groups
6557 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6559 if (!sched_group_nodes) {
6560 printk(KERN_WARNING "Can not alloc sched group node list\n");
6563 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6566 rd = alloc_rootdomain();
6568 printk(KERN_WARNING "Cannot alloc root domain\n");
6573 * Set up domains for cpus specified by the cpu_map.
6575 for_each_cpu_mask(i, *cpu_map) {
6576 struct sched_domain *sd = NULL, *p;
6577 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6579 cpus_and(nodemask, nodemask, *cpu_map);
6582 if (cpus_weight(*cpu_map) >
6583 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6584 sd = &per_cpu(allnodes_domains, i);
6585 *sd = SD_ALLNODES_INIT;
6586 sd->span = *cpu_map;
6587 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6593 sd = &per_cpu(node_domains, i);
6595 sd->span = sched_domain_node_span(cpu_to_node(i));
6599 cpus_and(sd->span, sd->span, *cpu_map);
6603 sd = &per_cpu(phys_domains, i);
6605 sd->span = nodemask;
6609 cpu_to_phys_group(i, cpu_map, &sd->groups);
6611 #ifdef CONFIG_SCHED_MC
6613 sd = &per_cpu(core_domains, i);
6615 sd->span = cpu_coregroup_map(i);
6616 cpus_and(sd->span, sd->span, *cpu_map);
6619 cpu_to_core_group(i, cpu_map, &sd->groups);
6622 #ifdef CONFIG_SCHED_SMT
6624 sd = &per_cpu(cpu_domains, i);
6625 *sd = SD_SIBLING_INIT;
6626 sd->span = per_cpu(cpu_sibling_map, i);
6627 cpus_and(sd->span, sd->span, *cpu_map);
6630 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6634 #ifdef CONFIG_SCHED_SMT
6635 /* Set up CPU (sibling) groups */
6636 for_each_cpu_mask(i, *cpu_map) {
6637 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6638 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6639 if (i != first_cpu(this_sibling_map))
6642 init_sched_build_groups(this_sibling_map, cpu_map,
6647 #ifdef CONFIG_SCHED_MC
6648 /* Set up multi-core groups */
6649 for_each_cpu_mask(i, *cpu_map) {
6650 cpumask_t this_core_map = cpu_coregroup_map(i);
6651 cpus_and(this_core_map, this_core_map, *cpu_map);
6652 if (i != first_cpu(this_core_map))
6654 init_sched_build_groups(this_core_map, cpu_map,
6655 &cpu_to_core_group);
6659 /* Set up physical groups */
6660 for (i = 0; i < MAX_NUMNODES; i++) {
6661 cpumask_t nodemask = node_to_cpumask(i);
6663 cpus_and(nodemask, nodemask, *cpu_map);
6664 if (cpus_empty(nodemask))
6667 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6671 /* Set up node groups */
6673 init_sched_build_groups(*cpu_map, cpu_map,
6674 &cpu_to_allnodes_group);
6676 for (i = 0; i < MAX_NUMNODES; i++) {
6677 /* Set up node groups */
6678 struct sched_group *sg, *prev;
6679 cpumask_t nodemask = node_to_cpumask(i);
6680 cpumask_t domainspan;
6681 cpumask_t covered = CPU_MASK_NONE;
6684 cpus_and(nodemask, nodemask, *cpu_map);
6685 if (cpus_empty(nodemask)) {
6686 sched_group_nodes[i] = NULL;
6690 domainspan = sched_domain_node_span(i);
6691 cpus_and(domainspan, domainspan, *cpu_map);
6693 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6695 printk(KERN_WARNING "Can not alloc domain group for "
6699 sched_group_nodes[i] = sg;
6700 for_each_cpu_mask(j, nodemask) {
6701 struct sched_domain *sd;
6703 sd = &per_cpu(node_domains, j);
6706 sg->__cpu_power = 0;
6707 sg->cpumask = nodemask;
6709 cpus_or(covered, covered, nodemask);
6712 for (j = 0; j < MAX_NUMNODES; j++) {
6713 cpumask_t tmp, notcovered;
6714 int n = (i + j) % MAX_NUMNODES;
6716 cpus_complement(notcovered, covered);
6717 cpus_and(tmp, notcovered, *cpu_map);
6718 cpus_and(tmp, tmp, domainspan);
6719 if (cpus_empty(tmp))
6722 nodemask = node_to_cpumask(n);
6723 cpus_and(tmp, tmp, nodemask);
6724 if (cpus_empty(tmp))
6727 sg = kmalloc_node(sizeof(struct sched_group),
6731 "Can not alloc domain group for node %d\n", j);
6734 sg->__cpu_power = 0;
6736 sg->next = prev->next;
6737 cpus_or(covered, covered, tmp);
6744 /* Calculate CPU power for physical packages and nodes */
6745 #ifdef CONFIG_SCHED_SMT
6746 for_each_cpu_mask(i, *cpu_map) {
6747 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6749 init_sched_groups_power(i, sd);
6752 #ifdef CONFIG_SCHED_MC
6753 for_each_cpu_mask(i, *cpu_map) {
6754 struct sched_domain *sd = &per_cpu(core_domains, i);
6756 init_sched_groups_power(i, sd);
6760 for_each_cpu_mask(i, *cpu_map) {
6761 struct sched_domain *sd = &per_cpu(phys_domains, i);
6763 init_sched_groups_power(i, sd);
6767 for (i = 0; i < MAX_NUMNODES; i++)
6768 init_numa_sched_groups_power(sched_group_nodes[i]);
6771 struct sched_group *sg;
6773 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6774 init_numa_sched_groups_power(sg);
6778 /* Attach the domains */
6779 for_each_cpu_mask(i, *cpu_map) {
6780 struct sched_domain *sd;
6781 #ifdef CONFIG_SCHED_SMT
6782 sd = &per_cpu(cpu_domains, i);
6783 #elif defined(CONFIG_SCHED_MC)
6784 sd = &per_cpu(core_domains, i);
6786 sd = &per_cpu(phys_domains, i);
6788 cpu_attach_domain(sd, rd, i);
6795 free_sched_groups(cpu_map);
6800 static cpumask_t *doms_cur; /* current sched domains */
6801 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6804 * Special case: If a kmalloc of a doms_cur partition (array of
6805 * cpumask_t) fails, then fallback to a single sched domain,
6806 * as determined by the single cpumask_t fallback_doms.
6808 static cpumask_t fallback_doms;
6810 void __attribute__((weak)) arch_update_cpu_topology(void)
6815 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6816 * For now this just excludes isolated cpus, but could be used to
6817 * exclude other special cases in the future.
6819 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6823 arch_update_cpu_topology();
6825 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6827 doms_cur = &fallback_doms;
6828 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6829 err = build_sched_domains(doms_cur);
6830 register_sched_domain_sysctl();
6835 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6837 free_sched_groups(cpu_map);
6841 * Detach sched domains from a group of cpus specified in cpu_map
6842 * These cpus will now be attached to the NULL domain
6844 static void detach_destroy_domains(const cpumask_t *cpu_map)
6848 unregister_sched_domain_sysctl();
6850 for_each_cpu_mask(i, *cpu_map)
6851 cpu_attach_domain(NULL, &def_root_domain, i);
6852 synchronize_sched();
6853 arch_destroy_sched_domains(cpu_map);
6857 * Partition sched domains as specified by the 'ndoms_new'
6858 * cpumasks in the array doms_new[] of cpumasks. This compares
6859 * doms_new[] to the current sched domain partitioning, doms_cur[].
6860 * It destroys each deleted domain and builds each new domain.
6862 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6863 * The masks don't intersect (don't overlap.) We should setup one
6864 * sched domain for each mask. CPUs not in any of the cpumasks will
6865 * not be load balanced. If the same cpumask appears both in the
6866 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6869 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6870 * ownership of it and will kfree it when done with it. If the caller
6871 * failed the kmalloc call, then it can pass in doms_new == NULL,
6872 * and partition_sched_domains() will fallback to the single partition
6875 * Call with hotplug lock held
6877 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6883 /* always unregister in case we don't destroy any domains */
6884 unregister_sched_domain_sysctl();
6886 if (doms_new == NULL) {
6888 doms_new = &fallback_doms;
6889 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6892 /* Destroy deleted domains */
6893 for (i = 0; i < ndoms_cur; i++) {
6894 for (j = 0; j < ndoms_new; j++) {
6895 if (cpus_equal(doms_cur[i], doms_new[j]))
6898 /* no match - a current sched domain not in new doms_new[] */
6899 detach_destroy_domains(doms_cur + i);
6904 /* Build new domains */
6905 for (i = 0; i < ndoms_new; i++) {
6906 for (j = 0; j < ndoms_cur; j++) {
6907 if (cpus_equal(doms_new[i], doms_cur[j]))
6910 /* no match - add a new doms_new */
6911 build_sched_domains(doms_new + i);
6916 /* Remember the new sched domains */
6917 if (doms_cur != &fallback_doms)
6919 doms_cur = doms_new;
6920 ndoms_cur = ndoms_new;
6922 register_sched_domain_sysctl();
6927 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6928 int arch_reinit_sched_domains(void)
6933 detach_destroy_domains(&cpu_online_map);
6934 err = arch_init_sched_domains(&cpu_online_map);
6940 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6944 if (buf[0] != '0' && buf[0] != '1')
6948 sched_smt_power_savings = (buf[0] == '1');
6950 sched_mc_power_savings = (buf[0] == '1');
6952 ret = arch_reinit_sched_domains();
6954 return ret ? ret : count;
6957 #ifdef CONFIG_SCHED_MC
6958 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6960 return sprintf(page, "%u\n", sched_mc_power_savings);
6962 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6963 const char *buf, size_t count)
6965 return sched_power_savings_store(buf, count, 0);
6967 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6968 sched_mc_power_savings_store);
6971 #ifdef CONFIG_SCHED_SMT
6972 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6974 return sprintf(page, "%u\n", sched_smt_power_savings);
6976 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6977 const char *buf, size_t count)
6979 return sched_power_savings_store(buf, count, 1);
6981 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6982 sched_smt_power_savings_store);
6985 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6989 #ifdef CONFIG_SCHED_SMT
6991 err = sysfs_create_file(&cls->kset.kobj,
6992 &attr_sched_smt_power_savings.attr);
6994 #ifdef CONFIG_SCHED_MC
6995 if (!err && mc_capable())
6996 err = sysfs_create_file(&cls->kset.kobj,
6997 &attr_sched_mc_power_savings.attr);
7004 * Force a reinitialization of the sched domains hierarchy. The domains
7005 * and groups cannot be updated in place without racing with the balancing
7006 * code, so we temporarily attach all running cpus to the NULL domain
7007 * which will prevent rebalancing while the sched domains are recalculated.
7009 static int update_sched_domains(struct notifier_block *nfb,
7010 unsigned long action, void *hcpu)
7013 case CPU_UP_PREPARE:
7014 case CPU_UP_PREPARE_FROZEN:
7015 case CPU_DOWN_PREPARE:
7016 case CPU_DOWN_PREPARE_FROZEN:
7017 detach_destroy_domains(&cpu_online_map);
7020 case CPU_UP_CANCELED:
7021 case CPU_UP_CANCELED_FROZEN:
7022 case CPU_DOWN_FAILED:
7023 case CPU_DOWN_FAILED_FROZEN:
7025 case CPU_ONLINE_FROZEN:
7027 case CPU_DEAD_FROZEN:
7029 * Fall through and re-initialise the domains.
7036 /* The hotplug lock is already held by cpu_up/cpu_down */
7037 arch_init_sched_domains(&cpu_online_map);
7042 void __init sched_init_smp(void)
7044 cpumask_t non_isolated_cpus;
7047 arch_init_sched_domains(&cpu_online_map);
7048 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7049 if (cpus_empty(non_isolated_cpus))
7050 cpu_set(smp_processor_id(), non_isolated_cpus);
7052 /* XXX: Theoretical race here - CPU may be hotplugged now */
7053 hotcpu_notifier(update_sched_domains, 0);
7055 /* Move init over to a non-isolated CPU */
7056 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7058 sched_init_granularity();
7061 void __init sched_init_smp(void)
7063 sched_init_granularity();
7065 #endif /* CONFIG_SMP */
7067 int in_sched_functions(unsigned long addr)
7069 return in_lock_functions(addr) ||
7070 (addr >= (unsigned long)__sched_text_start
7071 && addr < (unsigned long)__sched_text_end);
7074 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7076 cfs_rq->tasks_timeline = RB_ROOT;
7077 #ifdef CONFIG_FAIR_GROUP_SCHED
7080 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7083 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7085 struct rt_prio_array *array;
7088 array = &rt_rq->active;
7089 for (i = 0; i < MAX_RT_PRIO; i++) {
7090 INIT_LIST_HEAD(array->queue + i);
7091 __clear_bit(i, array->bitmap);
7093 /* delimiter for bitsearch: */
7094 __set_bit(MAX_RT_PRIO, array->bitmap);
7096 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7097 rt_rq->highest_prio = MAX_RT_PRIO;
7100 rt_rq->rt_nr_migratory = 0;
7101 rt_rq->overloaded = 0;
7105 rt_rq->rt_throttled = 0;
7107 #ifdef CONFIG_RT_GROUP_SCHED
7108 rt_rq->rt_nr_boosted = 0;
7113 #ifdef CONFIG_FAIR_GROUP_SCHED
7114 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7115 struct cfs_rq *cfs_rq, struct sched_entity *se,
7118 tg->cfs_rq[cpu] = cfs_rq;
7119 init_cfs_rq(cfs_rq, rq);
7122 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7125 se->cfs_rq = &rq->cfs;
7127 se->load.weight = tg->shares;
7128 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7133 #ifdef CONFIG_RT_GROUP_SCHED
7134 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7135 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7138 tg->rt_rq[cpu] = rt_rq;
7139 init_rt_rq(rt_rq, rq);
7141 rt_rq->rt_se = rt_se;
7143 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7145 tg->rt_se[cpu] = rt_se;
7146 rt_se->rt_rq = &rq->rt;
7147 rt_se->my_q = rt_rq;
7148 rt_se->parent = NULL;
7149 INIT_LIST_HEAD(&rt_se->run_list);
7153 void __init sched_init(void)
7155 int highest_cpu = 0;
7159 init_defrootdomain();
7162 #ifdef CONFIG_GROUP_SCHED
7163 list_add(&init_task_group.list, &task_groups);
7166 for_each_possible_cpu(i) {
7170 spin_lock_init(&rq->lock);
7171 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7174 init_cfs_rq(&rq->cfs, rq);
7175 init_rt_rq(&rq->rt, rq);
7176 #ifdef CONFIG_FAIR_GROUP_SCHED
7177 init_task_group.shares = init_task_group_load;
7178 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7179 init_tg_cfs_entry(rq, &init_task_group,
7180 &per_cpu(init_cfs_rq, i),
7181 &per_cpu(init_sched_entity, i), i, 1);
7184 #ifdef CONFIG_RT_GROUP_SCHED
7185 init_task_group.rt_runtime =
7186 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7187 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7188 init_tg_rt_entry(rq, &init_task_group,
7189 &per_cpu(init_rt_rq, i),
7190 &per_cpu(init_sched_rt_entity, i), i, 1);
7192 rq->rt_period_expire = 0;
7193 rq->rt_throttled = 0;
7195 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7196 rq->cpu_load[j] = 0;
7200 rq->active_balance = 0;
7201 rq->next_balance = jiffies;
7204 rq->migration_thread = NULL;
7205 INIT_LIST_HEAD(&rq->migration_queue);
7206 rq_attach_root(rq, &def_root_domain);
7209 atomic_set(&rq->nr_iowait, 0);
7213 set_load_weight(&init_task);
7215 #ifdef CONFIG_PREEMPT_NOTIFIERS
7216 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7220 nr_cpu_ids = highest_cpu + 1;
7221 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7224 #ifdef CONFIG_RT_MUTEXES
7225 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7229 * The boot idle thread does lazy MMU switching as well:
7231 atomic_inc(&init_mm.mm_count);
7232 enter_lazy_tlb(&init_mm, current);
7235 * Make us the idle thread. Technically, schedule() should not be
7236 * called from this thread, however somewhere below it might be,
7237 * but because we are the idle thread, we just pick up running again
7238 * when this runqueue becomes "idle".
7240 init_idle(current, smp_processor_id());
7242 * During early bootup we pretend to be a normal task:
7244 current->sched_class = &fair_sched_class;
7246 scheduler_running = 1;
7249 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7250 void __might_sleep(char *file, int line)
7253 static unsigned long prev_jiffy; /* ratelimiting */
7255 if ((in_atomic() || irqs_disabled()) &&
7256 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7257 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7259 prev_jiffy = jiffies;
7260 printk(KERN_ERR "BUG: sleeping function called from invalid"
7261 " context at %s:%d\n", file, line);
7262 printk("in_atomic():%d, irqs_disabled():%d\n",
7263 in_atomic(), irqs_disabled());
7264 debug_show_held_locks(current);
7265 if (irqs_disabled())
7266 print_irqtrace_events(current);
7271 EXPORT_SYMBOL(__might_sleep);
7274 #ifdef CONFIG_MAGIC_SYSRQ
7275 static void normalize_task(struct rq *rq, struct task_struct *p)
7278 update_rq_clock(rq);
7279 on_rq = p->se.on_rq;
7281 deactivate_task(rq, p, 0);
7282 __setscheduler(rq, p, SCHED_NORMAL, 0);
7284 activate_task(rq, p, 0);
7285 resched_task(rq->curr);
7289 void normalize_rt_tasks(void)
7291 struct task_struct *g, *p;
7292 unsigned long flags;
7295 read_lock_irqsave(&tasklist_lock, flags);
7296 do_each_thread(g, p) {
7298 * Only normalize user tasks:
7303 p->se.exec_start = 0;
7304 #ifdef CONFIG_SCHEDSTATS
7305 p->se.wait_start = 0;
7306 p->se.sleep_start = 0;
7307 p->se.block_start = 0;
7309 task_rq(p)->clock = 0;
7313 * Renice negative nice level userspace
7316 if (TASK_NICE(p) < 0 && p->mm)
7317 set_user_nice(p, 0);
7321 spin_lock(&p->pi_lock);
7322 rq = __task_rq_lock(p);
7324 normalize_task(rq, p);
7326 __task_rq_unlock(rq);
7327 spin_unlock(&p->pi_lock);
7328 } while_each_thread(g, p);
7330 read_unlock_irqrestore(&tasklist_lock, flags);
7333 #endif /* CONFIG_MAGIC_SYSRQ */
7337 * These functions are only useful for the IA64 MCA handling.
7339 * They can only be called when the whole system has been
7340 * stopped - every CPU needs to be quiescent, and no scheduling
7341 * activity can take place. Using them for anything else would
7342 * be a serious bug, and as a result, they aren't even visible
7343 * under any other configuration.
7347 * curr_task - return the current task for a given cpu.
7348 * @cpu: the processor in question.
7350 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7352 struct task_struct *curr_task(int cpu)
7354 return cpu_curr(cpu);
7358 * set_curr_task - set the current task for a given cpu.
7359 * @cpu: the processor in question.
7360 * @p: the task pointer to set.
7362 * Description: This function must only be used when non-maskable interrupts
7363 * are serviced on a separate stack. It allows the architecture to switch the
7364 * notion of the current task on a cpu in a non-blocking manner. This function
7365 * must be called with all CPU's synchronized, and interrupts disabled, the
7366 * and caller must save the original value of the current task (see
7367 * curr_task() above) and restore that value before reenabling interrupts and
7368 * re-starting the system.
7370 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7372 void set_curr_task(int cpu, struct task_struct *p)
7379 #ifdef CONFIG_GROUP_SCHED
7381 #ifdef CONFIG_FAIR_GROUP_SCHED
7382 static void free_fair_sched_group(struct task_group *tg)
7386 for_each_possible_cpu(i) {
7388 kfree(tg->cfs_rq[i]);
7397 static int alloc_fair_sched_group(struct task_group *tg)
7399 struct cfs_rq *cfs_rq;
7400 struct sched_entity *se;
7404 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7407 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7411 tg->shares = NICE_0_LOAD;
7413 for_each_possible_cpu(i) {
7416 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7417 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7421 se = kmalloc_node(sizeof(struct sched_entity),
7422 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7426 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7435 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7437 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7438 &cpu_rq(cpu)->leaf_cfs_rq_list);
7441 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7443 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7446 static inline void free_fair_sched_group(struct task_group *tg)
7450 static inline int alloc_fair_sched_group(struct task_group *tg)
7455 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7459 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7464 #ifdef CONFIG_RT_GROUP_SCHED
7465 static void free_rt_sched_group(struct task_group *tg)
7469 for_each_possible_cpu(i) {
7471 kfree(tg->rt_rq[i]);
7473 kfree(tg->rt_se[i]);
7480 static int alloc_rt_sched_group(struct task_group *tg)
7482 struct rt_rq *rt_rq;
7483 struct sched_rt_entity *rt_se;
7487 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7490 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7496 for_each_possible_cpu(i) {
7499 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7500 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7504 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7505 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7509 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7518 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7520 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7521 &cpu_rq(cpu)->leaf_rt_rq_list);
7524 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7526 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7529 static inline void free_rt_sched_group(struct task_group *tg)
7533 static inline int alloc_rt_sched_group(struct task_group *tg)
7538 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7542 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7547 static void free_sched_group(struct task_group *tg)
7549 free_fair_sched_group(tg);
7550 free_rt_sched_group(tg);
7554 /* allocate runqueue etc for a new task group */
7555 struct task_group *sched_create_group(void)
7557 struct task_group *tg;
7558 unsigned long flags;
7561 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7563 return ERR_PTR(-ENOMEM);
7565 if (!alloc_fair_sched_group(tg))
7568 if (!alloc_rt_sched_group(tg))
7571 spin_lock_irqsave(&task_group_lock, flags);
7572 for_each_possible_cpu(i) {
7573 register_fair_sched_group(tg, i);
7574 register_rt_sched_group(tg, i);
7576 list_add_rcu(&tg->list, &task_groups);
7577 spin_unlock_irqrestore(&task_group_lock, flags);
7582 free_sched_group(tg);
7583 return ERR_PTR(-ENOMEM);
7586 /* rcu callback to free various structures associated with a task group */
7587 static void free_sched_group_rcu(struct rcu_head *rhp)
7589 /* now it should be safe to free those cfs_rqs */
7590 free_sched_group(container_of(rhp, struct task_group, rcu));
7593 /* Destroy runqueue etc associated with a task group */
7594 void sched_destroy_group(struct task_group *tg)
7596 unsigned long flags;
7599 spin_lock_irqsave(&task_group_lock, flags);
7600 for_each_possible_cpu(i) {
7601 unregister_fair_sched_group(tg, i);
7602 unregister_rt_sched_group(tg, i);
7604 list_del_rcu(&tg->list);
7605 spin_unlock_irqrestore(&task_group_lock, flags);
7607 /* wait for possible concurrent references to cfs_rqs complete */
7608 call_rcu(&tg->rcu, free_sched_group_rcu);
7611 /* change task's runqueue when it moves between groups.
7612 * The caller of this function should have put the task in its new group
7613 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7614 * reflect its new group.
7616 void sched_move_task(struct task_struct *tsk)
7619 unsigned long flags;
7622 rq = task_rq_lock(tsk, &flags);
7624 update_rq_clock(rq);
7626 running = task_current(rq, tsk);
7627 on_rq = tsk->se.on_rq;
7630 dequeue_task(rq, tsk, 0);
7631 if (unlikely(running))
7632 tsk->sched_class->put_prev_task(rq, tsk);
7634 set_task_rq(tsk, task_cpu(tsk));
7636 #ifdef CONFIG_FAIR_GROUP_SCHED
7637 if (tsk->sched_class->moved_group)
7638 tsk->sched_class->moved_group(tsk);
7641 if (unlikely(running))
7642 tsk->sched_class->set_curr_task(rq);
7644 enqueue_task(rq, tsk, 0);
7646 task_rq_unlock(rq, &flags);
7649 #ifdef CONFIG_FAIR_GROUP_SCHED
7650 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7652 struct cfs_rq *cfs_rq = se->cfs_rq;
7653 struct rq *rq = cfs_rq->rq;
7656 spin_lock_irq(&rq->lock);
7660 dequeue_entity(cfs_rq, se, 0);
7662 se->load.weight = shares;
7663 se->load.inv_weight = div64_64((1ULL<<32), shares);
7666 enqueue_entity(cfs_rq, se, 0);
7668 spin_unlock_irq(&rq->lock);
7671 static DEFINE_MUTEX(shares_mutex);
7673 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7676 unsigned long flags;
7679 * A weight of 0 or 1 can cause arithmetics problems.
7680 * (The default weight is 1024 - so there's no practical
7681 * limitation from this.)
7686 mutex_lock(&shares_mutex);
7687 if (tg->shares == shares)
7690 spin_lock_irqsave(&task_group_lock, flags);
7691 for_each_possible_cpu(i)
7692 unregister_fair_sched_group(tg, i);
7693 spin_unlock_irqrestore(&task_group_lock, flags);
7695 /* wait for any ongoing reference to this group to finish */
7696 synchronize_sched();
7699 * Now we are free to modify the group's share on each cpu
7700 * w/o tripping rebalance_share or load_balance_fair.
7702 tg->shares = shares;
7703 for_each_possible_cpu(i)
7704 set_se_shares(tg->se[i], shares);
7707 * Enable load balance activity on this group, by inserting it back on
7708 * each cpu's rq->leaf_cfs_rq_list.
7710 spin_lock_irqsave(&task_group_lock, flags);
7711 for_each_possible_cpu(i)
7712 register_fair_sched_group(tg, i);
7713 spin_unlock_irqrestore(&task_group_lock, flags);
7715 mutex_unlock(&shares_mutex);
7719 unsigned long sched_group_shares(struct task_group *tg)
7725 #ifdef CONFIG_RT_GROUP_SCHED
7727 * Ensure that the real time constraints are schedulable.
7729 static DEFINE_MUTEX(rt_constraints_mutex);
7731 static unsigned long to_ratio(u64 period, u64 runtime)
7733 if (runtime == RUNTIME_INF)
7736 return div64_64(runtime << 16, period);
7739 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7741 struct task_group *tgi;
7742 unsigned long total = 0;
7743 unsigned long global_ratio =
7744 to_ratio(sysctl_sched_rt_period,
7745 sysctl_sched_rt_runtime < 0 ?
7746 RUNTIME_INF : sysctl_sched_rt_runtime);
7749 list_for_each_entry_rcu(tgi, &task_groups, list) {
7753 total += to_ratio(period, tgi->rt_runtime);
7757 return total + to_ratio(period, runtime) < global_ratio;
7760 /* Must be called with tasklist_lock held */
7761 static inline int tg_has_rt_tasks(struct task_group *tg)
7763 struct task_struct *g, *p;
7764 do_each_thread(g, p) {
7765 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7767 } while_each_thread(g, p);
7771 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7773 u64 rt_runtime, rt_period;
7776 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7777 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7778 if (rt_runtime_us == -1)
7779 rt_runtime = RUNTIME_INF;
7781 mutex_lock(&rt_constraints_mutex);
7782 read_lock(&tasklist_lock);
7783 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7787 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7791 tg->rt_runtime = rt_runtime;
7793 read_unlock(&tasklist_lock);
7794 mutex_unlock(&rt_constraints_mutex);
7799 long sched_group_rt_runtime(struct task_group *tg)
7803 if (tg->rt_runtime == RUNTIME_INF)
7806 rt_runtime_us = tg->rt_runtime;
7807 do_div(rt_runtime_us, NSEC_PER_USEC);
7808 return rt_runtime_us;
7811 #endif /* CONFIG_GROUP_SCHED */
7813 #ifdef CONFIG_CGROUP_SCHED
7815 /* return corresponding task_group object of a cgroup */
7816 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7818 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7819 struct task_group, css);
7822 static struct cgroup_subsys_state *
7823 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7825 struct task_group *tg;
7827 if (!cgrp->parent) {
7828 /* This is early initialization for the top cgroup */
7829 init_task_group.css.cgroup = cgrp;
7830 return &init_task_group.css;
7833 /* we support only 1-level deep hierarchical scheduler atm */
7834 if (cgrp->parent->parent)
7835 return ERR_PTR(-EINVAL);
7837 tg = sched_create_group();
7839 return ERR_PTR(-ENOMEM);
7841 /* Bind the cgroup to task_group object we just created */
7842 tg->css.cgroup = cgrp;
7848 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7850 struct task_group *tg = cgroup_tg(cgrp);
7852 sched_destroy_group(tg);
7856 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7857 struct task_struct *tsk)
7859 #ifdef CONFIG_RT_GROUP_SCHED
7860 /* Don't accept realtime tasks when there is no way for them to run */
7861 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7864 /* We don't support RT-tasks being in separate groups */
7865 if (tsk->sched_class != &fair_sched_class)
7873 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7874 struct cgroup *old_cont, struct task_struct *tsk)
7876 sched_move_task(tsk);
7879 #ifdef CONFIG_FAIR_GROUP_SCHED
7880 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7883 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7886 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7888 struct task_group *tg = cgroup_tg(cgrp);
7890 return (u64) tg->shares;
7894 #ifdef CONFIG_RT_GROUP_SCHED
7895 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7897 const char __user *userbuf,
7898 size_t nbytes, loff_t *unused_ppos)
7907 if (nbytes >= sizeof(buffer))
7909 if (copy_from_user(buffer, userbuf, nbytes))
7912 buffer[nbytes] = 0; /* nul-terminate */
7914 /* strip newline if necessary */
7915 if (nbytes && (buffer[nbytes-1] == '\n'))
7916 buffer[nbytes-1] = 0;
7917 val = simple_strtoll(buffer, &end, 0);
7921 /* Pass to subsystem */
7922 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7928 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7930 char __user *buf, size_t nbytes,
7934 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7935 int len = sprintf(tmp, "%ld\n", val);
7937 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
7941 static struct cftype cpu_files[] = {
7942 #ifdef CONFIG_FAIR_GROUP_SCHED
7945 .read_uint = cpu_shares_read_uint,
7946 .write_uint = cpu_shares_write_uint,
7949 #ifdef CONFIG_RT_GROUP_SCHED
7951 .name = "rt_runtime_us",
7952 .read = cpu_rt_runtime_read,
7953 .write = cpu_rt_runtime_write,
7958 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7960 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7963 struct cgroup_subsys cpu_cgroup_subsys = {
7965 .create = cpu_cgroup_create,
7966 .destroy = cpu_cgroup_destroy,
7967 .can_attach = cpu_cgroup_can_attach,
7968 .attach = cpu_cgroup_attach,
7969 .populate = cpu_cgroup_populate,
7970 .subsys_id = cpu_cgroup_subsys_id,
7974 #endif /* CONFIG_CGROUP_SCHED */
7976 #ifdef CONFIG_CGROUP_CPUACCT
7979 * CPU accounting code for task groups.
7981 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7982 * (balbir@in.ibm.com).
7985 /* track cpu usage of a group of tasks */
7987 struct cgroup_subsys_state css;
7988 /* cpuusage holds pointer to a u64-type object on every cpu */
7992 struct cgroup_subsys cpuacct_subsys;
7994 /* return cpu accounting group corresponding to this container */
7995 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7997 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7998 struct cpuacct, css);
8001 /* return cpu accounting group to which this task belongs */
8002 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8004 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8005 struct cpuacct, css);
8008 /* create a new cpu accounting group */
8009 static struct cgroup_subsys_state *cpuacct_create(
8010 struct cgroup_subsys *ss, struct cgroup *cont)
8012 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8015 return ERR_PTR(-ENOMEM);
8017 ca->cpuusage = alloc_percpu(u64);
8018 if (!ca->cpuusage) {
8020 return ERR_PTR(-ENOMEM);
8026 /* destroy an existing cpu accounting group */
8028 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8030 struct cpuacct *ca = cgroup_ca(cont);
8032 free_percpu(ca->cpuusage);
8036 /* return total cpu usage (in nanoseconds) of a group */
8037 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8039 struct cpuacct *ca = cgroup_ca(cont);
8040 u64 totalcpuusage = 0;
8043 for_each_possible_cpu(i) {
8044 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8047 * Take rq->lock to make 64-bit addition safe on 32-bit
8050 spin_lock_irq(&cpu_rq(i)->lock);
8051 totalcpuusage += *cpuusage;
8052 spin_unlock_irq(&cpu_rq(i)->lock);
8055 return totalcpuusage;
8058 static struct cftype files[] = {
8061 .read_uint = cpuusage_read,
8065 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8067 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8071 * charge this task's execution time to its accounting group.
8073 * called with rq->lock held.
8075 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8079 if (!cpuacct_subsys.active)
8084 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8086 *cpuusage += cputime;
8090 struct cgroup_subsys cpuacct_subsys = {
8092 .create = cpuacct_create,
8093 .destroy = cpuacct_destroy,
8094 .populate = cpuacct_populate,
8095 .subsys_id = cpuacct_subsys_id,
8097 #endif /* CONFIG_CGROUP_CPUACCT */